Merge tag 'selinux-pr-20200430' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / security / selinux / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *            Chris Vance, <cvance@nai.com>
9  *            Wayne Salamon, <wsalamon@nai.com>
10  *            James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *                                         Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *                          <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *      Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>           /* for Unix socket types */
73 #include <net/af_unix.h>        /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>   /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105
106 struct selinux_state selinux_state;
107
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot __initdata;
113
114 static int __init enforcing_setup(char *str)
115 {
116         unsigned long enforcing;
117         if (!kstrtoul(str, 0, &enforcing))
118                 selinux_enforcing_boot = enforcing ? 1 : 0;
119         return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125
126 int selinux_enabled_boot __initdata = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130         unsigned long enabled;
131         if (!kstrtoul(str, 0, &enabled))
132                 selinux_enabled_boot = enabled ? 1 : 0;
133         return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot)) {
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147                 if (checkreqprot)
148                         pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
149         }
150         return 1;
151 }
152 __setup("checkreqprot=", checkreqprot_setup);
153
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167         return (selinux_policycap_alwaysnetwork() ||
168                 atomic_read(&selinux_secmark_refcount));
169 }
170
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183         return (selinux_policycap_alwaysnetwork() ||
184                 netlbl_enabled() || selinux_xfrm_enabled());
185 }
186
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189         if (event == AVC_CALLBACK_RESET) {
190                 sel_netif_flush();
191                 sel_netnode_flush();
192                 sel_netport_flush();
193                 synchronize_net();
194         }
195         return 0;
196 }
197
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200         if (event == AVC_CALLBACK_RESET) {
201                 sel_ib_pkey_flush();
202                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203         }
204
205         return 0;
206 }
207
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213         struct cred *cred = (struct cred *) current->real_cred;
214         struct task_security_struct *tsec;
215
216         tsec = selinux_cred(cred);
217         tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225         const struct task_security_struct *tsec;
226
227         tsec = selinux_cred(cred);
228         return tsec->sid;
229 }
230
231 /*
232  * get the objective security ID of a task
233  */
234 static inline u32 task_sid(const struct task_struct *task)
235 {
236         u32 sid;
237
238         rcu_read_lock();
239         sid = cred_sid(__task_cred(task));
240         rcu_read_unlock();
241         return sid;
242 }
243
244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246 /*
247  * Try reloading inode security labels that have been marked as invalid.  The
248  * @may_sleep parameter indicates when sleeping and thus reloading labels is
249  * allowed; when set to false, returns -ECHILD when the label is
250  * invalid.  The @dentry parameter should be set to a dentry of the inode.
251  */
252 static int __inode_security_revalidate(struct inode *inode,
253                                        struct dentry *dentry,
254                                        bool may_sleep)
255 {
256         struct inode_security_struct *isec = selinux_inode(inode);
257
258         might_sleep_if(may_sleep);
259
260         if (selinux_initialized(&selinux_state) &&
261             isec->initialized != LABEL_INITIALIZED) {
262                 if (!may_sleep)
263                         return -ECHILD;
264
265                 /*
266                  * Try reloading the inode security label.  This will fail if
267                  * @opt_dentry is NULL and no dentry for this inode can be
268                  * found; in that case, continue using the old label.
269                  */
270                 inode_doinit_with_dentry(inode, dentry);
271         }
272         return 0;
273 }
274
275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276 {
277         return selinux_inode(inode);
278 }
279
280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281 {
282         int error;
283
284         error = __inode_security_revalidate(inode, NULL, !rcu);
285         if (error)
286                 return ERR_PTR(error);
287         return selinux_inode(inode);
288 }
289
290 /*
291  * Get the security label of an inode.
292  */
293 static struct inode_security_struct *inode_security(struct inode *inode)
294 {
295         __inode_security_revalidate(inode, NULL, true);
296         return selinux_inode(inode);
297 }
298
299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300 {
301         struct inode *inode = d_backing_inode(dentry);
302
303         return selinux_inode(inode);
304 }
305
306 /*
307  * Get the security label of a dentry's backing inode.
308  */
309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310 {
311         struct inode *inode = d_backing_inode(dentry);
312
313         __inode_security_revalidate(inode, dentry, true);
314         return selinux_inode(inode);
315 }
316
317 static void inode_free_security(struct inode *inode)
318 {
319         struct inode_security_struct *isec = selinux_inode(inode);
320         struct superblock_security_struct *sbsec;
321
322         if (!isec)
323                 return;
324         sbsec = inode->i_sb->s_security;
325         /*
326          * As not all inode security structures are in a list, we check for
327          * empty list outside of the lock to make sure that we won't waste
328          * time taking a lock doing nothing.
329          *
330          * The list_del_init() function can be safely called more than once.
331          * It should not be possible for this function to be called with
332          * concurrent list_add(), but for better safety against future changes
333          * in the code, we use list_empty_careful() here.
334          */
335         if (!list_empty_careful(&isec->list)) {
336                 spin_lock(&sbsec->isec_lock);
337                 list_del_init(&isec->list);
338                 spin_unlock(&sbsec->isec_lock);
339         }
340 }
341
342 static void superblock_free_security(struct super_block *sb)
343 {
344         struct superblock_security_struct *sbsec = sb->s_security;
345         sb->s_security = NULL;
346         kfree(sbsec);
347 }
348
349 struct selinux_mnt_opts {
350         const char *fscontext, *context, *rootcontext, *defcontext;
351 };
352
353 static void selinux_free_mnt_opts(void *mnt_opts)
354 {
355         struct selinux_mnt_opts *opts = mnt_opts;
356         kfree(opts->fscontext);
357         kfree(opts->context);
358         kfree(opts->rootcontext);
359         kfree(opts->defcontext);
360         kfree(opts);
361 }
362
363 enum {
364         Opt_error = -1,
365         Opt_context = 0,
366         Opt_defcontext = 1,
367         Opt_fscontext = 2,
368         Opt_rootcontext = 3,
369         Opt_seclabel = 4,
370 };
371
372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373 static struct {
374         const char *name;
375         int len;
376         int opt;
377         bool has_arg;
378 } tokens[] = {
379         A(context, true),
380         A(fscontext, true),
381         A(defcontext, true),
382         A(rootcontext, true),
383         A(seclabel, false),
384 };
385 #undef A
386
387 static int match_opt_prefix(char *s, int l, char **arg)
388 {
389         int i;
390
391         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392                 size_t len = tokens[i].len;
393                 if (len > l || memcmp(s, tokens[i].name, len))
394                         continue;
395                 if (tokens[i].has_arg) {
396                         if (len == l || s[len] != '=')
397                                 continue;
398                         *arg = s + len + 1;
399                 } else if (len != l)
400                         continue;
401                 return tokens[i].opt;
402         }
403         return Opt_error;
404 }
405
406 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
407
408 static int may_context_mount_sb_relabel(u32 sid,
409                         struct superblock_security_struct *sbsec,
410                         const struct cred *cred)
411 {
412         const struct task_security_struct *tsec = selinux_cred(cred);
413         int rc;
414
415         rc = avc_has_perm(&selinux_state,
416                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417                           FILESYSTEM__RELABELFROM, NULL);
418         if (rc)
419                 return rc;
420
421         rc = avc_has_perm(&selinux_state,
422                           tsec->sid, sid, SECCLASS_FILESYSTEM,
423                           FILESYSTEM__RELABELTO, NULL);
424         return rc;
425 }
426
427 static int may_context_mount_inode_relabel(u32 sid,
428                         struct superblock_security_struct *sbsec,
429                         const struct cred *cred)
430 {
431         const struct task_security_struct *tsec = selinux_cred(cred);
432         int rc;
433         rc = avc_has_perm(&selinux_state,
434                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435                           FILESYSTEM__RELABELFROM, NULL);
436         if (rc)
437                 return rc;
438
439         rc = avc_has_perm(&selinux_state,
440                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
441                           FILESYSTEM__ASSOCIATE, NULL);
442         return rc;
443 }
444
445 static int selinux_is_genfs_special_handling(struct super_block *sb)
446 {
447         /* Special handling. Genfs but also in-core setxattr handler */
448         return  !strcmp(sb->s_type->name, "sysfs") ||
449                 !strcmp(sb->s_type->name, "pstore") ||
450                 !strcmp(sb->s_type->name, "debugfs") ||
451                 !strcmp(sb->s_type->name, "tracefs") ||
452                 !strcmp(sb->s_type->name, "rootfs") ||
453                 (selinux_policycap_cgroupseclabel() &&
454                  (!strcmp(sb->s_type->name, "cgroup") ||
455                   !strcmp(sb->s_type->name, "cgroup2")));
456 }
457
458 static int selinux_is_sblabel_mnt(struct super_block *sb)
459 {
460         struct superblock_security_struct *sbsec = sb->s_security;
461
462         /*
463          * IMPORTANT: Double-check logic in this function when adding a new
464          * SECURITY_FS_USE_* definition!
465          */
466         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467
468         switch (sbsec->behavior) {
469         case SECURITY_FS_USE_XATTR:
470         case SECURITY_FS_USE_TRANS:
471         case SECURITY_FS_USE_TASK:
472         case SECURITY_FS_USE_NATIVE:
473                 return 1;
474
475         case SECURITY_FS_USE_GENFS:
476                 return selinux_is_genfs_special_handling(sb);
477
478         /* Never allow relabeling on context mounts */
479         case SECURITY_FS_USE_MNTPOINT:
480         case SECURITY_FS_USE_NONE:
481         default:
482                 return 0;
483         }
484 }
485
486 static int sb_finish_set_opts(struct super_block *sb)
487 {
488         struct superblock_security_struct *sbsec = sb->s_security;
489         struct dentry *root = sb->s_root;
490         struct inode *root_inode = d_backing_inode(root);
491         int rc = 0;
492
493         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494                 /* Make sure that the xattr handler exists and that no
495                    error other than -ENODATA is returned by getxattr on
496                    the root directory.  -ENODATA is ok, as this may be
497                    the first boot of the SELinux kernel before we have
498                    assigned xattr values to the filesystem. */
499                 if (!(root_inode->i_opflags & IOP_XATTR)) {
500                         pr_warn("SELinux: (dev %s, type %s) has no "
501                                "xattr support\n", sb->s_id, sb->s_type->name);
502                         rc = -EOPNOTSUPP;
503                         goto out;
504                 }
505
506                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507                 if (rc < 0 && rc != -ENODATA) {
508                         if (rc == -EOPNOTSUPP)
509                                 pr_warn("SELinux: (dev %s, type "
510                                        "%s) has no security xattr handler\n",
511                                        sb->s_id, sb->s_type->name);
512                         else
513                                 pr_warn("SELinux: (dev %s, type "
514                                        "%s) getxattr errno %d\n", sb->s_id,
515                                        sb->s_type->name, -rc);
516                         goto out;
517                 }
518         }
519
520         sbsec->flags |= SE_SBINITIALIZED;
521
522         /*
523          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
524          * leave the flag untouched because sb_clone_mnt_opts might be handing
525          * us a superblock that needs the flag to be cleared.
526          */
527         if (selinux_is_sblabel_mnt(sb))
528                 sbsec->flags |= SBLABEL_MNT;
529         else
530                 sbsec->flags &= ~SBLABEL_MNT;
531
532         /* Initialize the root inode. */
533         rc = inode_doinit_with_dentry(root_inode, root);
534
535         /* Initialize any other inodes associated with the superblock, e.g.
536            inodes created prior to initial policy load or inodes created
537            during get_sb by a pseudo filesystem that directly
538            populates itself. */
539         spin_lock(&sbsec->isec_lock);
540         while (!list_empty(&sbsec->isec_head)) {
541                 struct inode_security_struct *isec =
542                                 list_first_entry(&sbsec->isec_head,
543                                            struct inode_security_struct, list);
544                 struct inode *inode = isec->inode;
545                 list_del_init(&isec->list);
546                 spin_unlock(&sbsec->isec_lock);
547                 inode = igrab(inode);
548                 if (inode) {
549                         if (!IS_PRIVATE(inode))
550                                 inode_doinit_with_dentry(inode, NULL);
551                         iput(inode);
552                 }
553                 spin_lock(&sbsec->isec_lock);
554         }
555         spin_unlock(&sbsec->isec_lock);
556 out:
557         return rc;
558 }
559
560 static int bad_option(struct superblock_security_struct *sbsec, char flag,
561                       u32 old_sid, u32 new_sid)
562 {
563         char mnt_flags = sbsec->flags & SE_MNTMASK;
564
565         /* check if the old mount command had the same options */
566         if (sbsec->flags & SE_SBINITIALIZED)
567                 if (!(sbsec->flags & flag) ||
568                     (old_sid != new_sid))
569                         return 1;
570
571         /* check if we were passed the same options twice,
572          * aka someone passed context=a,context=b
573          */
574         if (!(sbsec->flags & SE_SBINITIALIZED))
575                 if (mnt_flags & flag)
576                         return 1;
577         return 0;
578 }
579
580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581 {
582         int rc = security_context_str_to_sid(&selinux_state, s,
583                                              sid, GFP_KERNEL);
584         if (rc)
585                 pr_warn("SELinux: security_context_str_to_sid"
586                        "(%s) failed for (dev %s, type %s) errno=%d\n",
587                        s, sb->s_id, sb->s_type->name, rc);
588         return rc;
589 }
590
591 /*
592  * Allow filesystems with binary mount data to explicitly set mount point
593  * labeling information.
594  */
595 static int selinux_set_mnt_opts(struct super_block *sb,
596                                 void *mnt_opts,
597                                 unsigned long kern_flags,
598                                 unsigned long *set_kern_flags)
599 {
600         const struct cred *cred = current_cred();
601         struct superblock_security_struct *sbsec = sb->s_security;
602         struct dentry *root = sbsec->sb->s_root;
603         struct selinux_mnt_opts *opts = mnt_opts;
604         struct inode_security_struct *root_isec;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         int rc = 0;
608
609         mutex_lock(&sbsec->lock);
610
611         if (!selinux_initialized(&selinux_state)) {
612                 if (!opts) {
613                         /* Defer initialization until selinux_complete_init,
614                            after the initial policy is loaded and the security
615                            server is ready to handle calls. */
616                         goto out;
617                 }
618                 rc = -EINVAL;
619                 pr_warn("SELinux: Unable to set superblock options "
620                         "before the security server is initialized\n");
621                 goto out;
622         }
623         if (kern_flags && !set_kern_flags) {
624                 /* Specifying internal flags without providing a place to
625                  * place the results is not allowed */
626                 rc = -EINVAL;
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && !opts)
643                 goto out;
644
645         root_isec = backing_inode_security_novalidate(root);
646
647         /*
648          * parse the mount options, check if they are valid sids.
649          * also check if someone is trying to mount the same sb more
650          * than once with different security options.
