1 // SPDX-License-Identifier: GPL-2.0-only
3 * Implementation of the security services.
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
15 * Added conditional policy language extensions
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
22 * Updated: Chad Sellers <csellers@tresys.com>
24 * Added validation of kernel classes and permissions
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
28 * Added support for bounds domain and audit messaged on masked permissions
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
32 * Added support for runtime switching of the policy type
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
61 #include "conditional.h"
68 #include "policycap_names.h"
71 struct selinux_policy_convert_data {
72 struct convert_context_args args;
73 struct sidtab_convert_params sidtab_params;
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 struct context *context,
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 struct sidtab *sidtab,
84 struct sidtab_entry *entry,
88 static void context_struct_compute_av(struct policydb *policydb,
89 struct context *scontext,
90 struct context *tcontext,
92 struct av_decision *avd,
93 struct extended_perms *xperms);
95 static int selinux_set_mapping(struct policydb *pol,
96 const struct security_class_mapping *map,
97 struct selinux_map *out_map)
101 bool print_unknown_handle = false;
103 /* Find number of classes in the input mapping */
110 /* Allocate space for the class records, plus one for class zero */
111 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 if (!out_map->mapping)
115 /* Store the raw class and permission values */
117 while (map[j].name) {
118 const struct security_class_mapping *p_in = map + (j++);
119 struct selinux_mapping *p_out = out_map->mapping + j;
121 /* An empty class string skips ahead */
122 if (!strcmp(p_in->name, "")) {
123 p_out->num_perms = 0;
127 p_out->value = string_to_security_class(pol, p_in->name);
129 pr_info("SELinux: Class %s not defined in policy.\n",
131 if (pol->reject_unknown)
133 p_out->num_perms = 0;
134 print_unknown_handle = true;
139 while (p_in->perms[k]) {
140 /* An empty permission string skips ahead */
141 if (!*p_in->perms[k]) {
145 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147 if (!p_out->perms[k]) {
148 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
149 p_in->perms[k], p_in->name);
150 if (pol->reject_unknown)
152 print_unknown_handle = true;
157 p_out->num_perms = k;
160 if (print_unknown_handle)
161 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 pol->allow_unknown ? "allowed" : "denied");
167 kfree(out_map->mapping);
168 out_map->mapping = NULL;
173 * Get real, policy values from mapped values
176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
178 if (tclass < map->size)
179 return map->mapping[tclass].value;
185 * Get kernel value for class from its policy value
187 static u16 map_class(struct selinux_map *map, u16 pol_value)
191 for (i = 1; i < map->size; i++) {
192 if (map->mapping[i].value == pol_value)
196 return SECCLASS_NULL;
199 static void map_decision(struct selinux_map *map,
200 u16 tclass, struct av_decision *avd,
203 if (tclass < map->size) {
204 struct selinux_mapping *mapping = &map->mapping[tclass];
205 unsigned int i, n = mapping->num_perms;
208 for (i = 0, result = 0; i < n; i++) {
209 if (avd->allowed & mapping->perms[i])
211 if (allow_unknown && !mapping->perms[i])
214 avd->allowed = result;
216 for (i = 0, result = 0; i < n; i++)
217 if (avd->auditallow & mapping->perms[i])
219 avd->auditallow = result;
221 for (i = 0, result = 0; i < n; i++) {
222 if (avd->auditdeny & mapping->perms[i])
224 if (!allow_unknown && !mapping->perms[i])
228 * In case the kernel has a bug and requests a permission
229 * between num_perms and the maximum permission number, we
230 * should audit that denial
232 for (; i < (sizeof(u32)*8); i++)
234 avd->auditdeny = result;
238 int security_mls_enabled(struct selinux_state *state)
241 struct selinux_policy *policy;
243 if (!selinux_initialized(state))
247 policy = rcu_dereference(state->policy);
248 mls_enabled = policy->policydb.mls_enabled;
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
258 * xcontext is a special beast... It is used by the validatetrans rules
259 * only. For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition. All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
264 static int constraint_expr_eval(struct policydb *policydb,
265 struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
295 if (sp == (CEXPR_MAXDEPTH - 1))
299 val1 = scontext->user;
300 val2 = tcontext->user;
303 val1 = scontext->type;
304 val2 = tcontext->type;
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb->role_val_to_struct[val1 - 1];
310 r2 = policydb->role_val_to_struct[val2 - 1];
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 !ebitmap_get_bit(&r2->dominates,
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
357 s[++sp] = mls_level_eq(l1, l2);
360 s[++sp] = !mls_level_eq(l1, l2);
363 s[++sp] = mls_level_dom(l1, l2);
366 s[++sp] = mls_level_dom(l2, l1);
369 s[++sp] = mls_level_incomp(l2, l1);
383 s[++sp] = (val1 == val2);
386 s[++sp] = (val1 != val2);
394 if (sp == (CEXPR_MAXDEPTH-1))
397 if (e->attr & CEXPR_TARGET)
399 else if (e->attr & CEXPR_XTARGET) {
406 if (e->attr & CEXPR_USER)
408 else if (e->attr & CEXPR_ROLE)
410 else if (e->attr & CEXPR_TYPE)
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443 static int dump_masked_av_helper(void *k, void *d, void *args)
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450 permission_names[pdatum->value - 1] = (char *)k;
455 static void security_dump_masked_av(struct policydb *policydb,
456 struct context *scontext,
457 struct context *tcontext,
462 struct common_datum *common_dat;
463 struct class_datum *tclass_dat;
464 struct audit_buffer *ab;
466 char *scontext_name = NULL;
467 char *tcontext_name = NULL;
468 char *permission_names[32];
471 bool need_comma = false;
476 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 common_dat = tclass_dat->comdatum;
480 /* init permission_names */
482 hashtab_map(&common_dat->permissions.table,
483 dump_masked_av_helper, permission_names) < 0)
486 if (hashtab_map(&tclass_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
490 /* get scontext/tcontext in text form */
491 if (context_struct_to_string(policydb, scontext,
492 &scontext_name, &length) < 0)
495 if (context_struct_to_string(policydb, tcontext,
496 &tcontext_name, &length) < 0)
499 /* audit a message */
500 ab = audit_log_start(audit_context(),
501 GFP_ATOMIC, AUDIT_SELINUX_ERR);
505 audit_log_format(ab, "op=security_compute_av reason=%s "
506 "scontext=%s tcontext=%s tclass=%s perms=",
507 reason, scontext_name, tcontext_name, tclass_name);
509 for (index = 0; index < 32; index++) {
510 u32 mask = (1 << index);
512 if ((mask & permissions) == 0)
515 audit_log_format(ab, "%s%s",
516 need_comma ? "," : "",
517 permission_names[index]
518 ? permission_names[index] : "????");
523 /* release scontext/tcontext */
524 kfree(tcontext_name);
525 kfree(scontext_name);
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
536 struct av_decision *avd)
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
545 source = policydb->type_val_to_struct[scontext->type - 1];
551 target = policydb->type_val_to_struct[tcontext->type - 1];
554 memset(&lo_avd, 0, sizeof(lo_avd));
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
565 context_struct_compute_av(policydb, &lo_scontext,
571 masked = ~lo_avd.allowed & avd->allowed;
574 return; /* no masked permission */
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permssions
588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
611 static void context_struct_compute_av(struct policydb *policydb,
612 struct context *scontext,
613 struct context *tcontext,
615 struct av_decision *avd,
616 struct extended_perms *xperms)
618 struct constraint_node *constraint;
619 struct role_allow *ra;
620 struct avtab_key avkey;
621 struct avtab_node *node;
622 struct class_datum *tclass_datum;
623 struct ebitmap *sattr, *tattr;
624 struct ebitmap_node *snode, *tnode;
629 avd->auditdeny = 0xffffffff;
631 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
635 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 if (printk_ratelimit())
637 pr_warn("SELinux: Invalid class %hu\n", tclass);
641 tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 * If a specific type enforcement rule was defined for
645 * this permission check, then use it.
