Merge tag 'perf_urgent_for_v5.18_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE         3072
20 #define CYCLES_PER_SECOND       8000
21 #define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_SECOND_MODULUS             8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT   16
33 #define TAG_NO_CIP_HEADER       0
34 #define TAG_CIP                 1
35
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS     2
38 #define CIP_EOH_SHIFT           31
39 #define CIP_EOH                 (1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK            0x80000000
41 #define CIP_SID_SHIFT           24
42 #define CIP_SID_MASK            0x3f000000
43 #define CIP_DBS_MASK            0x00ff0000
44 #define CIP_DBS_SHIFT           16
45 #define CIP_SPH_MASK            0x00000400
46 #define CIP_SPH_SHIFT           10
47 #define CIP_DBC_MASK            0x000000ff
48 #define CIP_FMT_SHIFT           24
49 #define CIP_FMT_MASK            0x3f000000
50 #define CIP_FDF_MASK            0x00ff0000
51 #define CIP_FDF_SHIFT           16
52 #define CIP_FDF_NO_DATA         0xff
53 #define CIP_SYT_MASK            0x0000ffff
54 #define CIP_SYT_NO_INFO         0xffff
55 #define CIP_SYT_CYCLE_MODULUS   16
56 #define CIP_NO_DATA             ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58 #define CIP_HEADER_SIZE         (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM              0x10
62 #define AMDTP_FDF_NO_DATA       0xff
63
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS  2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP       (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP          (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK      0x0000ffff
71
72 #define IT_PKT_HEADER_SIZE_CIP          CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
74
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES        5
79
80 /**
81  * amdtp_stream_init - initialize an AMDTP stream structure
82  * @s: the AMDTP stream to initialize
83  * @unit: the target of the stream
84  * @dir: the direction of stream
85  * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
86  * @fmt: the value of fmt field in CIP header
87  * @process_ctx_payloads: callback handler to process payloads of isoc context
88  * @protocol_size: the size to allocate newly for protocol
89  */
90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
91                       enum amdtp_stream_direction dir, unsigned int flags,
92                       unsigned int fmt,
93                       amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
94                       unsigned int protocol_size)
95 {
96         if (process_ctx_payloads == NULL)
97                 return -EINVAL;
98
99         s->protocol = kzalloc(protocol_size, GFP_KERNEL);
100         if (!s->protocol)
101                 return -ENOMEM;
102
103         s->unit = unit;
104         s->direction = dir;
105         s->flags = flags;
106         s->context = ERR_PTR(-1);
107         mutex_init(&s->mutex);
108         s->packet_index = 0;
109
110         init_waitqueue_head(&s->ready_wait);
111
112         s->fmt = fmt;
113         s->process_ctx_payloads = process_ctx_payloads;
114
115         return 0;
116 }
117 EXPORT_SYMBOL(amdtp_stream_init);
118
119 /**
120  * amdtp_stream_destroy - free stream resources
121  * @s: the AMDTP stream to destroy
122  */
123 void amdtp_stream_destroy(struct amdtp_stream *s)
124 {
125         /* Not initialized. */
126         if (s->protocol == NULL)
127                 return;
128
129         WARN_ON(amdtp_stream_running(s));
130         kfree(s->protocol);
131         mutex_destroy(&s->mutex);
132 }
133 EXPORT_SYMBOL(amdtp_stream_destroy);
134
135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
136         [CIP_SFC_32000]  =  8,
137         [CIP_SFC_44100]  =  8,
138         [CIP_SFC_48000]  =  8,
139         [CIP_SFC_88200]  = 16,
140         [CIP_SFC_96000]  = 16,
141         [CIP_SFC_176400] = 32,
142         [CIP_SFC_192000] = 32,
143 };
144 EXPORT_SYMBOL(amdtp_syt_intervals);
145
146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
147         [CIP_SFC_32000]  =  32000,
148         [CIP_SFC_44100]  =  44100,
149         [CIP_SFC_48000]  =  48000,
150         [CIP_SFC_88200]  =  88200,
151         [CIP_SFC_96000]  =  96000,
152         [CIP_SFC_176400] = 176400,
153         [CIP_SFC_192000] = 192000,
154 };
155 EXPORT_SYMBOL(amdtp_rate_table);
156
157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
158                                     struct snd_pcm_hw_rule *rule)
159 {
160         struct snd_interval *s = hw_param_interval(params, rule->var);
161         const struct snd_interval *r =
162                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
163         struct snd_interval t = {0};
164         unsigned int step = 0;
165         int i;
166
167         for (i = 0; i < CIP_SFC_COUNT; ++i) {
168                 if (snd_interval_test(r, amdtp_rate_table[i]))
169                         step = max(step, amdtp_syt_intervals[i]);
170         }
171
172         t.min = roundup(s->min, step);
173         t.max = rounddown(s->max, step);
174         t.integer = 1;
175
176         return snd_interval_refine(s, &t);
177 }
178
179 /**
180  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
181  * @s:          the AMDTP stream, which must be initialized.
182  * @runtime:    the PCM substream runtime
183  */
184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
185                                         struct snd_pcm_runtime *runtime)
186 {
187         struct snd_pcm_hardware *hw = &runtime->hw;
188         unsigned int ctx_header_size;
189         unsigned int maximum_usec_per_period;
190         int err;
191
192         hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
193                    SNDRV_PCM_INFO_INTERLEAVED |
194                    SNDRV_PCM_INFO_JOINT_DUPLEX |
195                    SNDRV_PCM_INFO_MMAP |
196                    SNDRV_PCM_INFO_MMAP_VALID |
197                    SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
198
199         hw->periods_min = 2;
200         hw->periods_max = UINT_MAX;
201
202         /* bytes for a frame */
203         hw->period_bytes_min = 4 * hw->channels_max;
204
205         /* Just to prevent from allocating much pages. */
206         hw->period_bytes_max = hw->period_bytes_min * 2048;
207         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
208
209         // Linux driver for 1394 OHCI controller voluntarily flushes isoc
210         // context when total size of accumulated context header reaches
211         // PAGE_SIZE. This kicks work for the isoc context and brings
212         // callback in the middle of scheduled interrupts.
213         // Although AMDTP streams in the same domain use the same events per
214         // IRQ, use the largest size of context header between IT/IR contexts.
215         // Here, use the value of context header in IR context is for both
216         // contexts.
217         if (!(s->flags & CIP_NO_HEADER))
218                 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
219         else
220                 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
221         maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
222                                   CYCLES_PER_SECOND / ctx_header_size;
223
224         // In IEC 61883-6, one isoc packet can transfer events up to the value
225         // of syt interval. This comes from the interval of isoc cycle. As 1394
226         // OHCI controller can generate hardware IRQ per isoc packet, the
227         // interval is 125 usec.
228         // However, there are two ways of transmission in IEC 61883-6; blocking
229         // and non-blocking modes. In blocking mode, the sequence of isoc packet
230         // includes 'empty' or 'NODATA' packets which include no event. In
231         // non-blocking mode, the number of events per packet is variable up to
232         // the syt interval.
233         // Due to the above protocol design, the minimum PCM frames per
234         // interrupt should be double of the value of syt interval, thus it is
235         // 250 usec.
236         err = snd_pcm_hw_constraint_minmax(runtime,
237                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
238                                            250, maximum_usec_per_period);
239         if (err < 0)
240                 goto end;
241
242         /* Non-Blocking stream has no more constraints */
243         if (!(s->flags & CIP_BLOCKING))
244                 goto end;
245
246         /*
247          * One AMDTP packet can include some frames. In blocking mode, the
248          * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
249          * depending on its sampling rate. For accurate period interrupt, it's
250          * preferrable to align period/buffer sizes to current SYT_INTERVAL.