651          */
652         if (opts) {
653                 if (opts->fscontext) {
654                         rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655                         if (rc)
656                                 goto out;
657                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658                                         fscontext_sid))
659                                 goto out_double_mount;
660                         sbsec->flags |= FSCONTEXT_MNT;
661                 }
662                 if (opts->context) {
663                         rc = parse_sid(sb, opts->context, &context_sid);
664                         if (rc)
665                                 goto out;
666                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667                                         context_sid))
668                                 goto out_double_mount;
669                         sbsec->flags |= CONTEXT_MNT;
670                 }
671                 if (opts->rootcontext) {
672                         rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673                         if (rc)
674                                 goto out;
675                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676                                         rootcontext_sid))
677                                 goto out_double_mount;
678                         sbsec->flags |= ROOTCONTEXT_MNT;
679                 }
680                 if (opts->defcontext) {
681                         rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682                         if (rc)
683                                 goto out;
684                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685                                         defcontext_sid))
686                                 goto out_double_mount;
687                         sbsec->flags |= DEFCONTEXT_MNT;
688                 }
689         }
690
691         if (sbsec->flags & SE_SBINITIALIZED) {
692                 /* previously mounted with options, but not on this attempt? */
693                 if ((sbsec->flags & SE_MNTMASK) && !opts)
694                         goto out_double_mount;
695                 rc = 0;
696                 goto out;
697         }
698
699         if (strcmp(sb->s_type->name, "proc") == 0)
700                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701
702         if (!strcmp(sb->s_type->name, "debugfs") ||
703             !strcmp(sb->s_type->name, "tracefs") ||
704             !strcmp(sb->s_type->name, "binder") ||
705             !strcmp(sb->s_type->name, "bpf") ||
706             !strcmp(sb->s_type->name, "pstore"))
707                 sbsec->flags |= SE_SBGENFS;
708
709         if (!strcmp(sb->s_type->name, "sysfs") ||
710             !strcmp(sb->s_type->name, "cgroup") ||
711             !strcmp(sb->s_type->name, "cgroup2"))
712                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714         if (!sbsec->behavior) {
715                 /*
716                  * Determine the labeling behavior to use for this
717                  * filesystem type.
718                  */
719                 rc = security_fs_use(&selinux_state, sb);
720                 if (rc) {
721                         pr_warn("%s: security_fs_use(%s) returned %d\n",
722                                         __func__, sb->s_type->name, rc);
723                         goto out;
724                 }
725         }
726
727         /*
728          * If this is a user namespace mount and the filesystem type is not
729          * explicitly whitelisted, then no contexts are allowed on the command
730          * line and security labels must be ignored.
731          */
732         if (sb->s_user_ns != &init_user_ns &&
733             strcmp(sb->s_type->name, "tmpfs") &&
734             strcmp(sb->s_type->name, "ramfs") &&
735             strcmp(sb->s_type->name, "devpts")) {
736                 if (context_sid || fscontext_sid || rootcontext_sid ||
737                     defcontext_sid) {
738                         rc = -EACCES;
739                         goto out;
740                 }
741                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743                         rc = security_transition_sid(&selinux_state,
744                                                      current_sid(),
745                                                      current_sid(),
746                                                      SECCLASS_FILE, NULL,
747                                                      &sbsec->mntpoint_sid);
748                         if (rc)
749                                 goto out;
750                 }
751                 goto out_set_opts;
752         }
753
754         /* sets the context of the superblock for the fs being mounted. */
755         if (fscontext_sid) {
756                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757                 if (rc)
758                         goto out;
759
760                 sbsec->sid = fscontext_sid;
761         }
762
763         /*
764          * Switch to using mount point labeling behavior.
765          * sets the label used on all file below the mountpoint, and will set
766          * the superblock context if not already set.
767          */
768         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
770                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771         }
772
773         if (context_sid) {
774                 if (!fscontext_sid) {
775                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
776                                                           cred);
777                         if (rc)
778                                 goto out;
779                         sbsec->sid = context_sid;
780                 } else {
781                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
782                                                              cred);
783                         if (rc)
784                                 goto out;
785                 }
786                 if (!rootcontext_sid)
787                         rootcontext_sid = context_sid;
788
789                 sbsec->mntpoint_sid = context_sid;
790                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791         }
792
793         if (rootcontext_sid) {
794                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795                                                      cred);
796                 if (rc)
797                         goto out;
798
799                 root_isec->sid = rootcontext_sid;
800                 root_isec->initialized = LABEL_INITIALIZED;
801         }
802
803         if (defcontext_sid) {
804                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806                         rc = -EINVAL;
807                         pr_warn("SELinux: defcontext option is "
808                                "invalid for this filesystem type\n");
809                         goto out;
810                 }
811
812                 if (defcontext_sid != sbsec->def_sid) {
813                         rc = may_context_mount_inode_relabel(defcontext_sid,
814                                                              sbsec, cred);
815                         if (rc)
816                                 goto out;
817                 }
818
819                 sbsec->def_sid = defcontext_sid;
820         }
821
822 out_set_opts:
823         rc = sb_finish_set_opts(sb);
824 out:
825         mutex_unlock(&sbsec->lock);
826         return rc;
827 out_double_mount:
828         rc = -EINVAL;
829         pr_warn("SELinux: mount invalid.  Same superblock, different "
830                "security settings for (dev %s, type %s)\n", sb->s_id,
831                sb->s_type->name);
832         goto out;
833 }
834
835 static int selinux_cmp_sb_context(const struct super_block *oldsb,
836                                     const struct super_block *newsb)
837 {
838         struct superblock_security_struct *old = oldsb->s_security;
839         struct superblock_security_struct *new = newsb->s_security;
840         char oldflags = old->flags & SE_MNTMASK;
841         char newflags = new->flags & SE_MNTMASK;
842
843         if (oldflags != newflags)
844                 goto mismatch;
845         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846                 goto mismatch;
847         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848                 goto mismatch;
849         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850                 goto mismatch;
851         if (oldflags & ROOTCONTEXT_MNT) {
852                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854                 if (oldroot->sid != newroot->sid)
855                         goto mismatch;
856         }
857         return 0;
858 mismatch:
859         pr_warn("SELinux: mount invalid.  Same superblock, "
860                             "different security settings for (dev %s, "
861                             "type %s)\n", newsb->s_id, newsb->s_type->name);
862         return -EBUSY;
863 }
864
865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866                                         struct super_block *newsb,
867                                         unsigned long kern_flags,
868                                         unsigned long *set_kern_flags)
869 {
870         int rc = 0;
871         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872         struct superblock_security_struct *newsbsec = newsb->s_security;
873
874         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
875         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
876         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
877
878         /*
879          * if the parent was able to be mounted it clearly had no special lsm
880          * mount options.  thus we can safely deal with this superblock later
881          */
882         if (!selinux_initialized(&selinux_state))
883                 return 0;
884
885         /*
886          * Specifying internal flags without providing a place to
887          * place the results is not allowed.
888          */
889         if (kern_flags && !set_kern_flags)
890                 return -EINVAL;
891
892         /* how can we clone if the old one wasn't set up?? */
893         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894
895         /* if fs is reusing a sb, make sure that the contexts match */
896         if (newsbsec->flags & SE_SBINITIALIZED) {
897                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899                 return selinux_cmp_sb_context(oldsb, newsb);
900         }
901
902         mutex_lock(&newsbsec->lock);
903
904         newsbsec->flags = oldsbsec->flags;
905
906         newsbsec->sid = oldsbsec->sid;
907         newsbsec->def_sid = oldsbsec->def_sid;
908         newsbsec->behavior = oldsbsec->behavior;
909
910         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912                 rc = security_fs_use(&selinux_state, newsb);
913                 if (rc)
914                         goto out;
915         }
916
917         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920         }
921
922         if (set_context) {
923                 u32 sid = oldsbsec->mntpoint_sid;
924
925                 if (!set_fscontext)
926                         newsbsec->sid = sid;
927                 if (!set_rootcontext) {
928                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929                         newisec->sid = sid;
930                 }
931                 newsbsec->mntpoint_sid = sid;
932         }
933         if (set_rootcontext) {
934                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936
937                 newisec->sid = oldisec->sid;
938         }
939
940         sb_finish_set_opts(newsb);
941 out:
942         mutex_unlock(&newsbsec->lock);
943         return rc;
944 }
945
946 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947 {
948         struct selinux_mnt_opts *opts = *mnt_opts;
949
950         if (token == Opt_seclabel)      /* eaten and completely ignored */
951                 return 0;
952
953         if (!opts) {
954                 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955                 if (!opts)
956                         return -ENOMEM;
957                 *mnt_opts = opts;
958         }
959         if (!s)
960                 return -ENOMEM;
961         switch (token) {
962         case Opt_context:
963                 if (opts->context || opts->defcontext)
964                         goto Einval;
965                 opts->context = s;
966                 break;
967         case Opt_fscontext:
968                 if (opts->fscontext)
969                         goto Einval;
970                 opts->fscontext = s;
971                 break;
972         case Opt_rootcontext:
973                 if (opts->rootcontext)
974                         goto Einval;
975                 opts->rootcontext = s;
976                 break;
977         case Opt_defcontext:
978                 if (opts->context || opts->defcontext)
979                         goto Einval;
980                 opts->defcontext = s;
981                 break;
982         }
983         return 0;
984 Einval:
985         pr_warn(SEL_MOUNT_FAIL_MSG);
986         return -EINVAL;
987 }
988
989 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990                                void **mnt_opts)
991 {
992         int token = Opt_error;
993         int rc, i;
994
995         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996                 if (strcmp(option, tokens[i].name) == 0) {
997                         token = tokens[i].opt;
998                         break;
999                 }
1000         }
1001
1002         if (token == Opt_error)
1003                 return -EINVAL;
1004
1005         if (token != Opt_seclabel) {
1006                 val = kmemdup_nul(val, len, GFP_KERNEL);
1007                 if (!val) {
1008                         rc = -ENOMEM;
1009                         goto free_opt;
1010                 }
1011         }
1012         rc = selinux_add_opt(token, val, mnt_opts);
1013         if (unlikely(rc)) {
1014                 kfree(val);
1015                 goto free_opt;
1016         }
1017         return rc;
1018
1019 free_opt:
1020         if (*mnt_opts) {
1021                 selinux_free_mnt_opts(*mnt_opts);
1022                 *mnt_opts = NULL;
1023         }
1024         return rc;
1025 }
1026
1027 static int show_sid(struct seq_file *m, u32 sid)
1028 {
1029         char *context = NULL;
1030         u32 len;
1031         int rc;
1032
1033         rc = security_sid_to_context(&selinux_state, sid,
1034                                              &context, &len);
1035         if (!rc) {
1036                 bool has_comma = context && strchr(context, ',');
1037
1038                 seq_putc(m, '=');
1039                 if (has_comma)
1040                         seq_putc(m, '\"');
1041                 seq_escape(m, context, "\"\n\\");
1042                 if (has_comma)
1043                         seq_putc(m, '\"');
1044         }
1045         kfree(context);
1046         return rc;
1047 }
1048
1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050 {
1051         struct superblock_security_struct *sbsec = sb->s_security;
1052         int rc;
1053
1054         if (!(sbsec->flags & SE_SBINITIALIZED))
1055                 return 0;
1056
1057         if (!selinux_initialized(&selinux_state))
1058                 return 0;
1059
1060         if (sbsec->flags & FSCONTEXT_MNT) {
1061                 seq_putc(m, ',');
1062                 seq_puts(m, FSCONTEXT_STR);
1063                 rc = show_sid(m, sbsec->sid);
1064                 if (rc)
1065                         return rc;
1066         }
1067         if (sbsec->flags & CONTEXT_MNT) {
1068                 seq_putc(m, ',');
1069                 seq_puts(m, CONTEXT_STR);
1070                 rc = show_sid(m, sbsec->mntpoint_sid);
1071                 if (rc)
1072                         return rc;
1073         }
1074         if (sbsec->flags & DEFCONTEXT_MNT) {
1075                 seq_putc(m, ',');
1076                 seq_puts(m, DEFCONTEXT_STR);
1077                 rc = show_sid(m, sbsec->def_sid);
1078                 if (rc)
1079                         return rc;
1080         }
1081         if (sbsec->flags & ROOTCONTEXT_MNT) {
1082                 struct dentry *root = sbsec->sb->s_root;
1083                 struct inode_security_struct *isec = backing_inode_security(root);
1084                 seq_putc(m, ',');
1085                 seq_puts(m, ROOTCONTEXT_STR);
1086                 rc = show_sid(m, isec->sid);
1087                 if (rc)
1088                         return rc;
1089         }
1090         if (sbsec->flags & SBLABEL_MNT) {
1091                 seq_putc(m, ',');
1092                 seq_puts(m, SECLABEL_STR);
1093         }
1094         return 0;
1095 }
1096
1097 static inline u16 inode_mode_to_security_class(umode_t mode)
1098 {
1099         switch (mode & S_IFMT) {
1100         case S_IFSOCK:
1101                 return SECCLASS_SOCK_FILE;
1102         case S_IFLNK:
1103                 return SECCLASS_LNK_FILE;
1104         case S_IFREG:
1105                 return SECCLASS_FILE;
1106         case S_IFBLK:
1107                 return SECCLASS_BLK_FILE;
1108         case S_IFDIR:
1109                 return SECCLASS_DIR;
1110         case S_IFCHR:
1111                 return SECCLASS_CHR_FILE;
1112         case S_IFIFO:
1113                 return SECCLASS_FIFO_FILE;
1114
1115         }
1116
1117         return SECCLASS_FILE;
1118 }
1119
1120 static inline int default_protocol_stream(int protocol)
1121 {
1122         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123 }
1124
1125 static inline int default_protocol_dgram(int protocol)
1126 {
1127         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128 }
1129
1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131 {
1132         int extsockclass = selinux_policycap_extsockclass();
1133
1134         switch (family) {
1135         case PF_UNIX:
1136                 switch (type) {
1137                 case SOCK_STREAM:
1138                 case SOCK_SEQPACKET:
1139                         return SECCLASS_UNIX_STREAM_SOCKET;
1140                 case SOCK_DGRAM:
1141                 case SOCK_RAW:
1142                         return SECCLASS_UNIX_DGRAM_SOCKET;
1143                 }
1144                 break;
1145         case PF_INET:
1146         case PF_INET6:
1147                 switch (type) {
1148                 case SOCK_STREAM:
1149                 case SOCK_SEQPACKET:
1150                         if (default_protocol_stream(protocol))
1151                                 return SECCLASS_TCP_SOCKET;
1152                         else if (extsockclass && protocol == IPPROTO_SCTP)
1153                                 return SECCLASS_SCTP_SOCKET;
1154                         else
1155                                 return SECCLASS_RAWIP_SOCKET;
1156                 case SOCK_DGRAM:
1157                         if (default_protocol_dgram(protocol))
1158                                 return SECCLASS_UDP_SOCKET;
1159                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160                                                   protocol == IPPROTO_ICMPV6))
1161                                 return SECCLASS_ICMP_SOCKET;
1162                         else
1163                                 return SECCLASS_RAWIP_SOCKET;
1164                 case SOCK_DCCP:
1165                         return SECCLASS_DCCP_SOCKET;
1166                 default:
1167                         return SECCLASS_RAWIP_SOCKET;
1168                 }
1169                 break;
1170         case PF_NETLINK:
1171                 switch (protocol) {
1172                 case NETLINK_ROUTE:
1173                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1174                 case NETLINK_SOCK_DIAG:
1175                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176                 case NETLINK_NFLOG:
1177                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1178                 case NETLINK_XFRM:
1179                         return SECCLASS_NETLINK_XFRM_SOCKET;
1180                 case NETLINK_SELINUX:
1181                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1182                 case NETLINK_ISCSI:
1183                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1184                 case NETLINK_AUDIT:
1185                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1186                 case NETLINK_FIB_LOOKUP:
1187                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188                 case NETLINK_CONNECTOR:
1189                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190                 case NETLINK_NETFILTER:
1191                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192                 case NETLINK_DNRTMSG:
1193                         return SECCLASS_NETLINK_DNRT_SOCKET;
1194                 case NETLINK_KOBJECT_UEVENT:
1195                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196                 case NETLINK_GENERIC:
1197                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1198                 case NETLINK_SCSITRANSPORT:
1199                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200                 case NETLINK_RDMA:
1201                         return SECCLASS_NETLINK_RDMA_SOCKET;
1202                 case NETLINK_CRYPTO:
1203                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204                 default:
1205                         return SECCLASS_NETLINK_SOCKET;
1206                 }
1207         case PF_PACKET:
1208                 return SECCLASS_PACKET_SOCKET;
1209         case PF_KEY:
1210                 return SECCLASS_KEY_SOCKET;
1211         case PF_APPLETALK:
1212                 return SECCLASS_APPLETALK_SOCKET;
1213         }
1214
1215         if (extsockclass) {
1216                 switch (family) {
1217                 case PF_AX25:
1218                         return SECCLASS_AX25_SOCKET;
1219                 case PF_IPX:
1220                         return SECCLASS_IPX_SOCKET;
1221                 case PF_NETROM:
1222                         return SECCLASS_NETROM_SOCKET;
1223                 case PF_ATMPVC:
1224                         return SECCLASS_ATMPVC_SOCKET;
1225                 case PF_X25:
1226                         return SECCLASS_X25_SOCKET;
1227                 case PF_ROSE:
1228                         return SECCLASS_ROSE_SOCKET;
1229                 case PF_DECnet:
1230                         return SECCLASS_DECNET_SOCKET;
1231                 case PF_ATMSVC:
1232                         return SECCLASS_ATMSVC_SOCKET;
1233                 case PF_RDS:
1234                         return SECCLASS_RDS_SOCKET;
1235                 case PF_IRDA:
1236                         return SECCLASS_IRDA_SOCKET;
1237                 case PF_PPPOX:
1238                         return SECCLASS_PPPOX_SOCKET;
1239                 case PF_LLC:
1240                         return SECCLASS_LLC_SOCKET;
1241                 case PF_CAN:
1242                         return SECCLASS_CAN_SOCKET;
1243                 case PF_TIPC:
1244                         return SECCLASS_TIPC_SOCKET;
1245                 case PF_BLUETOOTH:
1246                         return SECCLASS_BLUETOOTH_SOCKET;
1247                 case PF_IUCV:
1248                         return SECCLASS_IUCV_SOCKET;
1249                 case PF_RXRPC:
1250                         return SECCLASS_RXRPC_SOCKET;
1251                 case PF_ISDN:
1252                         return SECCLASS_ISDN_SOCKET;
1253                 case PF_PHONET:
1254                         return SECCLASS_PHONET_SOCKET;
1255                 case PF_IEEE802154:
1256                         return SECCLASS_IEEE802154_SOCKET;
1257                 case PF_CAIF:
1258                         return SECCLASS_CAIF_SOCKET;
1259                 case PF_ALG:
1260                         return SECCLASS_ALG_SOCKET;
1261                 case PF_NFC:
1262                         return SECCLASS_NFC_SOCKET;
1263                 case PF_VSOCK:
1264                         return SECCLASS_VSOCK_SOCKET;
1265                 case PF_KCM:
1266                         return SECCLASS_KCM_SOCKET;
1267                 case PF_QIPCRTR:
1268                         return SECCLASS_QIPCRTR_SOCKET;
1269                 case PF_SMC:
1270                         return SECCLASS_SMC_SOCKET;
1271                 case PF_XDP:
1272                         return SECCLASS_XDP_SOCKET;
1273 #if PF_MAX > 45
1274 #error New address family defined, please update this function.
