selinux: remove the sidtab context conversion indirect calls
[platform/kernel/linux-rpi.git] / security / selinux / ss / sidtab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21 #include "services.h"
22
23 struct sidtab_str_cache {
24         struct rcu_head rcu_member;
25         struct list_head lru_member;
26         struct sidtab_entry *parent;
27         u32 len;
28         char str[];
29 };
30
31 #define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
32 #define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
33
34 int sidtab_init(struct sidtab *s)
35 {
36         u32 i;
37
38         memset(s->roots, 0, sizeof(s->roots));
39
40         for (i = 0; i < SECINITSID_NUM; i++)
41                 s->isids[i].set = 0;
42
43         s->frozen = false;
44         s->count = 0;
45         s->convert = NULL;
46         hash_init(s->context_to_sid);
47
48         spin_lock_init(&s->lock);
49
50 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
51         s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
52         INIT_LIST_HEAD(&s->cache_lru_list);
53         spin_lock_init(&s->cache_lock);
54 #endif
55
56         return 0;
57 }
58
59 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
60 {
61         struct sidtab_entry *entry;
62         u32 sid = 0;
63
64         rcu_read_lock();
65         hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
66                 if (entry->hash != hash)
67                         continue;
68                 if (context_cmp(&entry->context, context)) {
69                         sid = entry->sid;
70                         break;
71                 }
72         }
73         rcu_read_unlock();
74         return sid;
75 }
76
77 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
78 {
79         struct sidtab_isid_entry *isid;
80         u32 hash;
81         int rc;
82
83         if (sid == 0 || sid > SECINITSID_NUM)
84                 return -EINVAL;
85
86         isid = &s->isids[sid - 1];
87
88         rc = context_cpy(&isid->entry.context, context);
89         if (rc)
90                 return rc;
91
92 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
93         isid->entry.cache = NULL;
94 #endif
95         isid->set = 1;
96
97         hash = context_compute_hash(context);
98
99         /*
100          * Multiple initial sids may map to the same context. Check that this
101          * context is not already represented in the context_to_sid hashtable
102          * to avoid duplicate entries and long linked lists upon hash
103          * collision.
104          */
105         if (!context_to_sid(s, context, hash)) {
106                 isid->entry.sid = sid;
107                 isid->entry.hash = hash;
108                 hash_add(s->context_to_sid, &isid->entry.list, hash);
109         }
110
111         return 0;
112 }
113
114 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
115 {
116         int i;
117         int chain_len = 0;
118         int slots_used = 0;
119         int entries = 0;
120         int max_chain_len = 0;
121         int cur_bucket = 0;
122         struct sidtab_entry *entry;
123
124         rcu_read_lock();
125         hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
126                 entries++;
127                 if (i == cur_bucket) {
128                         chain_len++;
129                         if (chain_len == 1)
130                                 slots_used++;
131                 } else {
132                         cur_bucket = i;
133                         if (chain_len > max_chain_len)
134                                 max_chain_len = chain_len;
135                         chain_len = 0;
136                 }
137         }
138         rcu_read_unlock();
139
140         if (chain_len > max_chain_len)
141                 max_chain_len = chain_len;
142
143         return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
144                          "longest chain: %d\n", entries,
145                          slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
146 }
147
148 static u32 sidtab_level_from_count(u32 count)
149 {
150         u32 capacity = SIDTAB_LEAF_ENTRIES;
151         u32 level = 0;
152
153         while (count > capacity) {
154                 capacity <<= SIDTAB_INNER_SHIFT;
155                 ++level;
156         }
157         return level;
158 }
159
160 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
161 {
162         u32 l;
163
164         if (!s->roots[0].ptr_leaf) {
165                 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166                                                GFP_ATOMIC);
167                 if (!s->roots[0].ptr_leaf)
168                         return -ENOMEM;
169         }
170         for (l = 1; l <= level; ++l)
171                 if (!s->roots[l].ptr_inner) {
172                         s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
173                                                         GFP_ATOMIC);
174                         if (!s->roots[l].ptr_inner)
175                                 return -ENOMEM;
176                         s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
177                 }
178         return 0;
179 }
180
181 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
182                                              int alloc)