251          */
252         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
253                                   apply_constraint_to_size, NULL,
254                                   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
255                                   SNDRV_PCM_HW_PARAM_RATE, -1);
256         if (err < 0)
257                 goto end;
258         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
259                                   apply_constraint_to_size, NULL,
260                                   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
261                                   SNDRV_PCM_HW_PARAM_RATE, -1);
262         if (err < 0)
263                 goto end;
264 end:
265         return err;
266 }
267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
268
269 /**
270  * amdtp_stream_set_parameters - set stream parameters
271  * @s: the AMDTP stream to configure
272  * @rate: the sample rate
273  * @data_block_quadlets: the size of a data block in quadlet unit
274  *
275  * The parameters must be set before the stream is started, and must not be
276  * changed while the stream is running.
277  */
278 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
279                                 unsigned int data_block_quadlets)
280 {
281         unsigned int sfc;
282
283         for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
284                 if (amdtp_rate_table[sfc] == rate)
285                         break;
286         }
287         if (sfc == ARRAY_SIZE(amdtp_rate_table))
288                 return -EINVAL;
289
290         s->sfc = sfc;
291         s->data_block_quadlets = data_block_quadlets;
292         s->syt_interval = amdtp_syt_intervals[sfc];
293
294         // default buffering in the device.
295         s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
296
297         // additional buffering needed to adjust for no-data packets.
298         if (s->flags & CIP_BLOCKING)
299                 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
300
301         return 0;
302 }
303 EXPORT_SYMBOL(amdtp_stream_set_parameters);
304
305 // The CIP header is processed in context header apart from context payload.
306 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
307 {
308         unsigned int multiplier;
309
310         if (s->flags & CIP_JUMBO_PAYLOAD)
311                 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
312         else
313                 multiplier = 1;
314
315         return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
316 }
317
318 /**
319  * amdtp_stream_get_max_payload - get the stream's packet size
320  * @s: the AMDTP stream
321  *
322  * This function must not be called before the stream has been configured
323  * with amdtp_stream_set_parameters().
324  */
325 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
326 {
327         unsigned int cip_header_size;
328
329         if (!(s->flags & CIP_NO_HEADER))
330                 cip_header_size = CIP_HEADER_SIZE;
331         else
332                 cip_header_size = 0;
333
334         return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
335 }
336 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
337
338 /**
339  * amdtp_stream_pcm_prepare - prepare PCM device for running
340  * @s: the AMDTP stream
341  *
342  * This function should be called from the PCM device's .prepare callback.
343  */
344 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
345 {
346         s->pcm_buffer_pointer = 0;
347         s->pcm_period_pointer = 0;
348 }
349 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
350
351 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
352                                       const unsigned int seq_size, unsigned int seq_tail,
353                                       unsigned int count)
354 {
355         const unsigned int syt_interval = s->syt_interval;
356         int i;
357
358         for (i = 0; i < count; ++i) {
359                 struct seq_desc *desc = descs + seq_tail;
360
361                 if (desc->syt_offset != CIP_SYT_NO_INFO)
362                         desc->data_blocks = syt_interval;
363                 else
364                         desc->data_blocks = 0;
365
366                 seq_tail = (seq_tail + 1) % seq_size;
367         }
368 }
369
370 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
371                                                const unsigned int seq_size, unsigned int seq_tail,
372                                                unsigned int count)
373 {
374         const enum cip_sfc sfc = s->sfc;
375         unsigned int state = s->ctx_data.rx.data_block_state;
376         int i;
377
378         for (i = 0; i < count; ++i) {
379                 struct seq_desc *desc = descs + seq_tail;
380
381                 if (!cip_sfc_is_base_44100(sfc)) {
382                         // Sample_rate / 8000 is an integer, and precomputed.
383                         desc->data_blocks = state;
384                 } else {
385                         unsigned int phase = state;
386
387                 /*
388                  * This calculates the number of data blocks per packet so that
389                  * 1) the overall rate is correct and exactly synchronized to
390                  *    the bus clock, and
391                  * 2) packets with a rounded-up number of blocks occur as early
392                  *    as possible in the sequence (to prevent underruns of the
393                  *    device's buffer).
394                  */
395                         if (sfc == CIP_SFC_44100)
396                                 /* 6 6 5 6 5 6 5 ... */
397                                 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
398                         else
399                                 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
400                                 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
401                         if (++phase >= (80 >> (sfc >> 1)))
402                                 phase = 0;
403                         state = phase;
404                 }
405
406                 seq_tail = (seq_tail + 1) % seq_size;
407         }
408
409         s->ctx_data.rx.data_block_state = state;
410 }
411
412 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
413                         unsigned int *syt_offset_state, enum cip_sfc sfc)
414 {
415         unsigned int syt_offset;
416
417         if (*last_syt_offset < TICKS_PER_CYCLE) {
418                 if (!cip_sfc_is_base_44100(sfc))
419                         syt_offset = *last_syt_offset + *syt_offset_state;
420                 else {
421                 /*
422                  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
423                  *   n * SYT_INTERVAL * 24576000 / sample_rate
424                  * Modulo TICKS_PER_CYCLE, the difference between successive
425                  * elements is about 1386.23.  Rounding the results of this
426                  * formula to the SYT precision results in a sequence of
427                  * differences that begins with:
428                  *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
429                  * This code generates _exactly_ the same sequence.
430                  */
431                         unsigned int phase = *syt_offset_state;
432                         unsigned int index = phase % 13;
433
434                         syt_offset = *last_syt_offset;
435                         syt_offset += 1386 + ((index && !(index & 3)) ||
436                                               phase == 146);
437                         if (++phase >= 147)
438                                 phase = 0;
439                         *syt_offset_state = phase;
440                 }
441         } else
442                 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
443         *last_syt_offset = syt_offset;
444
445         if (syt_offset >= TICKS_PER_CYCLE)
446                 syt_offset = CIP_SYT_NO_INFO;
447
448         return syt_offset;
449 }
450
451 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
452                                    const unsigned int seq_size, unsigned int seq_tail,
453                                    unsigned int count)
454 {
455         const enum cip_sfc sfc = s->sfc;
456         unsigned int last = s->ctx_data.rx.last_syt_offset;
457         unsigned int state = s->ctx_data.rx.syt_offset_state;
458         int i;
459
460         for (i = 0; i < count; ++i) {
461                 struct seq_desc *desc = descs + seq_tail;
462
463                 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
464
465                 seq_tail = (seq_tail + 1) % seq_size;
466         }
467
468         s->ctx_data.rx.last_syt_offset = last;
469         s->ctx_data.rx.syt_offset_state = state;
470 }
471
472 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
473                                        unsigned int transfer_delay)
474 {
475         unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
476         unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
477         unsigned int syt_offset;
478
479         // Round up.
480         if (syt_cycle_lo < cycle_lo)
481                 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
482         syt_cycle_lo -= cycle_lo;
483
484         // Subtract transfer delay so that the synchronization offset is not so large
485         // at transmission.
486         syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
487         if (syt_offset < transfer_delay)
488                 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
489
490         return syt_offset - transfer_delay;
491 }
492
493 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
494 // Additionally, the sequence of tx packets is severely checked against any discontinuity
495 // before filling entries in the queue. The calculation is safe even if it looks fragile by
496 // overrun.