1275 #endif
1276                 }
1277         }
1278
1279         return SECCLASS_SOCKET;
1280 }
1281
1282 static int selinux_genfs_get_sid(struct dentry *dentry,
1283                                  u16 tclass,
1284                                  u16 flags,
1285                                  u32 *sid)
1286 {
1287         int rc;
1288         struct super_block *sb = dentry->d_sb;
1289         char *buffer, *path;
1290
1291         buffer = (char *)__get_free_page(GFP_KERNEL);
1292         if (!buffer)
1293                 return -ENOMEM;
1294
1295         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296         if (IS_ERR(path))
1297                 rc = PTR_ERR(path);
1298         else {
1299                 if (flags & SE_SBPROC) {
1300                         /* each process gets a /proc/PID/ entry. Strip off the
1301                          * PID part to get a valid selinux labeling.
1302                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303                         while (path[1] >= '0' && path[1] <= '9') {
1304                                 path[1] = '/';
1305                                 path++;
1306                         }
1307                 }
1308                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309                                         path, tclass, sid);
1310                 if (rc == -ENOENT) {
1311                         /* No match in policy, mark as unlabeled. */
1312                         *sid = SECINITSID_UNLABELED;
1313                         rc = 0;
1314                 }
1315         }
1316         free_page((unsigned long)buffer);
1317         return rc;
1318 }
1319
1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321                                   u32 def_sid, u32 *sid)
1322 {
1323 #define INITCONTEXTLEN 255
1324         char *context;
1325         unsigned int len;
1326         int rc;
1327
1328         len = INITCONTEXTLEN;
1329         context = kmalloc(len + 1, GFP_NOFS);
1330         if (!context)
1331                 return -ENOMEM;
1332
1333         context[len] = '\0';
1334         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335         if (rc == -ERANGE) {
1336                 kfree(context);
1337
1338                 /* Need a larger buffer.  Query for the right size. */
1339                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340                 if (rc < 0)
1341                         return rc;
1342
1343                 len = rc;
1344                 context = kmalloc(len + 1, GFP_NOFS);
1345                 if (!context)
1346                         return -ENOMEM;
1347
1348                 context[len] = '\0';
1349                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350                                     context, len);
1351         }
1352         if (rc < 0) {
1353                 kfree(context);
1354                 if (rc != -ENODATA) {
1355                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357                         return rc;
1358                 }
1359                 *sid = def_sid;
1360                 return 0;
1361         }
1362
1363         rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364                                              def_sid, GFP_NOFS);
1365         if (rc) {
1366                 char *dev = inode->i_sb->s_id;
1367                 unsigned long ino = inode->i_ino;
1368
1369                 if (rc == -EINVAL) {
1370                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371                                               ino, dev, context);
1372                 } else {
1373                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374                                 __func__, context, -rc, dev, ino);
1375                 }
1376         }
1377         kfree(context);
1378         return 0;
1379 }
1380
1381 /* The inode's security attributes must be initialized before first use. */
1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383 {
1384         struct superblock_security_struct *sbsec = NULL;
1385         struct inode_security_struct *isec = selinux_inode(inode);
1386         u32 task_sid, sid = 0;
1387         u16 sclass;
1388         struct dentry *dentry;
1389         int rc = 0;
1390
1391         if (isec->initialized == LABEL_INITIALIZED)
1392                 return 0;
1393
1394         spin_lock(&isec->lock);
1395         if (isec->initialized == LABEL_INITIALIZED)
1396                 goto out_unlock;
1397
1398         if (isec->sclass == SECCLASS_FILE)
1399                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401         sbsec = inode->i_sb->s_security;
1402         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403                 /* Defer initialization until selinux_complete_init,
1404                    after the initial policy is loaded and the security
1405                    server is ready to handle calls. */
1406                 spin_lock(&sbsec->isec_lock);
1407                 if (list_empty(&isec->list))
1408                         list_add(&isec->list, &sbsec->isec_head);
1409                 spin_unlock(&sbsec->isec_lock);
1410                 goto out_unlock;
1411         }
1412
1413         sclass = isec->sclass;
1414         task_sid = isec->task_sid;
1415         sid = isec->sid;
1416         isec->initialized = LABEL_PENDING;
1417         spin_unlock(&isec->lock);
1418
1419         switch (sbsec->behavior) {
1420         case SECURITY_FS_USE_NATIVE:
1421                 break;
1422         case SECURITY_FS_USE_XATTR:
1423                 if (!(inode->i_opflags & IOP_XATTR)) {
1424                         sid = sbsec->def_sid;
1425                         break;
1426                 }
1427                 /* Need a dentry, since the xattr API requires one.
1428                    Life would be simpler if we could just pass the inode. */
1429                 if (opt_dentry) {
1430                         /* Called from d_instantiate or d_splice_alias. */
1431                         dentry = dget(opt_dentry);
1432                 } else {
1433                         /*
1434                          * Called from selinux_complete_init, try to find a dentry.
1435                          * Some filesystems really want a connected one, so try
1436                          * that first.  We could split SECURITY_FS_USE_XATTR in
1437                          * two, depending upon that...
1438                          */
1439                         dentry = d_find_alias(inode);
1440                         if (!dentry)
1441                                 dentry = d_find_any_alias(inode);
1442                 }
1443                 if (!dentry) {
1444                         /*
1445                          * this is can be hit on boot when a file is accessed
1446                          * before the policy is loaded.  When we load policy we
1447                          * may find inodes that have no dentry on the
1448                          * sbsec->isec_head list.  No reason to complain as these
1449                          * will get fixed up the next time we go through
1450                          * inode_doinit with a dentry, before these inodes could
1451                          * be used again by userspace.
1452                          */
1453                         goto out;
1454                 }
1455
1456                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457                                             &sid);
1458                 dput(dentry);
1459                 if (rc)
1460                         goto out;
1461                 break;
1462         case SECURITY_FS_USE_TASK:
1463                 sid = task_sid;
1464                 break;
1465         case SECURITY_FS_USE_TRANS:
1466                 /* Default to the fs SID. */
1467                 sid = sbsec->sid;
1468
1469                 /* Try to obtain a transition SID. */
1470                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1471                                              sclass, NULL, &sid);
1472                 if (rc)
1473                         goto out;
1474                 break;
1475         case SECURITY_FS_USE_MNTPOINT:
1476                 sid = sbsec->mntpoint_sid;
1477                 break;
1478         default:
1479                 /* Default to the fs superblock SID. */
1480                 sid = sbsec->sid;
1481
1482                 if ((sbsec->flags & SE_SBGENFS) &&
1483                      (!S_ISLNK(inode->i_mode) ||
1484                       selinux_policycap_genfs_seclabel_symlinks())) {
1485                         /* We must have a dentry to determine the label on
1486                          * procfs inodes */
1487                         if (opt_dentry) {
1488                                 /* Called from d_instantiate or
1489                                  * d_splice_alias. */
1490                                 dentry = dget(opt_dentry);
1491                         } else {
1492                                 /* Called from selinux_complete_init, try to
1493                                  * find a dentry.  Some filesystems really want
1494                                  * a connected one, so try that first.
1495                                  */
1496                                 dentry = d_find_alias(inode);
1497                                 if (!dentry)
1498                                         dentry = d_find_any_alias(inode);
1499                         }
1500                         /*
1501                          * This can be hit on boot when a file is accessed
1502                          * before the policy is loaded.  When we load policy we
1503                          * may find inodes that have no dentry on the
1504                          * sbsec->isec_head list.  No reason to complain as
1505                          * these will get fixed up the next time we go through
1506                          * inode_doinit() with a dentry, before these inodes
1507                          * could be used again by userspace.
1508                          */
1509                         if (!dentry)
1510                                 goto out;
1511                         rc = selinux_genfs_get_sid(dentry, sclass,
1512                                                    sbsec->flags, &sid);
1513                         if (rc) {
1514                                 dput(dentry);
1515                                 goto out;
1516                         }
1517
1518                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519                             (inode->i_opflags & IOP_XATTR)) {
1520                                 rc = inode_doinit_use_xattr(inode, dentry,
1521                                                             sid, &sid);
1522                                 if (rc) {
1523                                         dput(dentry);
1524                                         goto out;
1525                                 }
1526                         }
1527                         dput(dentry);
1528                 }
1529                 break;
1530         }
1531
1532 out:
1533         spin_lock(&isec->lock);
1534         if (isec->initialized == LABEL_PENDING) {
1535                 if (!sid || rc) {
1536                         isec->initialized = LABEL_INVALID;
1537                         goto out_unlock;
1538                 }
1539
1540                 isec->initialized = LABEL_INITIALIZED;
1541                 isec->sid = sid;
1542         }
1543
1544 out_unlock:
1545         spin_unlock(&isec->lock);
1546         return rc;
1547 }
1548
1549 /* Convert a Linux signal to an access vector. */
1550 static inline u32 signal_to_av(int sig)
1551 {
1552         u32 perm = 0;
1553
1554         switch (sig) {
1555         case SIGCHLD:
1556                 /* Commonly granted from child to parent. */
1557                 perm = PROCESS__SIGCHLD;
1558                 break;
1559         case SIGKILL:
1560                 /* Cannot be caught or ignored */
1561                 perm = PROCESS__SIGKILL;
1562                 break;
1563         case SIGSTOP:
1564                 /* Cannot be caught or ignored */
1565                 perm = PROCESS__SIGSTOP;
1566                 break;
1567         default:
1568                 /* All other signals. */
1569                 perm = PROCESS__SIGNAL;
1570                 break;
1571         }
1572
1573         return perm;
1574 }
1575
1576 #if CAP_LAST_CAP > 63
1577 #error Fix SELinux to handle capabilities > 63.
1578 #endif
1579
1580 /* Check whether a task is allowed to use a capability. */
1581 static int cred_has_capability(const struct cred *cred,
1582                                int cap, unsigned int opts, bool initns)
1583 {
1584         struct common_audit_data ad;
1585         struct av_decision avd;
1586         u16 sclass;
1587         u32 sid = cred_sid(cred);
1588         u32 av = CAP_TO_MASK(cap);
1589         int rc;
1590
1591         ad.type = LSM_AUDIT_DATA_CAP;
1592         ad.u.cap = cap;
1593
1594         switch (CAP_TO_INDEX(cap)) {
1595         case 0:
1596                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597                 break;
1598         case 1:
1599                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600                 break;
1601         default:
1602                 pr_err("SELinux:  out of range capability %d\n", cap);
1603                 BUG();
1604                 return -EINVAL;
1605         }
1606
1607         rc = avc_has_perm_noaudit(&selinux_state,
1608                                   sid, sid, sclass, av, 0, &avd);
1609         if (!(opts & CAP_OPT_NOAUDIT)) {
1610                 int rc2 = avc_audit(&selinux_state,
1611                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1612                 if (rc2)
1613                         return rc2;
1614         }
1615         return rc;
1616 }
1617
1618 /* Check whether a task has a particular permission to an inode.
1619    The 'adp' parameter is optional and allows other audit
1620    data to be passed (e.g. the dentry). */
1621 static int inode_has_perm(const struct cred *cred,
1622                           struct inode *inode,
1623                           u32 perms,
1624                           struct common_audit_data *adp)
1625 {
1626         struct inode_security_struct *isec;
1627         u32 sid;
1628
1629         validate_creds(cred);
1630
1631         if (unlikely(IS_PRIVATE(inode)))
1632                 return 0;
1633
1634         sid = cred_sid(cred);
1635         isec = selinux_inode(inode);
1636
1637         return avc_has_perm(&selinux_state,
1638                             sid, isec->sid, isec->sclass, perms, adp);
1639 }
1640
1641 /* Same as inode_has_perm, but pass explicit audit data containing
1642    the dentry to help the auditing code to more easily generate the
1643    pathname if needed. */
1644 static inline int dentry_has_perm(const struct cred *cred,
1645                                   struct dentry *dentry,
1646                                   u32 av)
1647 {
1648         struct inode *inode = d_backing_inode(dentry);
1649         struct common_audit_data ad;
1650
1651         ad.type = LSM_AUDIT_DATA_DENTRY;
1652         ad.u.dentry = dentry;
1653         __inode_security_revalidate(inode, dentry, true);
1654         return inode_has_perm(cred, inode, av, &ad);
1655 }
1656
1657 /* Same as inode_has_perm, but pass explicit audit data containing
1658    the path to help the auditing code to more easily generate the
1659    pathname if needed. */
1660 static inline int path_has_perm(const struct cred *cred,
1661                                 const struct path *path,
1662                                 u32 av)
1663 {
1664         struct inode *inode = d_backing_inode(path->dentry);
1665         struct common_audit_data ad;
1666
1667         ad.type = LSM_AUDIT_DATA_PATH;
1668         ad.u.path = *path;
1669         __inode_security_revalidate(inode, path->dentry, true);
1670         return inode_has_perm(cred, inode, av, &ad);
1671 }
1672
1673 /* Same as path_has_perm, but uses the inode from the file struct. */
1674 static inline int file_path_has_perm(const struct cred *cred,
1675                                      struct file *file,
1676                                      u32 av)
1677 {
1678         struct common_audit_data ad;
1679
1680         ad.type = LSM_AUDIT_DATA_FILE;
1681         ad.u.file = file;
1682         return inode_has_perm(cred, file_inode(file), av, &ad);
1683 }
1684
1685 #ifdef CONFIG_BPF_SYSCALL
1686 static int bpf_fd_pass(struct file *file, u32 sid);
1687 #endif
1688
1689 /* Check whether a task can use an open file descriptor to
1690    access an inode in a given way.  Check access to the
1691    descriptor itself, and then use dentry_has_perm to
1692    check a particular permission to the file.