183 {
184         union sidtab_entry_inner *entry;
185         u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
186
187         /* find the level of the subtree we need */
188         level = sidtab_level_from_count(index + 1);
189         capacity_shift = level * SIDTAB_INNER_SHIFT;
190
191         /* allocate roots if needed */
192         if (alloc && sidtab_alloc_roots(s, level) != 0)
193                 return NULL;
194
195         /* lookup inside the subtree */
196         entry = &s->roots[level];
197         while (level != 0) {
198                 capacity_shift -= SIDTAB_INNER_SHIFT;
199                 --level;
200
201                 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
202                 leaf_index &= ((u32)1 << capacity_shift) - 1;
203
204                 if (!entry->ptr_inner) {
205                         if (alloc)
206                                 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
207                                                            GFP_ATOMIC);
208                         if (!entry->ptr_inner)
209                                 return NULL;
210                 }
211         }
212         if (!entry->ptr_leaf) {
213                 if (alloc)
214                         entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
215                                                   GFP_ATOMIC);
216                 if (!entry->ptr_leaf)
217                         return NULL;
218         }
219         return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
220 }
221
222 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
223 {
224         /* read entries only after reading count */
225         u32 count = smp_load_acquire(&s->count);
226
227         if (index >= count)
228                 return NULL;
229
230         return sidtab_do_lookup(s, index, 0);
231 }
232
233 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
234 {
235         return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
236 }
237
238 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
239                                                int force)
240 {
241         if (sid != 0) {
242                 struct sidtab_entry *entry;
243
244                 if (sid > SECINITSID_NUM)
245                         entry = sidtab_lookup(s, sid_to_index(sid));
246                 else
247                         entry = sidtab_lookup_initial(s, sid);
248                 if (entry && (!entry->context.len || force))
249                         return entry;
250         }
251
252         return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
253 }
254
255 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
256 {
257         return sidtab_search_core(s, sid, 0);
258 }
259
260 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
261 {
262         return sidtab_search_core(s, sid, 1);
263 }
264
265 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
266                           u32 *sid)
267 {
268         unsigned long flags;
269         u32 count, hash = context_compute_hash(context);
270         struct sidtab_convert_params *convert;
271         struct sidtab_entry *dst, *dst_convert;
272         int rc;
273
274         *sid = context_to_sid(s, context, hash);
275         if (*sid)
276                 return 0;
277
278         /* lock-free search failed: lock, re-search, and insert if not found */
279         spin_lock_irqsave(&s->lock, flags);
280
281         rc = 0;
282         *sid = context_to_sid(s, context, hash);
283         if (*sid)
284                 goto out_unlock;
285
286         if (unlikely(s->frozen)) {
287                 /*
288                  * This sidtab is now frozen - tell the caller to abort and
289                  * get the new one.
290                  */
291                 rc = -ESTALE;
292                 goto out_unlock;
293         }
294
295         count = s->count;
296
297         /* bail out if we already reached max entries */
298         rc = -EOVERFLOW;
299         if (count >= SIDTAB_MAX)
300                 goto out_unlock;
301
302         /* insert context into new entry */
303         rc = -ENOMEM;
304         dst = sidtab_do_lookup(s, count, 1);
305         if (!dst)
306                 goto out_unlock;
307
308         dst->sid = index_to_sid(count);
309         dst->hash = hash;
310
311         rc = context_cpy(&dst->context, context);
312         if (rc)
313                 goto out_unlock;
314
315         /*
316          * if we are building a new sidtab, we need to convert the context
317          * and insert it there as well
318          */
319         convert = s->convert;
320         if (convert) {
321                 struct sidtab *target = convert->target;
322
323                 rc = -ENOMEM;
324                 dst_convert = sidtab_do_lookup(target, count, 1);
325                 if (!dst_convert) {
326                         context_destroy(&dst->context);
327                         goto out_unlock;
328                 }
329
330                 rc = services_convert_context(convert->args,
331                                               context, &dst_convert->context);
332                 if (rc) {
333                         context_destroy(&dst->context);
334                         goto out_unlock;
335                 }