647 avkey.target_class = tclass;
648 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 ebitmap_for_each_positive_bit(sattr, snode, i) {
652 ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 avkey.source_type = i + 1;
654 avkey.target_type = j + 1;
655 for (node = avtab_search_node(&policydb->te_avtab,
658 node = avtab_search_node_next(node, avkey.specified)) {
659 if (node->key.specified == AVTAB_ALLOWED)
660 avd->allowed |= node->datum.u.data;
661 else if (node->key.specified == AVTAB_AUDITALLOW)
662 avd->auditallow |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITDENY)
664 avd->auditdeny &= node->datum.u.data;
665 else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 services_compute_xperms_drivers(xperms, node);
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb->te_cond_avtab, &avkey,
677 * Remove any permissions prohibited by a constraint (this includes
680 constraint = tclass_datum->constraints;
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
685 avd->allowed &= ~(constraint->permissions);
687 constraint = constraint->next;
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
695 if (tclass == policydb->process_class &&
696 (avd->allowed & policydb->process_trans_perms) &&
697 scontext->role != tcontext->role) {
698 for (ra = policydb->role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
704 avd->allowed &= ~policydb->process_trans_perms;
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
712 type_attribute_bounds_av(policydb, scontext, tcontext,
716 static int security_validtrans_handle_fail(struct selinux_state *state,
717 struct selinux_policy *policy,
718 struct sidtab_entry *oentry,
719 struct sidtab_entry *nentry,
720 struct sidtab_entry *tentry,
723 struct policydb *p = &policy->policydb;
724 struct sidtab *sidtab = policy->sidtab;
725 char *o = NULL, *n = NULL, *t = NULL;
726 u32 olen, nlen, tlen;
728 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
730 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
732 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
734 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 "op=security_validate_transition seresult=denied"
736 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
743 if (!enforcing_enabled(state))
748 static int security_compute_validatetrans(struct selinux_state *state,
749 u32 oldsid, u32 newsid, u32 tasksid,
750 u16 orig_tclass, bool user)
752 struct selinux_policy *policy;
753 struct policydb *policydb;
754 struct sidtab *sidtab;
755 struct sidtab_entry *oentry;
756 struct sidtab_entry *nentry;
757 struct sidtab_entry *tentry;
758 struct class_datum *tclass_datum;
759 struct constraint_node *constraint;
764 if (!selinux_initialized(state))
769 policy = rcu_dereference(state->policy);
770 policydb = &policy->policydb;
771 sidtab = policy->sidtab;
774 tclass = unmap_class(&policy->map, orig_tclass);
776 tclass = orig_tclass;
778 if (!tclass || tclass > policydb->p_classes.nprim) {
782 tclass_datum = policydb->class_val_to_struct[tclass - 1];
784 oentry = sidtab_search_entry(sidtab, oldsid);
786 pr_err("SELinux: %s: unrecognized SID %d\n",
792 nentry = sidtab_search_entry(sidtab, newsid);
794 pr_err("SELinux: %s: unrecognized SID %d\n",
800 tentry = sidtab_search_entry(sidtab, tasksid);
802 pr_err("SELinux: %s: unrecognized SID %d\n",
808 constraint = tclass_datum->validatetrans;
810 if (!constraint_expr_eval(policydb, &oentry->context,
811 &nentry->context, &tentry->context,
816 rc = security_validtrans_handle_fail(state,
824 constraint = constraint->next;
832 int security_validate_transition_user(struct selinux_state *state,
833 u32 oldsid, u32 newsid, u32 tasksid,
836 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
840 int security_validate_transition(struct selinux_state *state,
841 u32 oldsid, u32 newsid, u32 tasksid,
844 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
849 * security_bounded_transition - check whether the given
850 * transition is directed to bounded, or not.
851 * It returns 0, if @newsid is bounded by @oldsid.
852 * Otherwise, it returns error code.
854 * @state: SELinux state
855 * @oldsid : current security identifier
856 * @newsid : destinated security identifier
858 int security_bounded_transition(struct selinux_state *state,
859 u32 old_sid, u32 new_sid)
861 struct selinux_policy *policy;
862 struct policydb *policydb;
863 struct sidtab *sidtab;
864 struct sidtab_entry *old_entry, *new_entry;
865 struct type_datum *type;
869 if (!selinux_initialized(state))
873 policy = rcu_dereference(state->policy);
874 policydb = &policy->policydb;
875 sidtab = policy->sidtab;
878 old_entry = sidtab_search_entry(sidtab, old_sid);
880 pr_err("SELinux: %s: unrecognized SID %u\n",
886 new_entry = sidtab_search_entry(sidtab, new_sid);
888 pr_err("SELinux: %s: unrecognized SID %u\n",
894 /* type/domain unchanged */
895 if (old_entry->context.type == new_entry->context.type)
898 index = new_entry->context.type;
900 type = policydb->type_val_to_struct[index - 1];
903 /* not bounded anymore */
908 /* @newsid is bounded by @oldsid */
910 if (type->bounds == old_entry->context.type)
913 index = type->bounds;
917 char *old_name = NULL;
918 char *new_name = NULL;
921 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
922 &old_name, &length) &&
923 !sidtab_entry_to_string(policydb, sidtab, new_entry,
924 &new_name, &length)) {
925 audit_log(audit_context(),
926 GFP_ATOMIC, AUDIT_SELINUX_ERR,
927 "op=security_bounded_transition "
929 "oldcontext=%s newcontext=%s",
941 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
945 avd->auditdeny = 0xffffffff;
947 avd->seqno = policy->latest_granting;
953 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
954 struct avtab_node *node)
958 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
959 if (xpermd->driver != node->datum.u.xperms->driver)
961 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
962 if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
970 xpermd->used |= XPERMS_ALLOWED;
971 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
972 memset(xpermd->allowed->p, 0xff,
973 sizeof(xpermd->allowed->p));
975 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
976 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
977 xpermd->allowed->p[i] |=
978 node->datum.u.xperms->perms.p[i];
980 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
981 xpermd->used |= XPERMS_AUDITALLOW;
982 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
983 memset(xpermd->auditallow->p, 0xff,
984 sizeof(xpermd->auditallow->p));
986 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
987 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
988 xpermd->auditallow->p[i] |=
989 node->datum.u.xperms->perms.p[i];
991 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
992 xpermd->used |= XPERMS_DONTAUDIT;
993 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
994 memset(xpermd->dontaudit->p, 0xff,
995 sizeof(xpermd->dontaudit->p));
997 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
998 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
999 xpermd->dontaudit->p[i] |=
1000 node->datum.u.xperms->perms.p[i];
1007 void security_compute_xperms_decision(struct selinux_state *state,
1012 struct extended_perms_decision *xpermd)
1014 struct selinux_policy *policy;
1015 struct policydb *policydb;
1016 struct sidtab *sidtab;
1018 struct context *scontext, *tcontext;
1019 struct avtab_key avkey;
1020 struct avtab_node *node;
1021 struct ebitmap *sattr, *tattr;
1022 struct ebitmap_node *snode, *tnode;
1025 xpermd->driver = driver;
1027 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032 if (!selinux_initialized(state))
1035 policy = rcu_dereference(state->policy);
1036 policydb = &policy->policydb;
1037 sidtab = policy->sidtab;
1039 scontext = sidtab_search(sidtab, ssid);
1041 pr_err("SELinux: %s: unrecognized SID %d\n",
1046 tcontext = sidtab_search(sidtab, tsid);
1048 pr_err("SELinux: %s: unrecognized SID %d\n",
1053 tclass = unmap_class(&policy->map, orig_tclass);
1054 if (unlikely(orig_tclass && !tclass)) {
1055 if (policydb->allow_unknown)
1061 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1066 avkey.target_class = tclass;
1067 avkey.specified = AVTAB_XPERMS;
1068 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1070 ebitmap_for_each_positive_bit(sattr, snode, i) {
1071 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072 avkey.source_type = i + 1;
1073 avkey.target_type = j + 1;
1074 for (node = avtab_search_node(&policydb->te_avtab,
1077 node = avtab_search_node_next(node, avkey.specified))
1078 services_compute_xperms_decision(xpermd, node);
1080 cond_compute_xperms(&policydb->te_cond_avtab,
1088 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1093 * security_compute_av - Compute access vector decisions.
1094 * @state: SELinux state
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @orig_tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1104 void security_compute_av(struct selinux_state *state,
1108 struct av_decision *avd,
1109 struct extended_perms *xperms)
1111 struct selinux_policy *policy;
1112 struct policydb *policydb;
1113 struct sidtab *sidtab;
1115 struct context *scontext = NULL, *tcontext = NULL;
1118 policy = rcu_dereference(state->policy);
1119 avd_init(policy, avd);
1121 if (!selinux_initialized(state))
1124 policydb = &policy->policydb;
1125 sidtab = policy->sidtab;
1127 scontext = sidtab_search(sidtab, ssid);
1129 pr_err("SELinux: %s: unrecognized SID %d\n",
1134 /* permissive domain? */
1135 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136 avd->flags |= AVD_FLAGS_PERMISSIVE;
1138 tcontext = sidtab_search(sidtab, tsid);
1140 pr_err("SELinux: %s: unrecognized SID %d\n",
1145 tclass = unmap_class(&policy->map, orig_tclass);
1146 if (unlikely(orig_tclass && !tclass)) {
1147 if (policydb->allow_unknown)
1151 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1153 map_decision(&policy->map, orig_tclass, avd,
1154 policydb->allow_unknown);
1159 avd->allowed = 0xffffffff;
1163 void security_compute_av_user(struct selinux_state *state,
1167 struct av_decision *avd)
1169 struct selinux_policy *policy;
1170 struct policydb *policydb;
1171 struct sidtab *sidtab;
1172 struct context *scontext = NULL, *tcontext = NULL;
1175 policy = rcu_dereference(state->policy);
1176 avd_init(policy, avd);
1177 if (!selinux_initialized(state))
1180 policydb = &policy->policydb;
1181 sidtab = policy->sidtab;
1183 scontext = sidtab_search(sidtab, ssid);
1185 pr_err("SELinux: %s: unrecognized SID %d\n",
1190 /* permissive domain? */
1191 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192 avd->flags |= AVD_FLAGS_PERMISSIVE;
1194 tcontext = sidtab_search(sidtab, tsid);
1196 pr_err("SELinux: %s: unrecognized SID %d\n",
1201 if (unlikely(!tclass)) {
1202 if (policydb->allow_unknown)
1207 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1213 avd->allowed = 0xffffffff;
1218 * Write the security context string representation of
1219 * the context structure `context' into a dynamically
1220 * allocated string of the correct size. Set `*scontext'
1221 * to point to this string and set `*scontext_len' to
1222 * the length of the string.
1224 static int context_struct_to_string(struct policydb *p,
1225 struct context *context,
1226 char **scontext, u32 *scontext_len)
1235 *scontext_len = context->len;
1237 *scontext = kstrdup(context->str, GFP_ATOMIC);
1244 /* Compute the size of the context. */
1245 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248 *scontext_len += mls_compute_context_len(p, context);
1253 /* Allocate space for the context; caller must free this space. */
1254 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1257 *scontext = scontextp;
1260 * Copy the user name, role name and type name into the context.
1262 scontextp += sprintf(scontextp, "%s:%s:%s",
1263 sym_name(p, SYM_USERS, context->user - 1),
1264 sym_name(p, SYM_ROLES, context->role - 1),
1265 sym_name(p, SYM_TYPES, context->type - 1));
1267 mls_sid_to_context(p, context, &scontextp);
1274 static int sidtab_entry_to_string(struct policydb *p,
1275 struct sidtab *sidtab,
1276 struct sidtab_entry *entry,
1277 char **scontext, u32 *scontext_len)
1279 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1284 rc = context_struct_to_string(p, &entry->context, scontext,
1286 if (!rc && scontext)
1287 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1291 #include "initial_sid_to_string.h"
1293 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1295 struct selinux_policy *policy;
1298 if (!selinux_initialized(state)) {
1299 pr_err("SELinux: %s: called before initial load_policy\n",
1305 policy = rcu_dereference(state->policy);
1306 rc = sidtab_hash_stats(policy->sidtab, page);
1312 const char *security_get_initial_sid_context(u32 sid)
1314 if (unlikely(sid > SECINITSID_NUM))
1316 return initial_sid_to_string[sid];
1319 static int security_sid_to_context_core(struct selinux_state *state,
1320 u32 sid, char **scontext,
1321 u32 *scontext_len, int force,
1324 struct selinux_policy *policy;
1325 struct policydb *policydb;
1326 struct sidtab *sidtab;
1327 struct sidtab_entry *entry;
1334 if (!selinux_initialized(state)) {
1335 if (sid <= SECINITSID_NUM) {
1337 const char *s = initial_sid_to_string[sid];
1341 *scontext_len = strlen(s) + 1;
1344 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1347 *scontext = scontextp;
1350 pr_err("SELinux: %s: called before initial "
1351 "load_policy on unknown SID %d\n", __func__, sid);
1355 policy = rcu_dereference(state->policy);
1356 policydb = &policy->policydb;
1357 sidtab = policy->sidtab;
1360 entry = sidtab_search_entry_force(sidtab, sid);
1362 entry = sidtab_search_entry(sidtab, sid);
1364 pr_err("SELinux: %s: unrecognized SID %d\n",
1369 if (only_invalid && !entry->context.len)
1372 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1382 * security_sid_to_context - Obtain a context for a given SID.
1383 * @state: SELinux state
1384 * @sid: security identifier, SID
1385 * @scontext: security context
1386 * @scontext_len: length in bytes
1388 * Write the string representation of the context associated with @sid
1389 * into a dynamically allocated string of the correct size. Set @scontext
1390 * to point to this string and set @scontext_len to the length of the string.
1392 int security_sid_to_context(struct selinux_state *state,
1393 u32 sid, char **scontext, u32 *scontext_len)
1395 return security_sid_to_context_core(state, sid, scontext,
1396 scontext_len, 0, 0);
1399 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400 char **scontext, u32 *scontext_len)
1402 return security_sid_to_context_core(state, sid, scontext,
1403 scontext_len, 1, 0);
1407 * security_sid_to_context_inval - Obtain a context for a given SID if it
1409 * @state: SELinux state
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size, but only if the
1416 * context is invalid in the current policy. Set @scontext to point to
1417 * this string (or NULL if the context is valid) and set @scontext_len to
1418 * the length of the string (or 0 if the context is valid).
1420 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421 char **scontext, u32 *scontext_len)
1423 return security_sid_to_context_core(state, sid, scontext,
1424 scontext_len, 1, 1);
1428 * Caveat: Mutates scontext.
1430 static int string_to_context_struct(struct policydb *pol,
1431 struct sidtab *sidtabp,
1433 struct context *ctx,
1436 struct role_datum *role;
1437 struct type_datum *typdatum;
1438 struct user_datum *usrdatum;
1439 char *scontextp, *p, oldc;
1444 /* Parse the security context. */
1447 scontextp = scontext;
1449 /* Extract the user. */
1451 while (*p && *p != ':')
1459 usrdatum = symtab_search(&pol->p_users, scontextp);
1463 ctx->user = usrdatum->value;
1467 while (*p && *p != ':')
1475 role = symtab_search(&pol->p_roles, scontextp);
1478 ctx->role = role->value;
1482 while (*p && *p != ':')
1487 typdatum = symtab_search(&pol->p_types, scontextp);
1488 if (!typdatum || typdatum->attribute)
1491 ctx->type = typdatum->value;
1493 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1497 /* Check the validity of the new context. */
1499 if (!policydb_context_isvalid(pol, ctx))
1504 context_destroy(ctx);
1508 static int security_context_to_sid_core(struct selinux_state *state,
1509 const char *scontext, u32 scontext_len,
1510 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1513 struct selinux_policy *policy;
1514 struct policydb *policydb;
1515 struct sidtab *sidtab;
1516 char *scontext2, *str = NULL;
1517 struct context context;
1520 /* An empty security context is never valid. */
1524 /* Copy the string to allow changes and ensure a NUL terminator */
1525 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1529 if (!selinux_initialized(state)) {
1532 for (i = 1; i < SECINITSID_NUM; i++) {
1533 const char *s = initial_sid_to_string[i];
1535 if (s && !strcmp(s, scontext2)) {
1540 *sid = SECINITSID_KERNEL;
1546 /* Save another copy for storing in uninterpreted form */
1548 str = kstrdup(scontext2, gfp_flags);
1554 policy = rcu_dereference(state->policy);
1555 policydb = &policy->policydb;
1556 sidtab = policy->sidtab;
1557 rc = string_to_context_struct(policydb, sidtab, scontext2,
1559 if (rc == -EINVAL && force) {
1561 context.len = strlen(str) + 1;
1565 rc = sidtab_context_to_sid(sidtab, &context, sid);
1566 if (rc == -ESTALE) {
1572 context_destroy(&context);
1575 context_destroy(&context);
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @state: SELinux state
1587 * @scontext: security context
1588 * @scontext_len: length in bytes
1589 * @sid: security identifier, SID
1590 * @gfp: context for the allocation
1592 * Obtains a SID associated with the security context that
1593 * has the string representation specified by @scontext.
1594 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595 * memory is available, or 0 on success.
1597 int security_context_to_sid(struct selinux_state *state,
1598 const char *scontext, u32 scontext_len, u32 *sid,
1601 return security_context_to_sid_core(state, scontext, scontext_len,
1602 sid, SECSID_NULL, gfp, 0);
1605 int security_context_str_to_sid(struct selinux_state *state,
1606 const char *scontext, u32 *sid, gfp_t gfp)
1608 return security_context_to_sid(state, scontext, strlen(scontext),
1613 * security_context_to_sid_default - Obtain a SID for a given security context,
1614 * falling back to specified default if needed.
1616 * @state: SELinux state
1617 * @scontext: security context
1618 * @scontext_len: length in bytes
1619 * @sid: security identifier, SID
1620 * @def_sid: default SID to assign on error
1621 * @gfp_flags: the allocator get-free-page (GFP) flags
1623 * Obtains a SID associated with the security context that
1624 * has the string representation specified by @scontext.
1625 * The default SID is passed to the MLS layer to be used to allow
1626 * kernel labeling of the MLS field if the MLS field is not present
1627 * (for upgrading to MLS without full relabel).
1628 * Implicitly forces adding of the context even if it cannot be mapped yet.
1629 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630 * memory is available, or 0 on success.
1632 int security_context_to_sid_default(struct selinux_state *state,
1633 const char *scontext, u32 scontext_len,
1634 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1636 return security_context_to_sid_core(state, scontext, scontext_len,
1637 sid, def_sid, gfp_flags, 1);
1640 int security_context_to_sid_force(struct selinux_state *state,
1641 const char *scontext, u32 scontext_len,
1644 return security_context_to_sid_core(state, scontext, scontext_len,
1645 sid, SECSID_NULL, GFP_KERNEL, 1);
1648 static int compute_sid_handle_invalid_context(
1649 struct selinux_state *state,
1650 struct selinux_policy *policy,
1651 struct sidtab_entry *sentry,
1652 struct sidtab_entry *tentry,
1654 struct context *newcontext)
1656 struct policydb *policydb = &policy->policydb;
1657 struct sidtab *sidtab = policy->sidtab;
1658 char *s = NULL, *t = NULL, *n = NULL;
1659 u32 slen, tlen, nlen;
1660 struct audit_buffer *ab;
1662 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1664 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1666 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1668 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1671 audit_log_format(ab,
1672 "op=security_compute_sid invalid_context=");
1673 /* no need to record the NUL with untrusted strings */
1674 audit_log_n_untrustedstring(ab, n, nlen - 1);
1675 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682 if (!enforcing_enabled(state))
1687 static void filename_compute_type(struct policydb *policydb,
1688 struct context *newcontext,
1689 u32 stype, u32 ttype, u16 tclass,
1690 const char *objname)
1692 struct filename_trans_key ft;
1693 struct filename_trans_datum *datum;
1696 * Most filename trans rules are going to live in specific directories
1697 * like /dev or /var/run. This bitmap will quickly skip rule searches
1698 * if the ttype does not contain any rules.
1700 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1707 datum = policydb_filenametr_search(policydb, &ft);
1709 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710 newcontext->type = datum->otype;
1713 datum = datum->next;
1717 static int security_compute_sid(struct selinux_state *state,
1722 const char *objname,
1726 struct selinux_policy *policy;
1727 struct policydb *policydb;
1728 struct sidtab *sidtab;
1729 struct class_datum *cladatum;
1730 struct context *scontext, *tcontext, newcontext;
1731 struct sidtab_entry *sentry, *tentry;
1732 struct avtab_key avkey;
1733 struct avtab_datum *avdatum;
1734 struct avtab_node *node;
1739 if (!selinux_initialized(state)) {
1740 switch (orig_tclass) {
1741 case SECCLASS_PROCESS: /* kernel value */
1753 context_init(&newcontext);
1757 policy = rcu_dereference(state->policy);
1760 tclass = unmap_class(&policy->map, orig_tclass);
1761 sock = security_is_socket_class(orig_tclass);
1763 tclass = orig_tclass;
1764 sock = security_is_socket_class(map_class(&policy->map,
1768 policydb = &policy->policydb;
1769 sidtab = policy->sidtab;
1771 sentry = sidtab_search_entry(sidtab, ssid);
1773 pr_err("SELinux: %s: unrecognized SID %d\n",
1778 tentry = sidtab_search_entry(sidtab, tsid);
1780 pr_err("SELinux: %s: unrecognized SID %d\n",
1786 scontext = &sentry->context;
1787 tcontext = &tentry->context;
1789 if (tclass && tclass <= policydb->p_classes.nprim)
1790 cladatum = policydb->class_val_to_struct[tclass - 1];
1792 /* Set the user identity. */
1793 switch (specified) {
1794 case AVTAB_TRANSITION:
1796 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797 newcontext.user = tcontext->user;
1799 /* notice this gets both DEFAULT_SOURCE and unset */
1800 /* Use the process user identity. */
1801 newcontext.user = scontext->user;
1805 /* Use the related object owner. */
1806 newcontext.user = tcontext->user;
1810 /* Set the role to default values. */
1811 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1812 newcontext.role = scontext->role;
1813 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814 newcontext.role = tcontext->role;
1816 if ((tclass == policydb->process_class) || sock)
1817 newcontext.role = scontext->role;
1819 newcontext.role = OBJECT_R_VAL;
1822 /* Set the type to default values. */
1823 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824 newcontext.type = scontext->type;
1825 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826 newcontext.type = tcontext->type;
1828 if ((tclass == policydb->process_class) || sock) {
1829 /* Use the type of process. */
1830 newcontext.type = scontext->type;
1832 /* Use the type of the related object. */
1833 newcontext.type = tcontext->type;
1837 /* Look for a type transition/member/change rule. */
1838 avkey.source_type = scontext->type;
1839 avkey.target_type = tcontext->type;
1840 avkey.target_class = tclass;
1841 avkey.specified = specified;
1842 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1844 /* If no permanent rule, also check for enabled conditional rules */
1846 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847 for (; node; node = avtab_search_node_next(node, specified)) {
1848 if (node->key.specified & AVTAB_ENABLED) {
1849 avdatum = &node->datum;
1856 /* Use the type from the type transition/member/change rule. */
1857 newcontext.type = avdatum->u.data;
1860 /* if we have a objname this is a file trans check so check those rules */
1862 filename_compute_type(policydb, &newcontext, scontext->type,
1863 tcontext->type, tclass, objname);
1865 /* Check for class-specific changes. */
1866 if (specified & AVTAB_TRANSITION) {
1867 /* Look for a role transition rule. */
1868 struct role_trans_datum *rtd;
1869 struct role_trans_key rtk = {
1870 .role = scontext->role,
1871 .type = tcontext->type,
1875 rtd = policydb_roletr_search(policydb, &rtk);
1877 newcontext.role = rtd->new_role;
1880 /* Set the MLS attributes.
1881 This is done last because it may allocate memory. */
1882 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1887 /* Check the validity of the context. */
1888 if (!policydb_context_isvalid(policydb, &newcontext)) {
1889 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895 /* Obtain the sid for the context. */
1896 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897 if (rc == -ESTALE) {
1899 context_destroy(&newcontext);
1904 context_destroy(&newcontext);
1910 * security_transition_sid - Compute the SID for a new subject/object.
1911 * @state: SELinux state
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @qstr: object name
1916 * @out_sid: security identifier for new subject/object
1918 * Compute a SID to use for labeling a new subject or object in the
1919 * class @tclass based on a SID pair (@ssid, @tsid).
1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921 * if insufficient memory is available, or %0 if the new SID was
1922 * computed successfully.
1924 int security_transition_sid(struct selinux_state *state,
1925 u32 ssid, u32 tsid, u16 tclass,
1926 const struct qstr *qstr, u32 *out_sid)
1928 return security_compute_sid(state, ssid, tsid, tclass,
1930 qstr ? qstr->name : NULL, out_sid, true);
1933 int security_transition_sid_user(struct selinux_state *state,
1934 u32 ssid, u32 tsid, u16 tclass,
1935 const char *objname, u32 *out_sid)
1937 return security_compute_sid(state, ssid, tsid, tclass,
1939 objname, out_sid, false);
1943 * security_member_sid - Compute the SID for member selection.
1944 * @state: SELinux state
1945 * @ssid: source security identifier
1946 * @tsid: target security identifier
1947 * @tclass: target security class
1948 * @out_sid: security identifier for selected member
1950 * Compute a SID to use when selecting a member of a polyinstantiated
1951 * object of class @tclass based on a SID pair (@ssid, @tsid).
1952 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953 * if insufficient memory is available, or %0 if the SID was
1954 * computed successfully.
1956 int security_member_sid(struct selinux_state *state,
1962 return security_compute_sid(state, ssid, tsid, tclass,
1968 * security_change_sid - Compute the SID for object relabeling.
1969 * @state: SELinux state
1970 * @ssid: source security identifier
1971 * @tsid: target security identifier
1972 * @tclass: target security class
1973 * @out_sid: security identifier for selected member
1975 * Compute a SID to use for relabeling an object of class @tclass
1976 * based on a SID pair (@ssid, @tsid).
1977 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978 * if insufficient memory is available, or %0 if the SID was
1979 * computed successfully.
1981 int security_change_sid(struct selinux_state *state,
1987 return security_compute_sid(state,
1988 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992 static inline int convert_context_handle_invalid_context(
1993 struct selinux_state *state,
1994 struct policydb *policydb,
1995 struct context *context)
2000 if (enforcing_enabled(state))
2003 if (!context_struct_to_string(policydb, context, &s, &len)) {
2004 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2012 * services_convert_context - Convert a security context across policies.
2013 * @args: populated convert_context_args struct
2014 * @oldc: original context
2015 * @newc: converted context
2017 * Convert the values in the security context structure @oldc from the values
2018 * specified in the policy @args->oldp to the values specified in the policy
2019 * @args->newp, storing the new context in @newc, and verifying that the
2020 * context is valid under the new policy.
2022 int services_convert_context(struct convert_context_args *args,
2023 struct context *oldc, struct context *newc)
2025 struct ocontext *oc;
2026 struct role_datum *role;
2027 struct type_datum *typdatum;
2028 struct user_datum *usrdatum;
2034 s = kstrdup(oldc->str, GFP_KERNEL);
2038 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2039 if (rc == -EINVAL) {
2041 * Retain string representation for later mapping.
2043 * IMPORTANT: We need to copy the contents of oldc->str
2044 * back into s again because string_to_context_struct()
2045 * may have garbled it.
2047 memcpy(s, oldc->str, oldc->len);
2050 newc->len = oldc->len;
2055 /* Other error condition, e.g. ENOMEM. */
2056 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2060 pr_info("SELinux: Context %s became valid (mapped).\n",
2067 /* Convert the user. */
2068 usrdatum = symtab_search(&args->newp->p_users,
2069 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2072 newc->user = usrdatum->value;
2074 /* Convert the role. */
2075 role = symtab_search(&args->newp->p_roles,
2076 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2079 newc->role = role->value;
2081 /* Convert the type. */
2082 typdatum = symtab_search(&args->newp->p_types,
2083 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2086 newc->type = typdatum->value;
2088 /* Convert the MLS fields if dealing with MLS policies */
2089 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2090 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2093 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2095 * Switching between non-MLS and MLS policy:
2096 * ensure that the MLS fields of the context for all
2097 * existing entries in the sidtab are filled in with a
2098 * suitable default value, likely taken from one of the
2101 oc = args->newp->ocontexts[OCON_ISID];
2102 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2105 pr_err("SELinux: unable to look up"
2106 " the initial SIDs list\n");
2109 rc = mls_range_set(newc, &oc->context[0].range);
2114 /* Check the validity of the new context. */
2115 if (!policydb_context_isvalid(args->newp, newc)) {
2116 rc = convert_context_handle_invalid_context(args->state,
2124 /* Map old representation to string and save it. */
2125 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128 context_destroy(newc);
2131 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2136 static void security_load_policycaps(struct selinux_state *state,
2137 struct selinux_policy *policy)
2141 struct ebitmap_node *node;
2143 p = &policy->policydb;
2145 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2146 WRITE_ONCE(state->policycap[i],
2147 ebitmap_get_bit(&p->policycaps, i));
2149 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2150 pr_info("SELinux: policy capability %s=%d\n",
2151 selinux_policycap_names[i],
2152 ebitmap_get_bit(&p->policycaps, i));
2154 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2155 if (i >= ARRAY_SIZE(selinux_policycap_names))
2156 pr_info("SELinux: unknown policy capability %u\n",
2161 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2162 struct selinux_policy *newpolicy);
2164 static void selinux_policy_free(struct selinux_policy *policy)
2169 sidtab_destroy(policy->sidtab);
2170 kfree(policy->map.mapping);
2171 policydb_destroy(&policy->policydb);
2172 kfree(policy->sidtab);
2176 static void selinux_policy_cond_free(struct selinux_policy *policy)
2178 cond_policydb_destroy_dup(&policy->policydb);
2182 void selinux_policy_cancel(struct selinux_state *state,
2183 struct selinux_load_state *load_state)
2185 struct selinux_policy *oldpolicy;
2187 oldpolicy = rcu_dereference_protected(state->policy,
2188 lockdep_is_held(&state->policy_mutex));
2190 sidtab_cancel_convert(oldpolicy->sidtab);
2191 selinux_policy_free(load_state->policy);
2192 kfree(load_state->convert_data);
2195 static void selinux_notify_policy_change(struct selinux_state *state,
2198 /* Flush external caches and notify userspace of policy load */
2199 avc_ss_reset(state->avc, seqno);
2200 selnl_notify_policyload(seqno);
2201 selinux_status_update_policyload(state, seqno);
2202 selinux_netlbl_cache_invalidate();
2203 selinux_xfrm_notify_policyload();
2204 selinux_ima_measure_state_locked(state);
2207 void selinux_policy_commit(struct selinux_state *state,
2208 struct selinux_load_state *load_state)
2210 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2211 unsigned long flags;
2214 oldpolicy = rcu_dereference_protected(state->policy,
2215 lockdep_is_held(&state->policy_mutex));
2217 /* If switching between different policy types, log MLS status */
2219 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2220 pr_info("SELinux: Disabling MLS support...\n");
2221 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2222 pr_info("SELinux: Enabling MLS support...\n");
2225 /* Set latest granting seqno for new policy. */
2227 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229 newpolicy->latest_granting = 1;
2230 seqno = newpolicy->latest_granting;
2232 /* Install the new policy. */
2234 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2235 rcu_assign_pointer(state->policy, newpolicy);
2236 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238 rcu_assign_pointer(state->policy, newpolicy);
2241 /* Load the policycaps from the new policy */
2242 security_load_policycaps(state, newpolicy);
2244 if (!selinux_initialized(state)) {
2246 * After first policy load, the security server is
2247 * marked as initialized and ready to handle requests and
2248 * any objects created prior to policy load are then labeled.
2250 selinux_mark_initialized(state);
2251 selinux_complete_init();
2254 /* Free the old policy */
2256 selinux_policy_free(oldpolicy);
2257 kfree(load_state->convert_data);
2259 /* Notify others of the policy change */
2260 selinux_notify_policy_change(state, seqno);
2264 * security_load_policy - Load a security policy configuration.
2265 * @state: SELinux state
2266 * @data: binary policy data
2267 * @len: length of data in bytes
2268 * @load_state: policy load state
2270 * Load a new set of security policy configuration data,
2271 * validate it and convert the SID table as necessary.
2272 * This function will flush the access vector cache after
2273 * loading the new policy.
2275 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2276 struct selinux_load_state *load_state)
2278 struct selinux_policy *newpolicy, *oldpolicy;
2279 struct selinux_policy_convert_data *convert_data;
2281 struct policy_file file = { data, len }, *fp = &file;
2283 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2287 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2288 if (!newpolicy->sidtab) {
2293 rc = policydb_read(&newpolicy->policydb, fp);
2297 newpolicy->policydb.len = len;
2298 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2303 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2305 pr_err("SELinux: unable to load the initial SIDs\n");
2309 if (!selinux_initialized(state)) {
2310 /* First policy load, so no need to preserve state from old policy */
2311 load_state->policy = newpolicy;
2312 load_state->convert_data = NULL;
2316 oldpolicy = rcu_dereference_protected(state->policy,
2317 lockdep_is_held(&state->policy_mutex));
2319 /* Preserve active boolean values from the old policy */
2320 rc = security_preserve_bools(oldpolicy, newpolicy);
2322 pr_err("SELinux: unable to preserve booleans\n");
2323 goto err_free_isids;
2327 * Convert the internal representations of contexts
2328 * in the new SID table.
2331 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332 if (!convert_data) {
2334 goto err_free_isids;
2337 convert_data->args.state = state;
2338 convert_data->args.oldp = &oldpolicy->policydb;
2339 convert_data->args.newp = &newpolicy->policydb;
2341 convert_data->sidtab_params.args = &convert_data->args;
2342 convert_data->sidtab_params.target = newpolicy->sidtab;
2344 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2346 pr_err("SELinux: unable to convert the internal"
2347 " representation of contexts in the new SID"
2349 goto err_free_convert_data;
2352 load_state->policy = newpolicy;
2353 load_state->convert_data = convert_data;
2356 err_free_convert_data:
2357 kfree(convert_data);
2359 sidtab_destroy(newpolicy->sidtab);
2361 kfree(newpolicy->map.mapping);
2363 policydb_destroy(&newpolicy->policydb);
2365 kfree(newpolicy->sidtab);
2373 * ocontext_to_sid - Helper to safely get sid for an ocontext
2374 * @sidtab: SID table
2375 * @c: ocontext structure
2376 * @index: index of the context entry (0 or 1)
2377 * @out_sid: pointer to the resulting SID value
2379 * For all ocontexts except OCON_ISID the SID fields are populated
2380 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381 * operation, this helper must be used to do that safely.
2383 * WARNING: This function may return -ESTALE, indicating that the caller
2384 * must retry the operation after re-acquiring the policy pointer!
2386 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387 size_t index, u32 *out_sid)
2392 /* Ensure the associated sidtab entry is visible to this thread. */
2393 sid = smp_load_acquire(&c->sid[index]);
2395 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2400 * Ensure the new sidtab entry is visible to other threads
2401 * when they see the SID.
2403 smp_store_release(&c->sid[index], sid);
2410 * security_port_sid - Obtain the SID for a port.
2411 * @state: SELinux state
2412 * @protocol: protocol number
2413 * @port: port number
2414 * @out_sid: security identifier
2416 int security_port_sid(struct selinux_state *state,
2417 u8 protocol, u16 port, u32 *out_sid)
2419 struct selinux_policy *policy;
2420 struct policydb *policydb;
2421 struct sidtab *sidtab;
2425 if (!selinux_initialized(state)) {
2426 *out_sid = SECINITSID_PORT;
2433 policy = rcu_dereference(state->policy);
2434 policydb = &policy->policydb;
2435 sidtab = policy->sidtab;
2437 c = policydb->ocontexts[OCON_PORT];
2439 if (c->u.port.protocol == protocol &&
2440 c->u.port.low_port <= port &&
2441 c->u.port.high_port >= port)
2447 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2448 if (rc == -ESTALE) {
2455 *out_sid = SECINITSID_PORT;
2464 * security_ib_pkey_sid - Obtain the SID for a pkey.
2465 * @state: SELinux state
2466 * @subnet_prefix: Subnet Prefix
2467 * @pkey_num: pkey number
2468 * @out_sid: security identifier
2470 int security_ib_pkey_sid(struct selinux_state *state,
2471 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2473 struct selinux_policy *policy;
2474 struct policydb *policydb;
2475 struct sidtab *sidtab;
2479 if (!selinux_initialized(state)) {
2480 *out_sid = SECINITSID_UNLABELED;
2487 policy = rcu_dereference(state->policy);
2488 policydb = &policy->policydb;
2489 sidtab = policy->sidtab;
2491 c = policydb->ocontexts[OCON_IBPKEY];
2493 if (c->u.ibpkey.low_pkey <= pkey_num &&
2494 c->u.ibpkey.high_pkey >= pkey_num &&
2495 c->u.ibpkey.subnet_prefix == subnet_prefix)
2502 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2503 if (rc == -ESTALE) {
2510 *out_sid = SECINITSID_UNLABELED;
2518 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2519 * @state: SELinux state
2520 * @dev_name: device name
2521 * @port_num: port number
2522 * @out_sid: security identifier
2524 int security_ib_endport_sid(struct selinux_state *state,
2525 const char *dev_name, u8 port_num, u32 *out_sid)
2527 struct selinux_policy *policy;
2528 struct policydb *policydb;
2529 struct sidtab *sidtab;
2533 if (!selinux_initialized(state)) {
2534 *out_sid = SECINITSID_UNLABELED;
2541 policy = rcu_dereference(state->policy);
2542 policydb = &policy->policydb;
2543 sidtab = policy->sidtab;
2545 c = policydb->ocontexts[OCON_IBENDPORT];
2547 if (c->u.ibendport.port == port_num &&
2548 !strncmp(c->u.ibendport.dev_name,
2550 IB_DEVICE_NAME_MAX))
2557 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2558 if (rc == -ESTALE) {
2565 *out_sid = SECINITSID_UNLABELED;
2573 * security_netif_sid - Obtain the SID for a network interface.
2574 * @state: SELinux state
2575 * @name: interface name
2576 * @if_sid: interface SID
2578 int security_netif_sid(struct selinux_state *state,
2579 char *name, u32 *if_sid)
2581 struct selinux_policy *policy;
2582 struct policydb *policydb;
2583 struct sidtab *sidtab;
2587 if (!selinux_initialized(state)) {
2588 *if_sid = SECINITSID_NETIF;
2595 policy = rcu_dereference(state->policy);
2596 policydb = &policy->policydb;
2597 sidtab = policy->sidtab;
2599 c = policydb->ocontexts[OCON_NETIF];
2601 if (strcmp(name, c->u.name) == 0)
2607 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2608 if (rc == -ESTALE) {
2615 *if_sid = SECINITSID_NETIF;
2622 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2626 for (i = 0; i < 4; i++)
2627 if (addr[i] != (input[i] & mask[i])) {
2636 * security_node_sid - Obtain the SID for a node (host).
2637 * @state: SELinux state
2638 * @domain: communication domain aka address family
2640 * @addrlen: address length in bytes
2641 * @out_sid: security identifier
2643 int security_node_sid(struct selinux_state *state,
2649 struct selinux_policy *policy;
2650 struct policydb *policydb;
2651 struct sidtab *sidtab;
2655 if (!selinux_initialized(state)) {
2656 *out_sid = SECINITSID_NODE;
2662 policy = rcu_dereference(state->policy);
2663 policydb = &policy->policydb;
2664 sidtab = policy->sidtab;
2671 if (addrlen != sizeof(u32))
2674 addr = *((u32 *)addrp);
2676 c = policydb->ocontexts[OCON_NODE];
2678 if (c->u.node.addr == (addr & c->u.node.mask))
2687 if (addrlen != sizeof(u64) * 2)
2689 c = policydb->ocontexts[OCON_NODE6];
2691 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2700 *out_sid = SECINITSID_NODE;
2705 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2706 if (rc == -ESTALE) {
2713 *out_sid = SECINITSID_NODE;
2725 * security_get_user_sids - Obtain reachable SIDs for a user.
2726 * @state: SELinux state
2727 * @fromsid: starting SID
2728 * @username: username
2729 * @sids: array of reachable SIDs for user
2730 * @nel: number of elements in @sids
2732 * Generate the set of SIDs for legal security contexts
2733 * for a given user that can be reached by @fromsid.
2734 * Set *@sids to point to a dynamically allocated
2735 * array containing the set of SIDs. Set *@nel to the
2736 * number of elements in the array.
2739 int security_get_user_sids(struct selinux_state *state,
2745 struct selinux_policy *policy;
2746 struct policydb *policydb;
2747 struct sidtab *sidtab;
2748 struct context *fromcon, usercon;
2749 u32 *mysids = NULL, *mysids2, sid;
2750 u32 i, j, mynel, maxnel = SIDS_NEL;
2751 struct user_datum *user;
2752 struct role_datum *role;
2753 struct ebitmap_node *rnode, *tnode;
2759 if (!selinux_initialized(state))
2762 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2769 policy = rcu_dereference(state->policy);
2770 policydb = &policy->policydb;
2771 sidtab = policy->sidtab;
2773 context_init(&usercon);
2776 fromcon = sidtab_search(sidtab, fromsid);
2781 user = symtab_search(&policydb->p_users, username);
2785 usercon.user = user->value;
2787 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2788 role = policydb->role_val_to_struct[i];
2789 usercon.role = i + 1;
2790 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2791 usercon.type = j + 1;
2793 if (mls_setup_user_range(policydb, fromcon, user,
2797 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2798 if (rc == -ESTALE) {
2804 if (mynel < maxnel) {
2805 mysids[mynel++] = sid;
2809 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2812 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2815 mysids[mynel++] = sid;
2828 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2833 for (i = 0, j = 0; i < mynel; i++) {
2834 struct av_decision dummy_avd;
2835 rc = avc_has_perm_noaudit(state,
2837 SECCLASS_PROCESS, /* kernel value */
2838 PROCESS__TRANSITION, AVC_STRICT,
2841 mysids2[j++] = mysids[i];
2851 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2853 * @fstype: filesystem type
2854 * @path: path from root of mount
2855 * @orig_sclass: file security class
2856 * @sid: SID for path
2858 * Obtain a SID to use for a file in a filesystem that
2859 * cannot support xattr or use a fixed labeling behavior like
2860 * transition SIDs or task SIDs.
2862 * WARNING: This function may return -ESTALE, indicating that the caller
2863 * must retry the operation after re-acquiring the policy pointer!
2865 static inline int __security_genfs_sid(struct selinux_policy *policy,
2871 struct policydb *policydb = &policy->policydb;
2872 struct sidtab *sidtab = policy->sidtab;
2875 struct genfs *genfs;
2879 while (path[0] == '/' && path[1] == '/')
2882 sclass = unmap_class(&policy->map, orig_sclass);
2883 *sid = SECINITSID_UNLABELED;
2885 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2886 cmp = strcmp(fstype, genfs->fstype);
2894 for (c = genfs->head; c; c = c->next) {
2895 len = strlen(c->u.name);
2896 if ((!c->v.sclass || sclass == c->v.sclass) &&
2897 (strncmp(c->u.name, path, len) == 0))
2904 return ocontext_to_sid(sidtab, c, 0, sid);
2908 * security_genfs_sid - Obtain a SID for a file in a filesystem
2909 * @state: SELinux state
2910 * @fstype: filesystem type
2911 * @path: path from root of mount
2912 * @orig_sclass: file security class
2913 * @sid: SID for path
2915 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2918 int security_genfs_sid(struct selinux_state *state,
2924 struct selinux_policy *policy;
2927 if (!selinux_initialized(state)) {
2928 *sid = SECINITSID_UNLABELED;
2934 policy = rcu_dereference(state->policy);
2935 retval = __security_genfs_sid(policy, fstype, path,
2938 } while (retval == -ESTALE);
2942 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2948 /* no lock required, policy is not yet accessible by other threads */
2949 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2953 * security_fs_use - Determine how to handle labeling for a filesystem.
2954 * @state: SELinux state
2955 * @sb: superblock in question
2957 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2959 struct selinux_policy *policy;
2960 struct policydb *policydb;
2961 struct sidtab *sidtab;
2964 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2965 const char *fstype = sb->s_type->name;
2967 if (!selinux_initialized(state)) {
2968 sbsec->behavior = SECURITY_FS_USE_NONE;
2969 sbsec->sid = SECINITSID_UNLABELED;
2975 policy = rcu_dereference(state->policy);
2976 policydb = &policy->policydb;
2977 sidtab = policy->sidtab;
2979 c = policydb->ocontexts[OCON_FSUSE];
2981 if (strcmp(fstype, c->u.name) == 0)
2987 sbsec->behavior = c->v.behavior;
2988 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2989 if (rc == -ESTALE) {
2996 rc = __security_genfs_sid(policy, fstype, "/",
2997 SECCLASS_DIR, &sbsec->sid);
2998 if (rc == -ESTALE) {
3003 sbsec->behavior = SECURITY_FS_USE_NONE;
3006 sbsec->behavior = SECURITY_FS_USE_GENFS;
3015 int security_get_bools(struct selinux_policy *policy,
3016 u32 *len, char ***names, int **values)
3018 struct policydb *policydb;
3022 policydb = &policy->policydb;
3028 *len = policydb->p_bools.nprim;
3033 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3038 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3042 for (i = 0; i < *len; i++) {
3043 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3046 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3056 for (i = 0; i < *len; i++)
3068 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3070 struct selinux_policy *newpolicy, *oldpolicy;
3074 if (!selinux_initialized(state))
3077 oldpolicy = rcu_dereference_protected(state->policy,
3078 lockdep_is_held(&state->policy_mutex));
3080 /* Consistency check on number of booleans, should never fail */
3081 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3084 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3089 * Deep copy only the parts of the policydb that might be
3090 * modified as a result of changing booleans.
3092 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3098 /* Update the boolean states in the copy */
3099 for (i = 0; i < len; i++) {
3100 int new_state = !!values[i];
3101 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3103 if (new_state != old_state) {
3104 audit_log(audit_context(), GFP_ATOMIC,
3105 AUDIT_MAC_CONFIG_CHANGE,
3106 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3107 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3110 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3111 audit_get_sessionid(current));
3112 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3116 /* Re-evaluate the conditional rules in the copy */
3117 evaluate_cond_nodes(&newpolicy->policydb);
3119 /* Set latest granting seqno for new policy */
3120 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3121 seqno = newpolicy->latest_granting;
3123 /* Install the new policy */
3124 rcu_assign_pointer(state->policy, newpolicy);
3127 * Free the conditional portions of the old policydb
3128 * that were copied for the new policy, and the oldpolicy
3129 * structure itself but not what it references.
3132 selinux_policy_cond_free(oldpolicy);
3134 /* Notify others of the policy change */
3135 selinux_notify_policy_change(state, seqno);
3139 int security_get_bool_value(struct selinux_state *state,
3142 struct selinux_policy *policy;
3143 struct policydb *policydb;
3147 if (!selinux_initialized(state))
3151 policy = rcu_dereference(state->policy);
3152 policydb = &policy->policydb;
3155 len = policydb->p_bools.nprim;
3159 rc = policydb->bool_val_to_struct[index]->state;
3165 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3166 struct selinux_policy *newpolicy)
3168 int rc, *bvalues = NULL;
3169 char **bnames = NULL;
3170 struct cond_bool_datum *booldatum;
3173 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3176 for (i = 0; i < nbools; i++) {
3177 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3180 booldatum->state = bvalues[i];
3182 evaluate_cond_nodes(&newpolicy->policydb);
3186 for (i = 0; i < nbools; i++)
3195 * security_sid_mls_copy() - computes a new sid based on the given
3196 * sid and the mls portion of mls_sid.
3198 int security_sid_mls_copy(struct selinux_state *state,
3199 u32 sid, u32 mls_sid, u32 *new_sid)
3201 struct selinux_policy *policy;
3202 struct policydb *policydb;
3203 struct sidtab *sidtab;
3204 struct context *context1;
3205 struct context *context2;
3206 struct context newcon;
3211 if (!selinux_initialized(state)) {
3218 context_init(&newcon);
3221 policy = rcu_dereference(state->policy);
3222 policydb = &policy->policydb;
3223 sidtab = policy->sidtab;
3225 if (!policydb->mls_enabled) {
3231 context1 = sidtab_search(sidtab, sid);
3233 pr_err("SELinux: %s: unrecognized SID %d\n",
3239 context2 = sidtab_search(sidtab, mls_sid);
3241 pr_err("SELinux: %s: unrecognized SID %d\n",
3246 newcon.user = context1->user;
3247 newcon.role = context1->role;
3248 newcon.type = context1->type;
3249 rc = mls_context_cpy(&newcon, context2);
3253 /* Check the validity of the new context. */
3254 if (!policydb_context_isvalid(policydb, &newcon)) {
3255 rc = convert_context_handle_invalid_context(state, policydb,
3258 if (!context_struct_to_string(policydb, &newcon, &s,
3260 struct audit_buffer *ab;
3262 ab = audit_log_start(audit_context(),
3265 audit_log_format(ab,
3266 "op=security_sid_mls_copy invalid_context=");
3267 /* don't record NUL with untrusted strings */
3268 audit_log_n_untrustedstring(ab, s, len - 1);
3275 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3276 if (rc == -ESTALE) {
3278 context_destroy(&newcon);
3283 context_destroy(&newcon);
3288 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3289 * @state: SELinux state
3290 * @nlbl_sid: NetLabel SID
3291 * @nlbl_type: NetLabel labeling protocol type
3292 * @xfrm_sid: XFRM SID
3293 * @peer_sid: network peer sid
3296 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3297 * resolved into a single SID it is returned via @peer_sid and the function
3298 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3299 * returns a negative value. A table summarizing the behavior is below:
3301 * | function return | @sid
3302 * ------------------------------+-----------------+-----------------
3303 * no peer labels | 0 | SECSID_NULL
3304 * single peer label | 0 | <peer_label>
3305 * multiple, consistent labels | 0 | <peer_label>
3306 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3309 int security_net_peersid_resolve(struct selinux_state *state,
3310 u32 nlbl_sid, u32 nlbl_type,
3314 struct selinux_policy *policy;
3315 struct policydb *policydb;
3316 struct sidtab *sidtab;
3318 struct context *nlbl_ctx;
3319 struct context *xfrm_ctx;
3321 *peer_sid = SECSID_NULL;
3323 /* handle the common (which also happens to be the set of easy) cases
3324 * right away, these two if statements catch everything involving a
3325 * single or absent peer SID/label */
3326 if (xfrm_sid == SECSID_NULL) {
3327 *peer_sid = nlbl_sid;
3330 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3331 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3333 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3334 *peer_sid = xfrm_sid;
3338 if (!selinux_initialized(state))
3342 policy = rcu_dereference(state->policy);
3343 policydb = &policy->policydb;
3344 sidtab = policy->sidtab;
3347 * We don't need to check initialized here since the only way both
3348 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3349 * security server was initialized and state->initialized was true.
3351 if (!policydb->mls_enabled) {
3357 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3359 pr_err("SELinux: %s: unrecognized SID %d\n",
3360 __func__, nlbl_sid);
3364 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3366 pr_err("SELinux: %s: unrecognized SID %d\n",
3367 __func__, xfrm_sid);
3370 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3374 /* at present NetLabel SIDs/labels really only carry MLS
3375 * information so if the MLS portion of the NetLabel SID
3376 * matches the MLS portion of the labeled XFRM SID/label
3377 * then pass along the XFRM SID as it is the most
3379 *peer_sid = xfrm_sid;
3385 static int get_classes_callback(void *k, void *d, void *args)
3387 struct class_datum *datum = d;
3388 char *name = k, **classes = args;
3389 int value = datum->value - 1;
3391 classes[value] = kstrdup(name, GFP_ATOMIC);
3392 if (!classes[value])
3398 int security_get_classes(struct selinux_policy *policy,
3399 char ***classes, int *nclasses)
3401 struct policydb *policydb;
3404 policydb = &policy->policydb;
3407 *nclasses = policydb->p_classes.nprim;
3408 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3412 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3416 for (i = 0; i < *nclasses; i++)
3417 kfree((*classes)[i]);
3425 static int get_permissions_callback(void *k, void *d, void *args)
3427 struct perm_datum *datum = d;
3428 char *name = k, **perms = args;
3429 int value = datum->value - 1;
3431 perms[value] = kstrdup(name, GFP_ATOMIC);
3438 int security_get_permissions(struct selinux_policy *policy,
3439 char *class, char ***perms, int *nperms)
3441 struct policydb *policydb;
3443 struct class_datum *match;
3445 policydb = &policy->policydb;
3448 match = symtab_search(&policydb->p_classes, class);
3450 pr_err("SELinux: %s: unrecognized class %s\n",
3456 *nperms = match->permissions.nprim;
3457 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3461 if (match->comdatum) {
3462 rc = hashtab_map(&match->comdatum->permissions.table,
3463 get_permissions_callback, *perms);
3468 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3477 for (i = 0; i < *nperms; i++)
3483 int security_get_reject_unknown(struct selinux_state *state)
3485 struct selinux_policy *policy;
3488 if (!selinux_initialized(state))
3492 policy = rcu_dereference(state->policy);
3493 value = policy->policydb.reject_unknown;
3498 int security_get_allow_unknown(struct selinux_state *state)
3500 struct selinux_policy *policy;
3503 if (!selinux_initialized(state))
3507 policy = rcu_dereference(state->policy);
3508 value = policy->policydb.allow_unknown;
3514 * security_policycap_supported - Check for a specific policy capability
3515 * @state: SELinux state
3516 * @req_cap: capability
3519 * This function queries the currently loaded policy to see if it supports the
3520 * capability specified by @req_cap. Returns true (1) if the capability is
3521 * supported, false (0) if it isn't supported.
3524 int security_policycap_supported(struct selinux_state *state,
3525 unsigned int req_cap)
3527 struct selinux_policy *policy;
3530 if (!selinux_initialized(state))
3534 policy = rcu_dereference(state->policy);
3535 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3541 struct selinux_audit_rule {
3543 struct context au_ctxt;
3546 void selinux_audit_rule_free(void *vrule)
3548 struct selinux_audit_rule *rule = vrule;
3551 context_destroy(&rule->au_ctxt);
3556 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3558 struct selinux_state *state = &selinux_state;
3559 struct selinux_policy *policy;
3560 struct policydb *policydb;
3561 struct selinux_audit_rule *tmprule;
3562 struct role_datum *roledatum;
3563 struct type_datum *typedatum;
3564 struct user_datum *userdatum;
3565 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3570 if (!selinux_initialized(state))
3574 case AUDIT_SUBJ_USER:
3575 case AUDIT_SUBJ_ROLE:
3576 case AUDIT_SUBJ_TYPE:
3577 case AUDIT_OBJ_USER:
3578 case AUDIT_OBJ_ROLE:
3579 case AUDIT_OBJ_TYPE:
3580 /* only 'equals' and 'not equals' fit user, role, and type */
3581 if (op != Audit_equal && op != Audit_not_equal)
3584 case AUDIT_SUBJ_SEN:
3585 case AUDIT_SUBJ_CLR:
3586 case AUDIT_OBJ_LEV_LOW:
3587 case AUDIT_OBJ_LEV_HIGH:
3588 /* we do not allow a range, indicated by the presence of '-' */
3589 if (strchr(rulestr, '-'))
3593 /* only the above fields are valid */
3597 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3601 context_init(&tmprule->au_ctxt);
3604 policy = rcu_dereference(state->policy);
3605 policydb = &policy->policydb;
3607 tmprule->au_seqno = policy->latest_granting;
3610 case AUDIT_SUBJ_USER:
3611 case AUDIT_OBJ_USER:
3613 userdatum = symtab_search(&policydb->p_users, rulestr);
3616 tmprule->au_ctxt.user = userdatum->value;
3618 case AUDIT_SUBJ_ROLE:
3619 case AUDIT_OBJ_ROLE:
3621 roledatum = symtab_search(&policydb->p_roles, rulestr);
3624 tmprule->au_ctxt.role = roledatum->value;
3626 case AUDIT_SUBJ_TYPE:
3627 case AUDIT_OBJ_TYPE:
3629 typedatum = symtab_search(&policydb->p_types, rulestr);
3632 tmprule->au_ctxt.type = typedatum->value;
3634 case AUDIT_SUBJ_SEN:
3635 case AUDIT_SUBJ_CLR:
3636 case AUDIT_OBJ_LEV_LOW:
3637 case AUDIT_OBJ_LEV_HIGH:
3638 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3649 selinux_audit_rule_free(tmprule);
3658 /* Check to see if the rule contains any selinux fields */
3659 int selinux_audit_rule_known(struct audit_krule *rule)
3663 for (i = 0; i < rule->field_count; i++) {
3664 struct audit_field *f = &rule->fields[i];
3666 case AUDIT_SUBJ_USER:
3667 case AUDIT_SUBJ_ROLE:
3668 case AUDIT_SUBJ_TYPE:
3669 case AUDIT_SUBJ_SEN:
3670 case AUDIT_SUBJ_CLR:
3671 case AUDIT_OBJ_USER:
3672 case AUDIT_OBJ_ROLE:
3673 case AUDIT_OBJ_TYPE:
3674 case AUDIT_OBJ_LEV_LOW:
3675 case AUDIT_OBJ_LEV_HIGH:
3683 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3685 struct selinux_state *state = &selinux_state;
3686 struct selinux_policy *policy;
3687 struct context *ctxt;
3688 struct mls_level *level;
3689 struct selinux_audit_rule *rule = vrule;
3692 if (unlikely(!rule)) {
3693 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3697 if (!selinux_initialized(state))
3702 policy = rcu_dereference(state->policy);
3704 if (rule->au_seqno < policy->latest_granting) {
3709 ctxt = sidtab_search(policy->sidtab, sid);
3710 if (unlikely(!ctxt)) {
3711 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3717 /* a field/op pair that is not caught here will simply fall through
3720 case AUDIT_SUBJ_USER:
3721 case AUDIT_OBJ_USER:
3724 match = (ctxt->user == rule->au_ctxt.user);
3726 case Audit_not_equal:
3727 match = (ctxt->user != rule->au_ctxt.user);
3731 case AUDIT_SUBJ_ROLE:
3732 case AUDIT_OBJ_ROLE:
3735 match = (ctxt->role == rule->au_ctxt.role);
3737 case Audit_not_equal:
3738 match = (ctxt->role != rule->au_ctxt.role);
3742 case AUDIT_SUBJ_TYPE:
3743 case AUDIT_OBJ_TYPE:
3746 match = (ctxt->type == rule->au_ctxt.type);
3748 case Audit_not_equal:
3749 match = (ctxt->type != rule->au_ctxt.type);
3753 case AUDIT_SUBJ_SEN:
3754 case AUDIT_SUBJ_CLR:
3755 case AUDIT_OBJ_LEV_LOW:
3756 case AUDIT_OBJ_LEV_HIGH:
3757 level = ((field == AUDIT_SUBJ_SEN ||
3758 field == AUDIT_OBJ_LEV_LOW) ?
3759 &ctxt->range.level[0] : &ctxt->range.level[1]);
3762 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3765 case Audit_not_equal:
3766 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3770 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3772 !mls_level_eq(&rule->au_ctxt.range.level[0],
3776 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3780 match = (mls_level_dom(level,
3781 &rule->au_ctxt.range.level[0]) &&
3782 !mls_level_eq(level,
3783 &rule->au_ctxt.range.level[0]));
3786 match = mls_level_dom(level,
3787 &rule->au_ctxt.range.level[0]);
3797 static int aurule_avc_callback(u32 event)
3799 if (event == AVC_CALLBACK_RESET)
3800 return audit_update_lsm_rules();
3804 static int __init aurule_init(void)
3808 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3810 panic("avc_add_callback() failed, error %d\n", err);
3814 __initcall(aurule_init);
3816 #ifdef CONFIG_NETLABEL
3818 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3819 * @secattr: the NetLabel packet security attributes
3820 * @sid: the SELinux SID
3823 * Attempt to cache the context in @ctx, which was derived from the packet in
3824 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3825 * already been initialized.
3828 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3833 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3834 if (sid_cache == NULL)
3836 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3837 if (secattr->cache == NULL) {
3843 secattr->cache->free = kfree;
3844 secattr->cache->data = sid_cache;
3845 secattr->flags |= NETLBL_SECATTR_CACHE;
3849 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3850 * @state: SELinux state
3851 * @secattr: the NetLabel packet security attributes
3852 * @sid: the SELinux SID
3855 * Convert the given NetLabel security attributes in @secattr into a
3856 * SELinux SID. If the @secattr field does not contain a full SELinux
3857 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3858 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3859 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3860 * conversion for future lookups. Returns zero on success, negative values on
3864 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3865 struct netlbl_lsm_secattr *secattr,
3868 struct selinux_policy *policy;
3869 struct policydb *policydb;
3870 struct sidtab *sidtab;
3872 struct context *ctx;
3873 struct context ctx_new;
3875 if (!selinux_initialized(state)) {
3883 policy = rcu_dereference(state->policy);
3884 policydb = &policy->policydb;
3885 sidtab = policy->sidtab;
3887 if (secattr->flags & NETLBL_SECATTR_CACHE)
3888 *sid = *(u32 *)secattr->cache->data;
3889 else if (secattr->flags & NETLBL_SECATTR_SECID)
3890 *sid = secattr->attr.secid;
3891 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3893 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3897 context_init(&ctx_new);
3898 ctx_new.user = ctx->user;
3899 ctx_new.role = ctx->role;
3900 ctx_new.type = ctx->type;
3901 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3902 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3903 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3908 if (!mls_context_isvalid(policydb, &ctx_new)) {
3909 ebitmap_destroy(&ctx_new.range.level[0].cat);
3913 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3914 ebitmap_destroy(&ctx_new.range.level[0].cat);
3915 if (rc == -ESTALE) {
3922 security_netlbl_cache_add(secattr, *sid);
3932 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3933 * @state: SELinux state
3934 * @sid: the SELinux SID
3935 * @secattr: the NetLabel packet security attributes
3938 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3939 * Returns zero on success, negative values on failure.
3942 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3943 u32 sid, struct netlbl_lsm_secattr *secattr)
3945 struct selinux_policy *policy;
3946 struct policydb *policydb;
3948 struct context *ctx;
3950 if (!selinux_initialized(state))
3954 policy = rcu_dereference(state->policy);
3955 policydb = &policy->policydb;
3958 ctx = sidtab_search(policy->sidtab, sid);
3963 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3965 if (secattr->domain == NULL)
3968 secattr->attr.secid = sid;
3969 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3970 mls_export_netlbl_lvl(policydb, ctx, secattr);
3971 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3976 #endif /* CONFIG_NETLABEL */
3979 * __security_read_policy - read the policy.
3980 * @policy: SELinux policy
3981 * @data: binary policy data
3982 * @len: length of data in bytes
3985 static int __security_read_policy(struct selinux_policy *policy,
3986 void *data, size_t *len)
3989 struct policy_file fp;
3994 rc = policydb_write(&policy->policydb, &fp);
3998 *len = (unsigned long)fp.data - (unsigned long)data;
4003 * security_read_policy - read the policy.
4004 * @state: selinux_state
4005 * @data: binary policy data
4006 * @len: length of data in bytes
4009 int security_read_policy(struct selinux_state *state,
4010 void **data, size_t *len)
4012 struct selinux_policy *policy;
4014 policy = rcu_dereference_protected(
4015 state->policy, lockdep_is_held(&state->policy_mutex));
4019 *len = policy->policydb.len;
4020 *data = vmalloc_user(*len);
4024 return __security_read_policy(policy, *data, len);
4028 * security_read_state_kernel - read the policy.
4029 * @state: selinux_state
4030 * @data: binary policy data
4031 * @len: length of data in bytes
4033 * Allocates kernel memory for reading SELinux policy.
4034 * This function is for internal use only and should not
4035 * be used for returning data to user space.
4037 * This function must be called with policy_mutex held.
4039 int security_read_state_kernel(struct selinux_state *state,
4040 void **data, size_t *len)
4043 struct selinux_policy *policy;
4045 policy = rcu_dereference_protected(
4046 state->policy, lockdep_is_held(&state->policy_mutex));
4050 *len = policy->policydb.len;
4051 *data = vmalloc(*len);
4055 err = __security_read_policy(policy, *data, len);