1693    Access to the descriptor is implicitly granted if it
1694    has the same SID as the process.  If av is zero, then
1695    access to the file is not checked, e.g. for cases
1696    where only the descriptor is affected like seek. */
1697 static int file_has_perm(const struct cred *cred,
1698                          struct file *file,
1699                          u32 av)
1700 {
1701         struct file_security_struct *fsec = selinux_file(file);
1702         struct inode *inode = file_inode(file);
1703         struct common_audit_data ad;
1704         u32 sid = cred_sid(cred);
1705         int rc;
1706
1707         ad.type = LSM_AUDIT_DATA_FILE;
1708         ad.u.file = file;
1709
1710         if (sid != fsec->sid) {
1711                 rc = avc_has_perm(&selinux_state,
1712                                   sid, fsec->sid,
1713                                   SECCLASS_FD,
1714                                   FD__USE,
1715                                   &ad);
1716                 if (rc)
1717                         goto out;
1718         }
1719
1720 #ifdef CONFIG_BPF_SYSCALL
1721         rc = bpf_fd_pass(file, cred_sid(cred));
1722         if (rc)
1723                 return rc;
1724 #endif
1725
1726         /* av is zero if only checking access to the descriptor. */
1727         rc = 0;
1728         if (av)
1729                 rc = inode_has_perm(cred, inode, av, &ad);
1730
1731 out:
1732         return rc;
1733 }
1734
1735 /*
1736  * Determine the label for an inode that might be unioned.
1737  */
1738 static int
1739 selinux_determine_inode_label(const struct task_security_struct *tsec,
1740                                  struct inode *dir,
1741                                  const struct qstr *name, u16 tclass,
1742                                  u32 *_new_isid)
1743 {
1744         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746         if ((sbsec->flags & SE_SBINITIALIZED) &&
1747             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748                 *_new_isid = sbsec->mntpoint_sid;
1749         } else if ((sbsec->flags & SBLABEL_MNT) &&
1750                    tsec->create_sid) {
1751                 *_new_isid = tsec->create_sid;
1752         } else {
1753                 const struct inode_security_struct *dsec = inode_security(dir);
1754                 return security_transition_sid(&selinux_state, tsec->sid,
1755                                                dsec->sid, tclass,
1756                                                name, _new_isid);
1757         }
1758
1759         return 0;
1760 }
1761
1762 /* Check whether a task can create a file. */
1763 static int may_create(struct inode *dir,
1764                       struct dentry *dentry,
1765                       u16 tclass)
1766 {
1767         const struct task_security_struct *tsec = selinux_cred(current_cred());
1768         struct inode_security_struct *dsec;
1769         struct superblock_security_struct *sbsec;
1770         u32 sid, newsid;
1771         struct common_audit_data ad;
1772         int rc;
1773
1774         dsec = inode_security(dir);
1775         sbsec = dir->i_sb->s_security;
1776
1777         sid = tsec->sid;
1778
1779         ad.type = LSM_AUDIT_DATA_DENTRY;
1780         ad.u.dentry = dentry;
1781
1782         rc = avc_has_perm(&selinux_state,
1783                           sid, dsec->sid, SECCLASS_DIR,
1784                           DIR__ADD_NAME | DIR__SEARCH,
1785                           &ad);
1786         if (rc)
1787                 return rc;
1788
1789         rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790                                            &newsid);
1791         if (rc)
1792                 return rc;
1793
1794         rc = avc_has_perm(&selinux_state,
1795                           sid, newsid, tclass, FILE__CREATE, &ad);
1796         if (rc)
1797                 return rc;
1798
1799         return avc_has_perm(&selinux_state,
1800                             newsid, sbsec->sid,
1801                             SECCLASS_FILESYSTEM,
1802                             FILESYSTEM__ASSOCIATE, &ad);
1803 }
1804
1805 #define MAY_LINK        0
1806 #define MAY_UNLINK      1
1807 #define MAY_RMDIR       2
1808
1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1810 static int may_link(struct inode *dir,
1811                     struct dentry *dentry,
1812                     int kind)
1813
1814 {
1815         struct inode_security_struct *dsec, *isec;
1816         struct common_audit_data ad;
1817         u32 sid = current_sid();
1818         u32 av;
1819         int rc;
1820
1821         dsec = inode_security(dir);
1822         isec = backing_inode_security(dentry);
1823
1824         ad.type = LSM_AUDIT_DATA_DENTRY;
1825         ad.u.dentry = dentry;
1826
1827         av = DIR__SEARCH;
1828         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829         rc = avc_has_perm(&selinux_state,
1830                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831         if (rc)
1832                 return rc;
1833
1834         switch (kind) {
1835         case MAY_LINK:
1836                 av = FILE__LINK;
1837                 break;
1838         case MAY_UNLINK:
1839                 av = FILE__UNLINK;
1840                 break;
1841         case MAY_RMDIR:
1842                 av = DIR__RMDIR;
1843                 break;
1844         default:
1845                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846                         __func__, kind);
1847                 return 0;
1848         }
1849
1850         rc = avc_has_perm(&selinux_state,
1851                           sid, isec->sid, isec->sclass, av, &ad);
1852         return rc;
1853 }
1854
1855 static inline int may_rename(struct inode *old_dir,
1856                              struct dentry *old_dentry,
1857                              struct inode *new_dir,
1858                              struct dentry *new_dentry)
1859 {
1860         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861         struct common_audit_data ad;
1862         u32 sid = current_sid();
1863         u32 av;
1864         int old_is_dir, new_is_dir;
1865         int rc;
1866
1867         old_dsec = inode_security(old_dir);
1868         old_isec = backing_inode_security(old_dentry);
1869         old_is_dir = d_is_dir(old_dentry);
1870         new_dsec = inode_security(new_dir);
1871
1872         ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874         ad.u.dentry = old_dentry;
1875         rc = avc_has_perm(&selinux_state,
1876                           sid, old_dsec->sid, SECCLASS_DIR,
1877                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878         if (rc)
1879                 return rc;
1880         rc = avc_has_perm(&selinux_state,
1881                           sid, old_isec->sid,
1882                           old_isec->sclass, FILE__RENAME, &ad);
1883         if (rc)
1884                 return rc;
1885         if (old_is_dir && new_dir != old_dir) {
1886                 rc = avc_has_perm(&selinux_state,
1887                                   sid, old_isec->sid,
1888                                   old_isec->sclass, DIR__REPARENT, &ad);
1889                 if (rc)
1890                         return rc;
1891         }
1892
1893         ad.u.dentry = new_dentry;
1894         av = DIR__ADD_NAME | DIR__SEARCH;
1895         if (d_is_positive(new_dentry))
1896                 av |= DIR__REMOVE_NAME;
1897         rc = avc_has_perm(&selinux_state,
1898                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899         if (rc)
1900                 return rc;
1901         if (d_is_positive(new_dentry)) {
1902                 new_isec = backing_inode_security(new_dentry);
1903                 new_is_dir = d_is_dir(new_dentry);
1904                 rc = avc_has_perm(&selinux_state,
1905                                   sid, new_isec->sid,
1906                                   new_isec->sclass,
1907                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908                 if (rc)
1909                         return rc;
1910         }
1911
1912         return 0;
1913 }
1914
1915 /* Check whether a task can perform a filesystem operation. */
1916 static int superblock_has_perm(const struct cred *cred,
1917                                struct super_block *sb,
1918                                u32 perms,
1919                                struct common_audit_data *ad)
1920 {
1921         struct superblock_security_struct *sbsec;
1922         u32 sid = cred_sid(cred);
1923
1924         sbsec = sb->s_security;
1925         return avc_has_perm(&selinux_state,
1926                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927 }
1928
1929 /* Convert a Linux mode and permission mask to an access vector. */
1930 static inline u32 file_mask_to_av(int mode, int mask)
1931 {
1932         u32 av = 0;
1933
1934         if (!S_ISDIR(mode)) {
1935                 if (mask & MAY_EXEC)
1936                         av |= FILE__EXECUTE;
1937                 if (mask & MAY_READ)
1938                         av |= FILE__READ;
1939
1940                 if (mask & MAY_APPEND)
1941                         av |= FILE__APPEND;
1942                 else if (mask & MAY_WRITE)
1943                         av |= FILE__WRITE;
1944
1945         } else {
1946                 if (mask & MAY_EXEC)
1947                         av |= DIR__SEARCH;
1948                 if (mask & MAY_WRITE)
1949                         av |= DIR__WRITE;
1950                 if (mask & MAY_READ)
1951                         av |= DIR__READ;
1952         }
1953
1954         return av;
1955 }
1956
1957 /* Convert a Linux file to an access vector. */
1958 static inline u32 file_to_av(struct file *file)
1959 {
1960         u32 av = 0;
1961
1962         if (file->f_mode & FMODE_READ)
1963                 av |= FILE__READ;
1964         if (file->f_mode & FMODE_WRITE) {
1965                 if (file->f_flags & O_APPEND)
1966                         av |= FILE__APPEND;
1967                 else
1968                         av |= FILE__WRITE;
1969         }
1970         if (!av) {
1971                 /*
1972                  * Special file opened with flags 3 for ioctl-only use.
1973                  */
1974                 av = FILE__IOCTL;
1975         }
1976
1977         return av;
1978 }
1979
1980 /*
1981  * Convert a file to an access vector and include the correct open
1982  * open permission.
1983  */
1984 static inline u32 open_file_to_av(struct file *file)
1985 {
1986         u32 av = file_to_av(file);
1987         struct inode *inode = file_inode(file);
1988
1989         if (selinux_policycap_openperm() &&
1990             inode->i_sb->s_magic != SOCKFS_MAGIC)
1991                 av |= FILE__OPEN;
1992
1993         return av;
1994 }
1995
1996 /* Hook functions begin here. */
1997
1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999 {
2000         u32 mysid = current_sid();
2001         u32 mgrsid = task_sid(mgr);
2002
2003         return avc_has_perm(&selinux_state,
2004                             mysid, mgrsid, SECCLASS_BINDER,
2005                             BINDER__SET_CONTEXT_MGR, NULL);
2006 }
2007
2008 static int selinux_binder_transaction(struct task_struct *from,
2009                                       struct task_struct *to)
2010 {
2011         u32 mysid = current_sid();
2012         u32 fromsid = task_sid(from);
2013         u32 tosid = task_sid(to);
2014         int rc;
2015
2016         if (mysid != fromsid) {
2017                 rc = avc_has_perm(&selinux_state,
2018                                   mysid, fromsid, SECCLASS_BINDER,
2019                                   BINDER__IMPERSONATE, NULL);
2020                 if (rc)
2021                         return rc;
2022         }
2023
2024         return avc_has_perm(&selinux_state,
2025                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026                             NULL);
2027 }
2028
2029 static int selinux_binder_transfer_binder(struct task_struct *from,
2030                                           struct task_struct *to)
2031 {
2032         u32 fromsid = task_sid(from);
2033         u32 tosid = task_sid(to);
2034
2035         return avc_has_perm(&selinux_state,
2036                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037                             NULL);
2038 }
2039
2040 static int selinux_binder_transfer_file(struct task_struct *from,
2041                                         struct task_struct *to,
2042                                         struct file *file)
2043 {
2044         u32 sid = task_sid(to);
2045         struct file_security_struct *fsec = selinux_file(file);
2046         struct dentry *dentry = file->f_path.dentry;
2047         struct inode_security_struct *isec;
2048         struct common_audit_data ad;
2049         int rc;
2050
2051         ad.type = LSM_AUDIT_DATA_PATH;
2052         ad.u.path = file->f_path;
2053
2054         if (sid != fsec->sid) {
2055                 rc = avc_has_perm(&selinux_state,
2056                                   sid, fsec->sid,
2057                                   SECCLASS_FD,
2058                                   FD__USE,
2059                                   &ad);
2060                 if (rc)
2061                         return rc;
2062         }
2063
2064 #ifdef CONFIG_BPF_SYSCALL
2065         rc = bpf_fd_pass(file, sid);
2066         if (rc)
2067                 return rc;
2068 #endif
2069
2070         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071                 return 0;
2072
2073         isec = backing_inode_security(dentry);
2074         return avc_has_perm(&selinux_state,
2075                             sid, isec->sid, isec->sclass, file_to_av(file),
2076                             &ad);
2077 }
2078
2079 static int selinux_ptrace_access_check(struct task_struct *child,
2080                                      unsigned int mode)
2081 {
2082         u32 sid = current_sid();
2083         u32 csid = task_sid(child);
2084
2085         if (mode & PTRACE_MODE_READ)
2086                 return avc_has_perm(&selinux_state,
2087                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089         return avc_has_perm(&selinux_state,
2090                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091 }
2092
2093 static int selinux_ptrace_traceme(struct task_struct *parent)
2094 {
2095         return avc_has_perm(&selinux_state,
2096                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097                             PROCESS__PTRACE, NULL);
2098 }
2099
2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102 {
2103         return avc_has_perm(&selinux_state,
2104                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2105                             PROCESS__GETCAP, NULL);
2106 }
2107
2108 static int selinux_capset(struct cred *new, const struct cred *old,
2109                           const kernel_cap_t *effective,
2110                           const kernel_cap_t *inheritable,
2111                           const kernel_cap_t *permitted)
2112 {
2113         return avc_has_perm(&selinux_state,
2114                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115                             PROCESS__SETCAP, NULL);
2116 }
2117
2118 /*
2119  * (This comment used to live with the selinux_task_setuid hook,
2120  * which was removed).
2121  *
2122  * Since setuid only affects the current process, and since the SELinux
2123  * controls are not based on the Linux identity attributes, SELinux does not
2124  * need to control this operation.  However, SELinux does control the use of
2125  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126  */
2127
2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129                            int cap, unsigned int opts)
2130 {
2131         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132 }
2133
2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135 {
2136         const struct cred *cred = current_cred();
2137         int rc = 0;
2138
2139         if (!sb)
2140                 return 0;
2141
2142         switch (cmds) {
2143         case Q_SYNC:
2144         case Q_QUOTAON:
2145         case Q_QUOTAOFF:
2146         case Q_SETINFO:
2147         case Q_SETQUOTA:
2148         case Q_XQUOTAOFF:
2149         case Q_XQUOTAON:
2150         case Q_XSETQLIM:
2151                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152                 break;
2153         case Q_GETFMT:
2154         case Q_GETINFO:
2155         case Q_GETQUOTA:
2156         case Q_XGETQUOTA:
2157         case Q_XGETQSTAT:
2158         case Q_XGETQSTATV:
2159         case Q_XGETNEXTQUOTA:
2160                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161                 break;
2162         default:
2163                 rc = 0;  /* let the kernel handle invalid cmds */
2164                 break;
2165         }
2166         return rc;
2167 }
2168
2169 static int selinux_quota_on(struct dentry *dentry)
2170 {
2171         const struct cred *cred = current_cred();
2172
2173         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174 }
2175
2176 static int selinux_syslog(int type)
2177 {
2178         switch (type) {
2179         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2180         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2181                 return avc_has_perm(&selinux_state,
2182                                     current_sid(), SECINITSID_KERNEL,
2183                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2185         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2186         /* Set level of messages printed to console */
2187         case SYSLOG_ACTION_CONSOLE_LEVEL:
2188                 return avc_has_perm(&selinux_state,
2189                                     current_sid(), SECINITSID_KERNEL,
2190                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191                                     NULL);
2192         }
2193         /* All other syslog types */
2194         return avc_has_perm(&selinux_state,
2195                             current_sid(), SECINITSID_KERNEL,
2196                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197 }
2198
2199 /*
2200  * Check that a process has enough memory to allocate a new virtual
2201  * mapping. 0 means there is enough memory for the allocation to
2202  * succeed and -ENOMEM implies there is not.
