This commit was generated by cvs2svn to track changes on a CVS vendor
[external/binutils.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2    Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Depreciated macros and types for manipulating 64bit values.  Use
47    ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t)      (((uword64)(t))<<32)
56 #define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
58
59 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
60    assume the HI32bits of the operand are zero, so we must perform a
61    mask to ensure we can use the simple subtraction to sign-extend. */
62 #define SIGNEXTEND(e,b) \
63  ((unsigned_word) \
64   (((e) & ((uword64) 1 << ((b) - 1))) \
65    ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
66    : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
67
68 /* Check if a value will fit within a halfword: */
69 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
70
71
72
73 /* Floating-point operations: */
74
75 #include "sim-fpu.h"
76
77 /* FPU registers must be one of the following types. All other values
78    are reserved (and undefined). */
79 typedef enum {
80  fmt_single  = 0,
81  fmt_double  = 1,
82  fmt_word    = 4,
83  fmt_long    = 5,
84  /* The following are well outside the normal acceptable format
85     range, and are used in the register status vector. */
86  fmt_unknown       = 0x10000000,
87  fmt_uninterpreted = 0x20000000,
88  fmt_uninterpreted_32 = 0x40000000,
89  fmt_uninterpreted_64 = 0x80000000U,
90 } FP_formats;
91
92 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
93 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
94
95 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
96 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
97
98 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
99 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
100 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
101 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
102 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
103 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
104 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
107 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
108 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
109 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
110 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
113 #define Convert(rm,op,from,to) \
114 convert (SD, CPU, cia, rm, op, from, to)
115
116 /* Macro to update FPSR condition-code field. This is complicated by
117    the fact that there is a hole in the index range of the bits within
118    the FCSR register. Also, the number of bits visible depends on the
119    MIPS ISA version being supported. */
120
121 #define SETFCC(cc,v) {\
122   int bit = ((cc == 0) ? 23 : (24 + (cc)));\
123   FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
124 }
125 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
126
127 /* This should be the COC1 value at the start of the preceding
128    instruction: */
129 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
130
131 #ifdef TARGET_ENABLE_FR
132 /* FIXME: this should be enabled for all targets, but needs testing first. */
133 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
134    ? ((SR & status_FR) ? 64 : 32) \
135    : (WITH_TARGET_FLOATING_POINT_BITSIZE))
136 #else
137 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
138 #endif
139
140 /* Standard FCRS bits: */
141 #define IR (0) /* Inexact Result */
142 #define UF (1) /* UnderFlow */
143 #define OF (2) /* OverFlow */
144 #define DZ (3) /* Division by Zero */
145 #define IO (4) /* Invalid Operation */
146 #define UO (5) /* Unimplemented Operation */
147
148 /* Get masks for individual flags: */
149 #if 1 /* SAFE version */
150 #define FP_FLAGS(b)  (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
151 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
152 #define FP_CAUSE(b)  (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
153 #else
154 #define FP_FLAGS(b)  (1 << ((b) + 2))
155 #define FP_ENABLE(b) (1 << ((b) + 7))
156 #define FP_CAUSE(b)  (1 << ((b) + 12))
157 #endif
158
159 #define FP_FS         (1 << 24) /* MIPS III onwards : Flush to Zero */
160
161 #define FP_MASK_RM    (0x3)
162 #define FP_SH_RM      (0)
163 #define FP_RM_NEAREST (0) /* Round to nearest        (Round) */
164 #define FP_RM_TOZERO  (1) /* Round to zero           (Trunc) */
165 #define FP_RM_TOPINF  (2) /* Round to Plus infinity  (Ceil) */
166 #define FP_RM_TOMINF  (3) /* Round to Minus infinity (Floor) */
167 #define GETRM()       (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
168
169
170
171
172
173
174 /* HI/LO register accesses */
175
176 /* For some MIPS targets, the HI/LO registers have certain timing
177    restrictions in that, for instance, a read of a HI register must be
178    separated by at least three instructions from a preceeding read.
