Update copyright and license notices in soft-fp files from libgcc.
[platform/upstream/glibc.git] / soft-fp / extended.h
1 /* Software floating-point emulation.
2    Definitions for IEEE Extended Precision.
3    Copyright (C) 1999-2013 Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5    Contributed by Jakub Jelinek (jj@ultra.linux.cz).
6
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11
12    In addition to the permissions in the GNU Lesser General Public
13    License, the Free Software Foundation gives you unlimited
14    permission to link the compiled version of this file into
15    combinations with other programs, and to distribute those
16    combinations without any restriction coming from the use of this
17    file.  (The Lesser General Public License restrictions do apply in
18    other respects; for example, they cover modification of the file,
19    and distribution when not linked into a combine executable.)
20
21    The GNU C Library is distributed in the hope that it will be useful,
22    but WITHOUT ANY WARRANTY; without even the implied warranty of
23    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
24    Lesser General Public License for more details.
25
26    You should have received a copy of the GNU Lesser General Public
27    License along with the GNU C Library; if not, see
28    <http://www.gnu.org/licenses/>.  */
29
30 #if _FP_W_TYPE_SIZE < 32
31 #error "Here's a nickel, kid. Go buy yourself a real computer."
32 #endif
33
34 #if _FP_W_TYPE_SIZE < 64
35 #define _FP_FRACTBITS_E         (4*_FP_W_TYPE_SIZE)
36 #define _FP_FRACTBITS_DW_E      (8*_FP_W_TYPE_SIZE)
37 #else
38 #define _FP_FRACTBITS_E         (2*_FP_W_TYPE_SIZE)
39 #define _FP_FRACTBITS_DW_E      (4*_FP_W_TYPE_SIZE)
40 #endif
41
42 #define _FP_FRACBITS_E          64
43 #define _FP_FRACXBITS_E         (_FP_FRACTBITS_E - _FP_FRACBITS_E)
44 #define _FP_WFRACBITS_E         (_FP_WORKBITS + _FP_FRACBITS_E)
45 #define _FP_WFRACXBITS_E        (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
46 #define _FP_EXPBITS_E           15
47 #define _FP_EXPBIAS_E           16383
48 #define _FP_EXPMAX_E            32767
49
50 #define _FP_QNANBIT_E           \
51         ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
52 #define _FP_QNANBIT_SH_E                \
53         ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
54 #define _FP_IMPLBIT_E           \
55         ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
56 #define _FP_IMPLBIT_SH_E                \
57         ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
58 #define _FP_OVERFLOW_E          \
59         ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
60
61 #define _FP_WFRACBITS_DW_E      (2 * _FP_WFRACBITS_E)
62 #define _FP_WFRACXBITS_DW_E     (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
63 #define _FP_HIGHBIT_DW_E        \
64   ((_FP_W_TYPE)1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
65
66 typedef float XFtype __attribute__((mode(XF)));
67
68 #if _FP_W_TYPE_SIZE < 64
69
70 union _FP_UNION_E
71 {
72    XFtype flt;
73    struct _FP_STRUCT_LAYOUT
74    {
75 #if __BYTE_ORDER == __BIG_ENDIAN
76       unsigned long pad1 : _FP_W_TYPE_SIZE;
77       unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
78       unsigned long sign : 1;
79       unsigned long exp : _FP_EXPBITS_E;
80       unsigned long frac1 : _FP_W_TYPE_SIZE;
81       unsigned long frac0 : _FP_W_TYPE_SIZE;
82 #else
83       unsigned long frac0 : _FP_W_TYPE_SIZE;
84       unsigned long frac1 : _FP_W_TYPE_SIZE;
85       unsigned exp : _FP_EXPBITS_E;
86       unsigned sign : 1;
87 #endif /* not bigendian */
88    } bits __attribute__((packed));
89 };
90
91
92 #define FP_DECL_E(X)            _FP_DECL(4,X)
93
94 #define FP_UNPACK_RAW_E(X, val)                         \
95   do {                                                  \
96     union _FP_UNION_E _flo; _flo.flt = (val);           \
97                                                         \
98     X##_f[2] = 0; X##_f[3] = 0;                         \
99     X##_f[0] = _flo.bits.frac0;                         \
100     X##_f[1] = _flo.bits.frac1;                         \
101     X##_e  = _flo.bits.exp;                             \
102     X##_s  = _flo.bits.sign;                            \
103   } while (0)
104
105 #define FP_UNPACK_RAW_EP(X, val)                        \
106   do {                                                  \
