2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
53 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
98 #define NUM_SEL_MNT_OPTS 5
100 extern struct security_operations *security_ops;
102 /* SECMARK reference count */
103 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
105 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
106 int selinux_enforcing;
108 static int __init enforcing_setup(char *str)
110 unsigned long enforcing;
111 if (!strict_strtoul(str, 0, &enforcing))
112 selinux_enforcing = enforcing ? 1 : 0;
115 __setup("enforcing=", enforcing_setup);
118 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
119 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
121 static int __init selinux_enabled_setup(char *str)
123 unsigned long enabled;
124 if (!strict_strtoul(str, 0, &enabled))
125 selinux_enabled = enabled ? 1 : 0;
128 __setup("selinux=", selinux_enabled_setup);
130 int selinux_enabled = 1;
133 static struct kmem_cache *sel_inode_cache;
136 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
139 * This function checks the SECMARK reference counter to see if any SECMARK
140 * targets are currently configured, if the reference counter is greater than
141 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
142 * enabled, false (0) if SECMARK is disabled.
145 static int selinux_secmark_enabled(void)
147 return (atomic_read(&selinux_secmark_refcount) > 0);
151 * initialise the security for the init task
153 static void cred_init_security(void)
155 struct cred *cred = (struct cred *) current->real_cred;
156 struct task_security_struct *tsec;
158 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
160 panic("SELinux: Failed to initialize initial task.\n");
162 tsec->osid = tsec->sid = SECINITSID_KERNEL;
163 cred->security = tsec;
167 * get the security ID of a set of credentials
169 static inline u32 cred_sid(const struct cred *cred)
171 const struct task_security_struct *tsec;
173 tsec = cred->security;
178 * get the objective security ID of a task
180 static inline u32 task_sid(const struct task_struct *task)
185 sid = cred_sid(__task_cred(task));
191 * get the subjective security ID of the current task
193 static inline u32 current_sid(void)
195 const struct task_security_struct *tsec = current_security();
200 /* Allocate and free functions for each kind of security blob. */
202 static int inode_alloc_security(struct inode *inode)
204 struct inode_security_struct *isec;
205 u32 sid = current_sid();
207 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
211 mutex_init(&isec->lock);
212 INIT_LIST_HEAD(&isec->list);
214 isec->sid = SECINITSID_UNLABELED;
215 isec->sclass = SECCLASS_FILE;
216 isec->task_sid = sid;
217 inode->i_security = isec;
222 static void inode_free_security(struct inode *inode)
224 struct inode_security_struct *isec = inode->i_security;
225 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
227 spin_lock(&sbsec->isec_lock);
228 if (!list_empty(&isec->list))
229 list_del_init(&isec->list);
230 spin_unlock(&sbsec->isec_lock);
232 inode->i_security = NULL;
233 kmem_cache_free(sel_inode_cache, isec);
236 static int file_alloc_security(struct file *file)
238 struct file_security_struct *fsec;
239 u32 sid = current_sid();
241 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
246 fsec->fown_sid = sid;
247 file->f_security = fsec;
252 static void file_free_security(struct file *file)
254 struct file_security_struct *fsec = file->f_security;
255 file->f_security = NULL;
259 static int superblock_alloc_security(struct super_block *sb)
261 struct superblock_security_struct *sbsec;
263 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
267 mutex_init(&sbsec->lock);
268 INIT_LIST_HEAD(&sbsec->isec_head);
269 spin_lock_init(&sbsec->isec_lock);
271 sbsec->sid = SECINITSID_UNLABELED;
272 sbsec->def_sid = SECINITSID_FILE;
273 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
274 sb->s_security = sbsec;
279 static void superblock_free_security(struct super_block *sb)
281 struct superblock_security_struct *sbsec = sb->s_security;
282 sb->s_security = NULL;
286 /* The file system's label must be initialized prior to use. */
288 static const char *labeling_behaviors[6] = {
290 "uses transition SIDs",
292 "uses genfs_contexts",
293 "not configured for labeling",
294 "uses mountpoint labeling",
297 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
299 static inline int inode_doinit(struct inode *inode)
301 return inode_doinit_with_dentry(inode, NULL);
310 Opt_labelsupport = 5,
313 static const match_table_t tokens = {
314 {Opt_context, CONTEXT_STR "%s"},
315 {Opt_fscontext, FSCONTEXT_STR "%s"},
316 {Opt_defcontext, DEFCONTEXT_STR "%s"},
317 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
318 {Opt_labelsupport, LABELSUPP_STR},
322 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
324 static int may_context_mount_sb_relabel(u32 sid,
325 struct superblock_security_struct *sbsec,
326 const struct cred *cred)
328 const struct task_security_struct *tsec = cred->security;
331 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
332 FILESYSTEM__RELABELFROM, NULL);
336 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
337 FILESYSTEM__RELABELTO, NULL);
341 static int may_context_mount_inode_relabel(u32 sid,
342 struct superblock_security_struct *sbsec,
343 const struct cred *cred)
345 const struct task_security_struct *tsec = cred->security;
347 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELFROM, NULL);
352 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
353 FILESYSTEM__ASSOCIATE, NULL);
357 static int sb_finish_set_opts(struct super_block *sb)
359 struct superblock_security_struct *sbsec = sb->s_security;
360 struct dentry *root = sb->s_root;
361 struct inode *root_inode = root->d_inode;
364 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
365 /* Make sure that the xattr handler exists and that no
366 error other than -ENODATA is returned by getxattr on
367 the root directory. -ENODATA is ok, as this may be
368 the first boot of the SELinux kernel before we have
369 assigned xattr values to the filesystem. */
370 if (!root_inode->i_op->getxattr) {
371 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
372 "xattr support\n", sb->s_id, sb->s_type->name);
376 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
377 if (rc < 0 && rc != -ENODATA) {
378 if (rc == -EOPNOTSUPP)
379 printk(KERN_WARNING "SELinux: (dev %s, type "
380 "%s) has no security xattr handler\n",
381 sb->s_id, sb->s_type->name);
383 printk(KERN_WARNING "SELinux: (dev %s, type "
384 "%s) getxattr errno %d\n", sb->s_id,
385 sb->s_type->name, -rc);
390 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
392 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
393 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
394 sb->s_id, sb->s_type->name);
396 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
397 sb->s_id, sb->s_type->name,
398 labeling_behaviors[sbsec->behavior-1]);
400 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
401 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
402 sbsec->behavior == SECURITY_FS_USE_NONE ||
403 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404 sbsec->flags &= ~SE_SBLABELSUPP;
406 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
407 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
408 sbsec->flags |= SE_SBLABELSUPP;
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
417 spin_lock(&sbsec->isec_lock);
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
427 if (!IS_PRIVATE(inode))
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
435 spin_unlock(&sbsec->isec_lock);
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
445 static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
454 security_init_mnt_opts(opts);
456 if (!(sbsec->flags & SE_SBINITIALIZED))
462 tmp = sbsec->flags & SE_MNTMASK;
463 /* count the number of mount options for this sb */
464 for (i = 0; i < 8; i++) {
466 opts->num_mnt_opts++;
469 /* Check if the Label support flag is set */
470 if (sbsec->flags & SE_SBLABELSUPP)
471 opts->num_mnt_opts++;
473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474 if (!opts->mnt_opts) {
479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480 if (!opts->mnt_opts_flags) {
486 if (sbsec->flags & FSCONTEXT_MNT) {
487 rc = security_sid_to_context(sbsec->sid, &context, &len);
490 opts->mnt_opts[i] = context;
491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
493 if (sbsec->flags & CONTEXT_MNT) {
494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
497 opts->mnt_opts[i] = context;
498 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
500 if (sbsec->flags & DEFCONTEXT_MNT) {
501 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
504 opts->mnt_opts[i] = context;
505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
507 if (sbsec->flags & ROOTCONTEXT_MNT) {
508 struct inode *root = sbsec->sb->s_root->d_inode;
509 struct inode_security_struct *isec = root->i_security;
511 rc = security_sid_to_context(isec->sid, &context, &len);
514 opts->mnt_opts[i] = context;
515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
517 if (sbsec->flags & SE_SBLABELSUPP) {
518 opts->mnt_opts[i] = NULL;
519 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
522 BUG_ON(i != opts->num_mnt_opts);
527 security_free_mnt_opts(opts);
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532 u32 old_sid, u32 new_sid)
534 char mnt_flags = sbsec->flags & SE_MNTMASK;
536 /* check if the old mount command had the same options */
537 if (sbsec->flags & SE_SBINITIALIZED)
538 if (!(sbsec->flags & flag) ||
539 (old_sid != new_sid))
542 /* check if we were passed the same options twice,
543 * aka someone passed context=a,context=b
545 if (!(sbsec->flags & SE_SBINITIALIZED))
546 if (mnt_flags & flag)
552 * Allow filesystems with binary mount data to explicitly set mount point
553 * labeling information.
555 static int selinux_set_mnt_opts(struct super_block *sb,
556 struct security_mnt_opts *opts)
558 const struct cred *cred = current_cred();
560 struct superblock_security_struct *sbsec = sb->s_security;
561 const char *name = sb->s_type->name;
562 struct inode *inode = sbsec->sb->s_root->d_inode;
563 struct inode_security_struct *root_isec = inode->i_security;
564 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
565 u32 defcontext_sid = 0;
566 char **mount_options = opts->mnt_opts;
567 int *flags = opts->mnt_opts_flags;
568 int num_opts = opts->num_mnt_opts;
570 mutex_lock(&sbsec->lock);
572 if (!ss_initialized) {
574 /* Defer initialization until selinux_complete_init,
575 after the initial policy is loaded and the security
576 server is ready to handle calls. */
580 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581 "before the security server is initialized\n");
586 * Binary mount data FS will come through this function twice. Once
587 * from an explicit call and once from the generic calls from the vfs.
588 * Since the generic VFS calls will not contain any security mount data
589 * we need to skip the double mount verification.
591 * This does open a hole in which we will not notice if the first
592 * mount using this sb set explict options and a second mount using
593 * this sb does not set any security options. (The first options
594 * will be used for both mounts)
596 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
601 * parse the mount options, check if they are valid sids.
602 * also check if someone is trying to mount the same sb more
603 * than once with different security options.
605 for (i = 0; i < num_opts; i++) {
608 if (flags[i] == SE_SBLABELSUPP)
610 rc = security_context_to_sid(mount_options[i],
611 strlen(mount_options[i]), &sid);
613 printk(KERN_WARNING "SELinux: security_context_to_sid"
614 "(%s) failed for (dev %s, type %s) errno=%d\n",
615 mount_options[i], sb->s_id, name, rc);
622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
624 goto out_double_mount;
626 sbsec->flags |= FSCONTEXT_MNT;
631 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
633 goto out_double_mount;
635 sbsec->flags |= CONTEXT_MNT;
637 case ROOTCONTEXT_MNT:
638 rootcontext_sid = sid;
640 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
642 goto out_double_mount;
644 sbsec->flags |= ROOTCONTEXT_MNT;
648 defcontext_sid = sid;
650 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
652 goto out_double_mount;
654 sbsec->flags |= DEFCONTEXT_MNT;
663 if (sbsec->flags & SE_SBINITIALIZED) {
664 /* previously mounted with options, but not on this attempt? */
665 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
666 goto out_double_mount;
671 if (strcmp(sb->s_type->name, "proc") == 0)
672 sbsec->flags |= SE_SBPROC;
674 /* Determine the labeling behavior to use for this filesystem type. */
675 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
677 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
678 __func__, sb->s_type->name, rc);
682 /* sets the context of the superblock for the fs being mounted. */
684 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
688 sbsec->sid = fscontext_sid;
692 * Switch to using mount point labeling behavior.
693 * sets the label used on all file below the mountpoint, and will set
694 * the superblock context if not already set.