2203  *
2204  * Do not audit the selinux permission check, as this is applied to all
2205  * processes that allocate mappings.
2206  */
2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208 {
2209         int rc, cap_sys_admin = 0;
2210
2211         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212                                  CAP_OPT_NOAUDIT, true);
2213         if (rc == 0)
2214                 cap_sys_admin = 1;
2215
2216         return cap_sys_admin;
2217 }
2218
2219 /* binprm security operations */
2220
2221 static u32 ptrace_parent_sid(void)
2222 {
2223         u32 sid = 0;
2224         struct task_struct *tracer;
2225
2226         rcu_read_lock();
2227         tracer = ptrace_parent(current);
2228         if (tracer)
2229                 sid = task_sid(tracer);
2230         rcu_read_unlock();
2231
2232         return sid;
2233 }
2234
2235 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236                             const struct task_security_struct *old_tsec,
2237                             const struct task_security_struct *new_tsec)
2238 {
2239         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241         int rc;
2242         u32 av;
2243
2244         if (!nnp && !nosuid)
2245                 return 0; /* neither NNP nor nosuid */
2246
2247         if (new_tsec->sid == old_tsec->sid)
2248                 return 0; /* No change in credentials */
2249
2250         /*
2251          * If the policy enables the nnp_nosuid_transition policy capability,
2252          * then we permit transitions under NNP or nosuid if the
2253          * policy allows the corresponding permission between
2254          * the old and new contexts.
2255          */
2256         if (selinux_policycap_nnp_nosuid_transition()) {
2257                 av = 0;
2258                 if (nnp)
2259                         av |= PROCESS2__NNP_TRANSITION;
2260                 if (nosuid)
2261                         av |= PROCESS2__NOSUID_TRANSITION;
2262                 rc = avc_has_perm(&selinux_state,
2263                                   old_tsec->sid, new_tsec->sid,
2264                                   SECCLASS_PROCESS2, av, NULL);
2265                 if (!rc)
2266                         return 0;
2267         }
2268
2269         /*
2270          * We also permit NNP or nosuid transitions to bounded SIDs,
2271          * i.e. SIDs that are guaranteed to only be allowed a subset
2272          * of the permissions of the current SID.
2273          */
2274         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275                                          new_tsec->sid);
2276         if (!rc)
2277                 return 0;
2278
2279         /*
2280          * On failure, preserve the errno values for NNP vs nosuid.
2281          * NNP:  Operation not permitted for caller.
2282          * nosuid:  Permission denied to file.
2283          */
2284         if (nnp)
2285                 return -EPERM;
2286         return -EACCES;
2287 }
2288
2289 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2290 {
2291         const struct task_security_struct *old_tsec;
2292         struct task_security_struct *new_tsec;
2293         struct inode_security_struct *isec;
2294         struct common_audit_data ad;
2295         struct inode *inode = file_inode(bprm->file);
2296         int rc;
2297
2298         /* SELinux context only depends on initial program or script and not
2299          * the script interpreter */
2300         if (bprm->called_set_creds)
2301                 return 0;
2302
2303         old_tsec = selinux_cred(current_cred());
2304         new_tsec = selinux_cred(bprm->cred);
2305         isec = inode_security(inode);
2306
2307         /* Default to the current task SID. */
2308         new_tsec->sid = old_tsec->sid;
2309         new_tsec->osid = old_tsec->sid;
2310
2311         /* Reset fs, key, and sock SIDs on execve. */
2312         new_tsec->create_sid = 0;
2313         new_tsec->keycreate_sid = 0;
2314         new_tsec->sockcreate_sid = 0;
2315
2316         if (old_tsec->exec_sid) {
2317                 new_tsec->sid = old_tsec->exec_sid;
2318                 /* Reset exec SID on execve. */
2319                 new_tsec->exec_sid = 0;
2320
2321                 /* Fail on NNP or nosuid if not an allowed transition. */
2322                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2323                 if (rc)
2324                         return rc;
2325         } else {
2326                 /* Check for a default transition on this program. */
2327                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2328                                              isec->sid, SECCLASS_PROCESS, NULL,
2329                                              &new_tsec->sid);
2330                 if (rc)
2331                         return rc;
2332
2333                 /*
2334                  * Fallback to old SID on NNP or nosuid if not an allowed
2335                  * transition.
2336                  */
2337                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338                 if (rc)
2339                         new_tsec->sid = old_tsec->sid;
2340         }
2341
2342         ad.type = LSM_AUDIT_DATA_FILE;
2343         ad.u.file = bprm->file;
2344
2345         if (new_tsec->sid == old_tsec->sid) {
2346                 rc = avc_has_perm(&selinux_state,
2347                                   old_tsec->sid, isec->sid,
2348                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2349                 if (rc)
2350                         return rc;
2351         } else {
2352                 /* Check permissions for the transition. */
2353                 rc = avc_has_perm(&selinux_state,
2354                                   old_tsec->sid, new_tsec->sid,
2355                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2356                 if (rc)
2357                         return rc;
2358
2359                 rc = avc_has_perm(&selinux_state,
2360                                   new_tsec->sid, isec->sid,
2361                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2362                 if (rc)
2363                         return rc;
2364
2365                 /* Check for shared state */
2366                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2367                         rc = avc_has_perm(&selinux_state,
2368                                           old_tsec->sid, new_tsec->sid,
2369                                           SECCLASS_PROCESS, PROCESS__SHARE,
2370                                           NULL);
2371                         if (rc)
2372                                 return -EPERM;
2373                 }
2374
2375                 /* Make sure that anyone attempting to ptrace over a task that
2376                  * changes its SID has the appropriate permit */
2377                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2378                         u32 ptsid = ptrace_parent_sid();
2379                         if (ptsid != 0) {
2380                                 rc = avc_has_perm(&selinux_state,
2381                                                   ptsid, new_tsec->sid,
2382                                                   SECCLASS_PROCESS,
2383                                                   PROCESS__PTRACE, NULL);
2384                                 if (rc)
2385                                         return -EPERM;
2386                         }
2387                 }
2388
2389                 /* Clear any possibly unsafe personality bits on exec: */
2390                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2391
2392                 /* Enable secure mode for SIDs transitions unless
2393                    the noatsecure permission is granted between
2394                    the two SIDs, i.e. ahp returns 0. */
2395                 rc = avc_has_perm(&selinux_state,
2396                                   old_tsec->sid, new_tsec->sid,
2397                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2398                                   NULL);
2399                 bprm->secureexec |= !!rc;
2400         }
2401
2402         return 0;
2403 }
2404
2405 static int match_file(const void *p, struct file *file, unsigned fd)
2406 {
2407         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2408 }
2409
2410 /* Derived from fs/exec.c:flush_old_files. */
2411 static inline void flush_unauthorized_files(const struct cred *cred,
2412                                             struct files_struct *files)
2413 {
2414         struct file *file, *devnull = NULL;
2415         struct tty_struct *tty;
2416         int drop_tty = 0;
2417         unsigned n;
2418
2419         tty = get_current_tty();
2420         if (tty) {
2421                 spin_lock(&tty->files_lock);
2422                 if (!list_empty(&tty->tty_files)) {
2423                         struct tty_file_private *file_priv;
2424
2425                         /* Revalidate access to controlling tty.
2426                            Use file_path_has_perm on the tty path directly
2427                            rather than using file_has_perm, as this particular
2428                            open file may belong to another process and we are
2429                            only interested in the inode-based check here. */
2430                         file_priv = list_first_entry(&tty->tty_files,
2431                                                 struct tty_file_private, list);
2432                         file = file_priv->file;
2433                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2434                                 drop_tty = 1;
2435                 }
2436                 spin_unlock(&tty->files_lock);
2437                 tty_kref_put(tty);
2438         }
2439         /* Reset controlling tty. */
2440         if (drop_tty)
2441                 no_tty();
2442
2443         /* Revalidate access to inherited open files. */
2444         n = iterate_fd(files, 0, match_file, cred);
2445         if (!n) /* none found? */
2446                 return;
2447
2448         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2449         if (IS_ERR(devnull))
2450                 devnull = NULL;
2451         /* replace all the matching ones with this */
2452         do {
2453                 replace_fd(n - 1, devnull, 0);
2454         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2455         if (devnull)
2456                 fput(devnull);
2457 }
2458
2459 /*
2460  * Prepare a process for imminent new credential changes due to exec
2461  */
2462 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2463 {
2464         struct task_security_struct *new_tsec;
2465         struct rlimit *rlim, *initrlim;
2466         int rc, i;
2467
2468         new_tsec = selinux_cred(bprm->cred);
2469         if (new_tsec->sid == new_tsec->osid)
2470                 return;
2471
2472         /* Close files for which the new task SID is not authorized. */
2473         flush_unauthorized_files(bprm->cred, current->files);
2474
2475         /* Always clear parent death signal on SID transitions. */
2476         current->pdeath_signal = 0;
2477
2478         /* Check whether the new SID can inherit resource limits from the old
2479          * SID.  If not, reset all soft limits to the lower of the current
2480          * task's hard limit and the init task's soft limit.
2481          *
2482          * Note that the setting of hard limits (even to lower them) can be
2483          * controlled by the setrlimit check.  The inclusion of the init task's
2484          * soft limit into the computation is to avoid resetting soft limits
2485          * higher than the default soft limit for cases where the default is
2486          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2487          */
2488         rc = avc_has_perm(&selinux_state,
2489                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2490                           PROCESS__RLIMITINH, NULL);
2491         if (rc) {
2492                 /* protect against do_prlimit() */
2493                 task_lock(current);
2494                 for (i = 0; i < RLIM_NLIMITS; i++) {
2495                         rlim = current->signal->rlim + i;
2496                         initrlim = init_task.signal->rlim + i;
2497                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2498                 }
2499                 task_unlock(current);
2500                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2501                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2502         }
2503 }
2504
2505 /*
2506  * Clean up the process immediately after the installation of new credentials
2507  * due to exec
2508  */
2509 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2510 {
2511         const struct task_security_struct *tsec = selinux_cred(current_cred());
2512         u32 osid, sid;
2513         int rc;
2514
2515         osid = tsec->osid;
2516         sid = tsec->sid;
2517
2518         if (sid == osid)
2519                 return;
2520
2521         /* Check whether the new SID can inherit signal state from the old SID.
2522          * If not, clear itimers to avoid subsequent signal generation and
2523          * flush and unblock signals.
2524          *
2525          * This must occur _after_ the task SID has been updated so that any
2526          * kill done after the flush will be checked against the new SID.