179
180    The struct below is used to record the last access by each of A MT,
181    MF or other OP instruction to a HI/LO register.  See mips.igen for
182    more details. */
183
184 typedef struct _hilo_access {
185   signed64 timestamp;
186   address_word cia;
187 } hilo_access;
188
189 typedef struct _hilo_history {
190   hilo_access mt;
191   hilo_access mf;
192   hilo_access op;
193 } hilo_history;
194
195
196
197
198 /* Integer ALU operations: */
199
200 #include "sim-alu.h"
201
202 #define ALU32_END(ANS) \
203   if (ALU32_HAD_OVERFLOW) \
204     SignalExceptionIntegerOverflow (); \
205   (ANS) = (signed32) ALU32_OVERFLOW_RESULT
206
207
208 #define ALU64_END(ANS) \
209   if (ALU64_HAD_OVERFLOW) \
210     SignalExceptionIntegerOverflow (); \
211   (ANS) = ALU64_OVERFLOW_RESULT;
212
213
214
215
216
217 /* The following is probably not used for MIPS IV onwards: */
218 /* Slots for delayed register updates. For the moment we just have a
219    fixed number of slots (rather than a more generic, dynamic
220    system). This keeps the simulator fast. However, we only allow
221    for the register update to be delayed for a single instruction
222    cycle. */
223 #define PSLOTS (8) /* Maximum number of instruction cycles */
224
225 typedef struct _pending_write_queue {
226   int in;
227   int out;
228   int total;
229   int slot_delay[PSLOTS];
230   int slot_size[PSLOTS];
231   int slot_bit[PSLOTS];
232   void *slot_dest[PSLOTS];
233   unsigned64 slot_value[PSLOTS];
234 } pending_write_queue;
235
236 #ifndef PENDING_TRACE
237 #define PENDING_TRACE 0
238 #endif
239 #define PENDING_IN ((CPU)->pending.in)
240 #define PENDING_OUT ((CPU)->pending.out)
241 #define PENDING_TOTAL ((CPU)->pending.total)
242 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
243 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
244 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
245 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
246 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
247
248 /* Invalidate the pending write queue, all pending writes are
249    discarded. */
250
251 #define PENDING_INVALIDATE() \
252 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
253
254 /* Schedule a write to DEST for N cycles time.  For 64 bit
255    destinations, schedule two writes.  For floating point registers,
256    the caller should schedule a write to both the dest register and
257    the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
258    is updated. */
259
260 #define PENDING_SCHED(DEST,VAL,DELAY,BIT)                               \
261   do {                                                                  \
262     if (PENDING_SLOT_DEST[PENDING_IN] != NULL)                          \
263       sim_engine_abort (SD, CPU, cia,                                   \
264                         "PENDING_SCHED - buffer overflow\n");           \
265     if (PENDING_TRACE)                                                  \
266       sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",                  \
267                       (unsigned long) cia, (unsigned long) &(DEST),     \
268                       (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
269                       PENDING_IN, PENDING_OUT, PENDING_TOTAL);          \
270     PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;                       \
271     PENDING_SLOT_DEST[PENDING_IN] = &(DEST);                            \
272     PENDING_SLOT_VALUE[PENDING_IN] = (VAL);                             \
273     PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);                      \
274     PENDING_SLOT_BIT[PENDING_IN] = (BIT);                               \
275     PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
276     PENDING_TOTAL += 1;                                                 \
277   } while (0)
278
279 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
280 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
281
282 #define PENDING_TICK() pending_tick (SD, CPU, cia)
283
284 #define PENDING_FLUSH() abort () /* think about this one */
285 #define PENDING_FP() abort () /* think about this one */
286
287 /* For backward compatibility */
288 #define PENDING_FILL(R,VAL)                                             \
289 do {                                                                    \
290   if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR)                           \
291     {                                                                   \
292       PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 1, -1);                     \
293       PENDING_SCHED(FPR_STATE[(R) - FGRIDX], fmt_uninterpreted, 1, -1); \
294     }                                                                   \
