Merge tag 'kbuild-fixes-v6.1-4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / sound / core / memalloc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Takashi Iwai <tiwai@suse.de>
5  * 
6  *  Generic memory allocators
7  */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/genalloc.h>
14 #include <linux/highmem.h>
15 #include <linux/vmalloc.h>
16 #ifdef CONFIG_X86
17 #include <asm/set_memory.h>
18 #endif
19 #include <sound/memalloc.h>
20 #include "memalloc_local.h"
21
22 #define DEFAULT_GFP \
23         (GFP_KERNEL | \
24          __GFP_COMP |    /* compound page lets parts be mapped */ \
25          __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
26          __GFP_NOWARN)   /* no stack trace print - this call is non-critical */
27
28 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
29
30 #ifdef CONFIG_SND_DMA_SGBUF
31 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
32 #endif
33
34 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
35 {
36         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
37
38         if (WARN_ON_ONCE(!ops || !ops->alloc))
39                 return NULL;
40         return ops->alloc(dmab, size);
41 }
42
43 /**
44  * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
45  *      type and direction
46  * @type: the DMA buffer type
47  * @device: the device pointer
48  * @dir: DMA direction
49  * @size: the buffer size to allocate
50  * @dmab: buffer allocation record to store the allocated data
51  *
52  * Calls the memory-allocator function for the corresponding
53  * buffer type.
54  *
55  * Return: Zero if the buffer with the given size is allocated successfully,
56  * otherwise a negative value on error.
57  */
58 int snd_dma_alloc_dir_pages(int type, struct device *device,
59                             enum dma_data_direction dir, size_t size,
60                             struct snd_dma_buffer *dmab)
61 {
62         if (WARN_ON(!size))
63                 return -ENXIO;
64         if (WARN_ON(!dmab))
65                 return -ENXIO;
66
67         size = PAGE_ALIGN(size);
68         dmab->dev.type = type;
69         dmab->dev.dev = device;
70         dmab->dev.dir = dir;
71         dmab->bytes = 0;
72         dmab->addr = 0;
73         dmab->private_data = NULL;
74         dmab->area = __snd_dma_alloc_pages(dmab, size);
75         if (!dmab->area)
76                 return -ENOMEM;
77         dmab->bytes = size;
78         return 0;
79 }
80 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
81
82 /**
83  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
84  * @type: the DMA buffer type
85  * @device: the device pointer
86  * @size: the buffer size to allocate
87  * @dmab: buffer allocation record to store the allocated data
88  *
89  * Calls the memory-allocator function for the corresponding
90  * buffer type.  When no space is left, this function reduces the size and
91  * tries to allocate again.  The size actually allocated is stored in
92  * res_size argument.
93  *
94  * Return: Zero if the buffer with the given size is allocated successfully,
95  * otherwise a negative value on error.
96  */
97 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
98                                  struct snd_dma_buffer *dmab)
99 {
100         int err;
101
102         while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
103                 if (err != -ENOMEM)
104                         return err;
105                 if (size <= PAGE_SIZE)
106                         return -ENOMEM;
107                 size >>= 1;
108                 size = PAGE_SIZE << get_order(size);
109         }
110         if (! dmab->area)
111                 return -ENOMEM;
112         return 0;
113 }
114 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
115
116 /**
117  * snd_dma_free_pages - release the allocated buffer
118  * @dmab: the buffer allocation record to release
119  *
120  * Releases the allocated buffer via snd_dma_alloc_pages().
121  */
122 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
123 {
124         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
125
126         if (ops && ops->free)
127                 ops->free(dmab);
128 }
129 EXPORT_SYMBOL(snd_dma_free_pages);
130
131 /* called by devres */
132 static void __snd_release_pages(struct device *dev, void *res)
133 {
134         snd_dma_free_pages(res);
135 }
136
137 /**
138  * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
139  * @dev: the device pointer
140  * @type: the DMA buffer type
141  * @dir: DMA direction
142  * @size: the buffer size to allocate
143  *
144  * Allocate buffer pages depending on the given type and manage using devres.