497 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
498 {
499         const unsigned int cache_size = s->ctx_data.tx.cache.size;
500         unsigned int cycles = s->ctx_data.tx.cache.tail;
501
502         if (cycles < head)
503                 cycles += cache_size;
504         cycles -= head;
505
506         return cycles;
507 }
508
509 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
510 {
511         const unsigned int transfer_delay = s->transfer_delay;
512         const unsigned int cache_size = s->ctx_data.tx.cache.size;
513         struct seq_desc *cache = s->ctx_data.tx.cache.descs;
514         unsigned int cache_tail = s->ctx_data.tx.cache.tail;
515         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
516         int i;
517
518         for (i = 0; i < desc_count; ++i) {
519                 struct seq_desc *dst = cache + cache_tail;
520                 const struct pkt_desc *src = descs + i;
521
522                 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
523                         dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
524                 else
525                         dst->syt_offset = CIP_SYT_NO_INFO;
526                 dst->data_blocks = src->data_blocks;
527
528                 cache_tail = (cache_tail + 1) % cache_size;
529         }
530
531         s->ctx_data.tx.cache.tail = cache_tail;
532 }
533
534 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
535 {
536         struct seq_desc *descs = s->ctx_data.rx.seq.descs;
537         unsigned int seq_tail = s->ctx_data.rx.seq.tail;
538         const unsigned int seq_size = s->ctx_data.rx.seq.size;
539
540         pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
541
542         if (s->flags & CIP_BLOCKING)
543                 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
544         else
545                 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
546
547         s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
548 }
549
550 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
551 {
552         struct amdtp_stream *target = s->ctx_data.rx.replay_target;
553         const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
554         const unsigned int cache_size = target->ctx_data.tx.cache.size;
555         unsigned int cache_head = s->ctx_data.rx.cache_head;
556         struct seq_desc *descs = s->ctx_data.rx.seq.descs;
557         const unsigned int seq_size = s->ctx_data.rx.seq.size;
558         unsigned int seq_tail = s->ctx_data.rx.seq.tail;
559         int i;
560
561         for (i = 0; i < count; ++i) {
562                 descs[seq_tail] = cache[cache_head];
563                 seq_tail = (seq_tail + 1) % seq_size;
564                 cache_head = (cache_head + 1) % cache_size;
565         }
566
567         s->ctx_data.rx.seq.tail = seq_tail;
568         s->ctx_data.rx.cache_head = cache_head;
569 }
570
571 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
572 {
573         struct amdtp_domain *d = s->domain;
574
575         if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
576                 pool_ideal_seq_descs(s, count);
577         } else {
578                 if (!d->replay.on_the_fly) {
579                         pool_replayed_seq(s, count);
580                 } else {
581                         struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
582                         const unsigned int cache_size = tx->ctx_data.tx.cache.size;
583                         const unsigned int cache_head = s->ctx_data.rx.cache_head;
584                         unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
585
586                         if (cached_cycles > count && cached_cycles > cache_size / 2)
587                                 pool_replayed_seq(s, count);
588                         else
589                                 pool_ideal_seq_descs(s, count);
590                 }
591         }
592 }
593
594 static void update_pcm_pointers(struct amdtp_stream *s,
595                                 struct snd_pcm_substream *pcm,
596                                 unsigned int frames)
597 {
598         unsigned int ptr;
599
600         ptr = s->pcm_buffer_pointer + frames;
601         if (ptr >= pcm->runtime->buffer_size)
602                 ptr -= pcm->runtime->buffer_size;
603         WRITE_ONCE(s->pcm_buffer_pointer, ptr);
604
605         s->pcm_period_pointer += frames;
606         if (s->pcm_period_pointer >= pcm->runtime->period_size) {
607                 s->pcm_period_pointer -= pcm->runtime->period_size;
608
609                 // The program in user process should periodically check the status of intermediate
610                 // buffer associated to PCM substream to process PCM frames in the buffer, instead
611                 // of receiving notification of period elapsed by poll wait.
612                 if (!pcm->runtime->no_period_wakeup) {
613                         if (in_softirq()) {
614                                 // In software IRQ context for 1394 OHCI.
615                                 snd_pcm_period_elapsed(pcm);
616                         } else {
617                                 // In process context of ALSA PCM application under acquired lock of
618                                 // PCM substream.
619                                 snd_pcm_period_elapsed_under_stream_lock(pcm);
620                         }
621                 }
622         }
623 }
624
625 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
626                         bool sched_irq)
627 {
628         int err;
629
630         params->interrupt = sched_irq;
631         params->tag = s->tag;
632         params->sy = 0;
633
634         err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
635                                    s->buffer.packets[s->packet_index].offset);
636         if (err < 0) {
637                 dev_err(&s->unit->device, "queueing error: %d\n", err);
638                 goto end;
639         }
640
641         if (++s->packet_index >= s->queue_size)
642                 s->packet_index = 0;
643 end:
644         return err;
645 }
646
647 static inline int queue_out_packet(struct amdtp_stream *s,
648                                    struct fw_iso_packet *params, bool sched_irq)
649 {
650         params->skip =
651                 !!(params->header_length == 0 && params->payload_length == 0);
652         return queue_packet(s, params, sched_irq);
653 }
654
655 static inline int queue_in_packet(struct amdtp_stream *s,
656                                   struct fw_iso_packet *params)
657 {
658         // Queue one packet for IR context.
659         params->header_length = s->ctx_data.tx.ctx_header_size;
660         params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
661         params->skip = false;
662         return queue_packet(s, params, false);
663 }
664
665 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
666                         unsigned int data_block_counter, unsigned int syt)
667 {
668         cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
669                                 (s->data_block_quadlets << CIP_DBS_SHIFT) |
670                                 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
671                                 data_block_counter);
672         cip_header[1] = cpu_to_be32(CIP_EOH |
673                         ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
674                         ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
675                         (syt & CIP_SYT_MASK));
676 }
677
678 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
679                                 struct fw_iso_packet *params, unsigned int header_length,
680                                 unsigned int data_blocks,
681                                 unsigned int data_block_counter,
682                                 unsigned int syt, unsigned int index)
683 {
684         unsigned int payload_length;
685         __be32 *cip_header;
686
687         payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
688         params->payload_length = payload_length;
689
690         if (header_length > 0) {
691                 cip_header = (__be32 *)params->header;
692                 generate_cip_header(s, cip_header, data_block_counter, syt);
693                 params->header_length = header_length;
694         } else {
695                 cip_header = NULL;
696         }
697
698         trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
699                            data_block_counter, s->packet_index, index);
700 }
701
702 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
703                             unsigned int payload_length,
704                             unsigned int *data_blocks,
705                             unsigned int *data_block_counter, unsigned int *syt)
706 {
707         u32 cip_header[2];
708         unsigned int sph;
709         unsigned int fmt;
710         unsigned int fdf;
711         unsigned int dbc;
712         bool lost;
713
714         cip_header[0] = be32_to_cpu(buf[0]);
715         cip_header[1] = be32_to_cpu(buf[1]);
716
717         /*
718          * This module supports 'Two-quadlet CIP header with SYT field'.
719          * For convenience, also check FMT field is AM824 or not.