295   else                                                                  \
296     PENDING_SCHED(GPR[(R)], VAL, 1, -1);                                \
297 } while (0)
298
299
300
301 struct _sim_cpu {
302
303
304   /* The following are internal simulator state variables: */
305 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
306 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
307   address_word dspc;  /* delay-slot PC */
308 #define DSPC ((CPU)->dspc)
309
310 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
311 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
312
313
314   /* State of the simulator */
315   unsigned int state;
316   unsigned int dsstate;
317 #define STATE ((CPU)->state)
318 #define DSSTATE ((CPU)->dsstate)
319
320 /* Flags in the "state" variable: */
321 #define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
322 #define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
323 #define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
324 #define simPCOC0        (1 << 17) /* COC[1] from current */
325 #define simPCOC1        (1 << 18) /* COC[1] from previous */
326 #define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
327 #define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
328 #define simSIGINT       (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
329 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
330
331 #define ENGINE_ISSUE_PREFIX_HOOK() \
332   { \
333     /* Perform any pending writes */ \
334     PENDING_TICK(); \
335     /* Set previous flag, depending on current: */ \
336     if (STATE & simPCOC0) \
337      STATE |= simPCOC1; \
338     else \
339      STATE &= ~simPCOC1; \
340     /* and update the current value: */ \
341     if (GETFCC(0)) \
342      STATE |= simPCOC0; \
343     else \
344      STATE &= ~simPCOC0; \
345   }
346
347
348 /* This is nasty, since we have to rely on matching the register
349    numbers used by GDB. Unfortunately, depending on the MIPS target
350    GDB uses different register numbers. We cannot just include the
351    relevant "gdb/tm.h" link, since GDB may not be configured before
352    the sim world, and also the GDB header file requires too much other
353    state. */
354
355 #ifndef TM_MIPS_H
356 #define LAST_EMBED_REGNUM (89)
357 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
358
359
360 #endif
361
362
363 enum float_operation
364   {
365     FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
366     FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
367     FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
368   };
369
370 /* To keep this default simulator simple, and fast, we use a direct
371    vector of registers. The internal simulator engine then uses
372    manifests to access the correct slot. */
373
374   unsigned_word registers[LAST_EMBED_REGNUM + 1];
375
376   int register_widths[NUM_REGS];
377 #define REGISTERS       ((CPU)->registers)
378
379 #define GPR     (&REGISTERS[0])
380 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
381
382   /* While space is allocated for the floating point registers in the
383      main registers array, they are stored separatly.  This is because
384      their size may not necessarily match the size of either the
385      general-purpose or system specific registers */
386 #define NR_FGR  (32)
387 #define FGRIDX  (38)
388   fp_word fgr[NR_FGR];
389 #define FGR     ((CPU)->fgr)
390
391 #define LO      (REGISTERS[33])
392 #define HI      (REGISTERS[34])
393 #define PCIDX   37
394 #define PC      (REGISTERS[PCIDX])
395 #define CAUSE   (REGISTERS[36])
396 #define SRIDX   (32)
397 #define SR      (REGISTERS[SRIDX])      /* CPU status register */
398 #define FCR0IDX  (71)
399 #define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
400 #define FCR31IDX (70)
401 #define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
402 #define FCSR    (FCR31)
403 #define Debug   (REGISTERS[86])
404 #define DEPC    (REGISTERS[87])
405 #define EPC     (REGISTERS[88])
406 #define COCIDX  (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
407
408   /* All internal state modified by signal_exception() that may need to be
409      rolled back for passing moment-of-exception image back to gdb. */
410   unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
411   unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
412   int exc_suspended;
413
414 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
415 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
416 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
417
418   unsigned_word c0_config_reg;
419 #define C0_CONFIG ((CPU)->c0_config_reg)
420
421 /* The following are pseudonyms for standard registers */
422 #define ZERO    (REGISTERS[0])