336                 dst_convert->sid = index_to_sid(count);
337                 dst_convert->hash = context_compute_hash(&dst_convert->context);
338                 target->count = count + 1;
339
340                 hash_add_rcu(target->context_to_sid,
341                              &dst_convert->list, dst_convert->hash);
342         }
343
344         if (context->len)
345                 pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
346                         context->str);
347
348         *sid = index_to_sid(count);
349
350         /* write entries before updating count */
351         smp_store_release(&s->count, count + 1);
352         hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
353
354         rc = 0;
355 out_unlock:
356         spin_unlock_irqrestore(&s->lock, flags);
357         return rc;
358 }
359
360 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
361 {
362         struct sidtab_entry *entry;
363         u32 i;
364
365         for (i = 0; i < count; i++) {
366                 entry = sidtab_do_lookup(s, i, 0);
367                 entry->sid = index_to_sid(i);
368                 entry->hash = context_compute_hash(&entry->context);
369
370                 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
371         }
372 }
373
374 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
375                                union sidtab_entry_inner *esrc,
376                                u32 *pos, u32 count, u32 level,
377                                struct sidtab_convert_params *convert)
378 {
379         int rc;
380         u32 i;
381
382         if (level != 0) {
383                 if (!edst->ptr_inner) {
384                         edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
385                                                   GFP_KERNEL);
386                         if (!edst->ptr_inner)
387                                 return -ENOMEM;
388                 }
389                 i = 0;
390                 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
391                         rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
392                                                  &esrc->ptr_inner->entries[i],
393                                                  pos, count, level - 1,
394                                                  convert);
395                         if (rc)
396                                 return rc;
397                         i++;
398                 }
399         } else {
400                 if (!edst->ptr_leaf) {
401                         edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
402                                                  GFP_KERNEL);
403                         if (!edst->ptr_leaf)
404                                 return -ENOMEM;
405                 }
406                 i = 0;
407                 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
408                         rc = services_convert_context(convert->args,
409                                         &esrc->ptr_leaf->entries[i].context,
410                                         &edst->ptr_leaf->entries[i].context);
411                         if (rc)
412                                 return rc;
413                         (*pos)++;
414                         i++;
415                 }
416                 cond_resched();
417         }
418         return 0;
419 }
420
421 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
422 {
423         unsigned long flags;
424         u32 count, level, pos;
425         int rc;
426
427         spin_lock_irqsave(&s->lock, flags);
428
429         /* concurrent policy loads are not allowed */
430         if (s->convert) {
431                 spin_unlock_irqrestore(&s->lock, flags);
432                 return -EBUSY;
433         }
434
435         count = s->count;
436         level = sidtab_level_from_count(count);
437
438         /* allocate last leaf in the new sidtab (to avoid race with
439          * live convert)
440          */
441         rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
442         if (rc) {
443                 spin_unlock_irqrestore(&s->lock, flags);
444                 return rc;
445         }
446
447         /* set count in case no new entries are added during conversion */
448         params->target->count = count;
449
450         /* enable live convert of new entries */
451         s->convert = params;
452
453         /* we can safely convert the tree outside the lock */
454         spin_unlock_irqrestore(&s->lock, flags);
455
456         pr_info("SELinux:  Converting %u SID table entries...\n", count);
457
458         /* convert all entries not covered by live convert */
459         pos = 0;
460         rc = sidtab_convert_tree(&params->target->roots[level],
461                                  &s->roots[level], &pos, count, level, params);
462         if (rc) {
463                 /* we need to keep the old table - disable live convert */
464                 spin_lock_irqsave(&s->lock, flags);
465                 s->convert = NULL;
466                 spin_unlock_irqrestore(&s->lock, flags);
467                 return rc;
468         }
469         /*
470          * The hashtable can also be modified in sidtab_context_to_sid()
471          * so we must re-acquire the lock here.