2527          */
2528         rc = avc_has_perm(&selinux_state,
2529                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2530         if (rc) {
2531                 clear_itimer();
2532
2533                 spin_lock_irq(&current->sighand->siglock);
2534                 if (!fatal_signal_pending(current)) {
2535                         flush_sigqueue(&current->pending);
2536                         flush_sigqueue(&current->signal->shared_pending);
2537                         flush_signal_handlers(current, 1);
2538                         sigemptyset(&current->blocked);
2539                         recalc_sigpending();
2540                 }
2541                 spin_unlock_irq(&current->sighand->siglock);
2542         }
2543
2544         /* Wake up the parent if it is waiting so that it can recheck
2545          * wait permission to the new task SID. */
2546         read_lock(&tasklist_lock);
2547         __wake_up_parent(current, current->real_parent);
2548         read_unlock(&tasklist_lock);
2549 }
2550
2551 /* superblock security operations */
2552
2553 static int selinux_sb_alloc_security(struct super_block *sb)
2554 {
2555         struct superblock_security_struct *sbsec;
2556
2557         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2558         if (!sbsec)
2559                 return -ENOMEM;
2560
2561         mutex_init(&sbsec->lock);
2562         INIT_LIST_HEAD(&sbsec->isec_head);
2563         spin_lock_init(&sbsec->isec_lock);
2564         sbsec->sb = sb;
2565         sbsec->sid = SECINITSID_UNLABELED;
2566         sbsec->def_sid = SECINITSID_FILE;
2567         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568         sb->s_security = sbsec;
2569
2570         return 0;
2571 }
2572
2573 static void selinux_sb_free_security(struct super_block *sb)
2574 {
2575         superblock_free_security(sb);
2576 }
2577
2578 static inline int opt_len(const char *s)
2579 {
2580         bool open_quote = false;
2581         int len;
2582         char c;
2583
2584         for (len = 0; (c = s[len]) != '\0'; len++) {
2585                 if (c == '"')
2586                         open_quote = !open_quote;
2587                 if (c == ',' && !open_quote)
2588                         break;
2589         }
2590         return len;
2591 }
2592
2593 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2594 {
2595         char *from = options;
2596         char *to = options;
2597         bool first = true;
2598         int rc;
2599
2600         while (1) {
2601                 int len = opt_len(from);
2602                 int token;
2603                 char *arg = NULL;
2604
2605                 token = match_opt_prefix(from, len, &arg);
2606
2607                 if (token != Opt_error) {
2608                         char *p, *q;
2609
2610                         /* strip quotes */
2611                         if (arg) {
2612                                 for (p = q = arg; p < from + len; p++) {
2613                                         char c = *p;
2614                                         if (c != '"')
2615                                                 *q++ = c;
2616                                 }
2617                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2618                                 if (!arg) {
2619                                         rc = -ENOMEM;
2620                                         goto free_opt;
2621                                 }
2622                         }
2623                         rc = selinux_add_opt(token, arg, mnt_opts);
2624                         if (unlikely(rc)) {
2625                                 kfree(arg);
2626                                 goto free_opt;
2627                         }
2628                 } else {
2629                         if (!first) {   // copy with preceding comma
2630                                 from--;
2631                                 len++;
2632                         }
2633                         if (to != from)
2634                                 memmove(to, from, len);
2635                         to += len;
2636                         first = false;
2637                 }
2638                 if (!from[len])
2639                         break;
2640                 from += len + 1;
2641         }
2642         *to = '\0';
2643         return 0;
2644
2645 free_opt:
2646         if (*mnt_opts) {
2647                 selinux_free_mnt_opts(*mnt_opts);
2648                 *mnt_opts = NULL;
2649         }
2650         return rc;
2651 }
2652
2653 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2654 {
2655         struct selinux_mnt_opts *opts = mnt_opts;
2656         struct superblock_security_struct *sbsec = sb->s_security;
2657         u32 sid;
2658         int rc;
2659
2660         if (!(sbsec->flags & SE_SBINITIALIZED))
2661                 return 0;
2662
2663         if (!opts)
2664                 return 0;
2665
2666         if (opts->fscontext) {
2667                 rc = parse_sid(sb, opts->fscontext, &sid);
2668                 if (rc)
2669                         return rc;
2670                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2671                         goto out_bad_option;
2672         }
2673         if (opts->context) {
2674                 rc = parse_sid(sb, opts->context, &sid);
2675                 if (rc)
2676                         return rc;
2677                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2678                         goto out_bad_option;
2679         }
2680         if (opts->rootcontext) {
2681                 struct inode_security_struct *root_isec;
2682                 root_isec = backing_inode_security(sb->s_root);
2683                 rc = parse_sid(sb, opts->rootcontext, &sid);
2684                 if (rc)
2685                         return rc;
2686                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2687                         goto out_bad_option;
2688         }
2689         if (opts->defcontext) {
2690                 rc = parse_sid(sb, opts->defcontext, &sid);
2691                 if (rc)
2692                         return rc;
2693                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2694                         goto out_bad_option;
2695         }
2696         return 0;
2697
2698 out_bad_option:
2699         pr_warn("SELinux: unable to change security options "
2700                "during remount (dev %s, type=%s)\n", sb->s_id,
2701                sb->s_type->name);
2702         return -EINVAL;
2703 }
2704
2705 static int selinux_sb_kern_mount(struct super_block *sb)
2706 {
2707         const struct cred *cred = current_cred();
2708         struct common_audit_data ad;
2709
2710         ad.type = LSM_AUDIT_DATA_DENTRY;
2711         ad.u.dentry = sb->s_root;
2712         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2713 }
2714
2715 static int selinux_sb_statfs(struct dentry *dentry)
2716 {
2717         const struct cred *cred = current_cred();
2718         struct common_audit_data ad;
2719
2720         ad.type = LSM_AUDIT_DATA_DENTRY;
2721         ad.u.dentry = dentry->d_sb->s_root;
2722         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2723 }
2724
2725 static int selinux_mount(const char *dev_name,
2726                          const struct path *path,
2727                          const char *type,
2728                          unsigned long flags,
2729                          void *data)
2730 {
2731         const struct cred *cred = current_cred();
2732
2733         if (flags & MS_REMOUNT)
2734                 return superblock_has_perm(cred, path->dentry->d_sb,
2735                                            FILESYSTEM__REMOUNT, NULL);
2736         else
2737                 return path_has_perm(cred, path, FILE__MOUNTON);
2738 }
2739
2740 static int selinux_move_mount(const struct path *from_path,
2741                               const struct path *to_path)
2742 {
2743         const struct cred *cred = current_cred();
2744
2745         return path_has_perm(cred, to_path, FILE__MOUNTON);
2746 }
2747
2748 static int selinux_umount(struct vfsmount *mnt, int flags)
2749 {
2750         const struct cred *cred = current_cred();
2751
2752         return superblock_has_perm(cred, mnt->mnt_sb,
2753                                    FILESYSTEM__UNMOUNT, NULL);
2754 }
2755
2756 static int selinux_fs_context_dup(struct fs_context *fc,
2757                                   struct fs_context *src_fc)
2758 {
2759         const struct selinux_mnt_opts *src = src_fc->security;
2760         struct selinux_mnt_opts *opts;
2761
2762         if (!src)
2763                 return 0;
2764
2765         fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2766         if (!fc->security)
2767                 return -ENOMEM;
2768
2769         opts = fc->security;
2770
2771         if (src->fscontext) {
2772                 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2773                 if (!opts->fscontext)
2774                         return -ENOMEM;
2775         }
2776         if (src->context) {
2777                 opts->context = kstrdup(src->context, GFP_KERNEL);
2778                 if (!opts->context)
2779                         return -ENOMEM;
2780         }
2781         if (src->rootcontext) {
2782                 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2783                 if (!opts->rootcontext)
2784                         return -ENOMEM;
2785         }
2786         if (src->defcontext) {
2787                 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2788                 if (!opts->defcontext)
2789                         return -ENOMEM;
2790         }
2791         return 0;
2792 }
2793
2794 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2795         fsparam_string(CONTEXT_STR,     Opt_context),
2796         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2797         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2798         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2799         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2800         {}
2801 };
2802
2803 static int selinux_fs_context_parse_param(struct fs_context *fc,
2804                                           struct fs_parameter *param)
2805 {
2806         struct fs_parse_result result;
2807         int opt, rc;
2808
2809         opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2810         if (opt < 0)
2811                 return opt;
2812
2813         rc = selinux_add_opt(opt, param->string, &fc->security);
2814         if (!rc) {
2815                 param->string = NULL;
2816                 rc = 1;
2817         }
2818         return rc;
2819 }
2820
2821 /* inode security operations */
2822
2823 static int selinux_inode_alloc_security(struct inode *inode)
2824 {
2825         struct inode_security_struct *isec = selinux_inode(inode);
2826         u32 sid = current_sid();
2827
2828         spin_lock_init(&isec->lock);
2829         INIT_LIST_HEAD(&isec->list);
2830         isec->inode = inode;
2831         isec->sid = SECINITSID_UNLABELED;
2832         isec->sclass = SECCLASS_FILE;
2833         isec->task_sid = sid;
2834         isec->initialized = LABEL_INVALID;
2835
2836         return 0;
2837 }
2838
2839 static void selinux_inode_free_security(struct inode *inode)
2840 {
2841         inode_free_security(inode);
2842 }
2843
2844 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2845                                         const struct qstr *name, void **ctx,
2846                                         u32 *ctxlen)
2847 {
2848         u32 newsid;
2849         int rc;
2850
2851         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2852                                            d_inode(dentry->d_parent), name,
2853                                            inode_mode_to_security_class(mode),
2854                                            &newsid);
2855         if (rc)
2856                 return rc;
2857
2858         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2859                                        ctxlen);
2860 }
2861
2862 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863                                           struct qstr *name,
2864                                           const struct cred *old,
2865                                           struct cred *new)
2866 {
2867         u32 newsid;
2868         int rc;
2869         struct task_security_struct *tsec;
2870
2871         rc = selinux_determine_inode_label(selinux_cred(old),
2872                                            d_inode(dentry->d_parent), name,
2873                                            inode_mode_to_security_class(mode),
2874                                            &newsid);
2875         if (rc)
2876                 return rc;
2877
2878         tsec = selinux_cred(new);
2879         tsec->create_sid = newsid;
2880         return 0;
2881 }
2882
2883 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884                                        const struct qstr *qstr,
2885                                        const char **name,
2886                                        void **value, size_t *len)
2887 {
2888         const struct task_security_struct *tsec = selinux_cred(current_cred());
2889         struct superblock_security_struct *sbsec;
2890         u32 newsid, clen;
2891         int rc;
2892         char *context;
2893
2894         sbsec = dir->i_sb->s_security;
2895
2896         newsid = tsec->create_sid;
2897
2898         rc = selinux_determine_inode_label(tsec, dir, qstr,
2899                 inode_mode_to_security_class(inode->i_mode),
2900                 &newsid);
2901         if (rc)
2902                 return rc;
2903
2904         /* Possibly defer initialization to selinux_complete_init. */
2905         if (sbsec->flags & SE_SBINITIALIZED) {
2906                 struct inode_security_struct *isec = selinux_inode(inode);
2907                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2908                 isec->sid = newsid;
2909                 isec->initialized = LABEL_INITIALIZED;
2910         }
2911
2912         if (!selinux_initialized(&selinux_state) ||
2913             !(sbsec->flags & SBLABEL_MNT))
2914                 return -EOPNOTSUPP;
2915
2916         if (name)
2917                 *name = XATTR_SELINUX_SUFFIX;
2918
2919         if (value && len) {
2920                 rc = security_sid_to_context_force(&selinux_state, newsid,
2921                                                    &context, &clen);
2922                 if (rc)
2923                         return rc;
2924                 *value = context;
2925                 *len = clen;
2926         }
2927
2928         return 0;
2929 }
2930
2931 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932 {
2933         return may_create(dir, dentry, SECCLASS_FILE);
2934 }
2935
2936 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937 {
2938         return may_link(dir, old_dentry, MAY_LINK);
2939 }
2940
2941 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942 {
2943         return may_link(dir, dentry, MAY_UNLINK);
2944 }
2945
2946 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947 {
2948         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949 }
2950
2951 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952 {
2953         return may_create(dir, dentry, SECCLASS_DIR);
2954 }
2955
2956 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957 {
2958         return may_link(dir, dentry, MAY_RMDIR);
2959 }
2960
2961 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962 {
2963         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964 }
2965
2966 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967                                 struct inode *new_inode, struct dentry *new_dentry)
2968 {
2969         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970 }
2971
2972 static int selinux_inode_readlink(struct dentry *dentry)
2973 {
2974         const struct cred *cred = current_cred();
2975
2976         return dentry_has_perm(cred, dentry, FILE__READ);
2977 }
2978
2979 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980                                      bool rcu)
2981 {
2982         const struct cred *cred = current_cred();
2983         struct common_audit_data ad;
2984         struct inode_security_struct *isec;
2985         u32 sid;
2986
2987         validate_creds(cred);
2988
2989         ad.type = LSM_AUDIT_DATA_DENTRY;
2990         ad.u.dentry = dentry;
2991         sid = cred_sid(cred);
2992         isec = inode_security_rcu(inode, rcu);
2993         if (IS_ERR(isec))
2994                 return PTR_ERR(isec);
2995
2996         return avc_has_perm_flags(&selinux_state,
2997                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
2998                                   rcu ? MAY_NOT_BLOCK : 0);
2999 }
3000
3001 static noinline int audit_inode_permission(struct inode *inode,
3002                                            u32 perms, u32 audited, u32 denied,
3003                                            int result)
3004 {
3005         struct common_audit_data ad;
3006         struct inode_security_struct *isec = selinux_inode(inode);
3007         int rc;
3008
3009         ad.type = LSM_AUDIT_DATA_INODE;
3010         ad.u.inode = inode;
3011
3012         rc = slow_avc_audit(&selinux_state,
3013                             current_sid(), isec->sid, isec->sclass, perms,
3014                             audited, denied, result, &ad);
3015         if (rc)
3016                 return rc;
3017         return 0;
3018 }
3019
3020 static int selinux_inode_permission(struct inode *inode, int mask)
3021 {
3022         const struct cred *cred = current_cred();
3023         u32 perms;
3024         bool from_access;
3025         bool no_block = mask & MAY_NOT_BLOCK;
3026         struct inode_security_struct *isec;
3027         u32 sid;
3028         struct av_decision avd;
3029         int rc, rc2;
3030         u32 audited, denied;
3031
3032         from_access = mask & MAY_ACCESS;
3033         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3034
3035         /* No permission to check.  Existence test. */
3036         if (!mask)
3037                 return 0;
3038
3039         validate_creds(cred);
3040
3041         if (unlikely(IS_PRIVATE(inode)))
3042                 return 0;
3043
3044         perms = file_mask_to_av(inode->i_mode, mask);
3045
3046         sid = cred_sid(cred);
3047         isec = inode_security_rcu(inode, no_block);
3048         if (IS_ERR(isec))
3049                 return PTR_ERR(isec);
3050
3051         rc = avc_has_perm_noaudit(&selinux_state,
3052                                   sid, isec->sid, isec->sclass, perms,
3053                                   no_block ? AVC_NONBLOCKING : 0,
3054                                   &avd);
3055         audited = avc_audit_required(perms, &avd, rc,
3056                                      from_access ? FILE__AUDIT_ACCESS : 0,
3057                                      &denied);
3058         if (likely(!audited))
3059                 return rc;
3060
3061         /* fall back to ref-walk if we have to generate audit */
3062         if (no_block)
3063                 return -ECHILD;
3064
3065         rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3066         if (rc2)
3067                 return rc2;
3068         return rc;
3069 }
3070
3071 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3072 {
3073         const struct cred *cred = current_cred();
3074         struct inode *inode = d_backing_inode(dentry);
3075         unsigned int ia_valid = iattr->ia_valid;
3076         __u32 av = FILE__WRITE;
3077
3078         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3079         if (ia_valid & ATTR_FORCE) {
3080                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3081                               ATTR_FORCE);
3082                 if (!ia_valid)
3083                         return 0;
3084         }
3085
3086         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3087                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3088                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3089
3090         if (selinux_policycap_openperm() &&
3091             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3092             (ia_valid & ATTR_SIZE) &&
3093             !(ia_valid & ATTR_FILE))
3094                 av |= FILE__OPEN;
3095
3096         return dentry_has_perm(cred, dentry, av);
3097 }
3098
3099 static int selinux_inode_getattr(const struct path *path)
3100 {
3101         return path_has_perm(current_cred(), path, FILE__GETATTR);
3102 }
3103
3104 static bool has_cap_mac_admin(bool audit)
3105 {
3106         const struct cred *cred = current_cred();
3107         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3108
3109         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3110                 return false;
3111         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3112                 return false;
3113         return true;
3114 }
3115
3116 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3117                                   const void *value, size_t size, int flags)
3118 {
3119         struct inode *inode = d_backing_inode(dentry);
3120         struct inode_security_struct *isec;
3121         struct superblock_security_struct *sbsec;
3122         struct common_audit_data ad;
3123         u32 newsid, sid = current_sid();
3124         int rc = 0;
3125
3126         if (strcmp(name, XATTR_NAME_SELINUX)) {
3127                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3128                 if (rc)
3129                         return rc;
3130
3131                 /* Not an attribute we recognize, so just check the
3132                    ordinary setattr permission. */
3133                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3134         }
3135
3136         if (!selinux_initialized(&selinux_state))
3137                 return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3138
3139         sbsec = inode->i_sb->s_security;
3140         if (!(sbsec->flags & SBLABEL_MNT))
3141                 return -EOPNOTSUPP;
3142
3143         if (!inode_owner_or_capable(inode))
3144                 return -EPERM;
3145
3146         ad.type = LSM_AUDIT_DATA_DENTRY;
3147         ad.u.dentry = dentry;
3148
3149         isec = backing_inode_security(dentry);
3150         rc = avc_has_perm(&selinux_state,
3151                           sid, isec->sid, isec->sclass,
3152                           FILE__RELABELFROM, &ad);
3153         if (rc)
3154                 return rc;
3155
3156         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3157                                      GFP_KERNEL);
3158         if (rc == -EINVAL) {
3159                 if (!has_cap_mac_admin(true)) {
3160                         struct audit_buffer *ab;
3161                         size_t audit_size;
3162
3163                         /* We strip a nul only if it is at the end, otherwise the
3164                          * context contains a nul and we should audit that */
3165                         if (value) {
3166                                 const char *str = value;
3167
3168                                 if (str[size - 1] == '\0')
3169                                         audit_size = size - 1;
3170                                 else
3171                                         audit_size = size;
3172                         } else {
3173                                 audit_size = 0;
3174                         }
3175                         ab = audit_log_start(audit_context(),
3176                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3177                         audit_log_format(ab, "op=setxattr invalid_context=");
3178                         audit_log_n_untrustedstring(ab, value, audit_size);
3179                         audit_log_end(ab);
3180
3181                         return rc;
3182                 }
3183                 rc = security_context_to_sid_force(&selinux_state, value,
3184                                                    size, &newsid);
3185         }
3186         if (rc)
3187                 return rc;
3188
3189         rc = avc_has_perm(&selinux_state,
3190                           sid, newsid, isec->sclass,
3191                           FILE__RELABELTO, &ad);
3192         if (rc)
3193                 return rc;
3194
3195         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3196                                           sid, isec->sclass);
3197         if (rc)
3198                 return rc;
3199
3200         return avc_has_perm(&selinux_state,
3201                             newsid,
3202                             sbsec->sid,
3203                             SECCLASS_FILESYSTEM,
3204                             FILESYSTEM__ASSOCIATE,
3205                             &ad);
3206 }
3207
3208 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3209                                         const void *value, size_t size,
3210                                         int flags)
3211 {
3212         struct inode *inode = d_backing_inode(dentry);
3213         struct inode_security_struct *isec;
3214         u32 newsid;
3215         int rc;
3216
3217         if (strcmp(name, XATTR_NAME_SELINUX)) {
3218                 /* Not an attribute we recognize, so nothing to do. */
3219                 return;
3220         }
3221
3222         if (!selinux_initialized(&selinux_state)) {
3223                 /* If we haven't even been initialized, then we can't validate
3224                  * against a policy, so leave the label as invalid. It may
3225                  * resolve to a valid label on the next revalidation try if
3226                  * we've since initialized.
3227                  */
3228                 return;
3229         }
3230
3231         rc = security_context_to_sid_force(&selinux_state, value, size,
3232                                            &newsid);
3233         if (rc) {
3234                 pr_err("SELinux:  unable to map context to SID"
3235                        "for (%s, %lu), rc=%d\n",
3236                        inode->i_sb->s_id, inode->i_ino, -rc);
3237                 return;
3238         }
3239
3240         isec = backing_inode_security(dentry);
3241         spin_lock(&isec->lock);
3242         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3243         isec->sid = newsid;
3244         isec->initialized = LABEL_INITIALIZED;
3245         spin_unlock(&isec->lock);
3246
3247         return;
3248 }
3249
3250 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3251 {
3252         const struct cred *cred = current_cred();
3253
3254         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3255 }
3256
3257 static int selinux_inode_listxattr(struct dentry *dentry)
3258 {
3259         const struct cred *cred = current_cred();
3260
3261         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3262 }
3263
3264 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3265 {
3266         if (strcmp(name, XATTR_NAME_SELINUX)) {
3267                 int rc = cap_inode_removexattr(dentry, name);
3268                 if (rc)
3269                         return rc;
3270
3271                 /* Not an attribute we recognize, so just check the
3272                    ordinary setattr permission. */
3273                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3274         }
3275
3276         /* No one is allowed to remove a SELinux security label.
3277            You can change the label, but all data must be labeled. */
3278         return -EACCES;
3279 }
3280
3281 static int selinux_path_notify(const struct path *path, u64 mask,
3282                                                 unsigned int obj_type)
3283 {
3284         int ret;
3285         u32 perm;
3286
3287         struct common_audit_data ad;
3288
3289         ad.type = LSM_AUDIT_DATA_PATH;
3290         ad.u.path = *path;
3291
3292         /*
3293          * Set permission needed based on the type of mark being set.
3294          * Performs an additional check for sb watches.
3295          */
3296         switch (obj_type) {
3297         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3298                 perm = FILE__WATCH_MOUNT;
3299                 break;
3300         case FSNOTIFY_OBJ_TYPE_SB:
3301                 perm = FILE__WATCH_SB;
3302                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3303                                                 FILESYSTEM__WATCH, &ad);
3304                 if (ret)
3305                         return ret;
3306                 break;
3307         case FSNOTIFY_OBJ_TYPE_INODE:
3308                 perm = FILE__WATCH;
3309                 break;
3310         default:
3311                 return -EINVAL;
3312         }
3313
3314         /* blocking watches require the file:watch_with_perm permission */
3315         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3316                 perm |= FILE__WATCH_WITH_PERM;
3317
3318         /* watches on read-like events need the file:watch_reads permission */
3319         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3320                 perm |= FILE__WATCH_READS;
3321
3322         return path_has_perm(current_cred(), path, perm);
3323 }
3324
3325 /*
3326  * Copy the inode security context value to the user.
3327  *
3328  * Permission check is handled by selinux_inode_getxattr hook.
3329  */
3330 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3331 {
3332         u32 size;
3333         int error;
3334         char *context = NULL;
3335         struct inode_security_struct *isec;
3336
3337         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3338                 return -EOPNOTSUPP;
3339
3340         /*
3341          * If the caller has CAP_MAC_ADMIN, then get the raw context
3342          * value even if it is not defined by current policy; otherwise,
3343          * use the in-core value under current policy.
3344          * Use the non-auditing forms of the permission checks since
3345          * getxattr may be called by unprivileged processes commonly
3346          * and lack of permission just means that we fall back to the
3347          * in-core context value, not a denial.
3348          */
3349         isec = inode_security(inode);
3350         if (has_cap_mac_admin(false))
3351                 error = security_sid_to_context_force(&selinux_state,
3352                                                       isec->sid, &context,
3353                                                       &size);
3354         else
3355                 error = security_sid_to_context(&selinux_state, isec->sid,
3356                                                 &context, &size);
3357         if (error)
3358                 return error;
3359         error = size;
3360         if (alloc) {
3361                 *buffer = context;
3362                 goto out_nofree;
3363         }
3364         kfree(context);
3365 out_nofree:
3366         return error;
3367 }
3368
3369 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3370                                      const void *value, size_t size, int flags)
3371 {
3372         struct inode_security_struct *isec = inode_security_novalidate(inode);
3373         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3374         u32 newsid;
3375         int rc;
3376
3377         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3378                 return -EOPNOTSUPP;
3379
3380         if (!(sbsec->flags & SBLABEL_MNT))
3381                 return -EOPNOTSUPP;
3382
3383         if (!value || !size)
3384                 return -EACCES;
3385
3386         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3387                                      GFP_KERNEL);
3388         if (rc)
3389                 return rc;
3390
3391         spin_lock(&isec->lock);
3392         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3393         isec->sid = newsid;
3394         isec->initialized = LABEL_INITIALIZED;
3395         spin_unlock(&isec->lock);
3396         return 0;
3397 }
3398
3399 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3400 {
3401         const int len = sizeof(XATTR_NAME_SELINUX);
3402         if (buffer && len <= buffer_size)
3403                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3404         return len;
3405 }
3406
3407 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3408 {
3409         struct inode_security_struct *isec = inode_security_novalidate(inode);
3410         *secid = isec->sid;
3411 }
3412
3413 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3414 {
3415         u32 sid;
3416         struct task_security_struct *tsec;
3417         struct cred *new_creds = *new;
3418
3419         if (new_creds == NULL) {
3420                 new_creds = prepare_creds();
3421                 if (!new_creds)
3422                         return -ENOMEM;
3423         }
3424
3425         tsec = selinux_cred(new_creds);
3426         /* Get label from overlay inode and set it in create_sid */
3427         selinux_inode_getsecid(d_inode(src), &sid);
3428         tsec->create_sid = sid;
3429         *new = new_creds;
3430         return 0;
3431 }
3432
3433 static int selinux_inode_copy_up_xattr(const char *name)
3434 {
3435         /* The copy_up hook above sets the initial context on an inode, but we
3436          * don't then want to overwrite it by blindly copying all the lower
3437          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3438          */
3439         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3440                 return 1; /* Discard */
3441         /*
3442          * Any other attribute apart from SELINUX is not claimed, supported
3443          * by selinux.
3444          */
3445         return -EOPNOTSUPP;
3446 }
3447
3448 /* kernfs node operations */
3449
3450 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3451                                         struct kernfs_node *kn)
3452 {
3453         const struct task_security_struct *tsec = selinux_cred(current_cred());
3454         u32 parent_sid, newsid, clen;
3455         int rc;
3456         char *context;
3457
3458         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3459         if (rc == -ENODATA)
3460                 return 0;
3461         else if (rc < 0)
3462                 return rc;
3463
3464         clen = (u32)rc;
3465         context = kmalloc(clen, GFP_KERNEL);
3466         if (!context)
3467                 return -ENOMEM;
3468
3469         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3470         if (rc < 0) {
3471                 kfree(context);
3472                 return rc;
3473         }
3474
3475         rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3476                                      GFP_KERNEL);
3477         kfree(context);
3478         if (rc)
3479                 return rc;
3480
3481         if (tsec->create_sid) {
3482                 newsid = tsec->create_sid;
3483         } else {
3484                 u16 secclass = inode_mode_to_security_class(kn->mode);
3485                 struct qstr q;
3486
3487                 q.name = kn->name;
3488                 q.hash_len = hashlen_string(kn_dir, kn->name);
3489
3490                 rc = security_transition_sid(&selinux_state, tsec->sid,
3491                                              parent_sid, secclass, &q,
3492                                              &newsid);
3493                 if (rc)
3494                         return rc;
3495         }
3496
3497         rc = security_sid_to_context_force(&selinux_state, newsid,
3498                                            &context, &clen);
3499         if (rc)
3500                 return rc;
3501
3502         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3503                               XATTR_CREATE);
3504         kfree(context);
3505         return rc;
3506 }
3507
3508
3509 /* file security operations */
3510
3511 static int selinux_revalidate_file_permission(struct file *file, int mask)
3512 {
3513         const struct cred *cred = current_cred();
3514         struct inode *inode = file_inode(file);
3515
3516         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3517         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3518                 mask |= MAY_APPEND;
3519
3520         return file_has_perm(cred, file,
3521                              file_mask_to_av(inode->i_mode, mask));
3522 }
3523
3524 static int selinux_file_permission(struct file *file, int mask)
3525 {
3526         struct inode *inode = file_inode(file);
3527         struct file_security_struct *fsec = selinux_file(file);
3528         struct inode_security_struct *isec;
3529         u32 sid = current_sid();
3530
3531         if (!mask)
3532                 /* No permission to check.  Existence test. */
3533                 return 0;
3534
3535         isec = inode_security(inode);
3536         if (sid == fsec->sid && fsec->isid == isec->sid &&
3537             fsec->pseqno == avc_policy_seqno(&selinux_state))
3538                 /* No change since file_open check. */
3539                 return 0;
3540
3541         return selinux_revalidate_file_permission(file, mask);
3542 }
3543
3544 static int selinux_file_alloc_security(struct file *file)
3545 {
3546         struct file_security_struct *fsec = selinux_file(file);
3547         u32 sid = current_sid();
3548
3549         fsec->sid = sid;
3550         fsec->fown_sid = sid;
3551
3552         return 0;
3553 }
3554
3555 /*
3556  * Check whether a task has the ioctl permission and cmd
3557  * operation to an inode.
3558  */
3559 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3560                 u32 requested, u16 cmd)
3561 {
3562         struct common_audit_data ad;
3563         struct file_security_struct *fsec = selinux_file(file);
3564         struct inode *inode = file_inode(file);
3565         struct inode_security_struct *isec;
3566         struct lsm_ioctlop_audit ioctl;
3567         u32 ssid = cred_sid(cred);
3568         int rc;
3569         u8 driver = cmd >> 8;
3570         u8 xperm = cmd & 0xff;
3571
3572         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3573         ad.u.op = &ioctl;
3574         ad.u.op->cmd = cmd;
3575         ad.u.op->path = file->f_path;
3576
3577         if (ssid != fsec->sid) {
3578                 rc = avc_has_perm(&selinux_state,
3579                                   ssid, fsec->sid,
3580                                 SECCLASS_FD,
3581                                 FD__USE,
3582                                 &ad);
3583                 if (rc)
3584                         goto out;
3585         }
3586
3587         if (unlikely(IS_PRIVATE(inode)))
3588                 return 0;
3589
3590         isec = inode_security(inode);
3591         rc = avc_has_extended_perms(&selinux_state,
3592                                     ssid, isec->sid, isec->sclass,
3593                                     requested, driver, xperm, &ad);
3594 out:
3595         return rc;
3596 }
3597
3598 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3599                               unsigned long arg)
3600 {
3601         const struct cred *cred = current_cred();
3602         int error = 0;
3603
3604         switch (cmd) {
3605         case FIONREAD:
3606         /* fall through */
3607         case FIBMAP:
3608         /* fall through */
3609         case FIGETBSZ:
3610         /* fall through */
3611         case FS_IOC_GETFLAGS:
3612         /* fall through */
3613         case FS_IOC_GETVERSION:
3614                 error = file_has_perm(cred, file, FILE__GETATTR);
3615                 break;
3616
3617         case FS_IOC_SETFLAGS:
3618         /* fall through */
3619         case FS_IOC_SETVERSION:
3620                 error = file_has_perm(cred, file, FILE__SETATTR);
3621                 break;
3622
3623         /* sys_ioctl() checks */
3624         case FIONBIO:
3625         /* fall through */
3626         case FIOASYNC:
3627                 error = file_has_perm(cred, file, 0);
3628                 break;
3629
3630         case KDSKBENT:
3631         case KDSKBSENT:
3632                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3633                                             CAP_OPT_NONE, true);
3634                 break;
3635
3636         /* default case assumes that the command will go
3637          * to the file's ioctl() function.
3638          */
3639         default:
3640                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3641         }
3642         return error;
3643 }
3644
3645 static int default_noexec __ro_after_init;
3646
3647 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3648 {
3649         const struct cred *cred = current_cred();
3650         u32 sid = cred_sid(cred);
3651         int rc = 0;
3652
3653         if (default_noexec &&
3654             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3655                                    (!shared && (prot & PROT_WRITE)))) {
3656                 /*
3657                  * We are making executable an anonymous mapping or a
3658                  * private file mapping that will also be writable.
3659                  * This has an additional check.
3660                  */
3661                 rc = avc_has_perm(&selinux_state,
3662                                   sid, sid, SECCLASS_PROCESS,
3663                                   PROCESS__EXECMEM, NULL);
3664                 if (rc)
3665                         goto error;
3666         }
3667
3668         if (file) {
3669                 /* read access is always possible with a mapping */
3670                 u32 av = FILE__READ;
3671
3672                 /* write access only matters if the mapping is shared */
3673                 if (shared && (prot & PROT_WRITE))
3674                         av |= FILE__WRITE;
3675
3676                 if (prot & PROT_EXEC)
3677                         av |= FILE__EXECUTE;
3678
3679                 return file_has_perm(cred, file, av);
3680         }
3681
3682 error:
3683         return rc;
3684 }
3685
3686 static int selinux_mmap_addr(unsigned long addr)
3687 {
3688         int rc = 0;
3689
3690         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3691                 u32 sid = current_sid();
3692                 rc = avc_has_perm(&selinux_state,
3693                                   sid, sid, SECCLASS_MEMPROTECT,
3694                                   MEMPROTECT__MMAP_ZERO, NULL);
3695         }
3696
3697         return rc;
3698 }
3699
3700 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3701                              unsigned long prot, unsigned long flags)
3702 {
3703         struct common_audit_data ad;
3704         int rc;
3705
3706         if (file) {
3707                 ad.type = LSM_AUDIT_DATA_FILE;
3708                 ad.u.file = file;
3709                 rc = inode_has_perm(current_cred(), file_inode(file),
3710                                     FILE__MAP, &ad);
3711                 if (rc)
3712                         return rc;
3713         }
3714
3715         if (selinux_state.checkreqprot)
3716                 prot = reqprot;
3717
3718         return file_map_prot_check(file, prot,
3719                                    (flags & MAP_TYPE) == MAP_SHARED);
3720 }
3721
3722 static int selinux_file_mprotect(struct vm_area_struct *vma,
3723                                  unsigned long reqprot,
3724                                  unsigned long prot)
3725 {
3726         const struct cred *cred = current_cred();
3727         u32 sid = cred_sid(cred);
3728
3729         if (selinux_state.checkreqprot)
3730                 prot = reqprot;
3731
3732         if (default_noexec &&
3733             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3734                 int rc = 0;
3735                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3736                     vma->vm_end <= vma->vm_mm->brk) {
3737                         rc = avc_has_perm(&selinux_state,
3738                                           sid, sid, SECCLASS_PROCESS,
3739                                           PROCESS__EXECHEAP, NULL);
3740                 } else if (!vma->vm_file &&
3741                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3742                              vma->vm_end >= vma->vm_mm->start_stack) ||
3743                             vma_is_stack_for_current(vma))) {
3744                         rc = avc_has_perm(&selinux_state,
3745                                           sid, sid, SECCLASS_PROCESS,
3746                                           PROCESS__EXECSTACK, NULL);
3747                 } else if (vma->vm_file && vma->anon_vma) {
3748                         /*
3749                          * We are making executable a file mapping that has
3750                          * had some COW done. Since pages might have been
3751                          * written, check ability to execute the possibly
3752                          * modified content.  This typically should only
3753                          * occur for text relocations.