423 #define V0      (REGISTERS[2])
424 #define A0      (REGISTERS[4])
425 #define A1      (REGISTERS[5])
426 #define A2      (REGISTERS[6])
427 #define A3      (REGISTERS[7])
428 #define T8IDX   24
429 #define T8      (REGISTERS[T8IDX])
430 #define SPIDX   29
431 #define SP      (REGISTERS[SPIDX])
432 #define RAIDX   31
433 #define RA      (REGISTERS[RAIDX])
434
435   /* While space is allocated in the main registers arrray for some of
436      the COP0 registers, that space isn't sufficient.  Unknown COP0
437      registers overflow into the array below */
438
439 #define NR_COP0_GPR     32
440   unsigned_word cop0_gpr[NR_COP0_GPR];
441 #define COP0_GPR        ((CPU)->cop0_gpr)
442 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
443
444   /* Keep the current format state for each register: */
445   FP_formats fpr_state[32];
446 #define FPR_STATE ((CPU)->fpr_state)
447
448   pending_write_queue pending;
449
450   /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
451      read-write instructions. It is set when a linked load occurs. It
452      is tested and cleared by the conditional store. It is cleared
453      (during other CPU operations) when a store to the location would
454      no longer be atomic. In particular, it is cleared by exception
455      return instructions. */
456   int llbit;
457 #define LLBIT ((CPU)->llbit)
458
459
460 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
461    corruptions caused by using the HI or LO register too close to a
462    following operation is spotted. See mips.igen for more details. */
463
464   hilo_history hi_history;
465 #define HIHISTORY (&(CPU)->hi_history)
466   hilo_history lo_history;
467 #define LOHISTORY (&(CPU)->lo_history)
468
469 #define check_branch_bug() 
470 #define mark_branch_bug(TARGET) 
471
472
473
474   sim_cpu_base base;
475 };
476
477
478 /* MIPS specific simulator watch config */
479
480 void watch_options_install PARAMS ((SIM_DESC sd));
481
482 struct swatch {
483   sim_event *pc;
484   sim_event *clock;
485   sim_event *cycles;
486 };
487
488
489 /* FIXME: At present much of the simulator is still static */
490 struct sim_state {
491
492   struct swatch watch;
493
494   sim_cpu cpu[MAX_NR_PROCESSORS];
495 #if (WITH_SMP)
496 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
497 #else
498 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
499 #endif
500
501
502   sim_state_base base;
503 };
504
505
506
507 /* Status information: */
508
509 /* TODO : these should be the bitmasks for these bits within the
510    status register. At the moment the following are VR4300
511    bit-positions: */
512 #define status_KSU_mask  (0x18)         /* mask for KSU bits */
513 #define status_KSU_shift (3)            /* shift for field */
514 #define ksu_kernel       (0x0)
515 #define ksu_supervisor   (0x1)
516 #define ksu_user         (0x2)
517 #define ksu_unknown      (0x3)
518
519 #define SR_KSU           ((SR & status_KSU_mask) >> status_KSU_shift)
520
521 #define status_IE        (1 <<  0)      /* Interrupt enable */
522 #define status_EIE       (1 << 16)      /* Enable Interrupt Enable */
523 #define status_EXL       (1 <<  1)      /* Exception level */
524 #define status_RE        (1 << 25)      /* Reverse Endian in user mode */
525 #define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
526 #define status_SR        (1 << 20)      /* soft reset or NMI */
527 #define status_BEV       (1 << 22)      /* Location of general exception vectors */
528 #define status_TS        (1 << 21)      /* TLB shutdown has occurred */
529 #define status_ERL       (1 <<  2)      /* Error level */
530 #define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
531 #define status_RP        (1 << 27)      /* Reduced Power mode */
532
533 /* Specializations for TX39 family */
534 #define status_IEc       (1 << 0)       /* Interrupt enable (current) */
535 #define status_KUc       (1 << 1)       /* Kernel/User mode */
536 #define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
537 #define status_KUp       (1 << 3)       /* Kernel/User mode */
538 #define status_IEo       (1 << 4)       /* Interrupt enable (old) */
539 #define status_KUo       (1 << 5)       /* Kernel/User mode */
540 #define status_IM_mask   (0xff)         /* Interrupt mask */
541 #define status_IM_shift  (8)
542 #define status_NMI       (1 << 20)      /* NMI */
543 #define status_NMI       (1 << 20)      /* NMI */
544
545 #define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
546 #define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
547 #define cause_CE_mask     0x30000000    /* Coprocessor exception */
548 #define cause_CE_shift    28
549 #define cause_EXC2_mask   0x00070000
550 #define cause_EXC2_shift  16
551 #define cause_IP7         (1 << 15)     /* Interrupt pending */