472          */
473         spin_lock_irqsave(&s->lock, flags);
474         sidtab_convert_hashtable(params->target, count);
475         spin_unlock_irqrestore(&s->lock, flags);
476
477         return 0;
478 }
479
480 void sidtab_cancel_convert(struct sidtab *s)
481 {
482         unsigned long flags;
483
484         /* cancelling policy load - disable live convert of sidtab */
485         spin_lock_irqsave(&s->lock, flags);
486         s->convert = NULL;
487         spin_unlock_irqrestore(&s->lock, flags);
488 }
489
490 void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
491 {
492         spin_lock_irqsave(&s->lock, *flags);
493         s->frozen = true;
494         s->convert = NULL;
495 }
496 void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
497 {
498         spin_unlock_irqrestore(&s->lock, *flags);
499 }
500
501 static void sidtab_destroy_entry(struct sidtab_entry *entry)
502 {
503         context_destroy(&entry->context);
504 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
505         kfree(rcu_dereference_raw(entry->cache));
506 #endif
507 }
508
509 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
510 {
511         u32 i;
512
513         if (level != 0) {
514                 struct sidtab_node_inner *node = entry.ptr_inner;
515
516                 if (!node)
517                         return;
518
519                 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
520                         sidtab_destroy_tree(node->entries[i], level - 1);
521                 kfree(node);
522         } else {
523                 struct sidtab_node_leaf *node = entry.ptr_leaf;
524
525                 if (!node)
526                         return;
527
528                 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
529                         sidtab_destroy_entry(&node->entries[i]);
530                 kfree(node);
531         }
532 }
533
534 void sidtab_destroy(struct sidtab *s)
535 {
536         u32 i, level;
537
538         for (i = 0; i < SECINITSID_NUM; i++)
539                 if (s->isids[i].set)
540                         sidtab_destroy_entry(&s->isids[i].entry);
541
542         level = SIDTAB_MAX_LEVEL;
543         while (level && !s->roots[level].ptr_inner)
544                 --level;
545
546         sidtab_destroy_tree(s->roots[level], level);
547         /*
548          * The context_to_sid hashtable's objects are all shared
549          * with the isids array and context tree, and so don't need
550          * to be cleaned up here.
551          */
552 }
553
554 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
555
556 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
557                         const char *str, u32 str_len)
558 {
559         struct sidtab_str_cache *cache, *victim = NULL;
560         unsigned long flags;
561
562         /* do not cache invalid contexts */
563         if (entry->context.len)
564                 return;
565
566         spin_lock_irqsave(&s->cache_lock, flags);
567
568         cache = rcu_dereference_protected(entry->cache,
569                                           lockdep_is_held(&s->cache_lock));
570         if (cache) {
571                 /* entry in cache - just bump to the head of LRU list */
572                 list_move(&cache->lru_member, &s->cache_lru_list);
573                 goto out_unlock;
574         }
575
576         cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
577         if (!cache)
578                 goto out_unlock;
579
580         if (s->cache_free_slots == 0) {
581                 /* pop a cache entry from the tail and free it */
582                 victim = container_of(s->cache_lru_list.prev,
583                                       struct sidtab_str_cache, lru_member);
584                 list_del(&victim->lru_member);
585                 rcu_assign_pointer(victim->parent->cache, NULL);
586         } else {
587                 s->cache_free_slots--;
588         }
589         cache->parent = entry;
590         cache->len = str_len;
591         memcpy(cache->str, str, str_len);
592         list_add(&cache->lru_member, &s->cache_lru_list);
593
594         rcu_assign_pointer(entry->cache, cache);
595
596 out_unlock:
597         spin_unlock_irqrestore(&s->cache_lock, flags);
598         kfree_rcu(victim, rcu_member);
599 }
600
601 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
602                        char **out, u32 *out_len)
603 {
604         struct sidtab_str_cache *cache;
605         int rc = 0;
606
607         if (entry->context.len)
608                 return -ENOENT; /* do not cache invalid contexts */
609
610         rcu_read_lock();
611
612         cache = rcu_dereference(entry->cache);
613         if (!cache) {
614                 rc = -ENOENT;
615         } else {
616                 *out_len = cache->len;
617                 if (out) {
618                         *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
619                         if (!*out)
620                                 rc = -ENOMEM;
621                 }
622         }
623
624         rcu_read_unlock();
625
626         if (!rc && out)
627                 sidtab_sid2str_put(s, entry, *out, *out_len);
628         return rc;
629 }
630
631 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */