Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46         struct snd_pcm_runtime *runtime = substream->runtime;
47         snd_pcm_uframes_t frames, ofs, transfer;
48
49         if (runtime->silence_size < runtime->boundary) {
50                 snd_pcm_sframes_t noise_dist, n;
51                 if (runtime->silence_start != runtime->control->appl_ptr) {
52                         n = runtime->control->appl_ptr - runtime->silence_start;
53                         if (n < 0)
54                                 n += runtime->boundary;
55                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56                                 runtime->silence_filled -= n;
57                         else
58                                 runtime->silence_filled = 0;
59                         runtime->silence_start = runtime->control->appl_ptr;
60                 }
61                 if (runtime->silence_filled >= runtime->buffer_size)
62                         return;
63                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65                         return;
66                 frames = runtime->silence_threshold - noise_dist;
67                 if (frames > runtime->silence_size)
68                         frames = runtime->silence_size;
69         } else {
70                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
71                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72                         if (avail > runtime->buffer_size)
73                                 avail = runtime->buffer_size;
74                         runtime->silence_filled = avail > 0 ? avail : 0;
75                         runtime->silence_start = (runtime->status->hw_ptr +
76                                                   runtime->silence_filled) %
77                                                  runtime->boundary;
78                 } else {
79                         ofs = runtime->status->hw_ptr;
80                         frames = new_hw_ptr - ofs;
81                         if ((snd_pcm_sframes_t)frames < 0)
82                                 frames += runtime->boundary;
83                         runtime->silence_filled -= frames;
84                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85                                 runtime->silence_filled = 0;
86                                 runtime->silence_start = new_hw_ptr;
87                         } else {
88                                 runtime->silence_start = ofs;
89                         }
90                 }
91                 frames = runtime->buffer_size - runtime->silence_filled;
92         }
93         if (snd_BUG_ON(frames > runtime->buffer_size))
94                 return;
95         if (frames == 0)
96                 return;
97         ofs = runtime->silence_start % runtime->buffer_size;
98         while (frames > 0) {
99                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102                         if (substream->ops->silence) {
103                                 int err;
104                                 err = substream->ops->silence(substream, -1, ofs, transfer);
105                                 snd_BUG_ON(err < 0);
106                         } else {
107                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109                         }
110                 } else {
111                         unsigned int c;
112                         unsigned int channels = runtime->channels;
113                         if (substream->ops->silence) {
114                                 for (c = 0; c < channels; ++c) {
115                                         int err;
116                                         err = substream->ops->silence(substream, c, ofs, transfer);
117                                         snd_BUG_ON(err < 0);
118                                 }
119                         } else {
120                                 size_t dma_csize = runtime->dma_bytes / channels;
121                                 for (c = 0; c < channels; ++c) {
122                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124                                 }
125                         }
126                 }
127                 runtime->silence_filled += transfer;
128                 frames -= transfer;
129                 ofs = 0;
130         }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135                            char *name, size_t len)
136 {
137         snprintf(name, len, "pcmC%dD%d%c:%d",
138                  substream->pcm->card->number,
139                  substream->pcm->device,
140                  substream->stream ? 'c' : 'p',
141                  substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC        (1<<0)
147 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
151 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169         struct snd_pcm_runtime *runtime = substream->runtime;
170
171         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175                 char name[16];
176                 snd_pcm_debug_name(substream, name, sizeof(name));
177                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
178                 dump_stack_on_xrun(substream);
179         }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)                           \
184         do {                                                            \
185                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
186                         xrun_log_show(substream);                       \
187                         if (snd_printd_ratelimit()) {                   \
188                                 snd_printd("PCM: " fmt, ##args);        \
189                         }                                               \
190                         dump_stack_on_xrun(substream);                  \
191                 }                                                       \
192         } while (0)
193
194 #define XRUN_LOG_CNT    10
195
196 struct hwptr_log_entry {
197         unsigned int in_interrupt;
198         unsigned long jiffies;
199         snd_pcm_uframes_t pos;
200         snd_pcm_uframes_t period_size;
201         snd_pcm_uframes_t buffer_size;
202         snd_pcm_uframes_t old_hw_ptr;
203         snd_pcm_uframes_t hw_ptr_base;
204 };
205
206 struct snd_pcm_hwptr_log {
207         unsigned int idx;
208         unsigned int hit: 1;
209         struct hwptr_log_entry entries[XRUN_LOG_CNT];
210 };
211
212 static void xrun_log(struct snd_pcm_substream *substream,
213                      snd_pcm_uframes_t pos, int in_interrupt)
214 {
215         struct snd_pcm_runtime *runtime = substream->runtime;
216         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
217         struct hwptr_log_entry *entry;
218
219         if (log == NULL) {
220                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
221                 if (log == NULL)
222                         return;
223                 runtime->hwptr_log = log;
224         } else {
225                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
226                         return;
227         }
228         entry = &log->entries[log->idx];
229         entry->in_interrupt = in_interrupt;
230         entry->jiffies = jiffies;
231         entry->pos = pos;
232         entry->period_size = runtime->period_size;
233         entry->buffer_size = runtime->buffer_size;
234         entry->old_hw_ptr = runtime->status->hw_ptr;
235         entry->hw_ptr_base = runtime->hw_ptr_base;
236         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
237 }
238
239 static void xrun_log_show(struct snd_pcm_substream *substream)
240 {
241         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
242         struct hwptr_log_entry *entry;
243         char name[16];
244         unsigned int idx;
245         int cnt;
246
247         if (log == NULL)
248                 return;
249         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
250                 return;
251         snd_pcm_debug_name(substream, name, sizeof(name));
252         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
253                 entry = &log->entries[idx];
254                 if (entry->period_size == 0)
255                         break;
256                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
257                            "hwptr=%ld/%ld\n",
258                            name, entry->in_interrupt ? "[Q] " : "",
259                            entry->jiffies,
260                            (unsigned long)entry->pos,
261                            (unsigned long)entry->period_size,
262                            (unsigned long)entry->buffer_size,
263                            (unsigned long)entry->old_hw_ptr,
264                            (unsigned long)entry->hw_ptr_base);
265                 idx++;
266                 idx %= XRUN_LOG_CNT;
267         }
268         log->hit = 1;
269 }
270
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
272
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
275 #define xrun_log_show(substream)        do { } while (0)
276
277 #endif
278
279 int snd_pcm_update_state(struct snd_pcm_substream *substream,
280                          struct snd_pcm_runtime *runtime)
281 {
282         snd_pcm_uframes_t avail;
283
284         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285                 avail = snd_pcm_playback_avail(runtime);
286         else
287                 avail = snd_pcm_capture_avail(runtime);
288         if (avail > runtime->avail_max)
289                 runtime->avail_max = avail;
290         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
291                 if (avail >= runtime->buffer_size) {
292                         snd_pcm_drain_done(substream);
293                         return -EPIPE;
294                 }
295         } else {
296                 if (avail >= runtime->stop_threshold) {
297                         xrun(substream);
298                         return -EPIPE;
299                 }
300         }
301         if (runtime->twake) {
302                 if (avail >= runtime->twake)
303                         wake_up(&runtime->tsleep);
304         } else if (avail >= runtime->control->avail_min)
305                 wake_up(&runtime->sleep);
306         return 0;
307 }
308
309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
310                                   unsigned int in_interrupt)
311 {
312         struct snd_pcm_runtime *runtime = substream->runtime;
313         snd_pcm_uframes_t pos;
314         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315         snd_pcm_sframes_t hdelta, delta;
316         unsigned long jdelta;
317         unsigned long curr_jiffies;
318         struct timespec curr_tstamp;
319         struct timespec audio_tstamp;
320         int crossed_boundary = 0;
321
322         old_hw_ptr = runtime->status->hw_ptr;
323
324         /*
325          * group pointer, time and jiffies reads to allow for more
326          * accurate correlations/corrections.
327          * The values are stored at the end of this routine after
328          * corrections for hw_ptr position
329          */
330         pos = substream->ops->pointer(substream);
331         curr_jiffies = jiffies;
332         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
333                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
334
335                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
336                         (substream->ops->wall_clock))
337                         substream->ops->wall_clock(substream, &audio_tstamp);
338         }
339
340         if (pos == SNDRV_PCM_POS_XRUN) {
341                 xrun(substream);
342                 return -EPIPE;
343         }
344         if (pos >= runtime->buffer_size) {
345                 if (snd_printd_ratelimit()) {
346                         char name[16];
347                         snd_pcm_debug_name(substream, name, sizeof(name));
348                         xrun_log_show(substream);
349                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
350                                    "buffer size = %ld, period size = %ld\n",
351                                    name, pos, runtime->buffer_size,
352                                    runtime->period_size);
353                 }
354                 pos = 0;
355         }
356         pos -= pos % runtime->min_align;
357         if (xrun_debug(substream, XRUN_DEBUG_LOG))
358                 xrun_log(substream, pos, in_interrupt);
359         hw_base = runtime->hw_ptr_base;
360         new_hw_ptr = hw_base + pos;
361         if (in_interrupt) {
362                 /* we know that one period was processed */
363                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
364                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
365                 if (delta > new_hw_ptr) {
366                         /* check for double acknowledged interrupts */
367                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
368                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
369                                 hw_base += runtime->buffer_size;
370                                 if (hw_base >= runtime->boundary) {
371                                         hw_base = 0;
372                                         crossed_boundary++;
373                                 }
374                                 new_hw_ptr = hw_base + pos;
375                                 goto __delta;
376                         }
377                 }
378         }
379         /* new_hw_ptr might be lower than old_hw_ptr in case when */
380         /* pointer crosses the end of the ring buffer */
381         if (new_hw_ptr < old_hw_ptr) {
382                 hw_base += runtime->buffer_size;
383                 if (hw_base >= runtime->boundary) {
384                         hw_base = 0;
385                         crossed_boundary++;
386                 }
387                 new_hw_ptr = hw_base + pos;
388         }
389       __delta:
390         delta = new_hw_ptr - old_hw_ptr;
391         if (delta < 0)
392                 delta += runtime->boundary;
393         if (xrun_debug(substream, in_interrupt ?