107     union _FP_UNION_E *_flo =                           \
108     (union _FP_UNION_E *)(val);                         \
109                                                         \
110     X##_f[2] = 0; X##_f[3] = 0;                         \
111     X##_f[0] = _flo->bits.frac0;                        \
112     X##_f[1] = _flo->bits.frac1;                        \
113     X##_e  = _flo->bits.exp;                            \
114     X##_s  = _flo->bits.sign;                           \
115   } while (0)
116
117 #define FP_PACK_RAW_E(val, X)                           \
118   do {                                                  \
119     union _FP_UNION_E _flo;                             \
120                                                         \
121     if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;               \
122     else X##_f[1] &= ~(_FP_IMPLBIT_E);                  \
123     _flo.bits.frac0 = X##_f[0];                         \
124     _flo.bits.frac1 = X##_f[1];                         \
125     _flo.bits.exp   = X##_e;                            \
126     _flo.bits.sign  = X##_s;                            \
127                                                         \
128     (val) = _flo.flt;                                   \
129   } while (0)
130
131 #define FP_PACK_RAW_EP(val, X)                          \
132   do {                                                  \
133     if (!FP_INHIBIT_RESULTS)                            \
134       {                                                 \
135         union _FP_UNION_E *_flo =                       \
136           (union _FP_UNION_E *)(val);                   \
137                                                         \
138         if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;           \
139         else X##_f[1] &= ~(_FP_IMPLBIT_E);              \
140         _flo->bits.frac0 = X##_f[0];                    \
141         _flo->bits.frac1 = X##_f[1];                    \
142         _flo->bits.exp   = X##_e;                       \
143         _flo->bits.sign  = X##_s;                       \
144       }                                                 \
145   } while (0)
146
147 #define FP_UNPACK_E(X,val)              \
148   do {                                  \
149     FP_UNPACK_RAW_E(X,val);             \
150     _FP_UNPACK_CANONICAL(E,4,X);        \
151   } while (0)
152
153 #define FP_UNPACK_EP(X,val)             \
154   do {                                  \
155     FP_UNPACK_RAW_EP(X,val);            \
156     _FP_UNPACK_CANONICAL(E,4,X);        \
157   } while (0)
158
159 #define FP_UNPACK_SEMIRAW_E(X,val)      \
160   do {                                  \
161     FP_UNPACK_RAW_E(X,val);             \
162     _FP_UNPACK_SEMIRAW(E,4,X);          \
163   } while (0)
164
165 #define FP_UNPACK_SEMIRAW_EP(X,val)     \
166   do {                                  \
167     FP_UNPACK_RAW_EP(X,val);            \
168     _FP_UNPACK_SEMIRAW(E,4,X);          \
169   } while (0)
170
171 #define FP_PACK_E(val,X)                \
172   do {                                  \
173     _FP_PACK_CANONICAL(E,4,X);          \
174     FP_PACK_RAW_E(val,X);               \
175   } while (0)
176
177 #define FP_PACK_EP(val,X)               \
178   do {                                  \
179     _FP_PACK_CANONICAL(E,4,X);          \
180     FP_PACK_RAW_EP(val,X);              \
181   } while (0)
182
183 #define FP_PACK_SEMIRAW_E(val,X)        \
184   do {                                  \
185     _FP_PACK_SEMIRAW(E,4,X);            \
186     FP_PACK_RAW_E(val,X);               \
187   } while (0)
188
189 #define FP_PACK_SEMIRAW_EP(val,X)       \
190   do {                                  \
191     _FP_PACK_SEMIRAW(E,4,X);            \
192     FP_PACK_RAW_EP(val,X);              \
193   } while (0)
194
195 #define FP_ISSIGNAN_E(X)        _FP_ISSIGNAN(E,4,X)
196 #define FP_NEG_E(R,X)           _FP_NEG(E,4,R,X)
197 #define FP_ADD_E(R,X,Y)         _FP_ADD(E,4,R,X,Y)
198 #define FP_SUB_E(R,X,Y)         _FP_SUB(E,4,R,X,Y)
199 #define FP_MUL_E(R,X,Y)         _FP_MUL(E,4,R,X,Y)
200 #define FP_DIV_E(R,X,Y)         _FP_DIV(E,4,R,X,Y)
201 #define FP_SQRT_E(R,X)          _FP_SQRT(E,4,R,X)
202 #define FP_FMA_E(R,X,Y,Z)       _FP_FMA(E,4,8,R,X,Y,Z)
203
204 /*
205  * Square root algorithms:
206  * We have just one right now, maybe Newton approximation
207  * should be added for those machines where division is fast.