720          */
721         if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
722              ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
723             (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
724                 dev_info_ratelimited(&s->unit->device,
725                                 "Invalid CIP header for AMDTP: %08X:%08X\n",
726                                 cip_header[0], cip_header[1]);
727                 return -EAGAIN;
728         }
729
730         /* Check valid protocol or not. */
731         sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
732         fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
733         if (sph != s->sph || fmt != s->fmt) {
734                 dev_info_ratelimited(&s->unit->device,
735                                      "Detect unexpected protocol: %08x %08x\n",
736                                      cip_header[0], cip_header[1]);
737                 return -EAGAIN;
738         }
739
740         /* Calculate data blocks */
741         fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
742         if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
743                 *data_blocks = 0;
744         } else {
745                 unsigned int data_block_quadlets =
746                                 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
747                 /* avoid division by zero */
748                 if (data_block_quadlets == 0) {
749                         dev_err(&s->unit->device,
750                                 "Detect invalid value in dbs field: %08X\n",
751                                 cip_header[0]);
752                         return -EPROTO;
753                 }
754                 if (s->flags & CIP_WRONG_DBS)
755                         data_block_quadlets = s->data_block_quadlets;
756
757                 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
758         }
759
760         /* Check data block counter continuity */
761         dbc = cip_header[0] & CIP_DBC_MASK;
762         if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
763             *data_block_counter != UINT_MAX)
764                 dbc = *data_block_counter;
765
766         if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
767             *data_block_counter == UINT_MAX) {
768                 lost = false;
769         } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
770                 lost = dbc != *data_block_counter;
771         } else {
772                 unsigned int dbc_interval;
773
774                 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
775                         dbc_interval = s->ctx_data.tx.dbc_interval;
776                 else
777                         dbc_interval = *data_blocks;
778
779                 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
780         }
781
782         if (lost) {
783                 dev_err(&s->unit->device,
784                         "Detect discontinuity of CIP: %02X %02X\n",
785                         *data_block_counter, dbc);
786                 return -EIO;
787         }
788
789         *data_block_counter = dbc;
790
791         if (!(s->flags & CIP_UNAWARE_SYT))
792                 *syt = cip_header[1] & CIP_SYT_MASK;
793
794         return 0;
795 }
796
797 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
798                                const __be32 *ctx_header,
799                                unsigned int *data_blocks,
800                                unsigned int *data_block_counter,
801                                unsigned int *syt, unsigned int packet_index, unsigned int index)
802 {
803         unsigned int payload_length;
804         const __be32 *cip_header;
805         unsigned int cip_header_size;
806
807         payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
808
809         if (!(s->flags & CIP_NO_HEADER))
810                 cip_header_size = CIP_HEADER_SIZE;
811         else
812                 cip_header_size = 0;
813
814         if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
815                 dev_err(&s->unit->device,
816                         "Detect jumbo payload: %04x %04x\n",
817                         payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
818                 return -EIO;
819         }
820
821         if (cip_header_size > 0) {
822                 if (payload_length >= cip_header_size) {
823                         int err;
824
825                         cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
826                         err = check_cip_header(s, cip_header, payload_length - cip_header_size,
827                                                data_blocks, data_block_counter, syt);
828                         if (err < 0)
829                                 return err;
830                 } else {
831                         // Handle the cycle so that empty packet arrives.
832                         cip_header = NULL;
833                         *data_blocks = 0;
834                         *syt = 0;
835                 }
836         } else {
837                 cip_header = NULL;
838                 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
839                 *syt = 0;
840
841                 if (*data_block_counter == UINT_MAX)
842                         *data_block_counter = 0;
843         }
844
845         trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
846                            *data_block_counter, packet_index, index);
847
848         return 0;
849 }
850
851 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
852 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
853 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
854 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
855 {
856         u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
857         return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
858 }
859
860 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
861 {
862         cycle += addend;
863         if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
864                 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
865         return cycle;
866 }
867
868 static int compare_ohci_cycle_count(u32 lval, u32 rval)
869 {
870         if (lval == rval)
871                 return 0;
872         else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
873                 return -1;
874         else
875                 return 1;
876 }
877
878 // Align to actual cycle count for the packet which is going to be scheduled.
879 // This module queued the same number of isochronous cycle as the size of queue
880 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
881 // the size of queue for scheduled cycle.
882 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
883                                         unsigned int queue_size)
884 {
885         u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
886         return increment_ohci_cycle_count(cycle, queue_size);
887 }
888
889 static int generate_device_pkt_descs(struct amdtp_stream *s,
890                                      struct pkt_desc *descs,
891                                      const __be32 *ctx_header,
892                                      unsigned int packets,
893                                      unsigned int *desc_count)
894 {
895         unsigned int next_cycle = s->next_cycle;
896         unsigned int dbc = s->data_block_counter;
897         unsigned int packet_index = s->packet_index;
898         unsigned int queue_size = s->queue_size;
899         int i;
900         int err;
901
902         *desc_count = 0;
903         for (i = 0; i < packets; ++i) {
904                 struct pkt_desc *desc = descs + *desc_count;
905                 unsigned int cycle;
906                 bool lost;
907                 unsigned int data_blocks;
908                 unsigned int syt;
909
910                 cycle = compute_ohci_cycle_count(ctx_header[1]);
911                 lost = (next_cycle != cycle);
912                 if (lost) {
913                         if (s->flags & CIP_NO_HEADER) {
914                                 // Fireface skips transmission just for an isoc cycle corresponding
915                                 // to empty packet.
916                                 unsigned int prev_cycle = next_cycle;
917
918                                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
919                                 lost = (next_cycle != cycle);
920                                 if (!lost) {
921                                         // Prepare a description for the skipped cycle for
922                                         // sequence replay.
923                                         desc->cycle = prev_cycle;
924                                         desc->syt = 0;
925                                         desc->data_blocks = 0;
926                                         desc->data_block_counter = dbc;
927                                         desc->ctx_payload = NULL;
928                                         ++desc;
929                                         ++(*desc_count);
930                                 }
931                         } else if (s->flags & CIP_JUMBO_PAYLOAD) {
932                                 // OXFW970 skips transmission for several isoc cycles during
933                                 // asynchronous transaction. The sequence replay is impossible due
934                                 // to the reason.
935                                 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
936                                                                 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
937                                 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
938                         }
939                         if (lost) {
940                                 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
941                                         next_cycle, cycle);
942                                 return -EIO;
943                         }
944                 }
945
946                 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
947                                           packet_index, i);
948                 if (err < 0)
949                         return err;
950
951                 desc->cycle = cycle;
952                 desc->syt = syt;
953                 desc->data_blocks = data_blocks;
954                 desc->data_block_counter = dbc;
955                 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
956
957                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
958                         dbc = (dbc + desc->data_blocks) & 0xff;
959
960                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
961                 ++(*desc_count);
962                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
963                 packet_index = (packet_index + 1) % queue_size;
964         }
965
966         s->next_cycle = next_cycle;
967         s->data_block_counter = dbc;
968
969         return 0;
970 }
971
972 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
973                                 unsigned int transfer_delay)
974 {
975         unsigned int syt;
976
977         syt_offset += transfer_delay;
978         syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
979               (syt_offset % TICKS_PER_CYCLE);
980         return syt & CIP_SYT_MASK;
981 }
982
983 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
984 {
985         struct pkt_desc *descs = s->pkt_descs;
986         const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
987         const unsigned int seq_size = s->ctx_data.rx.seq.size;
988         unsigned int dbc = s->data_block_counter;
989         unsigned int seq_head = s->ctx_data.rx.seq.head;
990         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
991         int i;
992
993         for (i = 0; i < packets; ++i) {
994                 struct pkt_desc *desc = descs + i;
995                 unsigned int index = (s->packet_index + i) % s->queue_size;
996                 const struct seq_desc *seq = seq_descs + seq_head;
997
998                 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
999
1000                 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1001                         desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1002                 else
1003                         desc->syt = CIP_SYT_NO_INFO;
1004
1005                 desc->data_blocks = seq->data_blocks;
1006
1007                 if (s->flags & CIP_DBC_IS_END_EVENT)
1008                         dbc = (dbc + desc->data_blocks) & 0xff;
1009
1010                 desc->data_block_counter = dbc;
1011
1012                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1013                         dbc = (dbc + desc->data_blocks) & 0xff;
1014
1015                 desc->ctx_payload = s->buffer.packets[index].buffer;
1016
1017                 seq_head = (seq_head + 1) % seq_size;
1018
1019                 ++ctx_header;
1020         }
1021
1022         s->data_block_counter = dbc;
1023         s->ctx_data.rx.seq.head = seq_head;
1024 }
1025
1026 static inline void cancel_stream(struct amdtp_stream *s)
1027 {
1028         s->packet_index = -1;
1029         if (in_softirq())
1030                 amdtp_stream_pcm_abort(s);
1031         WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1032 }
1033
1034 static void process_ctx_payloads(struct amdtp_stream *s,
1035                                  const struct pkt_desc *descs,
1036                                  unsigned int packets)
1037 {
1038         struct snd_pcm_substream *pcm;
1039         unsigned int pcm_frames;
1040
1041         pcm = READ_ONCE(s->pcm);
1042         pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
1043         if (pcm)
1044                 update_pcm_pointers(s, pcm, pcm_frames);
1045 }
1046
1047 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1048                                void *header, void *private_data)
1049 {
1050         struct amdtp_stream *s = private_data;
1051         const struct amdtp_domain *d = s->domain;
1052         const __be32 *ctx_header = header;
1053         const unsigned int events_per_period = d->events_per_period;
1054         unsigned int event_count = s->ctx_data.rx.event_count;
1055         unsigned int pkt_header_length;
1056         unsigned int packets;
1057         bool need_hw_irq;
1058         int i;
1059
1060         if (s->packet_index < 0)
1061                 return;
1062
1063         // Calculate the number of packets in buffer and check XRUN.
1064         packets = header_length / sizeof(*ctx_header);
1065
1066         pool_seq_descs(s, packets);
1067
1068         generate_pkt_descs(s, ctx_header, packets);
1069
1070         process_ctx_payloads(s, s->pkt_descs, packets);
1071
1072         if (!(s->flags & CIP_NO_HEADER))
1073                 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1074         else
1075                 pkt_header_length = 0;
1076
1077         if (s == d->irq_target) {
1078                 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1079                 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1080                 // with some requests, instead of scheduled hardware IRQ of an IT context.
1081                 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1082                 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1083         } else {
1084                 need_hw_irq = false;
1085         }
1086
1087         for (i = 0; i < packets; ++i) {
1088                 const struct pkt_desc *desc = s->pkt_descs + i;
1089                 struct {
1090                         struct fw_iso_packet params;
1091                         __be32 header[CIP_HEADER_QUADLETS];
1092                 } template = { {0}, {0} };
1093                 bool sched_irq = false;
1094
1095                 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1096                                     desc->data_blocks, desc->data_block_counter,
1097                                     desc->syt, i);
1098
1099                 if (s == s->domain->irq_target) {
1100                         event_count += desc->data_blocks;
1101                         if (event_count >= events_per_period) {
1102                                 event_count -= events_per_period;
1103                                 sched_irq = need_hw_irq;
1104                         }
1105                 }
1106
1107                 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1108                         cancel_stream(s);
1109                         return;
1110                 }
1111         }
1112
1113         s->ctx_data.rx.event_count = event_count;
1114 }
1115
1116 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1117                             void *header, void *private_data)
1118 {
1119         struct amdtp_stream *s = private_data;
1120         struct amdtp_domain *d = s->domain;
1121         const __be32 *ctx_header = header;
1122         unsigned int packets;
1123         unsigned int cycle;
1124         int i;
1125
1126         if (s->packet_index < 0)
1127                 return;
1128
1129         packets = header_length / sizeof(*ctx_header);
1130
1131         cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1132         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1133
1134         for (i = 0; i < packets; ++i) {
1135                 struct fw_iso_packet params = {
1136                         .header_length = 0,
1137                         .payload_length = 0,
1138                 };
1139                 bool sched_irq = (s == d->irq_target && i == packets - 1);
1140
1141                 if (queue_out_packet(s, &params, sched_irq) < 0) {
1142                         cancel_stream(s);
1143                         return;
1144                 }
1145         }
1146 }
1147
1148 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149                                 void *header, void *private_data);
1150
1151 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1152                                         size_t header_length, void *header, void *private_data)
1153 {
1154         struct amdtp_stream *s = private_data;
1155         struct amdtp_domain *d = s->domain;
1156         __be32 *ctx_header = header;
1157         const unsigned int queue_size = s->queue_size;
1158         unsigned int packets;
1159         unsigned int offset;
1160
1161         if (s->packet_index < 0)
1162                 return;
1163
1164         packets = header_length / sizeof(*ctx_header);
1165
1166         offset = 0;
1167         while (offset < packets) {
1168                 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1169
1170                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1171                         break;
1172
1173                 ++offset;
1174         }
1175
1176         if (offset > 0) {
1177                 unsigned int length = sizeof(*ctx_header) * offset;
1178
1179                 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1180                 if (amdtp_streaming_error(s))
1181                         return;
1182
1183                 ctx_header += offset;
1184                 header_length -= length;
1185         }
1186
1187         if (offset < packets) {
1188                 s->ready_processing = true;
1189                 wake_up(&s->ready_wait);
1190
1191                 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1192                 if (amdtp_streaming_error(s))
1193                         return;
1194
1195                 if (s == d->irq_target)
1196                         s->context->callback.sc = irq_target_callback;
1197                 else
1198                         s->context->callback.sc = process_rx_packets;
1199         }
1200 }
1201
1202 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1203                                void *header, void *private_data)
1204 {
1205         struct amdtp_stream *s = private_data;
1206         __be32 *ctx_header = header;
1207         unsigned int packets;
1208         unsigned int desc_count;
1209         int i;
1210         int err;
1211
1212         if (s->packet_index < 0)
1213                 return;
1214
1215         // Calculate the number of packets in buffer and check XRUN.
1216         packets = header_length / s->ctx_data.tx.ctx_header_size;
1217
1218         desc_count = 0;
1219         err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
1220         if (err < 0) {
1221                 if (err != -EAGAIN) {
1222                         cancel_stream(s);
1223                         return;
1224                 }
1225         } else {
1226                 struct amdtp_domain *d = s->domain;
1227
1228                 process_ctx_payloads(s, s->pkt_descs, desc_count);
1229
1230                 if (d->replay.enable)
1231                         cache_seq(s, s->pkt_descs, desc_count);
1232         }
1233
1234         for (i = 0; i < packets; ++i) {
1235                 struct fw_iso_packet params = {0};
1236
1237                 if (queue_in_packet(s, &params) < 0) {
1238                         cancel_stream(s);
1239                         return;
1240                 }
1241         }
1242 }
1243
1244 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1245                             void *header, void *private_data)
1246 {
1247         struct amdtp_stream *s = private_data;
1248         const __be32 *ctx_header = header;
1249         unsigned int packets;
1250         unsigned int cycle;
1251         int i;
1252
1253         if (s->packet_index < 0)
1254                 return;
1255
1256         packets = header_length / s->ctx_data.tx.ctx_header_size;
1257
1258         ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1259         cycle = compute_ohci_cycle_count(ctx_header[1]);
1260         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1261
1262         for (i = 0; i < packets; ++i) {
1263                 struct fw_iso_packet params = {0};
1264
1265                 if (queue_in_packet(s, &params) < 0) {
1266                         cancel_stream(s);
1267                         return;
1268                 }
1269         }
1270 }
1271
1272 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1273                                         size_t header_length, void *header, void *private_data)
1274 {
1275         struct amdtp_stream *s = private_data;
1276         struct amdtp_domain *d = s->domain;
1277         __be32 *ctx_header;
1278         unsigned int packets;
1279         unsigned int offset;
1280
1281         if (s->packet_index < 0)
1282                 return;
1283
1284         packets = header_length / s->ctx_data.tx.ctx_header_size;
1285
1286         offset = 0;
1287         ctx_header = header;
1288         while (offset < packets) {
1289                 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1290
1291                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1292                         break;
1293
1294                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1295                 ++offset;
1296         }
1297
1298         ctx_header = header;
1299
1300         if (offset > 0) {
1301                 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1302
1303                 drop_tx_packets(context, tstamp, length, ctx_header, s);
1304                 if (amdtp_streaming_error(s))
1305                         return;
1306
1307                 ctx_header += length / sizeof(*ctx_header);
1308                 header_length -= length;
1309         }
1310
1311         if (offset < packets) {
1312                 s->ready_processing = true;
1313                 wake_up(&s->ready_wait);
1314
1315                 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1316                 if (amdtp_streaming_error(s))
1317                         return;
1318
1319                 context->callback.sc = process_tx_packets;
1320         }
1321 }
1322
1323 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1324                                       size_t header_length, void *header, void *private_data)
1325 {
1326         struct amdtp_stream *s = private_data;
1327         struct amdtp_domain *d = s->domain;
1328         __be32 *ctx_header;
1329         unsigned int count;
1330         unsigned int events;
1331         int i;
1332
1333         if (s->packet_index < 0)
1334                 return;
1335
1336         count = header_length / s->ctx_data.tx.ctx_header_size;
1337
1338         // Attempt to detect any event in the batch of packets.
1339         events = 0;
1340         ctx_header = header;
1341         for (i = 0; i < count; ++i) {
1342                 unsigned int payload_quads =
1343                         (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1344                 unsigned int data_blocks;
1345
1346                 if (s->flags & CIP_NO_HEADER) {
1347                         data_blocks = payload_quads / s->data_block_quadlets;
1348                 } else {
1349                         __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1350
1351                         if (payload_quads < CIP_HEADER_QUADLETS) {
1352                                 data_blocks = 0;
1353                         } else {
1354                                 payload_quads -= CIP_HEADER_QUADLETS;
1355
1356                                 if (s->flags & CIP_UNAWARE_SYT) {
1357                                         data_blocks = payload_quads / s->data_block_quadlets;
1358                                 } else {
1359                                         u32 cip1 = be32_to_cpu(cip_headers[1]);
1360
1361                                         // NODATA packet can includes any data blocks but they are
1362                                         // not available as event.
1363                                         if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1364                                                 data_blocks = 0;
1365                                         else
1366                                                 data_blocks = payload_quads / s->data_block_quadlets;
1367                                 }
1368                         }
1369                 }
1370
1371                 events += data_blocks;
1372
1373                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1374         }
1375
1376         drop_tx_packets(context, tstamp, header_length, header, s);
1377
1378         if (events > 0)
1379                 s->ctx_data.tx.event_starts = true;
1380
1381         // Decide the cycle count to begin processing content of packet in IR contexts.
1382         {
1383                 unsigned int stream_count = 0;
1384                 unsigned int event_starts_count = 0;
1385                 unsigned int cycle = UINT_MAX;
1386
1387                 list_for_each_entry(s, &d->streams, list) {
1388                         if (s->direction == AMDTP_IN_STREAM) {
1389                                 ++stream_count;
1390                                 if (s->ctx_data.tx.event_starts)
1391                                         ++event_starts_count;
1392                         }
1393                 }
1394
1395                 if (stream_count == event_starts_count) {
1396                         unsigned int next_cycle;
1397
1398                         list_for_each_entry(s, &d->streams, list) {
1399                                 if (s->direction != AMDTP_IN_STREAM)
1400                                         continue;
1401
1402                                 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1403                                                                 d->processing_cycle.tx_init_skip);
1404                                 if (cycle == UINT_MAX ||
1405                                     compare_ohci_cycle_count(next_cycle, cycle) > 0)
1406                                         cycle = next_cycle;
1407
1408                                 s->context->callback.sc = process_tx_packets_intermediately;
1409                         }
1410
1411                         d->processing_cycle.tx_start = cycle;
1412                 }
1413         }
1414 }
1415
1416 static void process_ctxs_in_domain(struct amdtp_domain *d)
1417 {
1418         struct amdtp_stream *s;
1419
1420         list_for_each_entry(s, &d->streams, list) {
1421                 if (s != d->irq_target && amdtp_stream_running(s))
1422                         fw_iso_context_flush_completions(s->context);
1423
1424                 if (amdtp_streaming_error(s))
1425                         goto error;
1426         }
1427
1428         return;
1429 error:
1430         if (amdtp_stream_running(d->irq_target))
1431                 cancel_stream(d->irq_target);
1432
1433         list_for_each_entry(s, &d->streams, list) {
1434                 if (amdtp_stream_running(s))
1435                         cancel_stream(s);
1436         }
1437 }
1438
1439 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1440                                 void *header, void *private_data)
1441 {
1442         struct amdtp_stream *s = private_data;
1443         struct amdtp_domain *d = s->domain;
1444
1445         process_rx_packets(context, tstamp, header_length, header, private_data);
1446         process_ctxs_in_domain(d);
1447 }
1448
1449 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1450                                         size_t header_length, void *header, void *private_data)
1451 {
1452         struct amdtp_stream *s = private_data;
1453         struct amdtp_domain *d = s->domain;
1454
1455         process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1456         process_ctxs_in_domain(d);
1457 }
1458
1459 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1460                                      size_t header_length, void *header, void *private_data)
1461 {
1462         struct amdtp_stream *s = private_data;
1463         struct amdtp_domain *d = s->domain;
1464         bool ready_to_start;
1465
1466         skip_rx_packets(context, tstamp, header_length, header, private_data);
1467         process_ctxs_in_domain(d);
1468
1469         if (d->replay.enable && !d->replay.on_the_fly) {
1470                 unsigned int rx_count = 0;
1471                 unsigned int rx_ready_count = 0;
1472                 struct amdtp_stream *rx;
1473
1474                 list_for_each_entry(rx, &d->streams, list) {
1475                         struct amdtp_stream *tx;
1476                         unsigned int cached_cycles;
1477
1478                         if (rx->direction != AMDTP_OUT_STREAM)
1479                                 continue;
1480                         ++rx_count;
1481
1482                         tx = rx->ctx_data.rx.replay_target;
1483                         cached_cycles = calculate_cached_cycle_count(tx, 0);
1484                         if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1485                                 ++rx_ready_count;
1486                 }
1487
1488                 ready_to_start = (rx_count == rx_ready_count);
1489         } else {
1490                 ready_to_start = true;
1491         }
1492
1493         // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1494         // contexts are expected to start and get callback when reaching here.
1495         if (ready_to_start) {
1496                 unsigned int cycle = s->next_cycle;
1497                 list_for_each_entry(s, &d->streams, list) {
1498                         if (s->direction != AMDTP_OUT_STREAM)
1499                                 continue;
1500
1501                         if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1502                                 cycle = s->next_cycle;
1503
1504                         if (s == d->irq_target)
1505                                 s->context->callback.sc = irq_target_callback_intermediately;
1506                         else
1507                                 s->context->callback.sc = process_rx_packets_intermediately;
1508                 }
1509
1510                 d->processing_cycle.rx_start = cycle;
1511         }
1512 }
1513
1514 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1515 // transmit first packet.
1516 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1517                                         u32 tstamp, size_t header_length,
1518                                         void *header, void *private_data)
1519 {
1520         struct amdtp_stream *s = private_data;
1521         struct amdtp_domain *d = s->domain;
1522
1523         if (s->direction == AMDTP_IN_STREAM) {
1524                 context->callback.sc = drop_tx_packets_initially;
1525         } else {
1526                 if (s == d->irq_target)
1527                         context->callback.sc = irq_target_callback_skip;
1528                 else
1529                         context->callback.sc = skip_rx_packets;
1530         }
1531
1532         context->callback.sc(context, tstamp, header_length, header, s);
1533 }
1534
1535 /**
1536  * amdtp_stream_start - start transferring packets
1537  * @s: the AMDTP stream to start
1538  * @channel: the isochronous channel on the bus
1539  * @speed: firewire speed code
1540  * @queue_size: The number of packets in the queue.
1541  * @idle_irq_interval: the interval to queue packet during initial state.
1542  *
1543  * The stream cannot be started until it has been configured with
1544  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1545  * device can be started.
1546  */
1547 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1548                               unsigned int queue_size, unsigned int idle_irq_interval)
1549 {
1550         bool is_irq_target = (s == s->domain->irq_target);
1551         unsigned int ctx_header_size;
1552         unsigned int max_ctx_payload_size;
1553         enum dma_data_direction dir;
1554         int type, tag, err;
1555
1556         mutex_lock(&s->mutex);
1557
1558         if (WARN_ON(amdtp_stream_running(s) ||
1559                     (s->data_block_quadlets < 1))) {
1560                 err = -EBADFD;
1561                 goto err_unlock;
1562         }
1563
1564         if (s->direction == AMDTP_IN_STREAM) {
1565                 // NOTE: IT context should be used for constant IRQ.
1566                 if (is_irq_target) {
1567                         err = -EINVAL;
1568                         goto err_unlock;
1569                 }
1570
1571                 s->data_block_counter = UINT_MAX;
1572         } else {
1573                 s->data_block_counter = 0;
1574         }
1575
1576         // initialize packet buffer.
1577         if (s->direction == AMDTP_IN_STREAM) {
1578                 dir = DMA_FROM_DEVICE;
1579                 type = FW_ISO_CONTEXT_RECEIVE;
1580                 if (!(s->flags & CIP_NO_HEADER))
1581                         ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1582                 else
1583                         ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1584         } else {
1585                 dir = DMA_TO_DEVICE;
1586                 type = FW_ISO_CONTEXT_TRANSMIT;
1587                 ctx_header_size = 0;    // No effect for IT context.
1588         }
1589         max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1590
1591         err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1592         if (err < 0)
1593                 goto err_unlock;
1594         s->queue_size = queue_size;
1595
1596         s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1597                                           type, channel, speed, ctx_header_size,
1598                                           amdtp_stream_first_callback, s);
1599         if (IS_ERR(s->context)) {
1600                 err = PTR_ERR(s->context);
1601                 if (err == -EBUSY)
1602                         dev_err(&s->unit->device,
1603                                 "no free stream on this controller\n");
1604                 goto err_buffer;
1605         }
1606
1607         amdtp_stream_update(s);
1608
1609         if (s->direction == AMDTP_IN_STREAM) {
1610                 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1611                 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1612                 s->ctx_data.tx.event_starts = false;
1613
1614                 if (s->domain->replay.enable) {
1615                         // struct fw_iso_context.drop_overflow_headers is false therefore it's
1616                         // possible to cache much unexpectedly.
1617                         s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1618                                                           queue_size * 3 / 2);
1619                         s->ctx_data.tx.cache.tail = 0;
1620                         s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1621                                                 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1622                         if (!s->ctx_data.tx.cache.descs) {
1623                                 err = -ENOMEM;
1624                                 goto err_context;
1625                         }
1626                 }
1627         } else {
1628                 static const struct {
1629                         unsigned int data_block;
1630                         unsigned int syt_offset;
1631                 } *entry, initial_state[] = {
1632                         [CIP_SFC_32000]  = {  4, 3072 },
1633                         [CIP_SFC_48000]  = {  6, 1024 },
1634                         [CIP_SFC_96000]  = { 12, 1024 },
1635                         [CIP_SFC_192000] = { 24, 1024 },
1636                         [CIP_SFC_44100]  = {  0,   67 },
1637                         [CIP_SFC_88200]  = {  0,   67 },
1638                         [CIP_SFC_176400] = {  0,   67 },
1639                 };
1640
1641                 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1642                 if (!s->ctx_data.rx.seq.descs) {
1643                         err = -ENOMEM;
1644                         goto err_context;
1645                 }
1646                 s->ctx_data.rx.seq.size = queue_size;
1647                 s->ctx_data.rx.seq.tail = 0;
1648                 s->ctx_data.rx.seq.head = 0;
1649
1650                 entry = &initial_state[s->sfc];
1651                 s->ctx_data.rx.data_block_state = entry->data_block;
1652                 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1653                 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1654
1655                 s->ctx_data.rx.event_count = 0;
1656         }
1657
1658         if (s->flags & CIP_NO_HEADER)
1659                 s->tag = TAG_NO_CIP_HEADER;
1660         else
1661                 s->tag = TAG_CIP;
1662
1663         s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1664                                GFP_KERNEL);
1665         if (!s->pkt_descs) {
1666                 err = -ENOMEM;
1667                 goto err_context;
1668         }
1669
1670         s->packet_index = 0;
1671         do {
1672                 struct fw_iso_packet params;
1673
1674                 if (s->direction == AMDTP_IN_STREAM) {
1675                         err = queue_in_packet(s, &params);
1676                 } else {
1677                         bool sched_irq = false;
1678
1679                         params.header_length = 0;
1680                         params.payload_length = 0;
1681
1682                         if (is_irq_target) {
1683                                 sched_irq = !((s->packet_index + 1) %
1684                                               idle_irq_interval);
1685                         }
1686
1687                         err = queue_out_packet(s, &params, sched_irq);
1688                 }
1689                 if (err < 0)
1690                         goto err_pkt_descs;
1691         } while (s->packet_index > 0);
1692
1693         /* NOTE: TAG1 matches CIP. This just affects in stream. */
1694         tag = FW_ISO_CONTEXT_MATCH_TAG1;
1695         if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1696                 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1697
1698         s->ready_processing = false;
1699         err = fw_iso_context_start(s->context, -1, 0, tag);
1700         if (err < 0)
1701                 goto err_pkt_descs;
1702
1703         mutex_unlock(&s->mutex);
1704
1705         return 0;
1706 err_pkt_descs:
1707         kfree(s->pkt_descs);
1708 err_context:
1709         if (s->direction == AMDTP_OUT_STREAM) {
1710                 kfree(s->ctx_data.rx.seq.descs);
1711         } else {
1712                 if (s->domain->replay.enable)
1713                         kfree(s->ctx_data.tx.cache.descs);
1714         }
1715         fw_iso_context_destroy(s->context);
1716         s->context = ERR_PTR(-1);
1717 err_buffer:
1718         iso_packets_buffer_destroy(&s->buffer, s->unit);
1719 err_unlock:
1720         mutex_unlock(&s->mutex);
1721
1722         return err;
1723 }
1724
1725 /**
1726  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1727  * @d: the AMDTP domain.
1728  * @s: the AMDTP stream that transports the PCM data
1729  *
1730  * Returns the current buffer position, in frames.
1731  */
1732 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1733                                               struct amdtp_stream *s)
1734 {
1735         struct amdtp_stream *irq_target = d->irq_target;
1736
1737         // Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
1738         if (irq_target && amdtp_stream_running(irq_target)) {
1739                 // In software IRQ context, the call causes dead-lock to disable the tasklet
1740                 // synchronously.
1741                 if (!in_softirq())
1742                         fw_iso_context_flush_completions(irq_target->context);
1743         }
1744
1745         return READ_ONCE(s->pcm_buffer_pointer);
1746 }
1747 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1748
1749 /**
1750  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1751  * @d: the AMDTP domain.
1752  * @s: the AMDTP stream that transfers the PCM frames
1753  *
1754  * Returns zero always.
1755  */
1756 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1757 {
1758         struct amdtp_stream *irq_target = d->irq_target;
1759
1760         // Process isochronous packets for recent isochronous cycle to handle
1761         // queued PCM frames.
1762         if (irq_target && amdtp_stream_running(irq_target))
1763                 fw_iso_context_flush_completions(irq_target->context);
1764
1765         return 0;
1766 }
1767 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1768
1769 /**
1770  * amdtp_stream_update - update the stream after a bus reset
1771  * @s: the AMDTP stream
1772  */
1773 void amdtp_stream_update(struct amdtp_stream *s)
1774 {
1775         /* Precomputing. */
1776         WRITE_ONCE(s->source_node_id_field,
1777                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1778 }
1779 EXPORT_SYMBOL(amdtp_stream_update);
1780
1781 /**
1782  * amdtp_stream_stop - stop sending packets
1783  * @s: the AMDTP stream to stop
1784  *
1785  * All PCM and MIDI devices of the stream must be stopped before the stream
1786  * itself can be stopped.
1787  */
1788 static void amdtp_stream_stop(struct amdtp_stream *s)
1789 {
1790         mutex_lock(&s->mutex);
1791
1792         if (!amdtp_stream_running(s)) {
1793                 mutex_unlock(&s->mutex);
1794                 return;
1795         }
1796
1797         fw_iso_context_stop(s->context);
1798         fw_iso_context_destroy(s->context);
1799         s->context = ERR_PTR(-1);
1800         iso_packets_buffer_destroy(&s->buffer, s->unit);
1801         kfree(s->pkt_descs);
1802
1803         if (s->direction == AMDTP_OUT_STREAM) {
1804                 kfree(s->ctx_data.rx.seq.descs);
1805         } else {
1806                 if (s->domain->replay.enable)
1807                         kfree(s->ctx_data.tx.cache.descs);
1808         }
1809
1810         mutex_unlock(&s->mutex);
1811 }
1812
1813 /**
1814  * amdtp_stream_pcm_abort - abort the running PCM device
1815  * @s: the AMDTP stream about to be stopped
1816  *
1817  * If the isochronous stream needs to be stopped asynchronously, call this
1818  * function first to stop the PCM device.
1819  */
1820 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1821 {
1822         struct snd_pcm_substream *pcm;
1823
1824         pcm = READ_ONCE(s->pcm);
1825         if (pcm)
1826                 snd_pcm_stop_xrun(pcm);
1827 }
1828 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1829
1830 /**
1831  * amdtp_domain_init - initialize an AMDTP domain structure
1832  * @d: the AMDTP domain to initialize.
1833  */
1834 int amdtp_domain_init(struct amdtp_domain *d)
1835 {
1836         INIT_LIST_HEAD(&d->streams);
1837
1838         d->events_per_period = 0;
1839
1840         return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1843
1844 /**
1845  * amdtp_domain_destroy - destroy an AMDTP domain structure
1846  * @d: the AMDTP domain to destroy.
1847  */
1848 void amdtp_domain_destroy(struct amdtp_domain *d)
1849 {
1850         // At present nothing to do.
1851         return;
1852 }
1853 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1854
1855 /**
1856  * amdtp_domain_add_stream - register isoc context into the domain.
1857  * @d: the AMDTP domain.
1858  * @s: the AMDTP stream.
1859  * @channel: the isochronous channel on the bus.
1860  * @speed: firewire speed code.
1861  */
1862 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1863                             int channel, int speed)
1864 {
1865         struct amdtp_stream *tmp;
1866
1867         list_for_each_entry(tmp, &d->streams, list) {
1868                 if (s == tmp)
1869                         return -EBUSY;
1870         }
1871
1872         list_add(&s->list, &d->streams);
1873
1874         s->channel = channel;
1875         s->speed = speed;
1876         s->domain = d;
1877
1878         return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1881
1882 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1883 // is less than the number of rx streams, the first tx stream is selected.
1884 static int make_association(struct amdtp_domain *d)
1885 {
1886         unsigned int dst_index = 0;
1887         struct amdtp_stream *rx;
1888
1889         // Make association to replay target.
1890         list_for_each_entry(rx, &d->streams, list) {
1891                 if (rx->direction == AMDTP_OUT_STREAM) {
1892                         unsigned int src_index = 0;
1893                         struct amdtp_stream *tx = NULL;
1894                         struct amdtp_stream *s;
1895
1896                         list_for_each_entry(s, &d->streams, list) {
1897                                 if (s->direction == AMDTP_IN_STREAM) {
1898                                         if (dst_index == src_index) {
1899                                                 tx = s;
1900                                                 break;
1901                                         }
1902
1903                                         ++src_index;
1904                                 }
1905                         }
1906                         if (!tx) {
1907                                 // Select the first entry.
1908                                 list_for_each_entry(s, &d->streams, list) {
1909                                         if (s->direction == AMDTP_IN_STREAM) {
1910                                                 tx = s;
1911                                                 break;
1912                                         }
1913                                 }
1914                                 // No target is available to replay sequence.
1915                                 if (!tx)
1916                                         return -EINVAL;
1917                         }
1918
1919                         rx->ctx_data.rx.replay_target = tx;
1920                         rx->ctx_data.rx.cache_head = 0;
1921
1922                         ++dst_index;
1923                 }
1924         }
1925
1926         return 0;
1927 }
1928
1929 /**
1930  * amdtp_domain_start - start sending packets for isoc context in the domain.
1931  * @d: the AMDTP domain.
1932  * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
1933  *                       contexts.
1934  * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
1935  *              IT context.
1936  * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
1937  *                     according to arrival of events in tx packets.
1938  */
1939 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
1940                        bool replay_on_the_fly)
1941 {
1942         unsigned int events_per_buffer = d->events_per_buffer;
1943         unsigned int events_per_period = d->events_per_period;
1944         unsigned int queue_size;
1945         struct amdtp_stream *s;
1946         bool found = false;
1947         int err;
1948
1949         if (replay_seq) {
1950                 err = make_association(d);
1951                 if (err < 0)
1952                         return err;
1953         }
1954         d->replay.enable = replay_seq;
1955         d->replay.on_the_fly = replay_on_the_fly;
1956
1957         // Select an IT context as IRQ target.
1958         list_for_each_entry(s, &d->streams, list) {
1959                 if (s->direction == AMDTP_OUT_STREAM) {
1960                         found = true;
1961                         break;
1962                 }
1963         }
1964         if (!found)
1965                 return -ENXIO;
1966         d->irq_target = s;
1967
1968         d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
1969
1970         // This is a case that AMDTP streams in domain run just for MIDI
1971         // substream. Use the number of events equivalent to 10 msec as
1972         // interval of hardware IRQ.
1973         if (events_per_period == 0)
1974                 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1975         if (events_per_buffer == 0)
1976                 events_per_buffer = events_per_period * 3;
1977
1978         queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1979                                   amdtp_rate_table[d->irq_target->sfc]);
1980
1981         list_for_each_entry(s, &d->streams, list) {
1982                 unsigned int idle_irq_interval = 0;
1983
1984                 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
1985                         idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1986                                                          amdtp_rate_table[d->irq_target->sfc]);
1987                 }
1988
1989                 // Starts immediately but actually DMA context starts several hundred cycles later.
1990                 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
1991                 if (err < 0)
1992                         goto error;
1993         }
1994
1995         return 0;
1996 error:
1997         list_for_each_entry(s, &d->streams, list)
1998                 amdtp_stream_stop(s);
1999         return err;
2000 }
2001 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2002
2003 /**
2004  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2005  * @d: the AMDTP domain to which the isoc contexts belong.
2006  */
2007 void amdtp_domain_stop(struct amdtp_domain *d)
2008 {
2009         struct amdtp_stream *s, *next;
2010
2011         if (d->irq_target)
2012                 amdtp_stream_stop(d->irq_target);
2013
2014         list_for_each_entry_safe(s, next, &d->streams, list) {
2015                 list_del(&s->list);
2016
2017                 if (s != d->irq_target)
2018                         amdtp_stream_stop(s);
2019         }
2020
2021         d->events_per_period = 0;
2022         d->irq_target = NULL;
2023 }
2024 EXPORT_SYMBOL_GPL(amdtp_domain_stop);