394                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
395                 char name[16];
396                 snd_pcm_debug_name(substream, name, sizeof(name));
397                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
398                            "hwptr=%ld/%ld/%ld/%ld\n",
399                            in_interrupt ? "period" : "hwptr",
400                            name,
401                            (unsigned int)pos,
402                            (unsigned int)runtime->period_size,
403                            (unsigned int)runtime->buffer_size,
404                            (unsigned long)delta,
405                            (unsigned long)old_hw_ptr,
406                            (unsigned long)new_hw_ptr,
407                            (unsigned long)runtime->hw_ptr_base);
408         }
409
410         if (runtime->no_period_wakeup) {
411                 snd_pcm_sframes_t xrun_threshold;
412                 /*
413                  * Without regular period interrupts, we have to check
414                  * the elapsed time to detect xruns.
415                  */
416                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
418                         goto no_delta_check;
419                 hdelta = jdelta - delta * HZ / runtime->rate;
420                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
421                 while (hdelta > xrun_threshold) {
422                         delta += runtime->buffer_size;
423                         hw_base += runtime->buffer_size;
424                         if (hw_base >= runtime->boundary) {
425                                 hw_base = 0;
426                                 crossed_boundary++;
427                         }
428                         new_hw_ptr = hw_base + pos;
429                         hdelta -= runtime->hw_ptr_buffer_jiffies;
430                 }
431                 goto no_delta_check;
432         }
433
434         /* something must be really wrong */
435         if (delta >= runtime->buffer_size + runtime->period_size) {
436                 hw_ptr_error(substream,
437                                "Unexpected hw_pointer value %s"
438                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
439                                "old_hw_ptr=%ld)\n",
440                                      in_interrupt ? "[Q] " : "[P]",
441                                      substream->stream, (long)pos,
442                                      (long)new_hw_ptr, (long)old_hw_ptr);
443                 return 0;
444         }
445
446         /* Do jiffies check only in xrun_debug mode */
447         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
448                 goto no_jiffies_check;
449
450         /* Skip the jiffies check for hardwares with BATCH flag.
451          * Such hardware usually just increases the position at each IRQ,
452          * thus it can't give any strange position.
453          */
454         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
455                 goto no_jiffies_check;
456         hdelta = delta;
457         if (hdelta < runtime->delay)
458                 goto no_jiffies_check;
459         hdelta -= runtime->delay;
460         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
461         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
462                 delta = jdelta /
463                         (((runtime->period_size * HZ) / runtime->rate)
464                                                                 + HZ/100);
465                 /* move new_hw_ptr according jiffies not pos variable */
466                 new_hw_ptr = old_hw_ptr;
467                 hw_base = delta;
468                 /* use loop to avoid checks for delta overflows */
469                 /* the delta value is small or zero in most cases */
470                 while (delta > 0) {
471                         new_hw_ptr += runtime->period_size;
472                         if (new_hw_ptr >= runtime->boundary) {
473                                 new_hw_ptr -= runtime->boundary;
474                                 crossed_boundary--;
475                         }
476                         delta--;
477                 }
478                 /* align hw_base to buffer_size */
479                 hw_ptr_error(substream,
480                              "hw_ptr skipping! %s"
481                              "(pos=%ld, delta=%ld, period=%ld, "
482                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
483                              in_interrupt ? "[Q] " : "",
484                              (long)pos, (long)hdelta,
485                              (long)runtime->period_size, jdelta,
486                              ((hdelta * HZ) / runtime->rate), hw_base,
487                              (unsigned long)old_hw_ptr,
488                              (unsigned long)new_hw_ptr);
489                 /* reset values to proper state */
490                 delta = 0;
491                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
492         }
493  no_jiffies_check:
494         if (delta > runtime->period_size + runtime->period_size / 2) {
495                 hw_ptr_error(substream,
496                              "Lost interrupts? %s"
497                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
498                              "old_hw_ptr=%ld)\n",
499                              in_interrupt ? "[Q] " : "",
500                              substream->stream, (long)delta,
501                              (long)new_hw_ptr,
502                              (long)old_hw_ptr);
503         }
504
505  no_delta_check:
506         if (runtime->status->hw_ptr == new_hw_ptr)
507                 return 0;
508
509         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
510             runtime->silence_size > 0)
511                 snd_pcm_playback_silence(substream, new_hw_ptr);
512
513         if (in_interrupt) {
514                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
515                 if (delta < 0)
516                         delta += runtime->boundary;
517                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
518                 runtime->hw_ptr_interrupt += delta;
519                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
520                         runtime->hw_ptr_interrupt -= runtime->boundary;
521         }
522         runtime->hw_ptr_base = hw_base;
523         runtime->status->hw_ptr = new_hw_ptr;
524         runtime->hw_ptr_jiffies = curr_jiffies;
525         if (crossed_boundary) {
526                 snd_BUG_ON(crossed_boundary != 1);
527                 runtime->hw_ptr_wrap += runtime->boundary;
528         }
529         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
530                 runtime->status->tstamp = curr_tstamp;
531
532                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
533                         /*
534                          * no wall clock available, provide audio timestamp
535                          * derived from pointer position+delay
536                          */
537                         u64 audio_frames, audio_nsecs;
538
539                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
540                                 audio_frames = runtime->hw_ptr_wrap
541                                         + runtime->status->hw_ptr
542                                         - runtime->delay;
543                         else
544                                 audio_frames = runtime->hw_ptr_wrap
545                                         + runtime->status->hw_ptr
546                                         + runtime->delay;
547                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
548                                         runtime->rate);
549                         audio_tstamp = ns_to_timespec(audio_nsecs);
550                 }
551                 runtime->status->audio_tstamp = audio_tstamp;
552         }
553
554         return snd_pcm_update_state(substream, runtime);
555 }
556
557 /* CAUTION: call it with irq disabled */
558 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
559 {
560         return snd_pcm_update_hw_ptr0(substream, 0);
561 }
562
563 /**
564  * snd_pcm_set_ops - set the PCM operators
565  * @pcm: the pcm instance
566  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
567  * @ops: the operator table
568  *
569  * Sets the given PCM operators to the pcm instance.
570  */
571 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
572                      const struct snd_pcm_ops *ops)
573 {
574         struct snd_pcm_str *stream = &pcm->streams[direction];
575         struct snd_pcm_substream *substream;
576         
577         for (substream = stream->substream; substream != NULL; substream = substream->next)
578                 substream->ops = ops;
579 }
580
581 EXPORT_SYMBOL(snd_pcm_set_ops);
582
583 /**
584  * snd_pcm_sync - set the PCM sync id
585  * @substream: the pcm substream
586  *
587  * Sets the PCM sync identifier for the card.
588  */
589 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
590 {
591         struct snd_pcm_runtime *runtime = substream->runtime;
592         
593         runtime->sync.id32[0] = substream->pcm->card->number;
594         runtime->sync.id32[1] = -1;
595         runtime->sync.id32[2] = -1;
596         runtime->sync.id32[3] = -1;
597 }
598
599 EXPORT_SYMBOL(snd_pcm_set_sync);
600
601 /*
602  *  Standard ioctl routine
603  */
604
605 static inline unsigned int div32(unsigned int a, unsigned int b, 
606                                  unsigned int *r)
607 {
608         if (b == 0) {
609                 *r = 0;
610                 return UINT_MAX;
611         }
612         *r = a % b;
613         return a / b;
614 }
615
616 static inline unsigned int div_down(unsigned int a, unsigned int b)
617 {
618         if (b == 0)
619                 return UINT_MAX;
620         return a / b;
621 }
622
623 static inline unsigned int div_up(unsigned int a, unsigned int b)
624 {
625         unsigned int r;
626         unsigned int q;
627         if (b == 0)
628                 return UINT_MAX;
629         q = div32(a, b, &r);
630         if (r)
631                 ++q;
632         return q;
633 }
634
635 static inline unsigned int mul(unsigned int a, unsigned int b)
636 {
637         if (a == 0)
638                 return 0;
639         if (div_down(UINT_MAX, a) < b)
640                 return UINT_MAX;
641         return a * b;
642 }
643
644 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
645                                     unsigned int c, unsigned int *r)
646 {
647         u_int64_t n = (u_int64_t) a * b;
648         if (c == 0) {
649                 snd_BUG_ON(!n);
650                 *r = 0;
651                 return UINT_MAX;
652         }
653         n = div_u64_rem(n, c, r);
654         if (n >= UINT_MAX) {
655                 *r = 0;
656                 return UINT_MAX;
657         }
658         return n;
659 }
660
661 /**
662  * snd_interval_refine - refine the interval value of configurator
663  * @i: the interval value to refine
664  * @v: the interval value to refer to
665  *
666  * Refines the interval value with the reference value.
667  * The interval is changed to the range satisfying both intervals.
668  * The interval status (min, max, integer, etc.) are evaluated.
669  *
670  * Return: Positive if the value is changed, zero if it's not changed, or a
671  * negative error code.