552 #define cause_SIOP        (1 << 12)     /* SIO pending */
553 #define cause_IP3         (1 << 11)     /* Int 0 pending */
554 #define cause_IP2         (1 << 10)     /* Int 1 pending */
555
556 #define cause_EXC_mask  (0x1c)          /* Exception code */
557 #define cause_EXC_shift (2)
558
559 #define cause_SW0       (1 << 8)        /* Software interrupt 0 */
560 #define cause_SW1       (1 << 9)        /* Software interrupt 1 */
561 #define cause_IP_mask   (0x3f)          /* Interrupt pending field */
562 #define cause_IP_shift  (10)
563
564 #define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
565 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
566
567
568 /* NOTE: We keep the following status flags as bit values (1 for true,
569    0 for false). This allows them to be used in binary boolean
570    operations without worrying about what exactly the non-zero true
571    value is. */
572
573 /* UserMode */
574 #ifdef SUBTARGET_R3900
575 #define UserMode        ((SR & status_KUc) ? 1 : 0)
576 #else
577 #define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
578 #endif /* SUBTARGET_R3900 */
579
580 /* BigEndianMem */
581 /* Hardware configuration. Affects endianness of LoadMemory and
582    StoreMemory and the endianness of Kernel and Supervisor mode
583    execution. The value is 0 for little-endian; 1 for big-endian. */
584 #define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
585 /*(state & simBE) ? 1 : 0)*/
586
587 /* ReverseEndian */
588 /* This mode is selected if in User mode with the RE bit being set in
589    SR (Status Register). It reverses the endianness of load and store
590    instructions. */
591 #define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
592
593 /* BigEndianCPU */
594 /* The endianness for load and store instructions (0=little;1=big). In
595    User mode this endianness may be switched by setting the state_RE
596    bit in the SR register. Thus, BigEndianCPU may be computed as
597    (BigEndianMem EOR ReverseEndian). */
598 #define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
599
600
601
602 /* Exceptions: */
603
604 /* NOTE: These numbers depend on the processor architecture being
605    simulated: */
606 enum ExceptionCause {
607   Interrupt               = 0,
608   TLBModification         = 1,
609   TLBLoad                 = 2,
610   TLBStore                = 3,
611   AddressLoad             = 4,
612   AddressStore            = 5,
613   InstructionFetch        = 6,
614   DataReference           = 7,
615   SystemCall              = 8,
616   BreakPoint              = 9,
617   ReservedInstruction     = 10,
618   CoProcessorUnusable     = 11,
619   IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
620   Trap                    = 13,
621   FPE                     = 15,
622   DebugBreakPoint         = 16,
623   Watch                   = 23,
624   NMIReset                = 31,
625
626
627 /* The following exception code is actually private to the simulator
628    world. It is *NOT* a processor feature, and is used to signal
629    run-time errors in the simulator. */
630   SimulatorFault          = 0xFFFFFFFF
631 };
632
633 #define TLB_REFILL  (0)
634 #define TLB_INVALID (1)
635
636
637 /* The following break instructions are reserved for use by the
638    simulator.  The first is used to halt the simulation.  The second
639    is used by gdb for break-points.  NOTE: Care must be taken, since 
640    this value may be used in later revisions of the MIPS ISA. */
641 #define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
642
643 #define HALT_INSTRUCTION        (0x03ff000d)
644 #define HALT_INSTRUCTION2       (0x0000ffcd)
645
646
647 #define BREAKPOINT_INSTRUCTION  (0x0005000d)
648 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
649
650
651
652 void interrupt_event (SIM_DESC sd, void *data);
653
654 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
655 #define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
656 #define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
657 #define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
658 #define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
659 #define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
660 #define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
661 #define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
662 #define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
663 #define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
664 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
665 #define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
666 #define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
667 #define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