697 if (!fscontext_sid) {
698 rc = may_context_mount_sb_relabel(context_sid, sbsec,
702 sbsec->sid = context_sid;
704 rc = may_context_mount_inode_relabel(context_sid, sbsec,
709 if (!rootcontext_sid)
710 rootcontext_sid = context_sid;
712 sbsec->mntpoint_sid = context_sid;
713 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
716 if (rootcontext_sid) {
717 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
722 root_isec->sid = rootcontext_sid;
723 root_isec->initialized = 1;
726 if (defcontext_sid) {
727 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
729 printk(KERN_WARNING "SELinux: defcontext option is "
730 "invalid for this filesystem type\n");
734 if (defcontext_sid != sbsec->def_sid) {
735 rc = may_context_mount_inode_relabel(defcontext_sid,
741 sbsec->def_sid = defcontext_sid;
744 rc = sb_finish_set_opts(sb);
746 mutex_unlock(&sbsec->lock);
750 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
751 "security settings for (dev %s, type %s)\n", sb->s_id, name);
755 static int selinux_cmp_sb_context(const struct super_block *oldsb,
756 const struct super_block *newsb)
758 struct superblock_security_struct *old = oldsb->s_security;
759 struct superblock_security_struct *new = newsb->s_security;
760 char oldflags = old->flags & SE_MNTMASK;
761 char newflags = new->flags & SE_MNTMASK;
763 if (oldflags != newflags)
765 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
767 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
769 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
771 if (oldflags & ROOTCONTEXT_MNT) {
772 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
773 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
774 if (oldroot->sid != newroot->sid)
779 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
780 "different security settings for (dev %s, "
781 "type %s)\n", newsb->s_id, newsb->s_type->name);
785 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
786 struct super_block *newsb)
788 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
789 struct superblock_security_struct *newsbsec = newsb->s_security;
791 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
792 int set_context = (oldsbsec->flags & CONTEXT_MNT);
793 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
796 * if the parent was able to be mounted it clearly had no special lsm
797 * mount options. thus we can safely deal with this superblock later
802 /* how can we clone if the old one wasn't set up?? */
803 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
805 /* if fs is reusing a sb, make sure that the contexts match */
806 if (newsbsec->flags & SE_SBINITIALIZED)
807 return selinux_cmp_sb_context(oldsb, newsb);
809 mutex_lock(&newsbsec->lock);
811 newsbsec->flags = oldsbsec->flags;
813 newsbsec->sid = oldsbsec->sid;
814 newsbsec->def_sid = oldsbsec->def_sid;
815 newsbsec->behavior = oldsbsec->behavior;
818 u32 sid = oldsbsec->mntpoint_sid;
822 if (!set_rootcontext) {
823 struct inode *newinode = newsb->s_root->d_inode;
824 struct inode_security_struct *newisec = newinode->i_security;
827 newsbsec->mntpoint_sid = sid;
829 if (set_rootcontext) {
830 const struct inode *oldinode = oldsb->s_root->d_inode;
831 const struct inode_security_struct *oldisec = oldinode->i_security;
832 struct inode *newinode = newsb->s_root->d_inode;
833 struct inode_security_struct *newisec = newinode->i_security;
835 newisec->sid = oldisec->sid;
838 sb_finish_set_opts(newsb);
839 mutex_unlock(&newsbsec->lock);
843 static int selinux_parse_opts_str(char *options,
844 struct security_mnt_opts *opts)
847 char *context = NULL, *defcontext = NULL;
848 char *fscontext = NULL, *rootcontext = NULL;
849 int rc, num_mnt_opts = 0;
851 opts->num_mnt_opts = 0;
853 /* Standard string-based options. */
854 while ((p = strsep(&options, "|")) != NULL) {
856 substring_t args[MAX_OPT_ARGS];
861 token = match_token(p, tokens, args);
865 if (context || defcontext) {
867 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
870 context = match_strdup(&args[0]);
880 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
883 fscontext = match_strdup(&args[0]);
890 case Opt_rootcontext:
893 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
896 rootcontext = match_strdup(&args[0]);
904 if (context || defcontext) {
906 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
909 defcontext = match_strdup(&args[0]);
915 case Opt_labelsupport:
919 printk(KERN_WARNING "SELinux: unknown mount option\n");
926 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
930 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
931 if (!opts->mnt_opts_flags) {
932 kfree(opts->mnt_opts);
937 opts->mnt_opts[num_mnt_opts] = fscontext;
938 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
941 opts->mnt_opts[num_mnt_opts] = context;
942 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
945 opts->mnt_opts[num_mnt_opts] = rootcontext;
946 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
949 opts->mnt_opts[num_mnt_opts] = defcontext;
950 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
953 opts->num_mnt_opts = num_mnt_opts;
964 * string mount options parsing and call set the sbsec
966 static int superblock_doinit(struct super_block *sb, void *data)
969 char *options = data;
970 struct security_mnt_opts opts;
972 security_init_mnt_opts(&opts);
977 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
979 rc = selinux_parse_opts_str(options, &opts);
984 rc = selinux_set_mnt_opts(sb, &opts);
987 security_free_mnt_opts(&opts);
991 static void selinux_write_opts(struct seq_file *m,
992 struct security_mnt_opts *opts)
997 for (i = 0; i < opts->num_mnt_opts; i++) {
1000 if (opts->mnt_opts[i])
1001 has_comma = strchr(opts->mnt_opts[i], ',');
1005 switch (opts->mnt_opts_flags[i]) {
1007 prefix = CONTEXT_STR;
1010 prefix = FSCONTEXT_STR;
1012 case ROOTCONTEXT_MNT:
1013 prefix = ROOTCONTEXT_STR;
1015 case DEFCONTEXT_MNT:
1016 prefix = DEFCONTEXT_STR;
1018 case SE_SBLABELSUPP:
1020 seq_puts(m, LABELSUPP_STR);
1026 /* we need a comma before each option */
1028 seq_puts(m, prefix);
1031 seq_puts(m, opts->mnt_opts[i]);
1037 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1039 struct security_mnt_opts opts;
1042 rc = selinux_get_mnt_opts(sb, &opts);
1044 /* before policy load we may get EINVAL, don't show anything */
1050 selinux_write_opts(m, &opts);
1052 security_free_mnt_opts(&opts);
1057 static inline u16 inode_mode_to_security_class(umode_t mode)
1059 switch (mode & S_IFMT) {
1061 return SECCLASS_SOCK_FILE;
1063 return SECCLASS_LNK_FILE;
1065 return SECCLASS_FILE;
1067 return SECCLASS_BLK_FILE;
1069 return SECCLASS_DIR;
1071 return SECCLASS_CHR_FILE;
1073 return SECCLASS_FIFO_FILE;
1077 return SECCLASS_FILE;
1080 static inline int default_protocol_stream(int protocol)
1082 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1085 static inline int default_protocol_dgram(int protocol)
1087 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1090 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1096 case SOCK_SEQPACKET:
1097 return SECCLASS_UNIX_STREAM_SOCKET;
1099 return SECCLASS_UNIX_DGRAM_SOCKET;
1106 if (default_protocol_stream(protocol))
1107 return SECCLASS_TCP_SOCKET;
1109 return SECCLASS_RAWIP_SOCKET;
1111 if (default_protocol_dgram(protocol))
1112 return SECCLASS_UDP_SOCKET;
1114 return SECCLASS_RAWIP_SOCKET;
1116 return SECCLASS_DCCP_SOCKET;
1118 return SECCLASS_RAWIP_SOCKET;
1124 return SECCLASS_NETLINK_ROUTE_SOCKET;
1125 case NETLINK_FIREWALL:
1126 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1127 case NETLINK_SOCK_DIAG:
1128 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1130 return SECCLASS_NETLINK_NFLOG_SOCKET;
1132 return SECCLASS_NETLINK_XFRM_SOCKET;
1133 case NETLINK_SELINUX:
1134 return SECCLASS_NETLINK_SELINUX_SOCKET;
1136 return SECCLASS_NETLINK_AUDIT_SOCKET;
1137 case NETLINK_IP6_FW:
1138 return SECCLASS_NETLINK_IP6FW_SOCKET;
1139 case NETLINK_DNRTMSG:
1140 return SECCLASS_NETLINK_DNRT_SOCKET;
1141 case NETLINK_KOBJECT_UEVENT:
1142 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1144 return SECCLASS_NETLINK_SOCKET;
1147 return SECCLASS_PACKET_SOCKET;
1149 return SECCLASS_KEY_SOCKET;
1151 return SECCLASS_APPLETALK_SOCKET;
1154 return SECCLASS_SOCKET;
1157 #ifdef CONFIG_PROC_FS
1158 static int selinux_proc_get_sid(struct dentry *dentry,
1163 char *buffer, *path;
1165 buffer = (char *)__get_free_page(GFP_KERNEL);
1169 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1173 /* each process gets a /proc/PID/ entry. Strip off the
1174 * PID part to get a valid selinux labeling.
1175 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1176 while (path[1] >= '0' && path[1] <= '9') {
1180 rc = security_genfs_sid("proc", path, tclass, sid);
1182 free_page((unsigned long)buffer);
1186 static int selinux_proc_get_sid(struct dentry *dentry,
1194 /* The inode's security attributes must be initialized before first use. */
1195 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1197 struct superblock_security_struct *sbsec = NULL;
1198 struct inode_security_struct *isec = inode->i_security;
1200 struct dentry *dentry;
1201 #define INITCONTEXTLEN 255
1202 char *context = NULL;
1206 if (isec->initialized)
1209 mutex_lock(&isec->lock);
1210 if (isec->initialized)
1213 sbsec = inode->i_sb->s_security;
1214 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1215 /* Defer initialization until selinux_complete_init,
1216 after the initial policy is loaded and the security
1217 server is ready to handle calls. */
1218 spin_lock(&sbsec->isec_lock);
1219 if (list_empty(&isec->list))
1220 list_add(&isec->list, &sbsec->isec_head);
1221 spin_unlock(&sbsec->isec_lock);
1225 switch (sbsec->behavior) {
1226 case SECURITY_FS_USE_XATTR:
1227 if (!inode->i_op->getxattr) {
1228 isec->sid = sbsec->def_sid;
1232 /* Need a dentry, since the xattr API requires one.
1233 Life would be simpler if we could just pass the inode. */
1235 /* Called from d_instantiate or d_splice_alias. */
1236 dentry = dget(opt_dentry);
1238 /* Called from selinux_complete_init, try to find a dentry. */
1239 dentry = d_find_alias(inode);
1243 * this is can be hit on boot when a file is accessed
1244 * before the policy is loaded. When we load policy we
1245 * may find inodes that have no dentry on the
1246 * sbsec->isec_head list. No reason to complain as these
1247 * will get fixed up the next time we go through
1248 * inode_doinit with a dentry, before these inodes could
1249 * be used again by userspace.
1254 len = INITCONTEXTLEN;
1255 context = kmalloc(len+1, GFP_NOFS);
1261 context[len] = '\0';
1262 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1264 if (rc == -ERANGE) {
1267 /* Need a larger buffer. Query for the right size. */
1268 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1275 context = kmalloc(len+1, GFP_NOFS);
1281 context[len] = '\0';
1282 rc = inode->i_op->getxattr(dentry,
1288 if (rc != -ENODATA) {
1289 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1290 "%d for dev=%s ino=%ld\n", __func__,
1291 -rc, inode->i_sb->s_id, inode->i_ino);
1295 /* Map ENODATA to the default file SID */
1296 sid = sbsec->def_sid;
1299 rc = security_context_to_sid_default(context, rc, &sid,
1303 char *dev = inode->i_sb->s_id;
1304 unsigned long ino = inode->i_ino;
1306 if (rc == -EINVAL) {
1307 if (printk_ratelimit())
1308 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1309 "context=%s. This indicates you may need to relabel the inode or the "
1310 "filesystem in question.\n", ino, dev, context);
1312 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1313 "returned %d for dev=%s ino=%ld\n",
1314 __func__, context, -rc, dev, ino);
1317 /* Leave with the unlabeled SID */
1325 case SECURITY_FS_USE_TASK:
1326 isec->sid = isec->task_sid;
1328 case SECURITY_FS_USE_TRANS:
1329 /* Default to the fs SID. */
1330 isec->sid = sbsec->sid;
1332 /* Try to obtain a transition SID. */
1333 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1334 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1335 isec->sclass, NULL, &sid);
1340 case SECURITY_FS_USE_MNTPOINT:
1341 isec->sid = sbsec->mntpoint_sid;
1344 /* Default to the fs superblock SID. */
1345 isec->sid = sbsec->sid;
1347 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1349 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1350 rc = selinux_proc_get_sid(opt_dentry,
1361 isec->initialized = 1;
1364 mutex_unlock(&isec->lock);
1366 if (isec->sclass == SECCLASS_FILE)
1367 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1371 /* Convert a Linux signal to an access vector. */
1372 static inline u32 signal_to_av(int sig)
1378 /* Commonly granted from child to parent. */
1379 perm = PROCESS__SIGCHLD;
1382 /* Cannot be caught or ignored */
1383 perm = PROCESS__SIGKILL;
1386 /* Cannot be caught or ignored */
1387 perm = PROCESS__SIGSTOP;
1390 /* All other signals. */
1391 perm = PROCESS__SIGNAL;
1399 * Check permission between a pair of credentials
1400 * fork check, ptrace check, etc.
1402 static int cred_has_perm(const struct cred *actor,
1403 const struct cred *target,
1406 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1408 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 * Check permission between a pair of tasks, e.g. signal checks,
1413 * fork check, ptrace check, etc.
1414 * tsk1 is the actor and tsk2 is the target
1415 * - this uses the default subjective creds of tsk1
1417 static int task_has_perm(const struct task_struct *tsk1,
1418 const struct task_struct *tsk2,
1421 const struct task_security_struct *__tsec1, *__tsec2;
1425 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1426 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1428 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1432 * Check permission between current and another task, e.g. signal checks,
1433 * fork check, ptrace check, etc.
1434 * current is the actor and tsk2 is the target
1435 * - this uses current's subjective creds
1437 static int current_has_perm(const struct task_struct *tsk,
1442 sid = current_sid();
1443 tsid = task_sid(tsk);
1444 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1447 #if CAP_LAST_CAP > 63
1448 #error Fix SELinux to handle capabilities > 63.
1451 /* Check whether a task is allowed to use a capability. */
1452 static int cred_has_capability(const struct cred *cred,
1455 struct common_audit_data ad;
1456 struct av_decision avd;
1458 u32 sid = cred_sid(cred);
1459 u32 av = CAP_TO_MASK(cap);
1462 ad.type = LSM_AUDIT_DATA_CAP;
1465 switch (CAP_TO_INDEX(cap)) {
1467 sclass = SECCLASS_CAPABILITY;
1470 sclass = SECCLASS_CAPABILITY2;
1474 "SELinux: out of range capability %d\n", cap);
1479 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1480 if (audit == SECURITY_CAP_AUDIT) {
1481 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1488 /* Check whether a task is allowed to use a system operation. */
1489 static int task_has_system(struct task_struct *tsk,
1492 u32 sid = task_sid(tsk);
1494 return avc_has_perm(sid, SECINITSID_KERNEL,
1495 SECCLASS_SYSTEM, perms, NULL);
1498 /* Check whether a task has a particular permission to an inode.
1499 The 'adp' parameter is optional and allows other audit
1500 data to be passed (e.g. the dentry). */
1501 static int inode_has_perm(const struct cred *cred,
1502 struct inode *inode,
1504 struct common_audit_data *adp,
1507 struct inode_security_struct *isec;
1510 validate_creds(cred);
1512 if (unlikely(IS_PRIVATE(inode)))
1515 sid = cred_sid(cred);
1516 isec = inode->i_security;
1518 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1521 /* Same as inode_has_perm, but pass explicit audit data containing
1522 the dentry to help the auditing code to more easily generate the
1523 pathname if needed. */
1524 static inline int dentry_has_perm(const struct cred *cred,
1525 struct dentry *dentry,
1528 struct inode *inode = dentry->d_inode;
1529 struct common_audit_data ad;
1531 ad.type = LSM_AUDIT_DATA_DENTRY;
1532 ad.u.dentry = dentry;
1533 return inode_has_perm(cred, inode, av, &ad, 0);
1536 /* Same as inode_has_perm, but pass explicit audit data containing
1537 the path to help the auditing code to more easily generate the
1538 pathname if needed. */
1539 static inline int path_has_perm(const struct cred *cred,
1543 struct inode *inode = path->dentry->d_inode;
1544 struct common_audit_data ad;
1546 ad.type = LSM_AUDIT_DATA_PATH;
1548 return inode_has_perm(cred, inode, av, &ad, 0);
1551 /* Check whether a task can use an open file descriptor to
1552 access an inode in a given way. Check access to the
1553 descriptor itself, and then use dentry_has_perm to
1554 check a particular permission to the file.
1555 Access to the descriptor is implicitly granted if it
1556 has the same SID as the process. If av is zero, then
1557 access to the file is not checked, e.g. for cases
1558 where only the descriptor is affected like seek. */
1559 static int file_has_perm(const struct cred *cred,
1563 struct file_security_struct *fsec = file->f_security;
1564 struct inode *inode = file_inode(file);
1565 struct common_audit_data ad;
1566 u32 sid = cred_sid(cred);
1569 ad.type = LSM_AUDIT_DATA_PATH;
1570 ad.u.path = file->f_path;
1572 if (sid != fsec->sid) {
1573 rc = avc_has_perm(sid, fsec->sid,
1581 /* av is zero if only checking access to the descriptor. */
1584 rc = inode_has_perm(cred, inode, av, &ad, 0);
1590 /* Check whether a task can create a file. */
1591 static int may_create(struct inode *dir,
1592 struct dentry *dentry,
1595 const struct task_security_struct *tsec = current_security();
1596 struct inode_security_struct *dsec;
1597 struct superblock_security_struct *sbsec;
1599 struct common_audit_data ad;
1602 dsec = dir->i_security;
1603 sbsec = dir->i_sb->s_security;
1606 newsid = tsec->create_sid;
1608 ad.type = LSM_AUDIT_DATA_DENTRY;
1609 ad.u.dentry = dentry;
1611 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1612 DIR__ADD_NAME | DIR__SEARCH,
1617 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1618 rc = security_transition_sid(sid, dsec->sid, tclass,
1619 &dentry->d_name, &newsid);
1624 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1628 return avc_has_perm(newsid, sbsec->sid,
1629 SECCLASS_FILESYSTEM,
1630 FILESYSTEM__ASSOCIATE, &ad);
1633 /* Check whether a task can create a key. */
1634 static int may_create_key(u32 ksid,
1635 struct task_struct *ctx)
1637 u32 sid = task_sid(ctx);
1639 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1643 #define MAY_UNLINK 1
1646 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1647 static int may_link(struct inode *dir,
1648 struct dentry *dentry,
1652 struct inode_security_struct *dsec, *isec;
1653 struct common_audit_data ad;
1654 u32 sid = current_sid();
1658 dsec = dir->i_security;
1659 isec = dentry->d_inode->i_security;
1661 ad.type = LSM_AUDIT_DATA_DENTRY;
1662 ad.u.dentry = dentry;
1665 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1666 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1686 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1690 static inline int may_rename(struct inode *old_dir,
1691 struct dentry *old_dentry,
1692 struct inode *new_dir,
1693 struct dentry *new_dentry)
1695 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1696 struct common_audit_data ad;
1697 u32 sid = current_sid();
1699 int old_is_dir, new_is_dir;
1702 old_dsec = old_dir->i_security;
1703 old_isec = old_dentry->d_inode->i_security;
1704 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1705 new_dsec = new_dir->i_security;
1707 ad.type = LSM_AUDIT_DATA_DENTRY;
1709 ad.u.dentry = old_dentry;
1710 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1711 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1714 rc = avc_has_perm(sid, old_isec->sid,
1715 old_isec->sclass, FILE__RENAME, &ad);
1718 if (old_is_dir && new_dir != old_dir) {
1719 rc = avc_has_perm(sid, old_isec->sid,
1720 old_isec->sclass, DIR__REPARENT, &ad);
1725 ad.u.dentry = new_dentry;
1726 av = DIR__ADD_NAME | DIR__SEARCH;
1727 if (new_dentry->d_inode)
1728 av |= DIR__REMOVE_NAME;
1729 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1732 if (new_dentry->d_inode) {
1733 new_isec = new_dentry->d_inode->i_security;
1734 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1735 rc = avc_has_perm(sid, new_isec->sid,
1737 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1745 /* Check whether a task can perform a filesystem operation. */
1746 static int superblock_has_perm(const struct cred *cred,
1747 struct super_block *sb,
1749 struct common_audit_data *ad)
1751 struct superblock_security_struct *sbsec;
1752 u32 sid = cred_sid(cred);
1754 sbsec = sb->s_security;
1755 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1758 /* Convert a Linux mode and permission mask to an access vector. */
1759 static inline u32 file_mask_to_av(int mode, int mask)
1763 if (!S_ISDIR(mode)) {
1764 if (mask & MAY_EXEC)
1765 av |= FILE__EXECUTE;
1766 if (mask & MAY_READ)
1769 if (mask & MAY_APPEND)
1771 else if (mask & MAY_WRITE)
1775 if (mask & MAY_EXEC)
1777 if (mask & MAY_WRITE)
1779 if (mask & MAY_READ)
1786 /* Convert a Linux file to an access vector. */
1787 static inline u32 file_to_av(struct file *file)
1791 if (file->f_mode & FMODE_READ)
1793 if (file->f_mode & FMODE_WRITE) {
1794 if (file->f_flags & O_APPEND)
1801 * Special file opened with flags 3 for ioctl-only use.
1810 * Convert a file to an access vector and include the correct open
1813 static inline u32 open_file_to_av(struct file *file)
1815 u32 av = file_to_av(file);
1817 if (selinux_policycap_openperm)
1823 /* Hook functions begin here. */
1825 static int selinux_ptrace_access_check(struct task_struct *child,
1830 rc = cap_ptrace_access_check(child, mode);
1834 if (mode & PTRACE_MODE_READ) {
1835 u32 sid = current_sid();
1836 u32 csid = task_sid(child);
1837 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1840 return current_has_perm(child, PROCESS__PTRACE);
1843 static int selinux_ptrace_traceme(struct task_struct *parent)
1847 rc = cap_ptrace_traceme(parent);
1851 return task_has_perm(parent, current, PROCESS__PTRACE);
1854 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1855 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1859 error = current_has_perm(target, PROCESS__GETCAP);
1863 return cap_capget(target, effective, inheritable, permitted);
1866 static int selinux_capset(struct cred *new, const struct cred *old,
1867 const kernel_cap_t *effective,
1868 const kernel_cap_t *inheritable,
1869 const kernel_cap_t *permitted)
1873 error = cap_capset(new, old,
1874 effective, inheritable, permitted);
1878 return cred_has_perm(old, new, PROCESS__SETCAP);
1882 * (This comment used to live with the selinux_task_setuid hook,
1883 * which was removed).
1885 * Since setuid only affects the current process, and since the SELinux
1886 * controls are not based on the Linux identity attributes, SELinux does not
1887 * need to control this operation. However, SELinux does control the use of
1888 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1891 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1896 rc = cap_capable(cred, ns, cap, audit);
1900 return cred_has_capability(cred, cap, audit);
1903 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1905 const struct cred *cred = current_cred();
1917 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1922 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1925 rc = 0; /* let the kernel handle invalid cmds */
1931 static int selinux_quota_on(struct dentry *dentry)
1933 const struct cred *cred = current_cred();
1935 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1938 static int selinux_syslog(int type)
1943 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1944 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1945 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1947 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1948 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1949 /* Set level of messages printed to console */
1950 case SYSLOG_ACTION_CONSOLE_LEVEL:
1951 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1953 case SYSLOG_ACTION_CLOSE: /* Close log */
1954 case SYSLOG_ACTION_OPEN: /* Open log */
1955 case SYSLOG_ACTION_READ: /* Read from log */
1956 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1957 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1959 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1966 * Check that a process has enough memory to allocate a new virtual
1967 * mapping. 0 means there is enough memory for the allocation to
1968 * succeed and -ENOMEM implies there is not.
1970 * Do not audit the selinux permission check, as this is applied to all
1971 * processes that allocate mappings.
1973 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1975 int rc, cap_sys_admin = 0;
1977 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1978 SECURITY_CAP_NOAUDIT);
1982 return __vm_enough_memory(mm, pages, cap_sys_admin);
1985 /* binprm security operations */
1987 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1989 const struct task_security_struct *old_tsec;
1990 struct task_security_struct *new_tsec;
1991 struct inode_security_struct *isec;
1992 struct common_audit_data ad;
1993 struct inode *inode = file_inode(bprm->file);
1996 rc = cap_bprm_set_creds(bprm);
2000 /* SELinux context only depends on initial program or script and not
2001 * the script interpreter */
2002 if (bprm->cred_prepared)
2005 old_tsec = current_security();
2006 new_tsec = bprm->cred->security;
2007 isec = inode->i_security;
2009 /* Default to the current task SID. */
2010 new_tsec->sid = old_tsec->sid;
2011 new_tsec->osid = old_tsec->sid;
2013 /* Reset fs, key, and sock SIDs on execve. */
2014 new_tsec->create_sid = 0;
2015 new_tsec->keycreate_sid = 0;
2016 new_tsec->sockcreate_sid = 0;
2018 if (old_tsec->exec_sid) {
2019 new_tsec->sid = old_tsec->exec_sid;
2020 /* Reset exec SID on execve. */
2021 new_tsec->exec_sid = 0;
2024 * Minimize confusion: if no_new_privs and a transition is
2025 * explicitly requested, then fail the exec.
2027 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2030 /* Check for a default transition on this program. */
2031 rc = security_transition_sid(old_tsec->sid, isec->sid,
2032 SECCLASS_PROCESS, NULL,
2038 ad.type = LSM_AUDIT_DATA_PATH;
2039 ad.u.path = bprm->file->f_path;
2041 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2042 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2043 new_tsec->sid = old_tsec->sid;
2045 if (new_tsec->sid == old_tsec->sid) {
2046 rc = avc_has_perm(old_tsec->sid, isec->sid,
2047 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2051 /* Check permissions for the transition. */
2052 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2053 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2057 rc = avc_has_perm(new_tsec->sid, isec->sid,
2058 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2062 /* Check for shared state */
2063 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2064 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2065 SECCLASS_PROCESS, PROCESS__SHARE,
2071 /* Make sure that anyone attempting to ptrace over a task that
2072 * changes its SID has the appropriate permit */
2074 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2075 struct task_struct *tracer;
2076 struct task_security_struct *sec;
2080 tracer = ptrace_parent(current);
2081 if (likely(tracer != NULL)) {
2082 sec = __task_cred(tracer)->security;
2088 rc = avc_has_perm(ptsid, new_tsec->sid,
2090 PROCESS__PTRACE, NULL);
2096 /* Clear any possibly unsafe personality bits on exec: */
2097 bprm->per_clear |= PER_CLEAR_ON_SETID;
2103 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2105 const struct task_security_struct *tsec = current_security();
2113 /* Enable secure mode for SIDs transitions unless
2114 the noatsecure permission is granted between
2115 the two SIDs, i.e. ahp returns 0. */
2116 atsecure = avc_has_perm(osid, sid,
2118 PROCESS__NOATSECURE, NULL);
2121 return (atsecure || cap_bprm_secureexec(bprm));
2124 static int match_file(const void *p, struct file *file, unsigned fd)
2126 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2129 /* Derived from fs/exec.c:flush_old_files. */
2130 static inline void flush_unauthorized_files(const struct cred *cred,
2131 struct files_struct *files)
2133 struct file *file, *devnull = NULL;
2134 struct tty_struct *tty;
2138 tty = get_current_tty();
2140 spin_lock(&tty_files_lock);
2141 if (!list_empty(&tty->tty_files)) {
2142 struct tty_file_private *file_priv;
2144 /* Revalidate access to controlling tty.
2145 Use path_has_perm on the tty path directly rather
2146 than using file_has_perm, as this particular open
2147 file may belong to another process and we are only
2148 interested in the inode-based check here. */
2149 file_priv = list_first_entry(&tty->tty_files,
2150 struct tty_file_private, list);
2151 file = file_priv->file;
2152 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2155 spin_unlock(&tty_files_lock);
2158 /* Reset controlling tty. */
2162 /* Revalidate access to inherited open files. */
2163 n = iterate_fd(files, 0, match_file, cred);
2164 if (!n) /* none found? */
2167 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2168 if (IS_ERR(devnull))
2170 /* replace all the matching ones with this */
2172 replace_fd(n - 1, devnull, 0);
2173 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2179 * Prepare a process for imminent new credential changes due to exec
2181 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2183 struct task_security_struct *new_tsec;
2184 struct rlimit *rlim, *initrlim;
2187 new_tsec = bprm->cred->security;
2188 if (new_tsec->sid == new_tsec->osid)
2191 /* Close files for which the new task SID is not authorized. */
2192 flush_unauthorized_files(bprm->cred, current->files);
2194 /* Always clear parent death signal on SID transitions. */
2195 current->pdeath_signal = 0;
2197 /* Check whether the new SID can inherit resource limits from the old
2198 * SID. If not, reset all soft limits to the lower of the current
2199 * task's hard limit and the init task's soft limit.
2201 * Note that the setting of hard limits (even to lower them) can be
2202 * controlled by the setrlimit check. The inclusion of the init task's
2203 * soft limit into the computation is to avoid resetting soft limits
2204 * higher than the default soft limit for cases where the default is
2205 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2207 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2208 PROCESS__RLIMITINH, NULL);
2210 /* protect against do_prlimit() */
2212 for (i = 0; i < RLIM_NLIMITS; i++) {
2213 rlim = current->signal->rlim + i;
2214 initrlim = init_task.signal->rlim + i;
2215 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2217 task_unlock(current);
2218 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2223 * Clean up the process immediately after the installation of new credentials
2226 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2228 const struct task_security_struct *tsec = current_security();
2229 struct itimerval itimer;
2239 /* Check whether the new SID can inherit signal state from the old SID.
2240 * If not, clear itimers to avoid subsequent signal generation and
2241 * flush and unblock signals.
2243 * This must occur _after_ the task SID has been updated so that any
2244 * kill done after the flush will be checked against the new SID.
2246 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2248 memset(&itimer, 0, sizeof itimer);
2249 for (i = 0; i < 3; i++)
2250 do_setitimer(i, &itimer, NULL);
2251 spin_lock_irq(¤t->sighand->siglock);
2252 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2253 __flush_signals(current);
2254 flush_signal_handlers(current, 1);
2255 sigemptyset(¤t->blocked);
2257 spin_unlock_irq(¤t->sighand->siglock);
2260 /* Wake up the parent if it is waiting so that it can recheck
2261 * wait permission to the new task SID. */
2262 read_lock(&tasklist_lock);
2263 __wake_up_parent(current, current->real_parent);
2264 read_unlock(&tasklist_lock);
2267 /* superblock security operations */
2269 static int selinux_sb_alloc_security(struct super_block *sb)
2271 return superblock_alloc_security(sb);
2274 static void selinux_sb_free_security(struct super_block *sb)
2276 superblock_free_security(sb);
2279 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2284 return !memcmp(prefix, option, plen);
2287 static inline int selinux_option(char *option, int len)
2289 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2290 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2291 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2292 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2293 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2296 static inline void take_option(char **to, char *from, int *first, int len)
2303 memcpy(*to, from, len);
2307 static inline void take_selinux_option(char **to, char *from, int *first,
2310 int current_size = 0;
2318 while (current_size < len) {
2328 static int selinux_sb_copy_data(char *orig, char *copy)
2330 int fnosec, fsec, rc = 0;
2331 char *in_save, *in_curr, *in_end;
2332 char *sec_curr, *nosec_save, *nosec;
2338 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2346 in_save = in_end = orig;
2350 open_quote = !open_quote;
2351 if ((*in_end == ',' && open_quote == 0) ||
2353 int len = in_end - in_curr;
2355 if (selinux_option(in_curr, len))
2356 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2358 take_option(&nosec, in_curr, &fnosec, len);
2360 in_curr = in_end + 1;
2362 } while (*in_end++);
2364 strcpy(in_save, nosec_save);
2365 free_page((unsigned long)nosec_save);
2370 static int selinux_sb_remount(struct super_block *sb, void *data)
2373 struct security_mnt_opts opts;
2374 char *secdata, **mount_options;
2375 struct superblock_security_struct *sbsec = sb->s_security;
2377 if (!(sbsec->flags & SE_SBINITIALIZED))
2383 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2386 security_init_mnt_opts(&opts);
2387 secdata = alloc_secdata();
2390 rc = selinux_sb_copy_data(data, secdata);
2392 goto out_free_secdata;
2394 rc = selinux_parse_opts_str(secdata, &opts);
2396 goto out_free_secdata;
2398 mount_options = opts.mnt_opts;
2399 flags = opts.mnt_opts_flags;
2401 for (i = 0; i < opts.num_mnt_opts; i++) {
2405 if (flags[i] == SE_SBLABELSUPP)
2407 len = strlen(mount_options[i]);
2408 rc = security_context_to_sid(mount_options[i], len, &sid);
2410 printk(KERN_WARNING "SELinux: security_context_to_sid"
2411 "(%s) failed for (dev %s, type %s) errno=%d\n",
2412 mount_options[i], sb->s_id, sb->s_type->name, rc);
2418 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2419 goto out_bad_option;
2422 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2423 goto out_bad_option;
2425 case ROOTCONTEXT_MNT: {
2426 struct inode_security_struct *root_isec;
2427 root_isec = sb->s_root->d_inode->i_security;
2429 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2430 goto out_bad_option;
2433 case DEFCONTEXT_MNT:
2434 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2435 goto out_bad_option;
2444 security_free_mnt_opts(&opts);
2446 free_secdata(secdata);
2449 printk(KERN_WARNING "SELinux: unable to change security options "
2450 "during remount (dev %s, type=%s)\n", sb->s_id,
2455 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2457 const struct cred *cred = current_cred();
2458 struct common_audit_data ad;
2461 rc = superblock_doinit(sb, data);
2465 /* Allow all mounts performed by the kernel */
2466 if (flags & MS_KERNMOUNT)
2469 ad.type = LSM_AUDIT_DATA_DENTRY;
2470 ad.u.dentry = sb->s_root;
2471 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2474 static int selinux_sb_statfs(struct dentry *dentry)
2476 const struct cred *cred = current_cred();
2477 struct common_audit_data ad;
2479 ad.type = LSM_AUDIT_DATA_DENTRY;
2480 ad.u.dentry = dentry->d_sb->s_root;
2481 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2484 static int selinux_mount(const char *dev_name,
2487 unsigned long flags,
2490 const struct cred *cred = current_cred();
2492 if (flags & MS_REMOUNT)
2493 return superblock_has_perm(cred, path->dentry->d_sb,
2494 FILESYSTEM__REMOUNT, NULL);
2496 return path_has_perm(cred, path, FILE__MOUNTON);
2499 static int selinux_umount(struct vfsmount *mnt, int flags)
2501 const struct cred *cred = current_cred();
2503 return superblock_has_perm(cred, mnt->mnt_sb,
2504 FILESYSTEM__UNMOUNT, NULL);
2507 /* inode security operations */
2509 static int selinux_inode_alloc_security(struct inode *inode)
2511 return inode_alloc_security(inode);
2514 static void selinux_inode_free_security(struct inode *inode)
2516 inode_free_security(inode);
2519 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2520 const struct qstr *qstr, char **name,
2521 void **value, size_t *len)
2523 const struct task_security_struct *tsec = current_security();
2524 struct inode_security_struct *dsec;
2525 struct superblock_security_struct *sbsec;
2526 u32 sid, newsid, clen;
2528 char *namep = NULL, *context;
2530 dsec = dir->i_security;
2531 sbsec = dir->i_sb->s_security;
2534 newsid = tsec->create_sid;
2536 if ((sbsec->flags & SE_SBINITIALIZED) &&
2537 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2538 newsid = sbsec->mntpoint_sid;
2539 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2540 rc = security_transition_sid(sid, dsec->sid,
2541 inode_mode_to_security_class(inode->i_mode),
2544 printk(KERN_WARNING "%s: "
2545 "security_transition_sid failed, rc=%d (dev=%s "
2548 -rc, inode->i_sb->s_id, inode->i_ino);
2553 /* Possibly defer initialization to selinux_complete_init. */
2554 if (sbsec->flags & SE_SBINITIALIZED) {
2555 struct inode_security_struct *isec = inode->i_security;
2556 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2558 isec->initialized = 1;
2561 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2572 rc = security_sid_to_context_force(newsid, &context, &clen);
2584 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2586 return may_create(dir, dentry, SECCLASS_FILE);
2589 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2591 return may_link(dir, old_dentry, MAY_LINK);
2594 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2596 return may_link(dir, dentry, MAY_UNLINK);
2599 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2601 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2604 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2606 return may_create(dir, dentry, SECCLASS_DIR);
2609 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2611 return may_link(dir, dentry, MAY_RMDIR);
2614 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2616 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2620 struct inode *new_inode, struct dentry *new_dentry)
2622 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 static int selinux_inode_readlink(struct dentry *dentry)
2627 const struct cred *cred = current_cred();
2629 return dentry_has_perm(cred, dentry, FILE__READ);
2632 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2634 const struct cred *cred = current_cred();
2636 return dentry_has_perm(cred, dentry, FILE__READ);
2639 static noinline int audit_inode_permission(struct inode *inode,
2640 u32 perms, u32 audited, u32 denied,
2643 struct common_audit_data ad;
2644 struct inode_security_struct *isec = inode->i_security;
2647 ad.type = LSM_AUDIT_DATA_INODE;
2650 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2651 audited, denied, &ad, flags);
2657 static int selinux_inode_permission(struct inode *inode, int mask)
2659 const struct cred *cred = current_cred();
2662 unsigned flags = mask & MAY_NOT_BLOCK;
2663 struct inode_security_struct *isec;
2665 struct av_decision avd;
2667 u32 audited, denied;
2669 from_access = mask & MAY_ACCESS;
2670 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672 /* No permission to check. Existence test. */
2676 validate_creds(cred);
2678 if (unlikely(IS_PRIVATE(inode)))
2681 perms = file_mask_to_av(inode->i_mode, mask);
2683 sid = cred_sid(cred);
2684 isec = inode->i_security;
2686 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2687 audited = avc_audit_required(perms, &avd, rc,
2688 from_access ? FILE__AUDIT_ACCESS : 0,
2690 if (likely(!audited))
2693 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2699 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2701 const struct cred *cred = current_cred();
2702 unsigned int ia_valid = iattr->ia_valid;
2703 __u32 av = FILE__WRITE;
2705 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2706 if (ia_valid & ATTR_FORCE) {
2707 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2713 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2714 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2715 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2717 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2720 return dentry_has_perm(cred, dentry, av);
2723 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2725 const struct cred *cred = current_cred();
2728 path.dentry = dentry;
2731 return path_has_perm(cred, &path, FILE__GETATTR);
2734 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2736 const struct cred *cred = current_cred();
2738 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2739 sizeof XATTR_SECURITY_PREFIX - 1)) {
2740 if (!strcmp(name, XATTR_NAME_CAPS)) {
2741 if (!capable(CAP_SETFCAP))
2743 } else if (!capable(CAP_SYS_ADMIN)) {
2744 /* A different attribute in the security namespace.
2745 Restrict to administrator. */
2750 /* Not an attribute we recognize, so just check the
2751 ordinary setattr permission. */
2752 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2755 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2756 const void *value, size_t size, int flags)
2758 struct inode *inode = dentry->d_inode;
2759 struct inode_security_struct *isec = inode->i_security;
2760 struct superblock_security_struct *sbsec;
2761 struct common_audit_data ad;
2762 u32 newsid, sid = current_sid();
2765 if (strcmp(name, XATTR_NAME_SELINUX))
2766 return selinux_inode_setotherxattr(dentry, name);
2768 sbsec = inode->i_sb->s_security;
2769 if (!(sbsec->flags & SE_SBLABELSUPP))
2772 if (!inode_owner_or_capable(inode))
2775 ad.type = LSM_AUDIT_DATA_DENTRY;
2776 ad.u.dentry = dentry;
2778 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2779 FILE__RELABELFROM, &ad);
2783 rc = security_context_to_sid(value, size, &newsid);
2784 if (rc == -EINVAL) {
2785 if (!capable(CAP_MAC_ADMIN)) {
2786 struct audit_buffer *ab;
2790 /* We strip a nul only if it is at the end, otherwise the
2791 * context contains a nul and we should audit that */
2794 if (str[size - 1] == '\0')
2795 audit_size = size - 1;
2802 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2803 audit_log_format(ab, "op=setxattr invalid_context=");
2804 audit_log_n_untrustedstring(ab, value, audit_size);
2809 rc = security_context_to_sid_force(value, size, &newsid);
2814 rc = avc_has_perm(sid, newsid, isec->sclass,
2815 FILE__RELABELTO, &ad);
2819 rc = security_validate_transition(isec->sid, newsid, sid,
2824 return avc_has_perm(newsid,
2826 SECCLASS_FILESYSTEM,
2827 FILESYSTEM__ASSOCIATE,
2831 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2832 const void *value, size_t size,
2835 struct inode *inode = dentry->d_inode;
2836 struct inode_security_struct *isec = inode->i_security;
2840 if (strcmp(name, XATTR_NAME_SELINUX)) {
2841 /* Not an attribute we recognize, so nothing to do. */
2845 rc = security_context_to_sid_force(value, size, &newsid);
2847 printk(KERN_ERR "SELinux: unable to map context to SID"
2848 "for (%s, %lu), rc=%d\n",
2849 inode->i_sb->s_id, inode->i_ino, -rc);
2857 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2859 const struct cred *cred = current_cred();
2861 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2864 static int selinux_inode_listxattr(struct dentry *dentry)
2866 const struct cred *cred = current_cred();
2868 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2871 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2873 if (strcmp(name, XATTR_NAME_SELINUX))
2874 return selinux_inode_setotherxattr(dentry, name);
2876 /* No one is allowed to remove a SELinux security label.
2877 You can change the label, but all data must be labeled. */
2882 * Copy the inode security context value to the user.
2884 * Permission check is handled by selinux_inode_getxattr hook.
2886 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890 char *context = NULL;
2891 struct inode_security_struct *isec = inode->i_security;
2893 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897 * If the caller has CAP_MAC_ADMIN, then get the raw context
2898 * value even if it is not defined by current policy; otherwise,
2899 * use the in-core value under current policy.
2900 * Use the non-auditing forms of the permission checks since
2901 * getxattr may be called by unprivileged processes commonly
2902 * and lack of permission just means that we fall back to the
2903 * in-core context value, not a denial.
2905 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2906 SECURITY_CAP_NOAUDIT);
2908 error = security_sid_to_context_force(isec->sid, &context,
2911 error = security_sid_to_context(isec->sid, &context, &size);
2924 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2925 const void *value, size_t size, int flags)
2927 struct inode_security_struct *isec = inode->i_security;
2931 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2934 if (!value || !size)
2937 rc = security_context_to_sid((void *)value, size, &newsid);
2942 isec->initialized = 1;
2946 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2948 const int len = sizeof(XATTR_NAME_SELINUX);
2949 if (buffer && len <= buffer_size)
2950 memcpy(buffer, XATTR_NAME_SELINUX, len);
2954 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2956 struct inode_security_struct *isec = inode->i_security;
2960 /* file security operations */
2962 static int selinux_revalidate_file_permission(struct file *file, int mask)
2964 const struct cred *cred = current_cred();
2965 struct inode *inode = file_inode(file);
2967 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2968 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2971 return file_has_perm(cred, file,
2972 file_mask_to_av(inode->i_mode, mask));
2975 static int selinux_file_permission(struct file *file, int mask)
2977 struct inode *inode = file_inode(file);
2978 struct file_security_struct *fsec = file->f_security;
2979 struct inode_security_struct *isec = inode->i_security;
2980 u32 sid = current_sid();
2983 /* No permission to check. Existence test. */
2986 if (sid == fsec->sid && fsec->isid == isec->sid &&
2987 fsec->pseqno == avc_policy_seqno())
2988 /* No change since file_open check. */
2991 return selinux_revalidate_file_permission(file, mask);
2994 static int selinux_file_alloc_security(struct file *file)
2996 return file_alloc_security(file);
2999 static void selinux_file_free_security(struct file *file)
3001 file_free_security(file);
3004 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3007 const struct cred *cred = current_cred();
3017 case FS_IOC_GETFLAGS:
3019 case FS_IOC_GETVERSION:
3020 error = file_has_perm(cred, file, FILE__GETATTR);
3023 case FS_IOC_SETFLAGS:
3025 case FS_IOC_SETVERSION:
3026 error = file_has_perm(cred, file, FILE__SETATTR);
3029 /* sys_ioctl() checks */
3033 error = file_has_perm(cred, file, 0);
3038 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3039 SECURITY_CAP_AUDIT);
3042 /* default case assumes that the command will go
3043 * to the file's ioctl() function.
3046 error = file_has_perm(cred, file, FILE__IOCTL);
3051 static int default_noexec;
3053 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3055 const struct cred *cred = current_cred();
3058 if (default_noexec &&
3059 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3061 * We are making executable an anonymous mapping or a
3062 * private file mapping that will also be writable.
3063 * This has an additional check.
3065 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3071 /* read access is always possible with a mapping */
3072 u32 av = FILE__READ;
3074 /* write access only matters if the mapping is shared */
3075 if (shared && (prot & PROT_WRITE))
3078 if (prot & PROT_EXEC)
3079 av |= FILE__EXECUTE;
3081 return file_has_perm(cred, file, av);
3088 static int selinux_mmap_addr(unsigned long addr)
3091 u32 sid = current_sid();
3094 * notice that we are intentionally putting the SELinux check before
3095 * the secondary cap_file_mmap check. This is such a likely attempt
3096 * at bad behaviour/exploit that we always want to get the AVC, even
3097 * if DAC would have also denied the operation.
3099 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3100 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3101 MEMPROTECT__MMAP_ZERO, NULL);
3106 /* do DAC check on address space usage */
3107 return cap_mmap_addr(addr);
3110 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3111 unsigned long prot, unsigned long flags)
3113 if (selinux_checkreqprot)
3116 return file_map_prot_check(file, prot,
3117 (flags & MAP_TYPE) == MAP_SHARED);
3120 static int selinux_file_mprotect(struct vm_area_struct *vma,
3121 unsigned long reqprot,
3124 const struct cred *cred = current_cred();
3126 if (selinux_checkreqprot)
3129 if (default_noexec &&
3130 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3132 if (vma->vm_start >= vma->vm_mm->start_brk &&
3133 vma->vm_end <= vma->vm_mm->brk) {
3134 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3135 } else if (!vma->vm_file &&
3136 vma->vm_start <= vma->vm_mm->start_stack &&
3137 vma->vm_end >= vma->vm_mm->start_stack) {
3138 rc = current_has_perm(current, PROCESS__EXECSTACK);
3139 } else if (vma->vm_file && vma->anon_vma) {
3141 * We are making executable a file mapping that has
3142 * had some COW done. Since pages might have been
3143 * written, check ability to execute the possibly
3144 * modified content. This typically should only
3145 * occur for text relocations.
3147 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3153 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3156 static int selinux_file_lock(struct file *file, unsigned int cmd)
3158 const struct cred *cred = current_cred();
3160 return file_has_perm(cred, file, FILE__LOCK);
3163 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3166 const struct cred *cred = current_cred();
3171 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3172 err = file_has_perm(cred, file, FILE__WRITE);
3181 case F_GETOWNER_UIDS:
3182 /* Just check FD__USE permission */
3183 err = file_has_perm(cred, file, 0);
3188 #if BITS_PER_LONG == 32
3193 err = file_has_perm(cred, file, FILE__LOCK);
3200 static int selinux_file_set_fowner(struct file *file)
3202 struct file_security_struct *fsec;
3204 fsec = file->f_security;
3205 fsec->fown_sid = current_sid();
3210 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3211 struct fown_struct *fown, int signum)
3214 u32 sid = task_sid(tsk);
3216 struct file_security_struct *fsec;
3218 /* struct fown_struct is never outside the context of a struct file */
3219 file = container_of(fown, struct file, f_owner);
3221 fsec = file->f_security;
3224 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3226 perm = signal_to_av(signum);
3228 return avc_has_perm(fsec->fown_sid, sid,
3229 SECCLASS_PROCESS, perm, NULL);
3232 static int selinux_file_receive(struct file *file)
3234 const struct cred *cred = current_cred();
3236 return file_has_perm(cred, file, file_to_av(file));
3239 static int selinux_file_open(struct file *file, const struct cred *cred)
3241 struct file_security_struct *fsec;
3242 struct inode_security_struct *isec;
3244 fsec = file->f_security;
3245 isec = file_inode(file)->i_security;
3247 * Save inode label and policy sequence number
3248 * at open-time so that selinux_file_permission
3249 * can determine whether revalidation is necessary.
3250 * Task label is already saved in the file security
3251 * struct as its SID.
3253 fsec->isid = isec->sid;
3254 fsec->pseqno = avc_policy_seqno();
3256 * Since the inode label or policy seqno may have changed
3257 * between the selinux_inode_permission check and the saving
3258 * of state above, recheck that access is still permitted.
3259 * Otherwise, access might never be revalidated against the
3260 * new inode label or new policy.
3261 * This check is not redundant - do not remove.
3263 return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3266 /* task security operations */
3268 static int selinux_task_create(unsigned long clone_flags)
3270 return current_has_perm(current, PROCESS__FORK);
3274 * allocate the SELinux part of blank credentials
3276 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3278 struct task_security_struct *tsec;
3280 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3284 cred->security = tsec;
3289 * detach and free the LSM part of a set of credentials
3291 static void selinux_cred_free(struct cred *cred)
3293 struct task_security_struct *tsec = cred->security;
3296 * cred->security == NULL if security_cred_alloc_blank() or
3297 * security_prepare_creds() returned an error.
3299 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3300 cred->security = (void *) 0x7UL;
3305 * prepare a new set of credentials for modification
3307 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3310 const struct task_security_struct *old_tsec;
3311 struct task_security_struct *tsec;
3313 old_tsec = old->security;
3315 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3319 new->security = tsec;
3324 * transfer the SELinux data to a blank set of creds
3326 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3328 const struct task_security_struct *old_tsec = old->security;
3329 struct task_security_struct *tsec = new->security;
3335 * set the security data for a kernel service
3336 * - all the creation contexts are set to unlabelled
3338 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3340 struct task_security_struct *tsec = new->security;
3341 u32 sid = current_sid();
3344 ret = avc_has_perm(sid, secid,
3345 SECCLASS_KERNEL_SERVICE,
3346 KERNEL_SERVICE__USE_AS_OVERRIDE,
3350 tsec->create_sid = 0;
3351 tsec->keycreate_sid = 0;
3352 tsec->sockcreate_sid = 0;
3358 * set the file creation context in a security record to the same as the
3359 * objective context of the specified inode
3361 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3363 struct inode_security_struct *isec = inode->i_security;
3364 struct task_security_struct *tsec = new->security;
3365 u32 sid = current_sid();
3368 ret = avc_has_perm(sid, isec->sid,
3369 SECCLASS_KERNEL_SERVICE,
3370 KERNEL_SERVICE__CREATE_FILES_AS,
3374 tsec->create_sid = isec->sid;
3378 static int selinux_kernel_module_request(char *kmod_name)
3381 struct common_audit_data ad;
3383 sid = task_sid(current);
3385 ad.type = LSM_AUDIT_DATA_KMOD;
3386 ad.u.kmod_name = kmod_name;
3388 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3389 SYSTEM__MODULE_REQUEST, &ad);
3392 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3394 return current_has_perm(p, PROCESS__SETPGID);
3397 static int selinux_task_getpgid(struct task_struct *p)
3399 return current_has_perm(p, PROCESS__GETPGID);
3402 static int selinux_task_getsid(struct task_struct *p)
3404 return current_has_perm(p, PROCESS__GETSESSION);
3407 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3409 *secid = task_sid(p);
3412 static int selinux_task_setnice(struct task_struct *p, int nice)
3416 rc = cap_task_setnice(p, nice);
3420 return current_has_perm(p, PROCESS__SETSCHED);
3423 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3427 rc = cap_task_setioprio(p, ioprio);
3431 return current_has_perm(p, PROCESS__SETSCHED);
3434 static int selinux_task_getioprio(struct task_struct *p)
3436 return current_has_perm(p, PROCESS__GETSCHED);
3439 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3440 struct rlimit *new_rlim)
3442 struct rlimit *old_rlim = p->signal->rlim + resource;
3444 /* Control the ability to change the hard limit (whether
3445 lowering or raising it), so that the hard limit can
3446 later be used as a safe reset point for the soft limit
3447 upon context transitions. See selinux_bprm_committing_creds. */
3448 if (old_rlim->rlim_max != new_rlim->rlim_max)
3449 return current_has_perm(p, PROCESS__SETRLIMIT);
3454 static int selinux_task_setscheduler(struct task_struct *p)
3458 rc = cap_task_setscheduler(p);
3462 return current_has_perm(p, PROCESS__SETSCHED);
3465 static int selinux_task_getscheduler(struct task_struct *p)
3467 return current_has_perm(p, PROCESS__GETSCHED);
3470 static int selinux_task_movememory(struct task_struct *p)
3472 return current_has_perm(p, PROCESS__SETSCHED);
3475 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3482 perm = PROCESS__SIGNULL; /* null signal; existence test */
3484 perm = signal_to_av(sig);
3486 rc = avc_has_perm(secid, task_sid(p),
3487 SECCLASS_PROCESS, perm, NULL);
3489 rc = current_has_perm(p, perm);
3493 static int selinux_task_wait(struct task_struct *p)
3495 return task_has_perm(p, current, PROCESS__SIGCHLD);
3498 static void selinux_task_to_inode(struct task_struct *p,
3499 struct inode *inode)
3501 struct inode_security_struct *isec = inode->i_security;
3502 u32 sid = task_sid(p);
3505 isec->initialized = 1;
3508 /* Returns error only if unable to parse addresses */
3509 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3510 struct common_audit_data *ad, u8 *proto)
3512 int offset, ihlen, ret = -EINVAL;
3513 struct iphdr _iph, *ih;
3515 offset = skb_network_offset(skb);
3516 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3520 ihlen = ih->ihl * 4;
3521 if (ihlen < sizeof(_iph))
3524 ad->u.net->v4info.saddr = ih->saddr;
3525 ad->u.net->v4info.daddr = ih->daddr;
3529 *proto = ih->protocol;
3531 switch (ih->protocol) {
3533 struct tcphdr _tcph, *th;
3535 if (ntohs(ih->frag_off) & IP_OFFSET)
3539 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3543 ad->u.net->sport = th->source;
3544 ad->u.net->dport = th->dest;
3549 struct udphdr _udph, *uh;
3551 if (ntohs(ih->frag_off) & IP_OFFSET)
3555 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3559 ad->u.net->sport = uh->source;
3560 ad->u.net->dport = uh->dest;
3564 case IPPROTO_DCCP: {
3565 struct dccp_hdr _dccph, *dh;
3567 if (ntohs(ih->frag_off) & IP_OFFSET)
3571 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3575 ad->u.net->sport = dh->dccph_sport;
3576 ad->u.net->dport = dh->dccph_dport;
3587 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3589 /* Returns error only if unable to parse addresses */
3590 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3591 struct common_audit_data *ad, u8 *proto)
3594 int ret = -EINVAL, offset;
3595 struct ipv6hdr _ipv6h, *ip6;
3598 offset = skb_network_offset(skb);
3599 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3603 ad->u.net->v6info.saddr = ip6->saddr;
3604 ad->u.net->v6info.daddr = ip6->daddr;
3607 nexthdr = ip6->nexthdr;
3608 offset += sizeof(_ipv6h);
3609 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3618 struct tcphdr _tcph, *th;
3620 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3624 ad->u.net->sport = th->source;
3625 ad->u.net->dport = th->dest;
3630 struct udphdr _udph, *uh;
3632 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3636 ad->u.net->sport = uh->source;
3637 ad->u.net->dport = uh->dest;
3641 case IPPROTO_DCCP: {
3642 struct dccp_hdr _dccph, *dh;
3644 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3648 ad->u.net->sport = dh->dccph_sport;
3649 ad->u.net->dport = dh->dccph_dport;
3653 /* includes fragments */
3663 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3664 char **_addrp, int src, u8 *proto)
3669 switch (ad->u.net->family) {
3671 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3674 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3675 &ad->u.net->v4info.daddr);
3678 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3680 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3683 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3684 &ad->u.net->v6info.daddr);
3694 "SELinux: failure in selinux_parse_skb(),"
3695 " unable to parse packet\n");
3705 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3707 * @family: protocol family
3708 * @sid: the packet's peer label SID
3711 * Check the various different forms of network peer labeling and determine
3712 * the peer label/SID for the packet; most of the magic actually occurs in
3713 * the security server function security_net_peersid_cmp(). The function
3714 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3715 * or -EACCES if @sid is invalid due to inconsistencies with the different
3719 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3726 selinux_xfrm_skb_sid(skb, &xfrm_sid);
3727 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3729 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3730 if (unlikely(err)) {
3732 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3733 " unable to determine packet's peer label\n");
3741 * selinux_conn_sid - Determine the child socket label for a connection
3742 * @sk_sid: the parent socket's SID
3743 * @skb_sid: the packet's SID
3744 * @conn_sid: the resulting connection SID
3746 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3747 * combined with the MLS information from @skb_sid in order to create
3748 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3749 * of @sk_sid. Returns zero on success, negative values on failure.
3752 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3756 if (skb_sid != SECSID_NULL)
3757 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3764 /* socket security operations */
3766 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3767 u16 secclass, u32 *socksid)
3769 if (tsec->sockcreate_sid > SECSID_NULL) {
3770 *socksid = tsec->sockcreate_sid;
3774 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3778 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3780 struct sk_security_struct *sksec = sk->sk_security;
3781 struct common_audit_data ad;
3782 struct lsm_network_audit net = {0,};
3783 u32 tsid = task_sid(task);
3785 if (sksec->sid == SECINITSID_KERNEL)
3788 ad.type = LSM_AUDIT_DATA_NET;
3792 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3795 static int selinux_socket_create(int family, int type,
3796 int protocol, int kern)
3798 const struct task_security_struct *tsec = current_security();
3806 secclass = socket_type_to_security_class(family, type, protocol);
3807 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3811 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3814 static int selinux_socket_post_create(struct socket *sock, int family,
3815 int type, int protocol, int kern)
3817 const struct task_security_struct *tsec = current_security();
3818 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3819 struct sk_security_struct *sksec;
3822 isec->sclass = socket_type_to_security_class(family, type, protocol);
3825 isec->sid = SECINITSID_KERNEL;
3827 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3832 isec->initialized = 1;
3835 sksec = sock->sk->sk_security;
3836 sksec->sid = isec->sid;
3837 sksec->sclass = isec->sclass;
3838 err = selinux_netlbl_socket_post_create(sock->sk, family);
3844 /* Range of port numbers used to automatically bind.
3845 Need to determine whether we should perform a name_bind
3846 permission check between the socket and the port number. */
3848 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3850 struct sock *sk = sock->sk;
3854 err = sock_has_perm(current, sk, SOCKET__BIND);
3859 * If PF_INET or PF_INET6, check name_bind permission for the port.
3860 * Multiple address binding for SCTP is not supported yet: we just
3861 * check the first address now.
3863 family = sk->sk_family;
3864 if (family == PF_INET || family == PF_INET6) {
3866 struct sk_security_struct *sksec = sk->sk_security;
3867 struct common_audit_data ad;
3868 struct lsm_network_audit net = {0,};
3869 struct sockaddr_in *addr4 = NULL;
3870 struct sockaddr_in6 *addr6 = NULL;
3871 unsigned short snum;
3874 if (family == PF_INET) {
3875 addr4 = (struct sockaddr_in *)address;
3876 snum = ntohs(addr4->sin_port);
3877 addrp = (char *)&addr4->sin_addr.s_addr;
3879 addr6 = (struct sockaddr_in6 *)address;
3880 snum = ntohs(addr6->sin6_port);
3881 addrp = (char *)&addr6->sin6_addr.s6_addr;
3887 inet_get_local_port_range(&low, &high);
3889 if (snum < max(PROT_SOCK, low) || snum > high) {
3890 err = sel_netport_sid(sk->sk_protocol,
3894 ad.type = LSM_AUDIT_DATA_NET;
3896 ad.u.net->sport = htons(snum);
3897 ad.u.net->family = family;
3898 err = avc_has_perm(sksec->sid, sid,
3900 SOCKET__NAME_BIND, &ad);
3906 switch (sksec->sclass) {
3907 case SECCLASS_TCP_SOCKET:
3908 node_perm = TCP_SOCKET__NODE_BIND;
3911 case SECCLASS_UDP_SOCKET:
3912 node_perm = UDP_SOCKET__NODE_BIND;
3915 case SECCLASS_DCCP_SOCKET:
3916 node_perm = DCCP_SOCKET__NODE_BIND;
3920 node_perm = RAWIP_SOCKET__NODE_BIND;
3924 err = sel_netnode_sid(addrp, family, &sid);
3928 ad.type = LSM_AUDIT_DATA_NET;
3930 ad.u.net->sport = htons(snum);
3931 ad.u.net->family = family;
3933 if (family == PF_INET)
3934 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3936 ad.u.net->v6info.saddr = addr6->sin6_addr;
3938 err = avc_has_perm(sksec->sid, sid,
3939 sksec->sclass, node_perm, &ad);
3947 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3949 struct sock *sk = sock->sk;
3950 struct sk_security_struct *sksec = sk->sk_security;
3953 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3958 * If a TCP or DCCP socket, check name_connect permission for the port.
3960 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3961 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3962 struct common_audit_data ad;
3963 struct lsm_network_audit net = {0,};
3964 struct sockaddr_in *addr4 = NULL;
3965 struct sockaddr_in6 *addr6 = NULL;
3966 unsigned short snum;
3969 if (sk->sk_family == PF_INET) {
3970 addr4 = (struct sockaddr_in *)address;
3971 if (addrlen < sizeof(struct sockaddr_in))
3973 snum = ntohs(addr4->sin_port);
3975 addr6 = (struct sockaddr_in6 *)address;
3976 if (addrlen < SIN6_LEN_RFC2133)
3978 snum = ntohs(addr6->sin6_port);
3981 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3985 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3986 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3988 ad.type = LSM_AUDIT_DATA_NET;
3990 ad.u.net->dport = htons(snum);
3991 ad.u.net->family = sk->sk_family;
3992 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3997 err = selinux_netlbl_socket_connect(sk, address);
4003 static int selinux_socket_listen(struct socket *sock, int backlog)
4005 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4008 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4011 struct inode_security_struct *isec;
4012 struct inode_security_struct *newisec;
4014 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4018 newisec = SOCK_INODE(newsock)->i_security;
4020 isec = SOCK_INODE(sock)->i_security;
4021 newisec->sclass = isec->sclass;
4022 newisec->sid = isec->sid;
4023 newisec->initialized = 1;
4028 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4031 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4034 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4035 int size, int flags)
4037 return sock_has_perm(current, sock->sk, SOCKET__READ);
4040 static int selinux_socket_getsockname(struct socket *sock)
4042 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4045 static int selinux_socket_getpeername(struct socket *sock)
4047 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4050 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4054 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4058 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4061 static int selinux_socket_getsockopt(struct socket *sock, int level,
4064 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4067 static int selinux_socket_shutdown(struct socket *sock, int how)
4069 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4072 static int selinux_socket_unix_stream_connect(struct sock *sock,
4076 struct sk_security_struct *sksec_sock = sock->sk_security;
4077 struct sk_security_struct *sksec_other = other->sk_security;
4078 struct sk_security_struct *sksec_new = newsk->sk_security;
4079 struct common_audit_data ad;
4080 struct lsm_network_audit net = {0,};
4083 ad.type = LSM_AUDIT_DATA_NET;
4085 ad.u.net->sk = other;
4087 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4088 sksec_other->sclass,
4089 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4093 /* server child socket */
4094 sksec_new->peer_sid = sksec_sock->sid;
4095 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4100 /* connecting socket */
4101 sksec_sock->peer_sid = sksec_new->sid;
4106 static int selinux_socket_unix_may_send(struct socket *sock,
4107 struct socket *other)
4109 struct sk_security_struct *ssec = sock->sk->sk_security;
4110 struct sk_security_struct *osec = other->sk->sk_security;
4111 struct common_audit_data ad;
4112 struct lsm_network_audit net = {0,};
4114 ad.type = LSM_AUDIT_DATA_NET;
4116 ad.u.net->sk = other->sk;
4118 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4122 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4124 struct common_audit_data *ad)
4130 err = sel_netif_sid(ifindex, &if_sid);
4133 err = avc_has_perm(peer_sid, if_sid,
4134 SECCLASS_NETIF, NETIF__INGRESS, ad);
4138 err = sel_netnode_sid(addrp, family, &node_sid);
4141 return avc_has_perm(peer_sid, node_sid,
4142 SECCLASS_NODE, NODE__RECVFROM, ad);
4145 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4149 struct sk_security_struct *sksec = sk->sk_security;
4150 u32 sk_sid = sksec->sid;
4151 struct common_audit_data ad;
4152 struct lsm_network_audit net = {0,};
4155 ad.type = LSM_AUDIT_DATA_NET;
4157 ad.u.net->netif = skb->skb_iif;
4158 ad.u.net->family = family;
4159 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4163 if (selinux_secmark_enabled()) {
4164 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4170 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4173 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4178 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4181 struct sk_security_struct *sksec = sk->sk_security;
4182 u16 family = sk->sk_family;
4183 u32 sk_sid = sksec->sid;
4184 struct common_audit_data ad;
4185 struct lsm_network_audit net = {0,};
4190 if (family != PF_INET && family != PF_INET6)
4193 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4194 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4197 /* If any sort of compatibility mode is enabled then handoff processing
4198 * to the selinux_sock_rcv_skb_compat() function to deal with the
4199 * special handling. We do this in an attempt to keep this function
4200 * as fast and as clean as possible. */
4201 if (!selinux_policycap_netpeer)
4202 return selinux_sock_rcv_skb_compat(sk, skb, family);
4204 secmark_active = selinux_secmark_enabled();
4205 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4206 if (!secmark_active && !peerlbl_active)
4209 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net->netif = skb->skb_iif;
4212 ad.u.net->family = family;
4213 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4217 if (peerlbl_active) {
4220 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4223 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4226 selinux_netlbl_err(skb, err, 0);
4229 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4232 selinux_netlbl_err(skb, err, 0);
4237 if (secmark_active) {
4238 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4247 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4248 int __user *optlen, unsigned len)
4253 struct sk_security_struct *sksec = sock->sk->sk_security;
4254 u32 peer_sid = SECSID_NULL;
4256 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4257 sksec->sclass == SECCLASS_TCP_SOCKET)
4258 peer_sid = sksec->peer_sid;
4259 if (peer_sid == SECSID_NULL)
4260 return -ENOPROTOOPT;
4262 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4266 if (scontext_len > len) {
4271 if (copy_to_user(optval, scontext, scontext_len))
4275 if (put_user(scontext_len, optlen))
4281 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4283 u32 peer_secid = SECSID_NULL;
4286 if (skb && skb->protocol == htons(ETH_P_IP))
4288 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4291 family = sock->sk->sk_family;
4295 if (sock && family == PF_UNIX)
4296 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4298 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4301 *secid = peer_secid;
4302 if (peer_secid == SECSID_NULL)
4307 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4309 struct sk_security_struct *sksec;
4311 sksec = kzalloc(sizeof(*sksec), priority);
4315 sksec->peer_sid = SECINITSID_UNLABELED;
4316 sksec->sid = SECINITSID_UNLABELED;
4317 selinux_netlbl_sk_security_reset(sksec);
4318 sk->sk_security = sksec;
4323 static void selinux_sk_free_security(struct sock *sk)
4325 struct sk_security_struct *sksec = sk->sk_security;
4327 sk->sk_security = NULL;
4328 selinux_netlbl_sk_security_free(sksec);
4332 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4334 struct sk_security_struct *sksec = sk->sk_security;
4335 struct sk_security_struct *newsksec = newsk->sk_security;
4337 newsksec->sid = sksec->sid;
4338 newsksec->peer_sid = sksec->peer_sid;
4339 newsksec->sclass = sksec->sclass;
4341 selinux_netlbl_sk_security_reset(newsksec);
4344 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4347 *secid = SECINITSID_ANY_SOCKET;
4349 struct sk_security_struct *sksec = sk->sk_security;
4351 *secid = sksec->sid;
4355 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4357 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4358 struct sk_security_struct *sksec = sk->sk_security;
4360 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4361 sk->sk_family == PF_UNIX)
4362 isec->sid = sksec->sid;
4363 sksec->sclass = isec->sclass;
4366 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4367 struct request_sock *req)
4369 struct sk_security_struct *sksec = sk->sk_security;
4371 u16 family = sk->sk_family;
4375 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4376 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4379 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4382 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4385 req->secid = connsid;
4386 req->peer_secid = peersid;
4388 return selinux_netlbl_inet_conn_request(req, family);
4391 static void selinux_inet_csk_clone(struct sock *newsk,
4392 const struct request_sock *req)
4394 struct sk_security_struct *newsksec = newsk->sk_security;
4396 newsksec->sid = req->secid;
4397 newsksec->peer_sid = req->peer_secid;
4398 /* NOTE: Ideally, we should also get the isec->sid for the
4399 new socket in sync, but we don't have the isec available yet.
4400 So we will wait until sock_graft to do it, by which
4401 time it will have been created and available. */
4403 /* We don't need to take any sort of lock here as we are the only
4404 * thread with access to newsksec */
4405 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4408 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4410 u16 family = sk->sk_family;
4411 struct sk_security_struct *sksec = sk->sk_security;
4413 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4414 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4417 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4420 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4422 skb_set_owner_w(skb, sk);
4425 static int selinux_secmark_relabel_packet(u32 sid)
4427 const struct task_security_struct *__tsec;
4430 __tsec = current_security();
4433 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4436 static void selinux_secmark_refcount_inc(void)
4438 atomic_inc(&selinux_secmark_refcount);
4441 static void selinux_secmark_refcount_dec(void)
4443 atomic_dec(&selinux_secmark_refcount);
4446 static void selinux_req_classify_flow(const struct request_sock *req,
4449 fl->flowi_secid = req->secid;
4452 static int selinux_tun_dev_alloc_security(void **security)
4454 struct tun_security_struct *tunsec;
4456 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4459 tunsec->sid = current_sid();
4465 static void selinux_tun_dev_free_security(void *security)
4470 static int selinux_tun_dev_create(void)
4472 u32 sid = current_sid();
4474 /* we aren't taking into account the "sockcreate" SID since the socket
4475 * that is being created here is not a socket in the traditional sense,
4476 * instead it is a private sock, accessible only to the kernel, and
4477 * representing a wide range of network traffic spanning multiple
4478 * connections unlike traditional sockets - check the TUN driver to
4479 * get a better understanding of why this socket is special */
4481 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4485 static int selinux_tun_dev_attach_queue(void *security)
4487 struct tun_security_struct *tunsec = security;
4489 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4490 TUN_SOCKET__ATTACH_QUEUE, NULL);
4493 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4495 struct tun_security_struct *tunsec = security;
4496 struct sk_security_struct *sksec = sk->sk_security;
4498 /* we don't currently perform any NetLabel based labeling here and it
4499 * isn't clear that we would want to do so anyway; while we could apply
4500 * labeling without the support of the TUN user the resulting labeled
4501 * traffic from the other end of the connection would almost certainly
4502 * cause confusion to the TUN user that had no idea network labeling
4503 * protocols were being used */
4505 sksec->sid = tunsec->sid;
4506 sksec->sclass = SECCLASS_TUN_SOCKET;
4511 static int selinux_tun_dev_open(void *security)
4513 struct tun_security_struct *tunsec = security;
4514 u32 sid = current_sid();
4517 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4518 TUN_SOCKET__RELABELFROM, NULL);
4521 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4522 TUN_SOCKET__RELABELTO, NULL);
4530 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4534 struct nlmsghdr *nlh;
4535 struct sk_security_struct *sksec = sk->sk_security;
4537 if (skb->len < NLMSG_HDRLEN) {
4541 nlh = nlmsg_hdr(skb);
4543 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4545 if (err == -EINVAL) {
4546 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4547 "SELinux: unrecognized netlink message"
4548 " type=%hu for sclass=%hu\n",
4549 nlh->nlmsg_type, sksec->sclass);
4550 if (!selinux_enforcing || security_get_allow_unknown())
4560 err = sock_has_perm(current, sk, perm);
4565 #ifdef CONFIG_NETFILTER
4567 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4573 struct common_audit_data ad;
4574 struct lsm_network_audit net = {0,};
4579 if (!selinux_policycap_netpeer)
4582 secmark_active = selinux_secmark_enabled();
4583 netlbl_active = netlbl_enabled();
4584 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4585 if (!secmark_active && !peerlbl_active)
4588 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4591 ad.type = LSM_AUDIT_DATA_NET;
4593 ad.u.net->netif = ifindex;
4594 ad.u.net->family = family;
4595 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4598 if (peerlbl_active) {
4599 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4602 selinux_netlbl_err(skb, err, 1);
4608 if (avc_has_perm(peer_sid, skb->secmark,
4609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4613 /* we do this in the FORWARD path and not the POST_ROUTING
4614 * path because we want to make sure we apply the necessary
4615 * labeling before IPsec is applied so we can leverage AH
4617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4623 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4624 struct sk_buff *skb,
4625 const struct net_device *in,
4626 const struct net_device *out,
4627 int (*okfn)(struct sk_buff *))
4629 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4633 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4634 struct sk_buff *skb,
4635 const struct net_device *in,
4636 const struct net_device *out,
4637 int (*okfn)(struct sk_buff *))
4639 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4643 static unsigned int selinux_ip_output(struct sk_buff *skb,
4649 if (!netlbl_enabled())
4652 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4653 * because we want to make sure we apply the necessary labeling
4654 * before IPsec is applied so we can leverage AH protection */
4657 struct sk_security_struct *sksec;
4659 if (sk->sk_state == TCP_LISTEN)
4660 /* if the socket is the listening state then this
4661 * packet is a SYN-ACK packet which means it needs to
4662 * be labeled based on the connection/request_sock and
4663 * not the parent socket. unfortunately, we can't
4664 * lookup the request_sock yet as it isn't queued on
4665 * the parent socket until after the SYN-ACK is sent.
4666 * the "solution" is to simply pass the packet as-is
4667 * as any IP option based labeling should be copied
4668 * from the initial connection request (in the IP
4669 * layer). it is far from ideal, but until we get a
4670 * security label in the packet itself this is the
4671 * best we can do. */
4674 /* standard practice, label using the parent socket */
4675 sksec = sk->sk_security;
4678 sid = SECINITSID_KERNEL;
4679 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4685 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4686 struct sk_buff *skb,
4687 const struct net_device *in,
4688 const struct net_device *out,
4689 int (*okfn)(struct sk_buff *))
4691 return selinux_ip_output(skb, PF_INET);
4694 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4698 struct sock *sk = skb->sk;
4699 struct sk_security_struct *sksec;
4700 struct common_audit_data ad;
4701 struct lsm_network_audit net = {0,};
4707 sksec = sk->sk_security;
4709 ad.type = LSM_AUDIT_DATA_NET;
4711 ad.u.net->netif = ifindex;
4712 ad.u.net->family = family;
4713 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4716 if (selinux_secmark_enabled())
4717 if (avc_has_perm(sksec->sid, skb->secmark,
4718 SECCLASS_PACKET, PACKET__SEND, &ad))
4719 return NF_DROP_ERR(-ECONNREFUSED);
4721 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4722 return NF_DROP_ERR(-ECONNREFUSED);
4727 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4733 struct common_audit_data ad;
4734 struct lsm_network_audit net = {0,};
4739 /* If any sort of compatibility mode is enabled then handoff processing
4740 * to the selinux_ip_postroute_compat() function to deal with the
4741 * special handling. We do this in an attempt to keep this function
4742 * as fast and as clean as possible. */
4743 if (!selinux_policycap_netpeer)
4744 return selinux_ip_postroute_compat(skb, ifindex, family);
4746 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4747 * packet transformation so allow the packet to pass without any checks
4748 * since we'll have another chance to perform access control checks
4749 * when the packet is on it's final way out.
4750 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4751 * is NULL, in this case go ahead and apply access control. */
4752 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4755 secmark_active = selinux_secmark_enabled();
4756 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4757 if (!secmark_active && !peerlbl_active)
4762 /* Without an associated socket the packet is either coming
4763 * from the kernel or it is being forwarded; check the packet
4764 * to determine which and if the packet is being forwarded
4765 * query the packet directly to determine the security label. */
4767 secmark_perm = PACKET__FORWARD_OUT;
4768 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4771 secmark_perm = PACKET__SEND;
4772 peer_sid = SECINITSID_KERNEL;
4774 } else if (sk->sk_state == TCP_LISTEN) {
4775 /* Locally generated packet but the associated socket is in the
4776 * listening state which means this is a SYN-ACK packet. In
4777 * this particular case the correct security label is assigned
4778 * to the connection/request_sock but unfortunately we can't
4779 * query the request_sock as it isn't queued on the parent
4780 * socket until after the SYN-ACK packet is sent; the only
4781 * viable choice is to regenerate the label like we do in
4782 * selinux_inet_conn_request(). See also selinux_ip_output()
4783 * for similar problems. */
4785 struct sk_security_struct *sksec = sk->sk_security;
4786 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4788 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4790 secmark_perm = PACKET__SEND;
4792 /* Locally generated packet, fetch the security label from the
4793 * associated socket. */
4794 struct sk_security_struct *sksec = sk->sk_security;
4795 peer_sid = sksec->sid;
4796 secmark_perm = PACKET__SEND;
4799 ad.type = LSM_AUDIT_DATA_NET;
4801 ad.u.net->netif = ifindex;
4802 ad.u.net->family = family;
4803 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4807 if (avc_has_perm(peer_sid, skb->secmark,
4808 SECCLASS_PACKET, secmark_perm, &ad))
4809 return NF_DROP_ERR(-ECONNREFUSED);
4811 if (peerlbl_active) {
4815 if (sel_netif_sid(ifindex, &if_sid))
4817 if (avc_has_perm(peer_sid, if_sid,
4818 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4819 return NF_DROP_ERR(-ECONNREFUSED);
4821 if (sel_netnode_sid(addrp, family, &node_sid))
4823 if (avc_has_perm(peer_sid, node_sid,
4824 SECCLASS_NODE, NODE__SENDTO, &ad))
4825 return NF_DROP_ERR(-ECONNREFUSED);
4831 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4832 struct sk_buff *skb,
4833 const struct net_device *in,
4834 const struct net_device *out,
4835 int (*okfn)(struct sk_buff *))
4837 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4840 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4841 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4842 struct sk_buff *skb,
4843 const struct net_device *in,
4844 const struct net_device *out,
4845 int (*okfn)(struct sk_buff *))
4847 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4851 #endif /* CONFIG_NETFILTER */
4853 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4857 err = cap_netlink_send(sk, skb);
4861 return selinux_nlmsg_perm(sk, skb);
4864 static int ipc_alloc_security(struct task_struct *task,
4865 struct kern_ipc_perm *perm,
4868 struct ipc_security_struct *isec;
4871 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4875 sid = task_sid(task);
4876 isec->sclass = sclass;
4878 perm->security = isec;
4883 static void ipc_free_security(struct kern_ipc_perm *perm)
4885 struct ipc_security_struct *isec = perm->security;
4886 perm->security = NULL;
4890 static int msg_msg_alloc_security(struct msg_msg *msg)
4892 struct msg_security_struct *msec;
4894 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4898 msec->sid = SECINITSID_UNLABELED;
4899 msg->security = msec;
4904 static void msg_msg_free_security(struct msg_msg *msg)
4906 struct msg_security_struct *msec = msg->security;
4908 msg->security = NULL;
4912 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4915 struct ipc_security_struct *isec;
4916 struct common_audit_data ad;
4917 u32 sid = current_sid();
4919 isec = ipc_perms->security;
4921 ad.type = LSM_AUDIT_DATA_IPC;
4922 ad.u.ipc_id = ipc_perms->key;
4924 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4927 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4929 return msg_msg_alloc_security(msg);
4932 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4934 msg_msg_free_security(msg);
4937 /* message queue security operations */
4938 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4940 struct ipc_security_struct *isec;
4941 struct common_audit_data ad;
4942 u32 sid = current_sid();
4945 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4949 isec = msq->q_perm.security;
4951 ad.type = LSM_AUDIT_DATA_IPC;
4952 ad.u.ipc_id = msq->q_perm.key;
4954 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4957 ipc_free_security(&msq->q_perm);
4963 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4965 ipc_free_security(&msq->q_perm);
4968 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4970 struct ipc_security_struct *isec;
4971 struct common_audit_data ad;
4972 u32 sid = current_sid();
4974 isec = msq->q_perm.security;
4976 ad.type = LSM_AUDIT_DATA_IPC;
4977 ad.u.ipc_id = msq->q_perm.key;
4979 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4980 MSGQ__ASSOCIATE, &ad);
4983 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4991 /* No specific object, just general system-wide information. */
4992 return task_has_system(current, SYSTEM__IPC_INFO);
4995 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4998 perms = MSGQ__SETATTR;
5001 perms = MSGQ__DESTROY;
5007 err = ipc_has_perm(&msq->q_perm, perms);
5011 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5013 struct ipc_security_struct *isec;
5014 struct msg_security_struct *msec;
5015 struct common_audit_data ad;
5016 u32 sid = current_sid();
5019 isec = msq->q_perm.security;
5020 msec = msg->security;
5023 * First time through, need to assign label to the message
5025 if (msec->sid == SECINITSID_UNLABELED) {
5027 * Compute new sid based on current process and
5028 * message queue this message will be stored in
5030 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5036 ad.type = LSM_AUDIT_DATA_IPC;
5037 ad.u.ipc_id = msq->q_perm.key;
5039 /* Can this process write to the queue? */
5040 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5043 /* Can this process send the message */
5044 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5047 /* Can the message be put in the queue? */
5048 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5049 MSGQ__ENQUEUE, &ad);
5054 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5055 struct task_struct *target,
5056 long type, int mode)
5058 struct ipc_security_struct *isec;
5059 struct msg_security_struct *msec;
5060 struct common_audit_data ad;
5061 u32 sid = task_sid(target);
5064 isec = msq->q_perm.security;
5065 msec = msg->security;
5067 ad.type = LSM_AUDIT_DATA_IPC;
5068 ad.u.ipc_id = msq->q_perm.key;
5070 rc = avc_has_perm(sid, isec->sid,
5071 SECCLASS_MSGQ, MSGQ__READ, &ad);
5073 rc = avc_has_perm(sid, msec->sid,
5074 SECCLASS_MSG, MSG__RECEIVE, &ad);
5078 /* Shared Memory security operations */
5079 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5081 struct ipc_security_struct *isec;
5082 struct common_audit_data ad;
5083 u32 sid = current_sid();
5086 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5090 isec = shp->shm_perm.security;
5092 ad.type = LSM_AUDIT_DATA_IPC;
5093 ad.u.ipc_id = shp->shm_perm.key;
5095 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5098 ipc_free_security(&shp->shm_perm);
5104 static void selinux_shm_free_security(struct shmid_kernel *shp)
5106 ipc_free_security(&shp->shm_perm);
5109 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5111 struct ipc_security_struct *isec;
5112 struct common_audit_data ad;
5113 u32 sid = current_sid();
5115 isec = shp->shm_perm.security;
5117 ad.type = LSM_AUDIT_DATA_IPC;
5118 ad.u.ipc_id = shp->shm_perm.key;
5120 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5121 SHM__ASSOCIATE, &ad);
5124 /* Note, at this point, shp is locked down */
5125 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5133 /* No specific object, just general system-wide information. */
5134 return task_has_system(current, SYSTEM__IPC_INFO);
5137 perms = SHM__GETATTR | SHM__ASSOCIATE;
5140 perms = SHM__SETATTR;
5147 perms = SHM__DESTROY;
5153 err = ipc_has_perm(&shp->shm_perm, perms);
5157 static int selinux_shm_shmat(struct shmid_kernel *shp,
5158 char __user *shmaddr, int shmflg)
5162 if (shmflg & SHM_RDONLY)
5165 perms = SHM__READ | SHM__WRITE;
5167 return ipc_has_perm(&shp->shm_perm, perms);
5170 /* Semaphore security operations */
5171 static int selinux_sem_alloc_security(struct sem_array *sma)
5173 struct ipc_security_struct *isec;
5174 struct common_audit_data ad;
5175 u32 sid = current_sid();
5178 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5182 isec = sma->sem_perm.security;
5184 ad.type = LSM_AUDIT_DATA_IPC;
5185 ad.u.ipc_id = sma->sem_perm.key;
5187 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5190 ipc_free_security(&sma->sem_perm);
5196 static void selinux_sem_free_security(struct sem_array *sma)
5198 ipc_free_security(&sma->sem_perm);
5201 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5203 struct ipc_security_struct *isec;
5204 struct common_audit_data ad;
5205 u32 sid = current_sid();
5207 isec = sma->sem_perm.security;
5209 ad.type = LSM_AUDIT_DATA_IPC;
5210 ad.u.ipc_id = sma->sem_perm.key;
5212 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5213 SEM__ASSOCIATE, &ad);
5216 /* Note, at this point, sma is locked down */
5217 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5225 /* No specific object, just general system-wide information. */
5226 return task_has_system(current, SYSTEM__IPC_INFO);
5230 perms = SEM__GETATTR;
5241 perms = SEM__DESTROY;
5244 perms = SEM__SETATTR;
5248 perms = SEM__GETATTR | SEM__ASSOCIATE;
5254 err = ipc_has_perm(&sma->sem_perm, perms);
5258 static int selinux_sem_semop(struct sem_array *sma,
5259 struct sembuf *sops, unsigned nsops, int alter)
5264 perms = SEM__READ | SEM__WRITE;
5268 return ipc_has_perm(&sma->sem_perm, perms);
5271 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5277 av |= IPC__UNIX_READ;
5279 av |= IPC__UNIX_WRITE;
5284 return ipc_has_perm(ipcp, av);
5287 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5289 struct ipc_security_struct *isec = ipcp->security;
5293 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5296 inode_doinit_with_dentry(inode, dentry);
5299 static int selinux_getprocattr(struct task_struct *p,
5300 char *name, char **value)
5302 const struct task_security_struct *__tsec;
5308 error = current_has_perm(p, PROCESS__GETATTR);
5314 __tsec = __task_cred(p)->security;
5316 if (!strcmp(name, "current"))
5318 else if (!strcmp(name, "prev"))
5320 else if (!strcmp(name, "exec"))
5321 sid = __tsec->exec_sid;
5322 else if (!strcmp(name, "fscreate"))
5323 sid = __tsec->create_sid;
5324 else if (!strcmp(name, "keycreate"))
5325 sid = __tsec->keycreate_sid;
5326 else if (!strcmp(name, "sockcreate"))
5327 sid = __tsec->sockcreate_sid;
5335 error = security_sid_to_context(sid, value, &len);
5345 static int selinux_setprocattr(struct task_struct *p,
5346 char *name, void *value, size_t size)
5348 struct task_security_struct *tsec;
5349 struct task_struct *tracer;
5356 /* SELinux only allows a process to change its own
5357 security attributes. */
5362 * Basic control over ability to set these attributes at all.
5363 * current == p, but we'll pass them separately in case the
5364 * above restriction is ever removed.
5366 if (!strcmp(name, "exec"))
5367 error = current_has_perm(p, PROCESS__SETEXEC);
5368 else if (!strcmp(name, "fscreate"))
5369 error = current_has_perm(p, PROCESS__SETFSCREATE);
5370 else if (!strcmp(name, "keycreate"))
5371 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5372 else if (!strcmp(name, "sockcreate"))
5373 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5374 else if (!strcmp(name, "current"))
5375 error = current_has_perm(p, PROCESS__SETCURRENT);
5381 /* Obtain a SID for the context, if one was specified. */
5382 if (size && str[1] && str[1] != '\n') {
5383 if (str[size-1] == '\n') {
5387 error = security_context_to_sid(value, size, &sid);
5388 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5389 if (!capable(CAP_MAC_ADMIN)) {
5390 struct audit_buffer *ab;
5393 /* We strip a nul only if it is at the end, otherwise the
5394 * context contains a nul and we should audit that */
5395 if (str[size - 1] == '\0')
5396 audit_size = size - 1;
5399 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5400 audit_log_format(ab, "op=fscreate invalid_context=");
5401 audit_log_n_untrustedstring(ab, value, audit_size);
5406 error = security_context_to_sid_force(value, size,
5413 new = prepare_creds();
5417 /* Permission checking based on the specified context is
5418 performed during the actual operation (execve,
5419 open/mkdir/...), when we know the full context of the
5420 operation. See selinux_bprm_set_creds for the execve
5421 checks and may_create for the file creation checks. The
5422 operation will then fail if the context is not permitted. */
5423 tsec = new->security;
5424 if (!strcmp(name, "exec")) {
5425 tsec->exec_sid = sid;
5426 } else if (!strcmp(name, "fscreate")) {
5427 tsec->create_sid = sid;
5428 } else if (!strcmp(name, "keycreate")) {
5429 error = may_create_key(sid, p);
5432 tsec->keycreate_sid = sid;
5433 } else if (!strcmp(name, "sockcreate")) {
5434 tsec->sockcreate_sid = sid;
5435 } else if (!strcmp(name, "current")) {
5440 /* Only allow single threaded processes to change context */
5442 if (!current_is_single_threaded()) {
5443 error = security_bounded_transition(tsec->sid, sid);
5448 /* Check permissions for the transition. */
5449 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5450 PROCESS__DYNTRANSITION, NULL);
5454 /* Check for ptracing, and update the task SID if ok.
5455 Otherwise, leave SID unchanged and fail. */
5458 tracer = ptrace_parent(p);
5460 ptsid = task_sid(tracer);
5464 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5465 PROCESS__PTRACE, NULL);
5484 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5486 return security_sid_to_context(secid, secdata, seclen);
5489 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5491 return security_context_to_sid(secdata, seclen, secid);
5494 static void selinux_release_secctx(char *secdata, u32 seclen)
5500 * called with inode->i_mutex locked
5502 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5504 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5508 * called with inode->i_mutex locked
5510 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5512 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5515 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5518 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5527 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5528 unsigned long flags)
5530 const struct task_security_struct *tsec;
5531 struct key_security_struct *ksec;
5533 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5537 tsec = cred->security;
5538 if (tsec->keycreate_sid)
5539 ksec->sid = tsec->keycreate_sid;
5541 ksec->sid = tsec->sid;
5547 static void selinux_key_free(struct key *k)
5549 struct key_security_struct *ksec = k->security;
5555 static int selinux_key_permission(key_ref_t key_ref,
5556 const struct cred *cred,
5560 struct key_security_struct *ksec;
5563 /* if no specific permissions are requested, we skip the
5564 permission check. No serious, additional covert channels
5565 appear to be created. */
5569 sid = cred_sid(cred);
5571 key = key_ref_to_ptr(key_ref);
5572 ksec = key->security;
5574 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5577 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5579 struct key_security_struct *ksec = key->security;
5580 char *context = NULL;
5584 rc = security_sid_to_context(ksec->sid, &context, &len);
5593 static struct security_operations selinux_ops = {
5596 .ptrace_access_check = selinux_ptrace_access_check,
5597 .ptrace_traceme = selinux_ptrace_traceme,
5598 .capget = selinux_capget,
5599 .capset = selinux_capset,
5600 .capable = selinux_capable,
5601 .quotactl = selinux_quotactl,
5602 .quota_on = selinux_quota_on,
5603 .syslog = selinux_syslog,
5604 .vm_enough_memory = selinux_vm_enough_memory,
5606 .netlink_send = selinux_netlink_send,
5608 .bprm_set_creds = selinux_bprm_set_creds,
5609 .bprm_committing_creds = selinux_bprm_committing_creds,
5610 .bprm_committed_creds = selinux_bprm_committed_creds,
5611 .bprm_secureexec = selinux_bprm_secureexec,
5613 .sb_alloc_security = selinux_sb_alloc_security,
5614 .sb_free_security = selinux_sb_free_security,
5615 .sb_copy_data = selinux_sb_copy_data,
5616 .sb_remount = selinux_sb_remount,
5617 .sb_kern_mount = selinux_sb_kern_mount,
5618 .sb_show_options = selinux_sb_show_options,
5619 .sb_statfs = selinux_sb_statfs,
5620 .sb_mount = selinux_mount,
5621 .sb_umount = selinux_umount,
5622 .sb_set_mnt_opts = selinux_set_mnt_opts,
5623 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5624 .sb_parse_opts_str = selinux_parse_opts_str,
5627 .inode_alloc_security = selinux_inode_alloc_security,
5628 .inode_free_security = selinux_inode_free_security,
5629 .inode_init_security = selinux_inode_init_security,
5630 .inode_create = selinux_inode_create,
5631 .inode_link = selinux_inode_link,
5632 .inode_unlink = selinux_inode_unlink,
5633 .inode_symlink = selinux_inode_symlink,
5634 .inode_mkdir = selinux_inode_mkdir,
5635 .inode_rmdir = selinux_inode_rmdir,
5636 .inode_mknod = selinux_inode_mknod,
5637 .inode_rename = selinux_inode_rename,
5638 .inode_readlink = selinux_inode_readlink,
5639 .inode_follow_link = selinux_inode_follow_link,
5640 .inode_permission = selinux_inode_permission,
5641 .inode_setattr = selinux_inode_setattr,
5642 .inode_getattr = selinux_inode_getattr,
5643 .inode_setxattr = selinux_inode_setxattr,
5644 .inode_post_setxattr = selinux_inode_post_setxattr,
5645 .inode_getxattr = selinux_inode_getxattr,
5646 .inode_listxattr = selinux_inode_listxattr,
5647 .inode_removexattr = selinux_inode_removexattr,
5648 .inode_getsecurity = selinux_inode_getsecurity,
5649 .inode_setsecurity = selinux_inode_setsecurity,
5650 .inode_listsecurity = selinux_inode_listsecurity,
5651 .inode_getsecid = selinux_inode_getsecid,
5653 .file_permission = selinux_file_permission,
5654 .file_alloc_security = selinux_file_alloc_security,
5655 .file_free_security = selinux_file_free_security,
5656 .file_ioctl = selinux_file_ioctl,
5657 .mmap_file = selinux_mmap_file,
5658 .mmap_addr = selinux_mmap_addr,
5659 .file_mprotect = selinux_file_mprotect,
5660 .file_lock = selinux_file_lock,
5661 .file_fcntl = selinux_file_fcntl,
5662 .file_set_fowner = selinux_file_set_fowner,
5663 .file_send_sigiotask = selinux_file_send_sigiotask,
5664 .file_receive = selinux_file_receive,
5666 .file_open = selinux_file_open,
5668 .task_create = selinux_task_create,
5669 .cred_alloc_blank = selinux_cred_alloc_blank,
5670 .cred_free = selinux_cred_free,
5671 .cred_prepare = selinux_cred_prepare,
5672 .cred_transfer = selinux_cred_transfer,
5673 .kernel_act_as = selinux_kernel_act_as,
5674 .kernel_create_files_as = selinux_kernel_create_files_as,
5675 .kernel_module_request = selinux_kernel_module_request,
5676 .task_setpgid = selinux_task_setpgid,
5677 .task_getpgid = selinux_task_getpgid,
5678 .task_getsid = selinux_task_getsid,
5679 .task_getsecid = selinux_task_getsecid,
5680 .task_setnice = selinux_task_setnice,
5681 .task_setioprio = selinux_task_setioprio,
5682 .task_getioprio = selinux_task_getioprio,
5683 .task_setrlimit = selinux_task_setrlimit,
5684 .task_setscheduler = selinux_task_setscheduler,
5685 .task_getscheduler = selinux_task_getscheduler,
5686 .task_movememory = selinux_task_movememory,
5687 .task_kill = selinux_task_kill,
5688 .task_wait = selinux_task_wait,
5689 .task_to_inode = selinux_task_to_inode,
5691 .ipc_permission = selinux_ipc_permission,
5692 .ipc_getsecid = selinux_ipc_getsecid,
5694 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5695 .msg_msg_free_security = selinux_msg_msg_free_security,
5697 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5698 .msg_queue_free_security = selinux_msg_queue_free_security,
5699 .msg_queue_associate = selinux_msg_queue_associate,
5700 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5701 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5702 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5704 .shm_alloc_security = selinux_shm_alloc_security,
5705 .shm_free_security = selinux_shm_free_security,
5706 .shm_associate = selinux_shm_associate,
5707 .shm_shmctl = selinux_shm_shmctl,
5708 .shm_shmat = selinux_shm_shmat,
5710 .sem_alloc_security = selinux_sem_alloc_security,
5711 .sem_free_security = selinux_sem_free_security,
5712 .sem_associate = selinux_sem_associate,
5713 .sem_semctl = selinux_sem_semctl,
5714 .sem_semop = selinux_sem_semop,
5716 .d_instantiate = selinux_d_instantiate,
5718 .getprocattr = selinux_getprocattr,
5719 .setprocattr = selinux_setprocattr,
5721 .secid_to_secctx = selinux_secid_to_secctx,
5722 .secctx_to_secid = selinux_secctx_to_secid,
5723 .release_secctx = selinux_release_secctx,
5724 .inode_notifysecctx = selinux_inode_notifysecctx,
5725 .inode_setsecctx = selinux_inode_setsecctx,
5726 .inode_getsecctx = selinux_inode_getsecctx,
5728 .unix_stream_connect = selinux_socket_unix_stream_connect,
5729 .unix_may_send = selinux_socket_unix_may_send,
5731 .socket_create = selinux_socket_create,
5732 .socket_post_create = selinux_socket_post_create,
5733 .socket_bind = selinux_socket_bind,
5734 .socket_connect = selinux_socket_connect,
5735 .socket_listen = selinux_socket_listen,
5736 .socket_accept = selinux_socket_accept,
5737 .socket_sendmsg = selinux_socket_sendmsg,
5738 .socket_recvmsg = selinux_socket_recvmsg,
5739 .socket_getsockname = selinux_socket_getsockname,
5740 .socket_getpeername = selinux_socket_getpeername,
5741 .socket_getsockopt = selinux_socket_getsockopt,
5742 .socket_setsockopt = selinux_socket_setsockopt,
5743 .socket_shutdown = selinux_socket_shutdown,
5744 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5745 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5746 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5747 .sk_alloc_security = selinux_sk_alloc_security,
5748 .sk_free_security = selinux_sk_free_security,
5749 .sk_clone_security = selinux_sk_clone_security,
5750 .sk_getsecid = selinux_sk_getsecid,
5751 .sock_graft = selinux_sock_graft,
5752 .inet_conn_request = selinux_inet_conn_request,
5753 .inet_csk_clone = selinux_inet_csk_clone,
5754 .inet_conn_established = selinux_inet_conn_established,
5755 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5756 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5757 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5758 .req_classify_flow = selinux_req_classify_flow,
5759 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5760 .tun_dev_free_security = selinux_tun_dev_free_security,
5761 .tun_dev_create = selinux_tun_dev_create,
5762 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5763 .tun_dev_attach = selinux_tun_dev_attach,
5764 .tun_dev_open = selinux_tun_dev_open,
5765 .skb_owned_by = selinux_skb_owned_by,
5767 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5768 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5769 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5770 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5771 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5772 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5773 .xfrm_state_free_security = selinux_xfrm_state_free,
5774 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5775 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5776 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5777 .xfrm_decode_session = selinux_xfrm_decode_session,
5781 .key_alloc = selinux_key_alloc,
5782 .key_free = selinux_key_free,
5783 .key_permission = selinux_key_permission,
5784 .key_getsecurity = selinux_key_getsecurity,
5788 .audit_rule_init = selinux_audit_rule_init,
5789 .audit_rule_known = selinux_audit_rule_known,
5790 .audit_rule_match = selinux_audit_rule_match,
5791 .audit_rule_free = selinux_audit_rule_free,
5795 static __init int selinux_init(void)
5797 if (!security_module_enable(&selinux_ops)) {
5798 selinux_enabled = 0;
5802 if (!selinux_enabled) {
5803 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5807 printk(KERN_INFO "SELinux: Initializing.\n");
5809 /* Set the security state for the initial task. */
5810 cred_init_security();
5812 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5814 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5815 sizeof(struct inode_security_struct),
5816 0, SLAB_PANIC, NULL);
5819 if (register_security(&selinux_ops))
5820 panic("SELinux: Unable to register with kernel.\n");
5822 if (selinux_enforcing)
5823 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5825 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5830 static void delayed_superblock_init(struct super_block *sb, void *unused)
5832 superblock_doinit(sb, NULL);
5835 void selinux_complete_init(void)
5837 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5839 /* Set up any superblocks initialized prior to the policy load. */
5840 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5841 iterate_supers(delayed_superblock_init, NULL);
5844 /* SELinux requires early initialization in order to label
5845 all processes and objects when they are created. */
5846 security_initcall(selinux_init);
5848 #if defined(CONFIG_NETFILTER)
5850 static struct nf_hook_ops selinux_ipv4_ops[] = {
5852 .hook = selinux_ipv4_postroute,
5853 .owner = THIS_MODULE,
5855 .hooknum = NF_INET_POST_ROUTING,
5856 .priority = NF_IP_PRI_SELINUX_LAST,
5859 .hook = selinux_ipv4_forward,
5860 .owner = THIS_MODULE,
5862 .hooknum = NF_INET_FORWARD,
5863 .priority = NF_IP_PRI_SELINUX_FIRST,
5866 .hook = selinux_ipv4_output,
5867 .owner = THIS_MODULE,
5869 .hooknum = NF_INET_LOCAL_OUT,
5870 .priority = NF_IP_PRI_SELINUX_FIRST,
5874 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5876 static struct nf_hook_ops selinux_ipv6_ops[] = {
5878 .hook = selinux_ipv6_postroute,
5879 .owner = THIS_MODULE,
5881 .hooknum = NF_INET_POST_ROUTING,
5882 .priority = NF_IP6_PRI_SELINUX_LAST,
5885 .hook = selinux_ipv6_forward,
5886 .owner = THIS_MODULE,
5888 .hooknum = NF_INET_FORWARD,
5889 .priority = NF_IP6_PRI_SELINUX_FIRST,
5895 static int __init selinux_nf_ip_init(void)
5899 if (!selinux_enabled)
5902 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5904 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5906 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5908 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5909 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5911 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5918 __initcall(selinux_nf_ip_init);
5920 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5921 static void selinux_nf_ip_exit(void)
5923 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5925 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5926 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5927 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5932 #else /* CONFIG_NETFILTER */
5934 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5935 #define selinux_nf_ip_exit()
5938 #endif /* CONFIG_NETFILTER */
5940 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5941 static int selinux_disabled;
5943 int selinux_disable(void)
5945 if (ss_initialized) {
5946 /* Not permitted after initial policy load. */
5950 if (selinux_disabled) {
5951 /* Only do this once. */
5955 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5957 selinux_disabled = 1;
5958 selinux_enabled = 0;
5960 reset_security_ops();
5962 /* Try to destroy the avc node cache */
5965 /* Unregister netfilter hooks. */
5966 selinux_nf_ip_exit();
5968 /* Unregister selinuxfs. */