208  * This has special _E version because standard _4 square
209  * root would not work (it has to start normally with the
210  * second word and not the first), but as we have to do it
211  * anyway, we optimize it by doing most of the calculations
212  * in two UWtype registers instead of four.
213  */
214
215 #define _FP_SQRT_MEAT_E(R, S, T, X, q)                  \
216   do {                                                  \
217     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
218     _FP_FRAC_SRL_4(X, (_FP_WORKBITS));                  \
219     while (q)                                           \
220       {                                                 \
221         T##_f[1] = S##_f[1] + q;                        \
222         if (T##_f[1] <= X##_f[1])                       \
223           {                                             \
224             S##_f[1] = T##_f[1] + q;                    \
225             X##_f[1] -= T##_f[1];                       \
226             R##_f[1] += q;                              \
227           }                                             \
228         _FP_FRAC_SLL_2(X, 1);                           \
229         q >>= 1;                                        \
230       }                                                 \
231     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
232     while (q)                                           \
233       {                                                 \
234         T##_f[0] = S##_f[0] + q;                        \
235         T##_f[1] = S##_f[1];                            \
236         if (T##_f[1] < X##_f[1] ||                      \
237             (T##_f[1] == X##_f[1] &&                    \
238              T##_f[0] <= X##_f[0]))                     \
239           {                                             \
240             S##_f[0] = T##_f[0] + q;                    \
241             S##_f[1] += (T##_f[0] > S##_f[0]);          \
242             _FP_FRAC_DEC_2(X, T);                       \
243             R##_f[0] += q;                              \
244           }                                             \
245         _FP_FRAC_SLL_2(X, 1);                           \
246         q >>= 1;                                        \
247       }                                                 \
248     _FP_FRAC_SLL_4(R, (_FP_WORKBITS));                  \
249     if (X##_f[0] | X##_f[1])                            \
250       {                                                 \
251         if (S##_f[1] < X##_f[1] ||                      \
252             (S##_f[1] == X##_f[1] &&                    \
253              S##_f[0] < X##_f[0]))                      \
254           R##_f[0] |= _FP_WORK_ROUND;                   \
255         R##_f[0] |= _FP_WORK_STICKY;                    \
256       }                                                 \
257   } while (0)
258
259 #define FP_CMP_E(r,X,Y,un)      _FP_CMP(E,4,r,X,Y,un)
260 #define FP_CMP_EQ_E(r,X,Y)      _FP_CMP_EQ(E,4,r,X,Y)
261 #define FP_CMP_UNORD_E(r,X,Y)   _FP_CMP_UNORD(E,4,r,X,Y)
262
263 #define FP_TO_INT_E(r,X,rsz,rsg)        _FP_TO_INT(E,4,r,X,rsz,rsg)
264 #define FP_FROM_INT_E(X,r,rs,rt)        _FP_FROM_INT(E,4,X,r,rs,rt)
265
266 #define _FP_FRAC_HIGH_E(X)      (X##_f[2])
267 #define _FP_FRAC_HIGH_RAW_E(X)  (X##_f[1])
268
269 #define _FP_FRAC_HIGH_DW_E(X)   (X##_f[4])
270
271 #else   /* not _FP_W_TYPE_SIZE < 64 */
272 union _FP_UNION_E
273 {
274   XFtype flt;
275   struct _FP_STRUCT_LAYOUT {
276 #if __BYTE_ORDER == __BIG_ENDIAN
277     _FP_W_TYPE pad  : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
278     unsigned sign   : 1;
279     unsigned exp    : _FP_EXPBITS_E;
280     _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
281 #else
282     _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
283     unsigned exp    : _FP_EXPBITS_E;
284     unsigned sign   : 1;
285 #endif
286   } bits;
287 };
288
289 #define FP_DECL_E(X)            _FP_DECL(2,X)
290
291 #define FP_UNPACK_RAW_E(X, val)                                 \
292   do {                                                          \
293     union _FP_UNION_E _flo; _flo.flt = (val);                   \
294                                                                 \
295     X##_f0 = _flo.bits.frac;                                    \
296     X##_f1 = 0;                                                 \
297     X##_e = _flo.bits.exp;                                      \
298     X##_s = _flo.bits.sign;                                     \
299   } while (0)
300
301 #define FP_UNPACK_RAW_EP(X, val)                                \
302   do {                                                          \
303     union _FP_UNION_E *_flo =                                   \
304       (union _FP_UNION_E *)(val);                               \
305                                                                 \
306     X##_f0 = _flo->bits.frac;                                   \
307     X##_f1 = 0;                                                 \
308     X##_e = _flo->bits.exp;                                     \
309     X##_s = _flo->bits.sign;                                    \
310   } while (0)
311
312 #define FP_PACK_RAW_E(val, X)                                   \
313   do {                                                          \
314     union _FP_UNION_E _flo;                                     \
315                                                                 \
316     if (X##_e) X##_f0 |= _FP_IMPLBIT_E;                         \
317     else X##_f0 &= ~(_FP_IMPLBIT_E);                            \
318     _flo.bits.frac = X##_f0;                                    \
319     _flo.bits.exp  = X##_e;                                     \
320     _flo.bits.sign = X##_s;                                     \
321                                                                 \
322     (val) = _flo.flt;                                           \
323   } while (0)
324
325 #define FP_PACK_RAW_EP(fs, val, X)                              \
326   do {                                                          \
327     if (!FP_INHIBIT_RESULTS)                                    \
328       {                                                         \
329         union _FP_UNION_E *_flo =                               \
330           (union _FP_UNION_E *)(val);                           \
331                                                                 \
332         if (X##_e) X##_f0 |= _FP_IMPLBIT_E;                     \
333         else X##_f0 &= ~(_FP_IMPLBIT_E);                        \
334         _flo->bits.frac = X##_f0;                               \
335         _flo->bits.exp  = X##_e;                                \
336         _flo->bits.sign = X##_s;                                \
337       }                                                         \
338   } while (0)
339
340
341 #define FP_UNPACK_E(X,val)              \
342   do {                                  \
343     FP_UNPACK_RAW_E(X,val);             \
344     _FP_UNPACK_CANONICAL(E,2,X);        \
345   } while (0)
346
347 #define FP_UNPACK_EP(X,val)             \
348   do {                                  \
349     FP_UNPACK_RAW_EP(X,val);            \
350     _FP_UNPACK_CANONICAL(E,2,X);        \
351   } while (0)
352
353 #define FP_UNPACK_SEMIRAW_E(X,val)      \
354   do {                                  \
355     FP_UNPACK_RAW_E(X,val);             \
356     _FP_UNPACK_SEMIRAW(E,2,X);          \
357   } while (0)
358
359 #define FP_UNPACK_SEMIRAW_EP(X,val)     \
360   do {                                  \
361     FP_UNPACK_RAW_EP(X,val);            \
362     _FP_UNPACK_SEMIRAW(E,2,X);          \
363   } while (0)
364
365 #define FP_PACK_E(val,X)                \
366   do {                                  \
367     _FP_PACK_CANONICAL(E,2,X);          \
368     FP_PACK_RAW_E(val,X);               \
369   } while (0)
370
371 #define FP_PACK_EP(val,X)               \
372   do {                                  \
373     _FP_PACK_CANONICAL(E,2,X);          \
374     FP_PACK_RAW_EP(val,X);              \
375   } while (0)
376
377 #define FP_PACK_SEMIRAW_E(val,X)        \
378   do {                                  \
379     _FP_PACK_SEMIRAW(E,2,X);            \
380     FP_PACK_RAW_E(val,X);               \
381   } while (0)
382
383 #define FP_PACK_SEMIRAW_EP(val,X)       \
384   do {                                  \
385     _FP_PACK_SEMIRAW(E,2,X);            \
386     FP_PACK_RAW_EP(val,X);              \
387   } while (0)
388
389 #define FP_ISSIGNAN_E(X)        _FP_ISSIGNAN(E,2,X)
390 #define FP_NEG_E(R,X)           _FP_NEG(E,2,R,X)
391 #define FP_ADD_E(R,X,Y)         _FP_ADD(E,2,R,X,Y)
392 #define FP_SUB_E(R,X,Y)         _FP_SUB(E,2,R,X,Y)
393 #define FP_MUL_E(R,X,Y)         _FP_MUL(E,2,R,X,Y)
394 #define FP_DIV_E(R,X,Y)         _FP_DIV(E,2,R,X,Y)
395 #define FP_SQRT_E(R,X)          _FP_SQRT(E,2,R,X)
396 #define FP_FMA_E(R,X,Y,Z)       _FP_FMA(E,2,4,R,X,Y,Z)
397
398 /*
399  * Square root algorithms:
400  * We have just one right now, maybe Newton approximation
401  * should be added for those machines where division is fast.
402  * We optimize it by doing most of the calculations
403  * in one UWtype registers instead of two, although we don't
404  * have to.
405  */
406 #define _FP_SQRT_MEAT_E(R, S, T, X, q)                  \
407   do {                                                  \
408     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
409     _FP_FRAC_SRL_2(X, (_FP_WORKBITS));                  \
410     while (q)                                           \
411       {                                                 \
412         T##_f0 = S##_f0 + q;                            \
413         if (T##_f0 <= X##_f0)                           \
414           {                                             \
415             S##_f0 = T##_f0 + q;                        \
416             X##_f0 -= T##_f0;                           \
417             R##_f0 += q;                                \
418           }                                             \
419         _FP_FRAC_SLL_1(X, 1);                           \
420         q >>= 1;                                        \
421       }                                                 \
422     _FP_FRAC_SLL_2(R, (_FP_WORKBITS));                  \
423     if (X##_f0)                                         \
424       {                                                 \
425         if (S##_f0 < X##_f0)                            \
426           R##_f0 |= _FP_WORK_ROUND;                     \
427         R##_f0 |= _FP_WORK_STICKY;                      \
428       }                                                 \
429   } while (0)
430
431 #define FP_CMP_E(r,X,Y,un)      _FP_CMP(E,2,r,X,Y,un)
432 #define FP_CMP_EQ_E(r,X,Y)      _FP_CMP_EQ(E,2,r,X,Y)
433 #define FP_CMP_UNORD_E(r,X,Y)   _FP_CMP_UNORD(E,2,r,X,Y)
434
435 #define FP_TO_INT_E(r,X,rsz,rsg)        _FP_TO_INT(E,2,r,X,rsz,rsg)
436 #define FP_FROM_INT_E(X,r,rs,rt)        _FP_FROM_INT(E,2,X,r,rs,rt)
437
438 #define _FP_FRAC_HIGH_E(X)      (X##_f1)
439 #define _FP_FRAC_HIGH_RAW_E(X)  (X##_f0)
440
441 #define _FP_FRAC_HIGH_DW_E(X)   (X##_f[2])
442
443 #endif /* not _FP_W_TYPE_SIZE < 64 */