668 #define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
669 #define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
670 #define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
671
672 /* Co-processor accesses */
673
674 void cop_lw  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
675 void cop_ld  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
676 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
677 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
678
679 #define COP_LW(coproc_num,coproc_reg,memword) \
680 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
681 #define COP_LD(coproc_num,coproc_reg,memword) \
682 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
683 #define COP_SW(coproc_num,coproc_reg) \
684 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
685 #define COP_SD(coproc_num,coproc_reg) \
686 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
687
688
689 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
690 #define DecodeCoproc(instruction) \
691 decode_coproc (SD, CPU, cia, (instruction))
692
693 void sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
694   
695
696
697 /* Memory accesses */
698
699 /* The following are generic to all versions of the MIPS architecture
700    to date: */
701
702 /* Memory Access Types (for CCA): */
703 #define Uncached                (0)
704 #define CachedNoncoherent       (1)
705 #define CachedCoherent          (2)
706 #define Cached                  (3)
707
708 #define isINSTRUCTION   (1 == 0) /* FALSE */
709 #define isDATA          (1 == 1) /* TRUE */
710 #define isLOAD          (1 == 0) /* FALSE */
711 #define isSTORE         (1 == 1) /* TRUE */
712 #define isREAL          (1 == 0) /* FALSE */
713 #define isRAW           (1 == 1) /* TRUE */
714 /* The parameter HOST (isTARGET / isHOST) is ignored */
715 #define isTARGET        (1 == 0) /* FALSE */
716 /* #define isHOST          (1 == 1) TRUE */
717
718 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
719    is the number of bytes minus 1. */
720 #define AccessLength_BYTE       (0)
721 #define AccessLength_HALFWORD   (1)
722 #define AccessLength_TRIPLEBYTE (2)
723 #define AccessLength_WORD       (3)
724 #define AccessLength_QUINTIBYTE (4)
725 #define AccessLength_SEXTIBYTE  (5)
726 #define AccessLength_SEPTIBYTE  (6)
727 #define AccessLength_DOUBLEWORD (7)
728 #define AccessLength_QUADWORD   (15)
729
730 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
731                     ? AccessLength_DOUBLEWORD /*7*/ \
732                     : AccessLength_WORD /*3*/)
733 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
734
735
736 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
737 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
738 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
739
740 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
741 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
742 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
743
744 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
745 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
746 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
747
748 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
749 #define CacheOp(op,pAddr,vAddr,instruction) \
750 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
751
752 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
753 #define SyncOperation(stype) \
754 sync_operation (SD, CPU, cia, (stype))
755
756 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
757 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
758 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
759
760 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
761 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
762 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
763 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
764 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
765
766 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
767 extern FILE *tracefh;
768
769 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
770 extern SIM_CORE_SIGNAL_FN mips_core_signal;
771
772 char* pr_addr PARAMS ((SIM_ADDR addr));
773 char* pr_uword64 PARAMS ((uword64 addr));
774
775
776 /* Some mips flavours split their GPR banks into two halves. */
777 #ifdef SPLIT_GPR
778 #define GPR_CLEAR(N) do { GPR_SET((N),0); GPR1_SET((N),0); } while (0)
779 #else
780 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
781 #endif
782
783 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
784 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
785 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
786
787
788 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
789 #include "sim-main.c"
790 #endif
791
792 #endif