672  */
673 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
674 {
675         int changed = 0;
676         if (snd_BUG_ON(snd_interval_empty(i)))
677                 return -EINVAL;
678         if (i->min < v->min) {
679                 i->min = v->min;
680                 i->openmin = v->openmin;
681                 changed = 1;
682         } else if (i->min == v->min && !i->openmin && v->openmin) {
683                 i->openmin = 1;
684                 changed = 1;
685         }
686         if (i->max > v->max) {
687                 i->max = v->max;
688                 i->openmax = v->openmax;
689                 changed = 1;
690         } else if (i->max == v->max && !i->openmax && v->openmax) {
691                 i->openmax = 1;
692                 changed = 1;
693         }
694         if (!i->integer && v->integer) {
695                 i->integer = 1;
696                 changed = 1;
697         }
698         if (i->integer) {
699                 if (i->openmin) {
700                         i->min++;
701                         i->openmin = 0;
702                 }
703                 if (i->openmax) {
704                         i->max--;
705                         i->openmax = 0;
706                 }
707         } else if (!i->openmin && !i->openmax && i->min == i->max)
708                 i->integer = 1;
709         if (snd_interval_checkempty(i)) {
710                 snd_interval_none(i);
711                 return -EINVAL;
712         }
713         return changed;
714 }
715
716 EXPORT_SYMBOL(snd_interval_refine);
717
718 static int snd_interval_refine_first(struct snd_interval *i)
719 {
720         if (snd_BUG_ON(snd_interval_empty(i)))
721                 return -EINVAL;
722         if (snd_interval_single(i))
723                 return 0;
724         i->max = i->min;
725         i->openmax = i->openmin;
726         if (i->openmax)
727                 i->max++;
728         return 1;
729 }
730
731 static int snd_interval_refine_last(struct snd_interval *i)
732 {
733         if (snd_BUG_ON(snd_interval_empty(i)))
734                 return -EINVAL;
735         if (snd_interval_single(i))
736                 return 0;
737         i->min = i->max;
738         i->openmin = i->openmax;
739         if (i->openmin)
740                 i->min--;
741         return 1;
742 }
743
744 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
745 {
746         if (a->empty || b->empty) {
747                 snd_interval_none(c);
748                 return;
749         }
750         c->empty = 0;
751         c->min = mul(a->min, b->min);
752         c->openmin = (a->openmin || b->openmin);
753         c->max = mul(a->max,  b->max);
754         c->openmax = (a->openmax || b->openmax);
755         c->integer = (a->integer && b->integer);
756 }
757
758 /**
759  * snd_interval_div - refine the interval value with division
760  * @a: dividend
761  * @b: divisor
762  * @c: quotient
763  *
764  * c = a / b
765  *
766  * Returns non-zero if the value is changed, zero if not changed.
767  */
768 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
769 {
770         unsigned int r;
771         if (a->empty || b->empty) {
772                 snd_interval_none(c);
773                 return;
774         }
775         c->empty = 0;
776         c->min = div32(a->min, b->max, &r);
777         c->openmin = (r || a->openmin || b->openmax);
778         if (b->min > 0) {
779                 c->max = div32(a->max, b->min, &r);
780                 if (r) {
781                         c->max++;
782                         c->openmax = 1;
783                 } else
784                         c->openmax = (a->openmax || b->openmin);
785         } else {
786                 c->max = UINT_MAX;
787                 c->openmax = 0;
788         }
789         c->integer = 0;
790 }
791
792 /**
793  * snd_interval_muldivk - refine the interval value
794  * @a: dividend 1
795  * @b: dividend 2
796  * @k: divisor (as integer)
797  * @c: result
798   *
799  * c = a * b / k
800  *
801  * Returns non-zero if the value is changed, zero if not changed.
802  */
803 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
804                       unsigned int k, struct snd_interval *c)
805 {
806         unsigned int r;
807         if (a->empty || b->empty) {
808                 snd_interval_none(c);
809                 return;
810         }
811         c->empty = 0;
812         c->min = muldiv32(a->min, b->min, k, &r);
813         c->openmin = (r || a->openmin || b->openmin);
814         c->max = muldiv32(a->max, b->max, k, &r);
815         if (r) {
816                 c->max++;
817                 c->openmax = 1;
818         } else
819                 c->openmax = (a->openmax || b->openmax);
820         c->integer = 0;
821 }
822
823 /**
824  * snd_interval_mulkdiv - refine the interval value
825  * @a: dividend 1
826  * @k: dividend 2 (as integer)
827  * @b: divisor
828  * @c: result
829  *
830  * c = a * k / b
831  *
832  * Returns non-zero if the value is changed, zero if not changed.
833  */
834 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
835                       const struct snd_interval *b, struct snd_interval *c)
836 {
837         unsigned int r;
838         if (a->empty || b->empty) {
839                 snd_interval_none(c);
840                 return;
841         }
842         c->empty = 0;
843         c->min = muldiv32(a->min, k, b->max, &r);
844         c->openmin = (r || a->openmin || b->openmax);
845         if (b->min > 0) {
846                 c->max = muldiv32(a->max, k, b->min, &r);
847                 if (r) {
848                         c->max++;
849                         c->openmax = 1;
850                 } else
851                         c->openmax = (a->openmax || b->openmin);
852         } else {
853                 c->max = UINT_MAX;
854                 c->openmax = 0;
855         }
856         c->integer = 0;
857 }
858
859 /* ---- */
860
861
862 /**
863  * snd_interval_ratnum - refine the interval value
864  * @i: interval to refine
865  * @rats_count: number of ratnum_t 
866  * @rats: ratnum_t array
867  * @nump: pointer to store the resultant numerator
868  * @denp: pointer to store the resultant denominator
869  *
870  * Return: Positive if the value is changed, zero if it's not changed, or a
871  * negative error code.
872  */
873 int snd_interval_ratnum(struct snd_interval *i,
874                         unsigned int rats_count, struct snd_ratnum *rats,
875                         unsigned int *nump, unsigned int *denp)
876 {
877         unsigned int best_num, best_den;
878         int best_diff;
879         unsigned int k;
880         struct snd_interval t;
881         int err;
882         unsigned int result_num, result_den;
883         int result_diff;
884
885         best_num = best_den = best_diff = 0;
886         for (k = 0; k < rats_count; ++k) {
887                 unsigned int num = rats[k].num;
888                 unsigned int den;
889                 unsigned int q = i->min;
890                 int diff;
891                 if (q == 0)
892                         q = 1;
893                 den = div_up(num, q);
894                 if (den < rats[k].den_min)
895                         continue;
896                 if (den > rats[k].den_max)
897                         den = rats[k].den_max;
898                 else {
899                         unsigned int r;
900                         r = (den - rats[k].den_min) % rats[k].den_step;
901                         if (r != 0)
902                                 den -= r;
903                 }
904                 diff = num - q * den;
905                 if (diff < 0)
906                         diff = -diff;
907                 if (best_num == 0 ||
908                     diff * best_den < best_diff * den) {
909                         best_diff = diff;
910                         best_den = den;
911                         best_num = num;
912                 }
913         }
914         if (best_den == 0) {
915                 i->empty = 1;
916                 return -EINVAL;
917         }
918         t.min = div_down(best_num, best_den);
919         t.openmin = !!(best_num % best_den);
920         
921         result_num = best_num;
922         result_diff = best_diff;
923         result_den = best_den;
924         best_num = best_den = best_diff = 0;
925         for (k = 0; k < rats_count; ++k) {
926                 unsigned int num = rats[k].num;
927                 unsigned int den;
928                 unsigned int q = i->max;
929                 int diff;
930                 if (q == 0) {
931                         i->empty = 1;
932                         return -EINVAL;
933                 }
934                 den = div_down(num, q);
935                 if (den > rats[k].den_max)
936                         continue;
937                 if (den < rats[k].den_min)
938                         den = rats[k].den_min;
939                 else {
940                         unsigned int r;
941                         r = (den - rats[k].den_min) % rats[k].den_step;
942                         if (r != 0)
943                                 den += rats[k].den_step - r;
944                 }
945                 diff = q * den - num;
946                 if (diff < 0)
947                         diff = -diff;
948                 if (best_num == 0 ||
949                     diff * best_den < best_diff * den) {
950                         best_diff = diff;
951                         best_den = den;
952                         best_num = num;
953                 }
954         }
955         if (best_den == 0) {
956                 i->empty = 1;
957                 return -EINVAL;
958         }
959         t.max = div_up(best_num, best_den);
960         t.openmax = !!(best_num % best_den);
961         t.integer = 0;
962         err = snd_interval_refine(i, &t);
963         if (err < 0)
964                 return err;
965
966         if (snd_interval_single(i)) {
967                 if (best_diff * result_den < result_diff * best_den) {
968                         result_num = best_num;
969                         result_den = best_den;
970                 }
971                 if (nump)
972                         *nump = result_num;
973                 if (denp)
974                         *denp = result_den;
975         }
976         return err;
977 }
978
979 EXPORT_SYMBOL(snd_interval_ratnum);
980
981 /**
982  * snd_interval_ratden - refine the interval value
983  * @i: interval to refine
984  * @rats_count: number of struct ratden
985  * @rats: struct ratden array
986  * @nump: pointer to store the resultant numerator
987  * @denp: pointer to store the resultant denominator
988  *
989  * Return: Positive if the value is changed, zero if it's not changed, or a
990  * negative error code.
991  */
992 static int snd_interval_ratden(struct snd_interval *i,
993                                unsigned int rats_count, struct snd_ratden *rats,
994                                unsigned int *nump, unsigned int *denp)
995 {
996         unsigned int best_num, best_diff, best_den;
997         unsigned int k;
998         struct snd_interval t;
999         int err;
1000
1001         best_num = best_den = best_diff = 0;
1002         for (k = 0; k < rats_count; ++k) {
1003                 unsigned int num;
1004                 unsigned int den = rats[k].den;
1005                 unsigned int q = i->min;
1006                 int diff;
1007                 num = mul(q, den);
1008                 if (num > rats[k].num_max)
1009                         continue;
1010                 if (num < rats[k].num_min)
1011                         num = rats[k].num_max;
1012                 else {
1013                         unsigned int r;
1014                         r = (num - rats[k].num_min) % rats[k].num_step;
1015                         if (r != 0)
1016                                 num += rats[k].num_step - r;
1017                 }
1018                 diff = num - q * den;
1019                 if (best_num == 0 ||
1020                     diff * best_den < best_diff * den) {
1021                         best_diff = diff;
1022                         best_den = den;
1023                         best_num = num;
1024                 }
1025         }
1026         if (best_den == 0) {
1027                 i->empty = 1;
1028                 return -EINVAL;
1029         }
1030         t.min = div_down(best_num, best_den);
1031         t.openmin = !!(best_num % best_den);
1032         
1033         best_num = best_den = best_diff = 0;
1034         for (k = 0; k < rats_count; ++k) {
1035                 unsigned int num;
1036                 unsigned int den = rats[k].den;
1037                 unsigned int q = i->max;
1038                 int diff;
1039                 num = mul(q, den);
1040                 if (num < rats[k].num_min)
1041                         continue;
1042                 if (num > rats[k].num_max)
1043                         num = rats[k].num_max;
1044                 else {
1045                         unsigned int r;
1046                         r = (num - rats[k].num_min) % rats[k].num_step;
1047                         if (r != 0)
1048                                 num -= r;
1049                 }
1050                 diff = q * den - num;
1051                 if (best_num == 0 ||
1052                     diff * best_den < best_diff * den) {
1053                         best_diff = diff;
1054                         best_den = den;
1055                         best_num = num;
1056                 }
1057         }
1058         if (best_den == 0) {
1059                 i->empty = 1;
1060                 return -EINVAL;
1061         }
1062         t.max = div_up(best_num, best_den);
1063         t.openmax = !!(best_num % best_den);
1064         t.integer = 0;
1065         err = snd_interval_refine(i, &t);
1066         if (err < 0)
1067                 return err;
1068
1069         if (snd_interval_single(i)) {
1070                 if (nump)
1071                         *nump = best_num;
1072                 if (denp)
1073                         *denp = best_den;
1074         }
1075         return err;
1076 }
1077
1078 /**
1079  * snd_interval_list - refine the interval value from the list
1080  * @i: the interval value to refine
1081  * @count: the number of elements in the list
1082  * @list: the value list
1083  * @mask: the bit-mask to evaluate
1084  *
1085  * Refines the interval value from the list.
1086  * When mask is non-zero, only the elements corresponding to bit 1 are
1087  * evaluated.
1088  *
1089  * Return: Positive if the value is changed, zero if it's not changed, or a
1090  * negative error code.
1091  */
1092 int snd_interval_list(struct snd_interval *i, unsigned int count,
1093                       const unsigned int *list, unsigned int mask)
1094 {
1095         unsigned int k;
1096         struct snd_interval list_range;
1097
1098         if (!count) {
1099                 i->empty = 1;
1100                 return -EINVAL;
1101         }
1102         snd_interval_any(&list_range);
1103         list_range.min = UINT_MAX;
1104         list_range.max = 0;
1105         for (k = 0; k < count; k++) {
1106                 if (mask && !(mask & (1 << k)))
1107                         continue;
1108                 if (!snd_interval_test(i, list[k]))
1109                         continue;
1110                 list_range.min = min(list_range.min, list[k]);
1111                 list_range.max = max(list_range.max, list[k]);
1112         }
1113         return snd_interval_refine(i, &list_range);
1114 }
1115
1116 EXPORT_SYMBOL(snd_interval_list);
1117
1118 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1119 {
1120         unsigned int n;
1121         int changed = 0;
1122         n = (i->min - min) % step;
1123         if (n != 0 || i->openmin) {
1124                 i->min += step - n;
1125                 changed = 1;
1126         }
1127         n = (i->max - min) % step;
1128         if (n != 0 || i->openmax) {
1129                 i->max -= n;
1130                 changed = 1;
1131         }
1132         if (snd_interval_checkempty(i)) {
1133                 i->empty = 1;
1134                 return -EINVAL;
1135         }
1136         return changed;
1137 }
1138
1139 /* Info constraints helpers */
1140
1141 /**
1142  * snd_pcm_hw_rule_add - add the hw-constraint rule
1143  * @runtime: the pcm runtime instance
1144  * @cond: condition bits
1145  * @var: the variable to evaluate
1146  * @func: the evaluation function
1147  * @private: the private data pointer passed to function
1148  * @dep: the dependent variables
1149  *
1150  * Return: Zero if successful, or a negative error code on failure.
1151  */
1152 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1153                         int var,
1154                         snd_pcm_hw_rule_func_t func, void *private,
1155                         int dep, ...)
1156 {
1157         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1158         struct snd_pcm_hw_rule *c;
1159         unsigned int k;
1160         va_list args;
1161         va_start(args, dep);
1162         if (constrs->rules_num >= constrs->rules_all) {
1163                 struct snd_pcm_hw_rule *new;
1164                 unsigned int new_rules = constrs->rules_all + 16;
1165                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1166                 if (!new) {
1167                         va_end(args);
1168                         return -ENOMEM;
1169                 }
1170                 if (constrs->rules) {
1171                         memcpy(new, constrs->rules,
1172                                constrs->rules_num * sizeof(*c));
1173                         kfree(constrs->rules);
1174                 }
1175                 constrs->rules = new;
1176                 constrs->rules_all = new_rules;
1177         }
1178         c = &constrs->rules[constrs->rules_num];
1179         c->cond = cond;
1180         c->func = func;
1181         c->var = var;
1182         c->private = private;
1183         k = 0;
1184         while (1) {
1185                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1186                         va_end(args);
1187                         return -EINVAL;
1188                 }
1189                 c->deps[k++] = dep;
1190                 if (dep < 0)
1191                         break;
1192                 dep = va_arg(args, int);
1193         }
1194         constrs->rules_num++;
1195         va_end(args);
1196         return 0;
1197 }
1198
1199 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1200
1201 /**
1202  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1203  * @runtime: PCM runtime instance
1204  * @var: hw_params variable to apply the mask
1205  * @mask: the bitmap mask
1206  *
1207  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1208  *
1209  * Return: Zero if successful, or a negative error code on failure.
1210  */
1211 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1212                                u_int32_t mask)
1213 {
1214         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1215         struct snd_mask *maskp = constrs_mask(constrs, var);
1216         *maskp->bits &= mask;
1217         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1218         if (*maskp->bits == 0)
1219                 return -EINVAL;
1220         return 0;
1221 }
1222
1223 /**
1224  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1225  * @runtime: PCM runtime instance
1226  * @var: hw_params variable to apply the mask
1227  * @mask: the 64bit bitmap mask
1228  *
1229  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1230  *
1231  * Return: Zero if successful, or a negative error code on failure.
1232  */
1233 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234                                  u_int64_t mask)
1235 {
1236         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237         struct snd_mask *maskp = constrs_mask(constrs, var);
1238         maskp->bits[0] &= (u_int32_t)mask;
1239         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1240         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1241         if (! maskp->bits[0] && ! maskp->bits[1])
1242                 return -EINVAL;
1243         return 0;
1244 }
1245
1246 /**
1247  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1248  * @runtime: PCM runtime instance
1249  * @var: hw_params variable to apply the integer constraint
1250  *
1251  * Apply the constraint of integer to an interval parameter.
1252  *
1253  * Return: Positive if the value is changed, zero if it's not changed, or a
1254  * negative error code.
1255  */
1256 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1257 {
1258         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1259         return snd_interval_setinteger(constrs_interval(constrs, var));
1260 }
1261
1262 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1263
1264 /**
1265  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1266  * @runtime: PCM runtime instance
1267  * @var: hw_params variable to apply the range
1268  * @min: the minimal value
1269  * @max: the maximal value
1270  * 
1271  * Apply the min/max range constraint to an interval parameter.
1272  *
1273  * Return: Positive if the value is changed, zero if it's not changed, or a
1274  * negative error code.
1275  */
1276 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1277                                  unsigned int min, unsigned int max)
1278 {
1279         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1280         struct snd_interval t;
1281         t.min = min;
1282         t.max = max;
1283         t.openmin = t.openmax = 0;
1284         t.integer = 0;
1285         return snd_interval_refine(constrs_interval(constrs, var), &t);
1286 }
1287
1288 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1289
1290 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1291                                 struct snd_pcm_hw_rule *rule)
1292 {
1293         struct snd_pcm_hw_constraint_list *list = rule->private;
1294         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1295 }               
1296
1297
1298 /**
1299  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1300  * @runtime: PCM runtime instance
1301  * @cond: condition bits
1302  * @var: hw_params variable to apply the list constraint
1303  * @l: list
1304  * 
1305  * Apply the list of constraints to an interval parameter.
1306  *
1307  * Return: Zero if successful, or a negative error code on failure.
1308  */
1309 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1310                                unsigned int cond,
1311                                snd_pcm_hw_param_t var,
1312                                const struct snd_pcm_hw_constraint_list *l)
1313 {
1314         return snd_pcm_hw_rule_add(runtime, cond, var,
1315                                    snd_pcm_hw_rule_list, (void *)l,
1316                                    var, -1);
1317 }
1318
1319 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1320
1321 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1322                                    struct snd_pcm_hw_rule *rule)
1323 {
1324         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1325         unsigned int num = 0, den = 0;
1326         int err;
1327         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1328                                   r->nrats, r->rats, &num, &den);
1329         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1330                 params->rate_num = num;
1331                 params->rate_den = den;
1332         }
1333         return err;
1334 }
1335
1336 /**
1337  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1338  * @runtime: PCM runtime instance
1339  * @cond: condition bits
1340  * @var: hw_params variable to apply the ratnums constraint
1341  * @r: struct snd_ratnums constriants
1342  *
1343  * Return: Zero if successful, or a negative error code on failure.
1344  */
1345 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1346                                   unsigned int cond,
1347                                   snd_pcm_hw_param_t var,
1348                                   struct snd_pcm_hw_constraint_ratnums *r)
1349 {
1350         return snd_pcm_hw_rule_add(runtime, cond, var,
1351                                    snd_pcm_hw_rule_ratnums, r,
1352                                    var, -1);
1353 }
1354
1355 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1356
1357 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1358                                    struct snd_pcm_hw_rule *rule)
1359 {
1360         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1361         unsigned int num = 0, den = 0;
1362         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1363                                   r->nrats, r->rats, &num, &den);
1364         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1365                 params->rate_num = num;
1366                 params->rate_den = den;
1367         }
1368         return err;
1369 }
1370
1371 /**
1372  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373  * @runtime: PCM runtime instance
1374  * @cond: condition bits
1375  * @var: hw_params variable to apply the ratdens constraint
1376  * @r: struct snd_ratdens constriants
1377  *
1378  * Return: Zero if successful, or a negative error code on failure.
1379  */
1380 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1381                                   unsigned int cond,
1382                                   snd_pcm_hw_param_t var,
1383                                   struct snd_pcm_hw_constraint_ratdens *r)
1384 {
1385         return snd_pcm_hw_rule_add(runtime, cond, var,
1386                                    snd_pcm_hw_rule_ratdens, r,
1387                                    var, -1);
1388 }
1389
1390 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1391
1392 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1393                                   struct snd_pcm_hw_rule *rule)
1394 {
1395         unsigned int l = (unsigned long) rule->private;
1396         int width = l & 0xffff;
1397         unsigned int msbits = l >> 16;
1398         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1399         if (snd_interval_single(i) && snd_interval_value(i) == width)
1400                 params->msbits = msbits;
1401         return 0;
1402 }
1403
1404 /**
1405  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406  * @runtime: PCM runtime instance
1407  * @cond: condition bits
1408  * @width: sample bits width
1409  * @msbits: msbits width
1410  *
1411  * Return: Zero if successful, or a negative error code on failure.
1412  */
1413 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1414                                  unsigned int cond,
1415                                  unsigned int width,
1416                                  unsigned int msbits)
1417 {
1418         unsigned long l = (msbits << 16) | width;
1419         return snd_pcm_hw_rule_add(runtime, cond, -1,
1420                                     snd_pcm_hw_rule_msbits,
1421                                     (void*) l,
1422                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1423 }
1424
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426
1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428                                 struct snd_pcm_hw_rule *rule)
1429 {
1430         unsigned long step = (unsigned long) rule->private;
1431         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1432 }
1433
1434 /**
1435  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436  * @runtime: PCM runtime instance
1437  * @cond: condition bits
1438  * @var: hw_params variable to apply the step constraint
1439  * @step: step size
1440  *
1441  * Return: Zero if successful, or a negative error code on failure.
1442  */
1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444                                unsigned int cond,
1445                                snd_pcm_hw_param_t var,
1446                                unsigned long step)
1447 {
1448         return snd_pcm_hw_rule_add(runtime, cond, var, 
1449                                    snd_pcm_hw_rule_step, (void *) step,
1450                                    var, -1);
1451 }
1452
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 {
1457         static unsigned int pow2_sizes[] = {
1458                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462         };
1463         return snd_interval_list(hw_param_interval(params, rule->var),
1464                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465 }               
1466
1467 /**
1468  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469  * @runtime: PCM runtime instance
1470  * @cond: condition bits
1471  * @var: hw_params variable to apply the power-of-2 constraint
1472  *
1473  * Return: Zero if successful, or a negative error code on failure.
1474  */
1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476                                unsigned int cond,
1477                                snd_pcm_hw_param_t var)
1478 {
1479         return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                                    snd_pcm_hw_rule_pow2, NULL,
1481                                    var, -1);
1482 }
1483
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1485
1486 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1487                                            struct snd_pcm_hw_rule *rule)
1488 {
1489         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1490         struct snd_interval *rate;
1491
1492         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1493         return snd_interval_list(rate, 1, &base_rate, 0);
1494 }
1495
1496 /**
1497  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1498  * @runtime: PCM runtime instance
1499  * @base_rate: the rate at which the hardware does not resample
1500  *
1501  * Return: Zero if successful, or a negative error code on failure.
1502  */
1503 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1504                                unsigned int base_rate)
1505 {
1506         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1507                                    SNDRV_PCM_HW_PARAM_RATE,
1508                                    snd_pcm_hw_rule_noresample_func,
1509                                    (void *)(uintptr_t)base_rate,
1510                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1511 }
1512 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1513
1514 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1515                                   snd_pcm_hw_param_t var)
1516 {
1517         if (hw_is_mask(var)) {
1518                 snd_mask_any(hw_param_mask(params, var));
1519                 params->cmask |= 1 << var;
1520                 params->rmask |= 1 << var;
1521                 return;
1522         }
1523         if (hw_is_interval(var)) {
1524                 snd_interval_any(hw_param_interval(params, var));
1525                 params->cmask |= 1 << var;
1526                 params->rmask |= 1 << var;
1527                 return;
1528         }
1529         snd_BUG();
1530 }
1531
1532 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1533 {
1534         unsigned int k;
1535         memset(params, 0, sizeof(*params));
1536         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1537                 _snd_pcm_hw_param_any(params, k);
1538         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1539                 _snd_pcm_hw_param_any(params, k);
1540         params->info = ~0U;
1541 }
1542
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544
1545 /**
1546  * snd_pcm_hw_param_value - return @params field @var value
1547  * @params: the hw_params instance
1548  * @var: parameter to retrieve
1549  * @dir: pointer to the direction (-1,0,1) or %NULL
1550  *
1551  * Return: The value for field @var if it's fixed in configuration space
1552  * defined by @params. -%EINVAL otherwise.
1553  */
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555                            snd_pcm_hw_param_t var, int *dir)
1556 {
1557         if (hw_is_mask(var)) {
1558                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1559                 if (!snd_mask_single(mask))
1560                         return -EINVAL;
1561                 if (dir)
1562                         *dir = 0;
1563                 return snd_mask_value(mask);
1564         }
1565         if (hw_is_interval(var)) {
1566                 const struct snd_interval *i = hw_param_interval_c(params, var);
1567                 if (!snd_interval_single(i))
1568                         return -EINVAL;
1569                 if (dir)
1570                         *dir = i->openmin;
1571                 return snd_interval_value(i);
1572         }
1573         return -EINVAL;
1574 }
1575
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579                                 snd_pcm_hw_param_t var)
1580 {
1581         if (hw_is_mask(var)) {
1582                 snd_mask_none(hw_param_mask(params, var));
1583                 params->cmask |= 1 << var;
1584                 params->rmask |= 1 << var;
1585         } else if (hw_is_interval(var)) {
1586                 snd_interval_none(hw_param_interval(params, var));
1587                 params->cmask |= 1 << var;
1588                 params->rmask |= 1 << var;
1589         } else {
1590                 snd_BUG();
1591         }
1592 }
1593
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597                                    snd_pcm_hw_param_t var)
1598 {
1599         int changed;
1600         if (hw_is_mask(var))
1601                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1602         else if (hw_is_interval(var))
1603                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1604         else
1605                 return -EINVAL;
1606         if (changed) {
1607                 params->cmask |= 1 << var;
1608                 params->rmask |= 1 << var;
1609         }
1610         return changed;
1611 }
1612
1613
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1627                            struct snd_pcm_hw_params *params, 
1628                            snd_pcm_hw_param_t var, int *dir)
1629 {
1630         int changed = _snd_pcm_hw_param_first(params, var);
1631         if (changed < 0)
1632                 return changed;
1633         if (params->rmask) {
1634                 int err = snd_pcm_hw_refine(pcm, params);
1635                 if (snd_BUG_ON(err < 0))
1636                         return err;
1637         }
1638         return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640
1641 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1642
1643 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1644                                   snd_pcm_hw_param_t var)
1645 {
1646         int changed;
1647         if (hw_is_mask(var))
1648                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1649         else if (hw_is_interval(var))
1650                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1651         else
1652                 return -EINVAL;
1653         if (changed) {
1654                 params->cmask |= 1 << var;
1655                 params->rmask |= 1 << var;
1656         }
1657         return changed;
1658 }
1659
1660
1661 /**
1662  * snd_pcm_hw_param_last - refine config space and return maximum value
1663  * @pcm: PCM instance
1664  * @params: the hw_params instance
1665  * @var: parameter to retrieve
1666  * @dir: pointer to the direction (-1,0,1) or %NULL
1667  *
1668  * Inside configuration space defined by @params remove from @var all
1669  * values < maximum. Reduce configuration space accordingly.
1670  *
1671  * Return: The maximum, or a negative error code on failure.
1672  */
1673 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1674                           struct snd_pcm_hw_params *params,
1675                           snd_pcm_hw_param_t var, int *dir)
1676 {
1677         int changed = _snd_pcm_hw_param_last(params, var);
1678         if (changed < 0)
1679                 return changed;
1680         if (params->rmask) {
1681                 int err = snd_pcm_hw_refine(pcm, params);
1682                 if (snd_BUG_ON(err < 0))
1683                         return err;
1684         }
1685         return snd_pcm_hw_param_value(params, var, dir);
1686 }
1687
1688 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1689
1690 /**
1691  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1692  * @pcm: PCM instance
1693  * @params: the hw_params instance
1694  *
1695  * Choose one configuration from configuration space defined by @params.
1696  * The configuration chosen is that obtained fixing in this order:
1697  * first access, first format, first subformat, min channels,
1698  * min rate, min period time, max buffer size, min tick time
1699  *
1700  * Return: Zero if successful, or a negative error code on failure.
1701  */
1702 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1703                              struct snd_pcm_hw_params *params)
1704 {
1705         static int vars[] = {
1706                 SNDRV_PCM_HW_PARAM_ACCESS,
1707                 SNDRV_PCM_HW_PARAM_FORMAT,
1708                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1709                 SNDRV_PCM_HW_PARAM_CHANNELS,
1710                 SNDRV_PCM_HW_PARAM_RATE,
1711                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1712                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1713                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1714                 -1
1715         };
1716         int err, *v;
1717
1718         for (v = vars; *v != -1; v++) {
1719                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1720                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1721                 else
1722                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1723                 if (snd_BUG_ON(err < 0))
1724                         return err;
1725         }
1726         return 0;
1727 }
1728
1729 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1730                                    void *arg)
1731 {
1732         struct snd_pcm_runtime *runtime = substream->runtime;
1733         unsigned long flags;
1734         snd_pcm_stream_lock_irqsave(substream, flags);
1735         if (snd_pcm_running(substream) &&
1736             snd_pcm_update_hw_ptr(substream) >= 0)
1737                 runtime->status->hw_ptr %= runtime->buffer_size;
1738         else {
1739                 runtime->status->hw_ptr = 0;
1740                 runtime->hw_ptr_wrap = 0;
1741         }
1742         snd_pcm_stream_unlock_irqrestore(substream, flags);
1743         return 0;
1744 }
1745
1746 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1747                                           void *arg)
1748 {
1749         struct snd_pcm_channel_info *info = arg;
1750         struct snd_pcm_runtime *runtime = substream->runtime;
1751         int width;
1752         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1753                 info->offset = -1;
1754                 return 0;
1755         }
1756         width = snd_pcm_format_physical_width(runtime->format);
1757         if (width < 0)
1758                 return width;
1759         info->offset = 0;
1760         switch (runtime->access) {
1761         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1762         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1763                 info->first = info->channel * width;
1764                 info->step = runtime->channels * width;
1765                 break;
1766         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1767         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1768         {
1769                 size_t size = runtime->dma_bytes / runtime->channels;
1770                 info->first = info->channel * size * 8;
1771                 info->step = width;
1772                 break;
1773         }
1774         default:
1775                 snd_BUG();
1776                 break;
1777         }
1778         return 0;
1779 }
1780
1781 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1782                                        void *arg)
1783 {
1784         struct snd_pcm_hw_params *params = arg;
1785         snd_pcm_format_t format;
1786         int channels, width;
1787
1788         params->fifo_size = substream->runtime->hw.fifo_size;
1789         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1790                 format = params_format(params);
1791                 channels = params_channels(params);
1792                 width = snd_pcm_format_physical_width(format);
1793                 params->fifo_size /= width * channels;
1794         }
1795         return 0;
1796 }
1797
1798 /**
1799  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1800  * @substream: the pcm substream instance
1801  * @cmd: ioctl command
1802  * @arg: ioctl argument
1803  *
1804  * Processes the generic ioctl commands for PCM.
1805  * Can be passed as the ioctl callback for PCM ops.
1806  *
1807  * Return: Zero if successful, or a negative error code on failure.
1808  */
1809 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1810                       unsigned int cmd, void *arg)
1811 {
1812         switch (cmd) {
1813         case SNDRV_PCM_IOCTL1_INFO:
1814                 return 0;
1815         case SNDRV_PCM_IOCTL1_RESET:
1816                 return snd_pcm_lib_ioctl_reset(substream, arg);
1817         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1818                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1819         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1820                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1821         }
1822         return -ENXIO;
1823 }
1824
1825 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1826
1827 /**
1828  * snd_pcm_period_elapsed - update the pcm status for the next period
1829  * @substream: the pcm substream instance
1830  *
1831  * This function is called from the interrupt handler when the
1832  * PCM has processed the period size.  It will update the current
1833  * pointer, wake up sleepers, etc.
1834  *
1835  * Even if more than one periods have elapsed since the last call, you
1836  * have to call this only once.
1837  */
1838 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1839 {
1840         struct snd_pcm_runtime *runtime;
1841         unsigned long flags;
1842
1843         if (PCM_RUNTIME_CHECK(substream))
1844                 return;
1845         runtime = substream->runtime;
1846
1847         if (runtime->transfer_ack_begin)
1848                 runtime->transfer_ack_begin(substream);
1849
1850         snd_pcm_stream_lock_irqsave(substream, flags);
1851         if (!snd_pcm_running(substream) ||
1852             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1853                 goto _end;
1854
1855         if (substream->timer_running)
1856                 snd_timer_interrupt(substream->timer, 1);
1857  _end:
1858         snd_pcm_stream_unlock_irqrestore(substream, flags);
1859         if (runtime->transfer_ack_end)
1860                 runtime->transfer_ack_end(substream);
1861         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1862 }
1863
1864 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1865
1866 /*
1867  * Wait until avail_min data becomes available
1868  * Returns a negative error code if any error occurs during operation.
1869  * The available space is stored on availp.  When err = 0 and avail = 0
1870  * on the capture stream, it indicates the stream is in DRAINING state.
1871  */
1872 static int wait_for_avail(struct snd_pcm_substream *substream,
1873                               snd_pcm_uframes_t *availp)
1874 {
1875         struct snd_pcm_runtime *runtime = substream->runtime;
1876         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1877         wait_queue_t wait;
1878         int err = 0;
1879         snd_pcm_uframes_t avail = 0;
1880         long wait_time, tout;
1881
1882         init_waitqueue_entry(&wait, current);
1883         set_current_state(TASK_INTERRUPTIBLE);
1884         add_wait_queue(&runtime->tsleep, &wait);
1885
1886         if (runtime->no_period_wakeup)
1887                 wait_time = MAX_SCHEDULE_TIMEOUT;
1888         else {
1889                 wait_time = 10;
1890                 if (runtime->rate) {
1891                         long t = runtime->period_size * 2 / runtime->rate;
1892                         wait_time = max(t, wait_time);
1893                 }
1894                 wait_time = msecs_to_jiffies(wait_time * 1000);
1895         }
1896
1897         for (;;) {
1898                 if (signal_pending(current)) {
1899                         err = -ERESTARTSYS;
1900                         break;
1901                 }
1902
1903                 /*
1904                  * We need to check if space became available already
1905                  * (and thus the wakeup happened already) first to close
1906                  * the race of space already having become available.
1907                  * This check must happen after been added to the waitqueue
1908                  * and having current state be INTERRUPTIBLE.
1909                  */
1910                 if (is_playback)
1911                         avail = snd_pcm_playback_avail(runtime);
1912                 else
1913                         avail = snd_pcm_capture_avail(runtime);
1914                 if (avail >= runtime->twake)
1915                         break;
1916                 snd_pcm_stream_unlock_irq(substream);
1917
1918                 tout = schedule_timeout(wait_time);
1919
1920                 snd_pcm_stream_lock_irq(substream);
1921                 set_current_state(TASK_INTERRUPTIBLE);
1922                 switch (runtime->status->state) {
1923                 case SNDRV_PCM_STATE_SUSPENDED:
1924                         err = -ESTRPIPE;
1925                         goto _endloop;
1926                 case SNDRV_PCM_STATE_XRUN:
1927                         err = -EPIPE;
1928                         goto _endloop;
1929                 case SNDRV_PCM_STATE_DRAINING:
1930                         if (is_playback)
1931                                 err = -EPIPE;
1932                         else 
1933                                 avail = 0; /* indicate draining */
1934                         goto _endloop;
1935                 case SNDRV_PCM_STATE_OPEN:
1936                 case SNDRV_PCM_STATE_SETUP:
1937                 case SNDRV_PCM_STATE_DISCONNECTED:
1938                         err = -EBADFD;
1939                         goto _endloop;
1940                 case SNDRV_PCM_STATE_PAUSED:
1941                         continue;
1942                 }
1943                 if (!tout) {
1944                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1945                                    is_playback ? "playback" : "capture");
1946                         err = -EIO;
1947                         break;
1948                 }
1949         }
1950  _endloop:
1951         set_current_state(TASK_RUNNING);
1952         remove_wait_queue(&runtime->tsleep, &wait);
1953         *availp = avail;
1954         return err;
1955 }
1956         
1957 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1958                                       unsigned int hwoff,
1959                                       unsigned long data, unsigned int off,
1960                                       snd_pcm_uframes_t frames)
1961 {
1962         struct snd_pcm_runtime *runtime = substream->runtime;
1963         int err;
1964         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1965         if (substream->ops->copy) {
1966                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1967                         return err;
1968         } else {
1969                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1970                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1971                         return -EFAULT;
1972         }
1973         return 0;
1974 }
1975  
1976 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1977                           unsigned long data, unsigned int off,
1978                           snd_pcm_uframes_t size);
1979
1980 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1981                                             unsigned long data,
1982                                             snd_pcm_uframes_t size,
1983                                             int nonblock,
1984                                             transfer_f transfer)
1985 {
1986         struct snd_pcm_runtime *runtime = substream->runtime;
1987         snd_pcm_uframes_t xfer = 0;
1988         snd_pcm_uframes_t offset = 0;
1989         snd_pcm_uframes_t avail;
1990         int err = 0;
1991
1992         if (size == 0)
1993                 return 0;
1994
1995         snd_pcm_stream_lock_irq(substream);
1996         switch (runtime->status->state) {
1997         case SNDRV_PCM_STATE_PREPARED:
1998         case SNDRV_PCM_STATE_RUNNING:
1999         case SNDRV_PCM_STATE_PAUSED:
2000                 break;
2001         case SNDRV_PCM_STATE_XRUN:
2002                 err = -EPIPE;
2003                 goto _end_unlock;
2004         case SNDRV_PCM_STATE_SUSPENDED:
2005                 err = -ESTRPIPE;
2006                 goto _end_unlock;
2007         default:
2008                 err = -EBADFD;
2009                 goto _end_unlock;
2010         }
2011
2012         runtime->twake = runtime->control->avail_min ? : 1;
2013         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2014                 snd_pcm_update_hw_ptr(substream);
2015         avail = snd_pcm_playback_avail(runtime);
2016         while (size > 0) {
2017                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2018                 snd_pcm_uframes_t cont;
2019                 if (!avail) {
2020                         if (nonblock) {
2021                                 err = -EAGAIN;
2022                                 goto _end_unlock;
2023                         }
2024                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2025                                         runtime->control->avail_min ? : 1);
2026                         err = wait_for_avail(substream, &avail);
2027                         if (err < 0)
2028                                 goto _end_unlock;
2029                 }
2030                 frames = size > avail ? avail : size;
2031                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2032                 if (frames > cont)
2033                         frames = cont;
2034                 if (snd_BUG_ON(!frames)) {
2035                         runtime->twake = 0;
2036                         snd_pcm_stream_unlock_irq(substream);
2037                         return -EINVAL;
2038                 }
2039                 appl_ptr = runtime->control->appl_ptr;
2040                 appl_ofs = appl_ptr % runtime->buffer_size;
2041                 snd_pcm_stream_unlock_irq(substream);
2042                 err = transfer(substream, appl_ofs, data, offset, frames);
2043                 snd_pcm_stream_lock_irq(substream);
2044                 if (err < 0)
2045                         goto _end_unlock;
2046                 switch (runtime->status->state) {
2047                 case SNDRV_PCM_STATE_XRUN:
2048                         err = -EPIPE;
2049                         goto _end_unlock;
2050                 case SNDRV_PCM_STATE_SUSPENDED:
2051                         err = -ESTRPIPE;
2052                         goto _end_unlock;
2053                 default:
2054                         break;
2055                 }
2056                 appl_ptr += frames;
2057                 if (appl_ptr >= runtime->boundary)
2058                         appl_ptr -= runtime->boundary;
2059                 runtime->control->appl_ptr = appl_ptr;
2060                 if (substream->ops->ack)
2061                         substream->ops->ack(substream);
2062
2063                 offset += frames;
2064                 size -= frames;
2065                 xfer += frames;
2066                 avail -= frames;
2067                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2068                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2069                         err = snd_pcm_start(substream);
2070                         if (err < 0)
2071                                 goto _end_unlock;
2072                 }
2073         }
2074  _end_unlock:
2075         runtime->twake = 0;
2076         if (xfer > 0 && err >= 0)
2077                 snd_pcm_update_state(substream, runtime);
2078         snd_pcm_stream_unlock_irq(substream);
2079         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2080 }
2081
2082 /* sanity-check for read/write methods */
2083 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2084 {
2085         struct snd_pcm_runtime *runtime;
2086         if (PCM_RUNTIME_CHECK(substream))
2087                 return -ENXIO;
2088         runtime = substream->runtime;
2089         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2090                 return -EINVAL;
2091         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2092                 return -EBADFD;
2093         return 0;
2094 }
2095
2096 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2097 {
2098         struct snd_pcm_runtime *runtime;
2099         int nonblock;
2100         int err;
2101
2102         err = pcm_sanity_check(substream);
2103         if (err < 0)
2104                 return err;
2105         runtime = substream->runtime;
2106         nonblock = !!(substream->f_flags & O_NONBLOCK);
2107
2108         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2109             runtime->channels > 1)
2110                 return -EINVAL;
2111         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2112                                   snd_pcm_lib_write_transfer);
2113 }
2114
2115 EXPORT_SYMBOL(snd_pcm_lib_write);
2116
2117 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2118                                        unsigned int hwoff,
2119                                        unsigned long data, unsigned int off,
2120                                        snd_pcm_uframes_t frames)
2121 {
2122         struct snd_pcm_runtime *runtime = substream->runtime;
2123         int err;
2124         void __user **bufs = (void __user **)data;
2125         int channels = runtime->channels;
2126         int c;
2127         if (substream->ops->copy) {
2128                 if (snd_BUG_ON(!substream->ops->silence))
2129                         return -EINVAL;
2130                 for (c = 0; c < channels; ++c, ++bufs) {
2131                         if (*bufs == NULL) {
2132                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2133                                         return err;
2134                         } else {
2135                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2136                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2137                                         return err;
2138                         }
2139                 }
2140         } else {
2141                 /* default transfer behaviour */
2142                 size_t dma_csize = runtime->dma_bytes / channels;
2143                 for (c = 0; c < channels; ++c, ++bufs) {
2144                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2145                         if (*bufs == NULL) {
2146                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2147                         } else {
2148                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2149                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2150                                         return -EFAULT;
2151                         }
2152                 }
2153         }
2154         return 0;
2155 }
2156  
2157 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2158                                      void __user **bufs,
2159                                      snd_pcm_uframes_t frames)
2160 {
2161         struct snd_pcm_runtime *runtime;
2162         int nonblock;
2163         int err;
2164
2165         err = pcm_sanity_check(substream);
2166         if (err < 0)
2167                 return err;
2168         runtime = substream->runtime;
2169         nonblock = !!(substream->f_flags & O_NONBLOCK);
2170
2171         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2172                 return -EINVAL;
2173         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2174                                   nonblock, snd_pcm_lib_writev_transfer);
2175 }
2176
2177 EXPORT_SYMBOL(snd_pcm_lib_writev);
2178
2179 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2180                                      unsigned int hwoff,
2181                                      unsigned long data, unsigned int off,
2182                                      snd_pcm_uframes_t frames)
2183 {
2184         struct snd_pcm_runtime *runtime = substream->runtime;
2185         int err;
2186         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2187         if (substream->ops->copy) {
2188                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2189                         return err;
2190         } else {
2191                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2192                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2193                         return -EFAULT;
2194         }
2195         return 0;
2196 }
2197
2198 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2199                                            unsigned long data,
2200                                            snd_pcm_uframes_t size,
2201                                            int nonblock,
2202                                            transfer_f transfer)
2203 {
2204         struct snd_pcm_runtime *runtime = substream->runtime;
2205         snd_pcm_uframes_t xfer = 0;
2206         snd_pcm_uframes_t offset = 0;
2207         snd_pcm_uframes_t avail;
2208         int err = 0;
2209
2210         if (size == 0)
2211                 return 0;
2212
2213         snd_pcm_stream_lock_irq(substream);
2214         switch (runtime->status->state) {
2215         case SNDRV_PCM_STATE_PREPARED:
2216                 if (size >= runtime->start_threshold) {
2217                         err = snd_pcm_start(substream);
2218                         if (err < 0)
2219                                 goto _end_unlock;
2220                 }
2221                 break;
2222         case SNDRV_PCM_STATE_DRAINING:
2223         case SNDRV_PCM_STATE_RUNNING:
2224         case SNDRV_PCM_STATE_PAUSED:
2225                 break;
2226         case SNDRV_PCM_STATE_XRUN:
2227                 err = -EPIPE;
2228                 goto _end_unlock;
2229         case SNDRV_PCM_STATE_SUSPENDED:
2230                 err = -ESTRPIPE;
2231                 goto _end_unlock;
2232         default:
2233                 err = -EBADFD;
2234                 goto _end_unlock;
2235         }
2236
2237         runtime->twake = runtime->control->avail_min ? : 1;
2238         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2239                 snd_pcm_update_hw_ptr(substream);
2240         avail = snd_pcm_capture_avail(runtime);