145  * The pages will be released automatically at the device removal.
146  *
147  * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
148  * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
149  * SNDRV_DMA_TYPE_VMALLOC type.
150  *
151  * Return: the snd_dma_buffer object at success, or NULL if failed
152  */
153 struct snd_dma_buffer *
154 snd_devm_alloc_dir_pages(struct device *dev, int type,
155                          enum dma_data_direction dir, size_t size)
156 {
157         struct snd_dma_buffer *dmab;
158         int err;
159
160         if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
161                     type == SNDRV_DMA_TYPE_VMALLOC))
162                 return NULL;
163
164         dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
165         if (!dmab)
166                 return NULL;
167
168         err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
169         if (err < 0) {
170                 devres_free(dmab);
171                 return NULL;
172         }
173
174         devres_add(dev, dmab);
175         return dmab;
176 }
177 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
178
179 /**
180  * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
181  * @dmab: buffer allocation information
182  * @area: VM area information
183  *
184  * Return: zero if successful, or a negative error code
185  */
186 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
187                         struct vm_area_struct *area)
188 {
189         const struct snd_malloc_ops *ops;
190
191         if (!dmab)
192                 return -ENOENT;
193         ops = snd_dma_get_ops(dmab);
194         if (ops && ops->mmap)
195                 return ops->mmap(dmab, area);
196         else
197                 return -ENOENT;
198 }
199 EXPORT_SYMBOL(snd_dma_buffer_mmap);
200
201 #ifdef CONFIG_HAS_DMA
202 /**
203  * snd_dma_buffer_sync - sync DMA buffer between CPU and device
204  * @dmab: buffer allocation information
205  * @mode: sync mode
206  */
207 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
208                          enum snd_dma_sync_mode mode)
209 {
210         const struct snd_malloc_ops *ops;
211
212         if (!dmab || !dmab->dev.need_sync)
213                 return;
214         ops = snd_dma_get_ops(dmab);
215         if (ops && ops->sync)
216                 ops->sync(dmab, mode);
217 }
218 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
219 #endif /* CONFIG_HAS_DMA */
220
221 /**
222  * snd_sgbuf_get_addr - return the physical address at the corresponding offset
223  * @dmab: buffer allocation information
224  * @offset: offset in the ring buffer
225  *
226  * Return: the physical address
227  */
228 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
229 {
230         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
231
232         if (ops && ops->get_addr)
233                 return ops->get_addr(dmab, offset);
234         else
235                 return dmab->addr + offset;
236 }
237 EXPORT_SYMBOL(snd_sgbuf_get_addr);
238
239 /**
240  * snd_sgbuf_get_page - return the physical page at the corresponding offset
241  * @dmab: buffer allocation information
242  * @offset: offset in the ring buffer
243  *
244  * Return: the page pointer
245  */
246 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
247 {
248         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
249
250         if (ops && ops->get_page)
251                 return ops->get_page(dmab, offset);
252         else
253                 return virt_to_page(dmab->area + offset);
254 }
255 EXPORT_SYMBOL(snd_sgbuf_get_page);
256
257 /**
258  * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
259  *      on sg-buffer
260  * @dmab: buffer allocation information
261  * @ofs: offset in the ring buffer
262  * @size: the requested size
263  *
264  * Return: the chunk size
265  */
266 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
267                                       unsigned int ofs, unsigned int size)
268 {
269         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
270
271         if (ops && ops->get_chunk_size)
272                 return ops->get_chunk_size(dmab, ofs, size);
273         else
274                 return size;
275 }
276 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
277
278 /*
279  * Continuous pages allocator
280  */
281 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
282                             bool wc)
283 {
284         void *p;
285         gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
286
287  again:
288         p = alloc_pages_exact(size, gfp);
289         if (!p)
290                 return NULL;
291         *addr = page_to_phys(virt_to_page(p));
292         if (!dev)
293                 return p;
294         if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
295                 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
296                         gfp |= GFP_DMA32;
297                         goto again;
298                 }
299                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
300                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
301                         goto again;
302                 }
303         }
304 #ifdef CONFIG_X86
305         if (wc)
306                 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
307 #endif
308         return p;
309 }
310
311 static void do_free_pages(void *p, size_t size, bool wc)
312 {
313 #ifdef CONFIG_X86
314         if (wc)
315                 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
316 #endif
317         free_pages_exact(p, size);
318 }
319
320
321 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
322 {
323         return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
324 }
325
326 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
327 {
328         do_free_pages(dmab->area, dmab->bytes, false);
329 }
330
331 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
332                                    struct vm_area_struct *area)
333 {
334         return remap_pfn_range(area, area->vm_start,
335                                dmab->addr >> PAGE_SHIFT,
336                                area->vm_end - area->vm_start,
337                                area->vm_page_prot);
338 }
339
340 static const struct snd_malloc_ops snd_dma_continuous_ops = {
341         .alloc = snd_dma_continuous_alloc,
342         .free = snd_dma_continuous_free,
343         .mmap = snd_dma_continuous_mmap,
344 };
345
346 /*
347  * VMALLOC allocator
348  */
349 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
350 {
351         return vmalloc(size);
352 }
353
354 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
355 {
356         vfree(dmab->area);
357 }
358
359 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
360                                 struct vm_area_struct *area)
361 {
362         return remap_vmalloc_range(area, dmab->area, 0);
363 }
364
365 #define get_vmalloc_page_addr(dmab, offset) \
366         page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
367
368 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
369                                            size_t offset)
370 {
371         return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
372 }
373
374 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
375                                              size_t offset)
376 {
377         return vmalloc_to_page(dmab->area + offset);
378 }
379
380 static unsigned int
381 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
382                                unsigned int ofs, unsigned int size)
383 {
384         unsigned int start, end;
385         unsigned long addr;
386
387         start = ALIGN_DOWN(ofs, PAGE_SIZE);
388         end = ofs + size - 1; /* the last byte address */
389         /* check page continuity */
390         addr = get_vmalloc_page_addr(dmab, start);
391         for (;;) {
392                 start += PAGE_SIZE;
393                 if (start > end)
394                         break;
395                 addr += PAGE_SIZE;
396                 if (get_vmalloc_page_addr(dmab, start) != addr)
397                         return start - ofs;
398         }
399         /* ok, all on continuous pages */
400         return size;
401 }
402
403 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
404         .alloc = snd_dma_vmalloc_alloc,
405         .free = snd_dma_vmalloc_free,
406         .mmap = snd_dma_vmalloc_mmap,
407         .get_addr = snd_dma_vmalloc_get_addr,
408         .get_page = snd_dma_vmalloc_get_page,
409         .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
410 };
411
412 #ifdef CONFIG_HAS_DMA
413 /*
414  * IRAM allocator
415  */
416 #ifdef CONFIG_GENERIC_ALLOCATOR
417 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
418 {
419         struct device *dev = dmab->dev.dev;
420         struct gen_pool *pool;
421         void *p;
422
423         if (dev->of_node) {
424                 pool = of_gen_pool_get(dev->of_node, "iram", 0);
425                 /* Assign the pool into private_data field */
426                 dmab->private_data = pool;
427
428                 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
429                 if (p)
430                         return p;
431         }
432
433         /* Internal memory might have limited size and no enough space,
434          * so if we fail to malloc, try to fetch memory traditionally.
435          */
436         dmab->dev.type = SNDRV_DMA_TYPE_DEV;
437         return __snd_dma_alloc_pages(dmab, size);
438 }
439
440 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
441 {
442         struct gen_pool *pool = dmab->private_data;
443
444         if (pool && dmab->area)
445                 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
446 }
447
448 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
449                              struct vm_area_struct *area)
450 {
451         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
452         return remap_pfn_range(area, area->vm_start,
453                                dmab->addr >> PAGE_SHIFT,
454                                area->vm_end - area->vm_start,
455                                area->vm_page_prot);
456 }
457
458 static const struct snd_malloc_ops snd_dma_iram_ops = {
459         .alloc = snd_dma_iram_alloc,
460         .free = snd_dma_iram_free,
461         .mmap = snd_dma_iram_mmap,
462 };
463 #endif /* CONFIG_GENERIC_ALLOCATOR */
464
465 /*
466  * Coherent device pages allocator
467  */
468 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
469 {
470         return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
471 }
472
473 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
474 {
475         dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
476 }
477
478 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
479                             struct vm_area_struct *area)
480 {
481         return dma_mmap_coherent(dmab->dev.dev, area,
482                                  dmab->area, dmab->addr, dmab->bytes);
483 }
484
485 static const struct snd_malloc_ops snd_dma_dev_ops = {
486         .alloc = snd_dma_dev_alloc,
487         .free = snd_dma_dev_free,
488         .mmap = snd_dma_dev_mmap,
489 };
490
491 /*
492  * Write-combined pages
493  */
494 /* x86-specific allocations */
495 #ifdef CONFIG_SND_DMA_SGBUF
496 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
497 {
498         return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
499 }
500
501 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
502 {
503         do_free_pages(dmab->area, dmab->bytes, true);
504 }
505
506 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
507                            struct vm_area_struct *area)
508 {
509         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
510         return snd_dma_continuous_mmap(dmab, area);
511 }
512 #else
513 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
514 {
515         return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
516 }
517
518 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
519 {
520         dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
521 }
522
523 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
524                            struct vm_area_struct *area)
525 {
526         return dma_mmap_wc(dmab->dev.dev, area,
527                            dmab->area, dmab->addr, dmab->bytes);
528 }
529 #endif /* CONFIG_SND_DMA_SGBUF */
530
531 static const struct snd_malloc_ops snd_dma_wc_ops = {
532         .alloc = snd_dma_wc_alloc,
533         .free = snd_dma_wc_free,
534         .mmap = snd_dma_wc_mmap,
535 };
536
537 /*
538  * Non-contiguous pages allocator
539  */
540 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
541 {
542         struct sg_table *sgt;
543         void *p;
544
545         sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
546                                       DEFAULT_GFP, 0);
547 #ifdef CONFIG_SND_DMA_SGBUF
548         if (!sgt && !get_dma_ops(dmab->dev.dev)) {
549                 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
550                         dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
551                 else
552                         dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
553                 return snd_dma_sg_fallback_alloc(dmab, size);
554         }
555 #endif
556         if (!sgt)
557                 return NULL;
558
559         dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
560                                             sg_dma_address(sgt->sgl));
561         p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
562         if (p) {
563                 dmab->private_data = sgt;
564                 /* store the first page address for convenience */
565                 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
566         } else {
567                 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
568         }
569         return p;
570 }
571
572 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
573 {
574         dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
575         dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
576                                dmab->dev.dir);
577 }
578
579 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
580                                   struct vm_area_struct *area)
581 {
582         return dma_mmap_noncontiguous(dmab->dev.dev, area,
583                                       dmab->bytes, dmab->private_data);
584 }
585
586 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
587                                    enum snd_dma_sync_mode mode)
588 {
589         if (mode == SNDRV_DMA_SYNC_CPU) {
590                 if (dmab->dev.dir == DMA_TO_DEVICE)
591                         return;
592                 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
593                 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
594                                          dmab->dev.dir);
595         } else {
596                 if (dmab->dev.dir == DMA_FROM_DEVICE)
597                         return;
598                 flush_kernel_vmap_range(dmab->area, dmab->bytes);
599                 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
600                                             dmab->dev.dir);
601         }
602 }
603
604 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
605                                               struct sg_page_iter *piter,
606                                               size_t offset)
607 {
608         struct sg_table *sgt = dmab->private_data;
609
610         __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
611                              offset >> PAGE_SHIFT);
612 }
613
614 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
615                                              size_t offset)
616 {
617         struct sg_dma_page_iter iter;
618
619         snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
620         __sg_page_iter_dma_next(&iter);
621         return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
622 }
623
624 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
625                                                size_t offset)
626 {
627         struct sg_page_iter iter;
628
629         snd_dma_noncontig_iter_set(dmab, &iter, offset);
630         __sg_page_iter_next(&iter);
631         return sg_page_iter_page(&iter);
632 }
633
634 static unsigned int
635 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
636                                  unsigned int ofs, unsigned int size)
637 {
638         struct sg_dma_page_iter iter;
639         unsigned int start, end;
640         unsigned long addr;
641
642         start = ALIGN_DOWN(ofs, PAGE_SIZE);
643         end = ofs + size - 1; /* the last byte address */
644         snd_dma_noncontig_iter_set(dmab, &iter.base, start);
645         if (!__sg_page_iter_dma_next(&iter))
646                 return 0;
647         /* check page continuity */
648         addr = sg_page_iter_dma_address(&iter);
649         for (;;) {
650                 start += PAGE_SIZE;
651                 if (start > end)
652                         break;
653                 addr += PAGE_SIZE;
654                 if (!__sg_page_iter_dma_next(&iter) ||
655                     sg_page_iter_dma_address(&iter) != addr)
656                         return start - ofs;
657         }
658         /* ok, all on continuous pages */
659         return size;
660 }
661
662 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
663         .alloc = snd_dma_noncontig_alloc,
664         .free = snd_dma_noncontig_free,
665         .mmap = snd_dma_noncontig_mmap,
666         .sync = snd_dma_noncontig_sync,
667         .get_addr = snd_dma_noncontig_get_addr,
668         .get_page = snd_dma_noncontig_get_page,
669         .get_chunk_size = snd_dma_noncontig_get_chunk_size,
670 };
671
672 /* x86-specific SG-buffer with WC pages */
673 #ifdef CONFIG_SND_DMA_SGBUF
674 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
675
676 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
677 {
678         void *p = snd_dma_noncontig_alloc(dmab, size);
679         struct sg_table *sgt = dmab->private_data;
680         struct sg_page_iter iter;
681
682         if (!p)
683                 return NULL;
684         if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
685                 return p;
686         for_each_sgtable_page(sgt, &iter, 0)
687                 set_memory_wc(sg_wc_address(&iter), 1);
688         return p;
689 }
690
691 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
692 {
693         struct sg_table *sgt = dmab->private_data;
694         struct sg_page_iter iter;
695
696         for_each_sgtable_page(sgt, &iter, 0)
697                 set_memory_wb(sg_wc_address(&iter), 1);
698         snd_dma_noncontig_free(dmab);
699 }
700
701 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
702                               struct vm_area_struct *area)
703 {
704         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
705         return dma_mmap_noncontiguous(dmab->dev.dev, area,
706                                       dmab->bytes, dmab->private_data);
707 }
708
709 static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
710         .alloc = snd_dma_sg_wc_alloc,
711         .free = snd_dma_sg_wc_free,
712         .mmap = snd_dma_sg_wc_mmap,
713         .sync = snd_dma_noncontig_sync,
714         .get_addr = snd_dma_noncontig_get_addr,
715         .get_page = snd_dma_noncontig_get_page,
716         .get_chunk_size = snd_dma_noncontig_get_chunk_size,
717 };
718
719 /* Fallback SG-buffer allocations for x86 */
720 struct snd_dma_sg_fallback {
721         size_t count;
722         struct page **pages;
723         dma_addr_t *addrs;
724 };
725
726 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
727                                        struct snd_dma_sg_fallback *sgbuf)
728 {
729         bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
730         size_t i;
731
732         for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++)
733                 do_free_pages(page_address(sgbuf->pages[i]), PAGE_SIZE, wc);
734         kvfree(sgbuf->pages);
735         kvfree(sgbuf->addrs);
736         kfree(sgbuf);
737 }
738
739 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
740 {
741         struct snd_dma_sg_fallback *sgbuf;
742         struct page **pages;
743         size_t i, count;
744         void *p;
745         bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
746
747         sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
748         if (!sgbuf)
749                 return NULL;
750         count = PAGE_ALIGN(size) >> PAGE_SHIFT;
751         pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
752         if (!pages)
753                 goto error;
754         sgbuf->pages = pages;
755         sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL);
756         if (!sgbuf->addrs)
757                 goto error;
758
759         for (i = 0; i < count; sgbuf->count++, i++) {
760                 p = do_alloc_pages(dmab->dev.dev, PAGE_SIZE, &sgbuf->addrs[i], wc);
761                 if (!p)
762                         goto error;
763                 sgbuf->pages[i] = virt_to_page(p);
764         }
765
766         p = vmap(pages, count, VM_MAP, PAGE_KERNEL);
767         if (!p)
768                 goto error;
769         dmab->private_data = sgbuf;
770         /* store the first page address for convenience */
771         dmab->addr = snd_sgbuf_get_addr(dmab, 0);
772         return p;
773
774  error:
775         __snd_dma_sg_fallback_free(dmab, sgbuf);
776         return NULL;
777 }
778
779 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
780 {
781         vunmap(dmab->area);
782         __snd_dma_sg_fallback_free(dmab, dmab->private_data);
783 }
784
785 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
786                                     struct vm_area_struct *area)
787 {
788         struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
789
790         if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
791                 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
792         return vm_map_pages(area, sgbuf->pages, sgbuf->count);
793 }
794
795 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
796         .alloc = snd_dma_sg_fallback_alloc,
797         .free = snd_dma_sg_fallback_free,
798         .mmap = snd_dma_sg_fallback_mmap,
799         /* reuse vmalloc helpers */
800         .get_addr = snd_dma_vmalloc_get_addr,
801         .get_page = snd_dma_vmalloc_get_page,
802         .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
803 };
804 #endif /* CONFIG_SND_DMA_SGBUF */
805
806 /*
807  * Non-coherent pages allocator
808  */
809 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
810 {
811         void *p;
812
813         p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
814                                   dmab->dev.dir, DEFAULT_GFP);
815         if (p)
816                 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
817         return p;
818 }
819
820 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
821 {
822         dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
823                              dmab->addr, dmab->dev.dir);
824 }
825
826 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
827                                     struct vm_area_struct *area)
828 {
829         area->vm_page_prot = vm_get_page_prot(area->vm_flags);
830         return dma_mmap_pages(dmab->dev.dev, area,
831                               area->vm_end - area->vm_start,
832                               virt_to_page(dmab->area));
833 }
834
835 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
836                                      enum snd_dma_sync_mode mode)
837 {
838         if (mode == SNDRV_DMA_SYNC_CPU) {
839                 if (dmab->dev.dir != DMA_TO_DEVICE)
840                         dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
841                                                 dmab->bytes, dmab->dev.dir);
842         } else {
843                 if (dmab->dev.dir != DMA_FROM_DEVICE)
844                         dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
845                                                    dmab->bytes, dmab->dev.dir);
846         }
847 }
848
849 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
850         .alloc = snd_dma_noncoherent_alloc,
851         .free = snd_dma_noncoherent_free,
852         .mmap = snd_dma_noncoherent_mmap,
853         .sync = snd_dma_noncoherent_sync,
854 };
855
856 #endif /* CONFIG_HAS_DMA */
857
858 /*
859  * Entry points
860  */
861 static const struct snd_malloc_ops *snd_dma_ops[] = {
862         [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
863         [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
864 #ifdef CONFIG_HAS_DMA
865         [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
866         [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
867         [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
868         [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
869 #ifdef CONFIG_SND_DMA_SGBUF
870         [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
871 #endif
872 #ifdef CONFIG_GENERIC_ALLOCATOR
873         [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
874 #endif /* CONFIG_GENERIC_ALLOCATOR */
875 #ifdef CONFIG_SND_DMA_SGBUF
876         [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
877         [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
878 #endif
879 #endif /* CONFIG_HAS_DMA */
880 };
881
882 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
883 {
884         if (WARN_ON_ONCE(!dmab))
885                 return NULL;
886         if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
887                          dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
888                 return NULL;
889         return snd_dma_ops[dmab->dev.type];
890 }