2241         while (size > 0) {
2242                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2243                 snd_pcm_uframes_t cont;
2244                 if (!avail) {
2245                         if (runtime->status->state ==
2246                             SNDRV_PCM_STATE_DRAINING) {
2247                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2248                                 goto _end_unlock;
2249                         }
2250                         if (nonblock) {
2251                                 err = -EAGAIN;
2252                                 goto _end_unlock;
2253                         }
2254                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2255                                         runtime->control->avail_min ? : 1);
2256                         err = wait_for_avail(substream, &avail);
2257                         if (err < 0)
2258                                 goto _end_unlock;
2259                         if (!avail)
2260                                 continue; /* draining */
2261                 }
2262                 frames = size > avail ? avail : size;
2263                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2264                 if (frames > cont)
2265                         frames = cont;
2266                 if (snd_BUG_ON(!frames)) {
2267                         runtime->twake = 0;
2268                         snd_pcm_stream_unlock_irq(substream);
2269                         return -EINVAL;
2270                 }
2271                 appl_ptr = runtime->control->appl_ptr;
2272                 appl_ofs = appl_ptr % runtime->buffer_size;
2273                 snd_pcm_stream_unlock_irq(substream);
2274                 err = transfer(substream, appl_ofs, data, offset, frames);
2275                 snd_pcm_stream_lock_irq(substream);
2276                 if (err < 0)
2277                         goto _end_unlock;
2278                 switch (runtime->status->state) {
2279                 case SNDRV_PCM_STATE_XRUN:
2280                         err = -EPIPE;
2281                         goto _end_unlock;
2282                 case SNDRV_PCM_STATE_SUSPENDED:
2283                         err = -ESTRPIPE;
2284                         goto _end_unlock;
2285                 default:
2286                         break;
2287                 }
2288                 appl_ptr += frames;
2289                 if (appl_ptr >= runtime->boundary)
2290                         appl_ptr -= runtime->boundary;
2291                 runtime->control->appl_ptr = appl_ptr;
2292                 if (substream->ops->ack)
2293                         substream->ops->ack(substream);
2294
2295                 offset += frames;
2296                 size -= frames;
2297                 xfer += frames;
2298                 avail -= frames;
2299         }
2300  _end_unlock:
2301         runtime->twake = 0;
2302         if (xfer > 0 && err >= 0)
2303                 snd_pcm_update_state(substream, runtime);
2304         snd_pcm_stream_unlock_irq(substream);
2305         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2306 }
2307
2308 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2309 {
2310         struct snd_pcm_runtime *runtime;
2311         int nonblock;
2312         int err;
2313         
2314         err = pcm_sanity_check(substream);
2315         if (err < 0)
2316                 return err;
2317         runtime = substream->runtime;
2318         nonblock = !!(substream->f_flags & O_NONBLOCK);
2319         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2320                 return -EINVAL;
2321         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2322 }
2323
2324 EXPORT_SYMBOL(snd_pcm_lib_read);
2325
2326 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2327                                       unsigned int hwoff,
2328                                       unsigned long data, unsigned int off,
2329                                       snd_pcm_uframes_t frames)
2330 {
2331         struct snd_pcm_runtime *runtime = substream->runtime;
2332         int err;
2333         void __user **bufs = (void __user **)data;
2334         int channels = runtime->channels;
2335         int c;
2336         if (substream->ops->copy) {
2337                 for (c = 0; c < channels; ++c, ++bufs) {
2338                         char __user *buf;
2339                         if (*bufs == NULL)
2340                                 continue;
2341                         buf = *bufs + samples_to_bytes(runtime, off);
2342                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2343                                 return err;
2344                 }
2345         } else {
2346                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2347                 for (c = 0; c < channels; ++c, ++bufs) {
2348                         char *hwbuf;
2349                         char __user *buf;
2350                         if (*bufs == NULL)
2351                                 continue;
2352
2353                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354                         buf = *bufs + samples_to_bytes(runtime, off);
2355                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2356                                 return -EFAULT;
2357                 }
2358         }
2359         return 0;
2360 }
2361  
2362 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2363                                     void __user **bufs,
2364                                     snd_pcm_uframes_t frames)
2365 {
2366         struct snd_pcm_runtime *runtime;
2367         int nonblock;
2368         int err;
2369
2370         err = pcm_sanity_check(substream);
2371         if (err < 0)
2372                 return err;
2373         runtime = substream->runtime;
2374         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375                 return -EBADFD;
2376
2377         nonblock = !!(substream->f_flags & O_NONBLOCK);
2378         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2379                 return -EINVAL;
2380         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2381 }
2382
2383 EXPORT_SYMBOL(snd_pcm_lib_readv);
2384
2385 /*
2386  * standard channel mapping helpers
2387  */
2388
2389 /* default channel maps for multi-channel playbacks, up to 8 channels */
2390 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391         { .channels = 1,
2392           .map = { SNDRV_CHMAP_MONO } },
2393         { .channels = 2,
2394           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395         { .channels = 4,
2396           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398         { .channels = 6,
2399           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402         { .channels = 8,
2403           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407         { }
2408 };
2409 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413         { .channels = 1,
2414           .map = { SNDRV_CHMAP_MONO } },
2415         { .channels = 2,
2416           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417         { .channels = 4,
2418           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420         { .channels = 6,
2421           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424         { .channels = 8,
2425           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429         { }
2430 };
2431 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434 {
2435         if (ch > info->max_channels)
2436                 return false;
2437         return !info->channel_mask || (info->channel_mask & (1U << ch));
2438 }
2439
2440 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441                               struct snd_ctl_elem_info *uinfo)
2442 {
2443         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446         uinfo->count = 0;
2447         uinfo->count = info->max_channels;
2448         uinfo->value.integer.min = 0;
2449         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2450         return 0;
2451 }
2452
2453 /* get callback for channel map ctl element
2454  * stores the channel position firstly matching with the current channels
2455  */
2456 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2457                              struct snd_ctl_elem_value *ucontrol)
2458 {
2459         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2460         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2461         struct snd_pcm_substream *substream;
2462         const struct snd_pcm_chmap_elem *map;
2463
2464         if (snd_BUG_ON(!info->chmap))
2465                 return -EINVAL;
2466         substream = snd_pcm_chmap_substream(info, idx);
2467         if (!substream)
2468                 return -ENODEV;
2469         memset(ucontrol->value.integer.value, 0,
2470                sizeof(ucontrol->value.integer.value));
2471         if (!substream->runtime)
2472                 return 0; /* no channels set */
2473         for (map = info->chmap; map->channels; map++) {
2474                 int i;
2475                 if (map->channels == substream->runtime->channels &&
2476                     valid_chmap_channels(info, map->channels)) {
2477                         for (i = 0; i < map->channels; i++)
2478                                 ucontrol->value.integer.value[i] = map->map[i];
2479                         return 0;
2480                 }
2481         }
2482         return -EINVAL;
2483 }
2484
2485 /* tlv callback for channel map ctl element
2486  * expands the pre-defined channel maps in a form of TLV
2487  */
2488 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2489                              unsigned int size, unsigned int __user *tlv)
2490 {
2491         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492         const struct snd_pcm_chmap_elem *map;
2493         unsigned int __user *dst;
2494         int c, count = 0;
2495
2496         if (snd_BUG_ON(!info->chmap))
2497                 return -EINVAL;
2498         if (size < 8)
2499                 return -ENOMEM;
2500         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2501                 return -EFAULT;
2502         size -= 8;
2503         dst = tlv + 2;
2504         for (map = info->chmap; map->channels; map++) {
2505                 int chs_bytes = map->channels * 4;
2506                 if (!valid_chmap_channels(info, map->channels))
2507                         continue;
2508                 if (size < 8)
2509                         return -ENOMEM;
2510                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2511                     put_user(chs_bytes, dst + 1))
2512                         return -EFAULT;
2513                 dst += 2;
2514                 size -= 8;
2515                 count += 8;
2516                 if (size < chs_bytes)
2517                         return -ENOMEM;
2518                 size -= chs_bytes;
2519                 count += chs_bytes;
2520                 for (c = 0; c < map->channels; c++) {
2521                         if (put_user(map->map[c], dst))
2522                                 return -EFAULT;
2523                         dst++;
2524                 }
2525         }
2526         if (put_user(count, tlv + 1))
2527                 return -EFAULT;
2528         return 0;
2529 }
2530
2531 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2532 {
2533         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2534         info->pcm->streams[info->stream].chmap_kctl = NULL;
2535         kfree(info);
2536 }
2537
2538 /**
2539  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2540  * @pcm: the assigned PCM instance
2541  * @stream: stream direction
2542  * @chmap: channel map elements (for query)
2543  * @max_channels: the max number of channels for the stream
2544  * @private_value: the value passed to each kcontrol's private_value field
2545  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2546  *
2547  * Create channel-mapping control elements assigned to the given PCM stream(s).
2548  * Return: Zero if successful, or a negative error value.
2549  */
2550 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2551                            const struct snd_pcm_chmap_elem *chmap,
2552                            int max_channels,
2553                            unsigned long private_value,
2554                            struct snd_pcm_chmap **info_ret)
2555 {
2556         struct snd_pcm_chmap *info;
2557         struct snd_kcontrol_new knew = {
2558                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2559                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2560                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2561                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2562                 .info = pcm_chmap_ctl_info,
2563                 .get = pcm_chmap_ctl_get,
2564                 .tlv.c = pcm_chmap_ctl_tlv,
2565         };
2566         int err;
2567
2568         info = kzalloc(sizeof(*info), GFP_KERNEL);
2569         if (!info)
2570                 return -ENOMEM;
2571         info->pcm = pcm;
2572         info->stream = stream;
2573         info->chmap = chmap;
2574         info->max_channels = max_channels;
2575         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2576                 knew.name = "Playback Channel Map";
2577         else
2578                 knew.name = "Capture Channel Map";
2579         knew.device = pcm->device;
2580         knew.count = pcm->streams[stream].substream_count;
2581         knew.private_value = private_value;
2582         info->kctl = snd_ctl_new1(&knew, info);
2583         if (!info->kctl) {
2584                 kfree(info);
2585                 return -ENOMEM;
2586         }
2587         info->kctl->private_free = pcm_chmap_ctl_private_free;
2588         err = snd_ctl_add(pcm->card, info->kctl);
2589         if (err < 0)
2590                 return err;
2591         pcm->streams[stream].chmap_kctl = info->kctl;
2592         if (info_ret)
2593                 *info_ret = info;
2594         return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);