3754                          */
3755                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3756                 }
3757                 if (rc)
3758                         return rc;
3759         }
3760
3761         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3762 }
3763
3764 static int selinux_file_lock(struct file *file, unsigned int cmd)
3765 {
3766         const struct cred *cred = current_cred();
3767
3768         return file_has_perm(cred, file, FILE__LOCK);
3769 }
3770
3771 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3772                               unsigned long arg)
3773 {
3774         const struct cred *cred = current_cred();
3775         int err = 0;
3776
3777         switch (cmd) {
3778         case F_SETFL:
3779                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3780                         err = file_has_perm(cred, file, FILE__WRITE);
3781                         break;
3782                 }
3783                 /* fall through */
3784         case F_SETOWN:
3785         case F_SETSIG:
3786         case F_GETFL:
3787         case F_GETOWN:
3788         case F_GETSIG:
3789         case F_GETOWNER_UIDS:
3790                 /* Just check FD__USE permission */
3791                 err = file_has_perm(cred, file, 0);
3792                 break;
3793         case F_GETLK:
3794         case F_SETLK:
3795         case F_SETLKW:
3796         case F_OFD_GETLK:
3797         case F_OFD_SETLK:
3798         case F_OFD_SETLKW:
3799 #if BITS_PER_LONG == 32
3800         case F_GETLK64:
3801         case F_SETLK64:
3802         case F_SETLKW64:
3803 #endif
3804                 err = file_has_perm(cred, file, FILE__LOCK);
3805                 break;
3806         }
3807
3808         return err;
3809 }
3810
3811 static void selinux_file_set_fowner(struct file *file)
3812 {
3813         struct file_security_struct *fsec;
3814
3815         fsec = selinux_file(file);
3816         fsec->fown_sid = current_sid();
3817 }
3818
3819 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3820                                        struct fown_struct *fown, int signum)
3821 {
3822         struct file *file;
3823         u32 sid = task_sid(tsk);
3824         u32 perm;
3825         struct file_security_struct *fsec;
3826
3827         /* struct fown_struct is never outside the context of a struct file */
3828         file = container_of(fown, struct file, f_owner);
3829
3830         fsec = selinux_file(file);
3831
3832         if (!signum)
3833                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3834         else
3835                 perm = signal_to_av(signum);
3836
3837         return avc_has_perm(&selinux_state,
3838                             fsec->fown_sid, sid,
3839                             SECCLASS_PROCESS, perm, NULL);
3840 }
3841
3842 static int selinux_file_receive(struct file *file)
3843 {
3844         const struct cred *cred = current_cred();
3845
3846         return file_has_perm(cred, file, file_to_av(file));
3847 }
3848
3849 static int selinux_file_open(struct file *file)
3850 {
3851         struct file_security_struct *fsec;
3852         struct inode_security_struct *isec;
3853
3854         fsec = selinux_file(file);
3855         isec = inode_security(file_inode(file));
3856         /*
3857          * Save inode label and policy sequence number
3858          * at open-time so that selinux_file_permission
3859          * can determine whether revalidation is necessary.
3860          * Task label is already saved in the file security
3861          * struct as its SID.
3862          */
3863         fsec->isid = isec->sid;
3864         fsec->pseqno = avc_policy_seqno(&selinux_state);
3865         /*
3866          * Since the inode label or policy seqno may have changed
3867          * between the selinux_inode_permission check and the saving
3868          * of state above, recheck that access is still permitted.
3869          * Otherwise, access might never be revalidated against the
3870          * new inode label or new policy.
3871          * This check is not redundant - do not remove.
3872          */
3873         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3874 }
3875
3876 /* task security operations */
3877
3878 static int selinux_task_alloc(struct task_struct *task,
3879                               unsigned long clone_flags)
3880 {
3881         u32 sid = current_sid();
3882
3883         return avc_has_perm(&selinux_state,
3884                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3885 }
3886
3887 /*
3888  * prepare a new set of credentials for modification
3889  */
3890 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3891                                 gfp_t gfp)
3892 {
3893         const struct task_security_struct *old_tsec = selinux_cred(old);
3894         struct task_security_struct *tsec = selinux_cred(new);
3895
3896         *tsec = *old_tsec;
3897         return 0;
3898 }
3899
3900 /*
3901  * transfer the SELinux data to a blank set of creds
3902  */
3903 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3904 {
3905         const struct task_security_struct *old_tsec = selinux_cred(old);
3906         struct task_security_struct *tsec = selinux_cred(new);
3907
3908         *tsec = *old_tsec;
3909 }
3910
3911 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3912 {
3913         *secid = cred_sid(c);
3914 }
3915
3916 /*
3917  * set the security data for a kernel service
3918  * - all the creation contexts are set to unlabelled
3919  */
3920 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3921 {
3922         struct task_security_struct *tsec = selinux_cred(new);
3923         u32 sid = current_sid();
3924         int ret;
3925
3926         ret = avc_has_perm(&selinux_state,
3927                            sid, secid,
3928                            SECCLASS_KERNEL_SERVICE,
3929                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3930                            NULL);
3931         if (ret == 0) {
3932                 tsec->sid = secid;
3933                 tsec->create_sid = 0;
3934                 tsec->keycreate_sid = 0;
3935                 tsec->sockcreate_sid = 0;
3936         }
3937         return ret;
3938 }
3939
3940 /*
3941  * set the file creation context in a security record to the same as the
3942  * objective context of the specified inode
3943  */
3944 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3945 {
3946         struct inode_security_struct *isec = inode_security(inode);
3947         struct task_security_struct *tsec = selinux_cred(new);
3948         u32 sid = current_sid();
3949         int ret;
3950
3951         ret = avc_has_perm(&selinux_state,
3952                            sid, isec->sid,
3953                            SECCLASS_KERNEL_SERVICE,
3954                            KERNEL_SERVICE__CREATE_FILES_AS,
3955                            NULL);
3956
3957         if (ret == 0)
3958                 tsec->create_sid = isec->sid;
3959         return ret;
3960 }
3961
3962 static int selinux_kernel_module_request(char *kmod_name)
3963 {
3964         struct common_audit_data ad;
3965
3966         ad.type = LSM_AUDIT_DATA_KMOD;
3967         ad.u.kmod_name = kmod_name;
3968
3969         return avc_has_perm(&selinux_state,
3970                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3971                             SYSTEM__MODULE_REQUEST, &ad);
3972 }
3973
3974 static int selinux_kernel_module_from_file(struct file *file)
3975 {
3976         struct common_audit_data ad;
3977         struct inode_security_struct *isec;
3978         struct file_security_struct *fsec;
3979         u32 sid = current_sid();
3980         int rc;
3981
3982         /* init_module */
3983         if (file == NULL)
3984                 return avc_has_perm(&selinux_state,
3985                                     sid, sid, SECCLASS_SYSTEM,
3986                                         SYSTEM__MODULE_LOAD, NULL);
3987
3988         /* finit_module */
3989
3990         ad.type = LSM_AUDIT_DATA_FILE;
3991         ad.u.file = file;
3992
3993         fsec = selinux_file(file);
3994         if (sid != fsec->sid) {
3995                 rc = avc_has_perm(&selinux_state,
3996                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3997                 if (rc)
3998                         return rc;
3999         }
4000
4001         isec = inode_security(file_inode(file));
4002         return avc_has_perm(&selinux_state,
4003                             sid, isec->sid, SECCLASS_SYSTEM,
4004                                 SYSTEM__MODULE_LOAD, &ad);
4005 }
4006
4007 static int selinux_kernel_read_file(struct file *file,
4008                                     enum kernel_read_file_id id)
4009 {
4010         int rc = 0;
4011
4012         switch (id) {
4013         case READING_MODULE:
4014                 rc = selinux_kernel_module_from_file(file);
4015                 break;
4016         default:
4017                 break;
4018         }
4019
4020         return rc;
4021 }
4022
4023 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4024 {
4025         int rc = 0;
4026
4027         switch (id) {
4028         case LOADING_MODULE:
4029                 rc = selinux_kernel_module_from_file(NULL);
4030         default:
4031                 break;
4032         }
4033
4034         return rc;
4035 }
4036
4037 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4038 {
4039         return avc_has_perm(&selinux_state,
4040                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4041                             PROCESS__SETPGID, NULL);
4042 }
4043
4044 static int selinux_task_getpgid(struct task_struct *p)
4045 {
4046         return avc_has_perm(&selinux_state,
4047                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4048                             PROCESS__GETPGID, NULL);
4049 }
4050
4051 static int selinux_task_getsid(struct task_struct *p)
4052 {
4053         return avc_has_perm(&selinux_state,
4054                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4055                             PROCESS__GETSESSION, NULL);
4056 }
4057
4058 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4059 {
4060         *secid = task_sid(p);
4061 }
4062
4063 static int selinux_task_setnice(struct task_struct *p, int nice)
4064 {
4065         return avc_has_perm(&selinux_state,
4066                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4067                             PROCESS__SETSCHED, NULL);
4068 }
4069
4070 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4071 {
4072         return avc_has_perm(&selinux_state,
4073                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4074                             PROCESS__SETSCHED, NULL);
4075 }
4076
4077 static int selinux_task_getioprio(struct task_struct *p)
4078 {
4079         return avc_has_perm(&selinux_state,
4080                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4081                             PROCESS__GETSCHED, NULL);
4082 }
4083
4084 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4085                                 unsigned int flags)
4086 {
4087         u32 av = 0;
4088
4089         if (!flags)
4090                 return 0;
4091         if (flags & LSM_PRLIMIT_WRITE)
4092                 av |= PROCESS__SETRLIMIT;
4093         if (flags & LSM_PRLIMIT_READ)
4094                 av |= PROCESS__GETRLIMIT;
4095         return avc_has_perm(&selinux_state,
4096                             cred_sid(cred), cred_sid(tcred),
4097                             SECCLASS_PROCESS, av, NULL);
4098 }
4099
4100 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4101                 struct rlimit *new_rlim)
4102 {
4103         struct rlimit *old_rlim = p->signal->rlim + resource;
4104
4105         /* Control the ability to change the hard limit (whether
4106            lowering or raising it), so that the hard limit can
4107            later be used as a safe reset point for the soft limit
4108            upon context transitions.  See selinux_bprm_committing_creds. */
4109         if (old_rlim->rlim_max != new_rlim->rlim_max)
4110                 return avc_has_perm(&selinux_state,
4111                                     current_sid(), task_sid(p),
4112                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4113
4114         return 0;
4115 }
4116
4117 static int selinux_task_setscheduler(struct task_struct *p)
4118 {
4119         return avc_has_perm(&selinux_state,
4120                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4121                             PROCESS__SETSCHED, NULL);
4122 }
4123
4124 static int selinux_task_getscheduler(struct task_struct *p)
4125 {
4126         return avc_has_perm(&selinux_state,
4127                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4128                             PROCESS__GETSCHED, NULL);
4129 }
4130
4131 static int selinux_task_movememory(struct task_struct *p)
4132 {
4133         return avc_has_perm(&selinux_state,
4134                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4135                             PROCESS__SETSCHED, NULL);
4136 }
4137
4138 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4139                                 int sig, const struct cred *cred)
4140 {
4141         u32 secid;
4142         u32 perm;
4143
4144         if (!sig)
4145                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4146         else
4147                 perm = signal_to_av(sig);
4148         if (!cred)
4149                 secid = current_sid();
4150         else
4151                 secid = cred_sid(cred);
4152         return avc_has_perm(&selinux_state,
4153                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4154 }
4155
4156 static void selinux_task_to_inode(struct task_struct *p,
4157                                   struct inode *inode)
4158 {
4159         struct inode_security_struct *isec = selinux_inode(inode);
4160         u32 sid = task_sid(p);
4161
4162         spin_lock(&isec->lock);
4163         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4164         isec->sid = sid;
4165         isec->initialized = LABEL_INITIALIZED;
4166         spin_unlock(&isec->lock);
4167 }
4168
4169 /* Returns error only if unable to parse addresses */
4170 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4171                         struct common_audit_data *ad, u8 *proto)
4172 {
4173         int offset, ihlen, ret = -EINVAL;
4174         struct iphdr _iph, *ih;
4175
4176         offset = skb_network_offset(skb);
4177         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4178         if (ih == NULL)
4179                 goto out;
4180
4181         ihlen = ih->ihl * 4;
4182         if (ihlen < sizeof(_iph))
4183                 goto out;
4184
4185         ad->u.net->v4info.saddr = ih->saddr;
4186         ad->u.net->v4info.daddr = ih->daddr;
4187         ret = 0;
4188
4189         if (proto)
4190                 *proto = ih->protocol;
4191
4192         switch (ih->protocol) {
4193         case IPPROTO_TCP: {
4194                 struct tcphdr _tcph, *th;
4195
4196                 if (ntohs(ih->frag_off) & IP_OFFSET)
4197                         break;
4198
4199                 offset += ihlen;
4200                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4201                 if (th == NULL)
4202                         break;
4203
4204                 ad->u.net->sport = th->source;
4205                 ad->u.net->dport = th->dest;
4206                 break;
4207         }
4208
4209         case IPPROTO_UDP: {
4210                 struct udphdr _udph, *uh;
4211
4212                 if (ntohs(ih->frag_off) & IP_OFFSET)
4213                         break;
4214
4215                 offset += ihlen;
4216                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4217                 if (uh == NULL)
4218                         break;
4219
4220                 ad->u.net->sport = uh->source;
4221                 ad->u.net->dport = uh->dest;
4222                 break;
4223         }
4224
4225         case IPPROTO_DCCP: {
4226                 struct dccp_hdr _dccph, *dh;
4227
4228                 if (ntohs(ih->frag_off) & IP_OFFSET)
4229                         break;
4230
4231                 offset += ihlen;
4232                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4233                 if (dh == NULL)
4234                         break;
4235
4236                 ad->u.net->sport = dh->dccph_sport;
4237                 ad->u.net->dport = dh->dccph_dport;
4238                 break;
4239         }
4240
4241 #if IS_ENABLED(CONFIG_IP_SCTP)
4242         case IPPROTO_SCTP: {
4243                 struct sctphdr _sctph, *sh;
4244
4245                 if (ntohs(ih->frag_off) & IP_OFFSET)
4246                         break;
4247
4248                 offset += ihlen;
4249                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4250                 if (sh == NULL)
4251                         break;
4252
4253                 ad->u.net->sport = sh->source;
4254                 ad->u.net->dport = sh->dest;
4255                 break;
4256         }
4257 #endif
4258         default:
4259                 break;
4260         }
4261 out:
4262         return ret;
4263 }
4264
4265 #if IS_ENABLED(CONFIG_IPV6)
4266
4267 /* Returns error only if unable to parse addresses */
4268 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4269                         struct common_audit_data *ad, u8 *proto)
4270 {
4271         u8 nexthdr;
4272         int ret = -EINVAL, offset;
4273         struct ipv6hdr _ipv6h, *ip6;
4274         __be16 frag_off;
4275
4276         offset = skb_network_offset(skb);
4277         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4278         if (ip6 == NULL)
4279                 goto out;
4280
4281         ad->u.net->v6info.saddr = ip6->saddr;
4282         ad->u.net->v6info.daddr = ip6->daddr;
4283         ret = 0;
4284
4285         nexthdr = ip6->nexthdr;
4286         offset += sizeof(_ipv6h);
4287         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4288         if (offset < 0)
4289                 goto out;
4290
4291         if (proto)
4292                 *proto = nexthdr;
4293
4294         switch (nexthdr) {
4295         case IPPROTO_TCP: {
4296                 struct tcphdr _tcph, *th;
4297
4298                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4299                 if (th == NULL)
4300                         break;
4301
4302                 ad->u.net->sport = th->source;
4303                 ad->u.net->dport = th->dest;
4304                 break;
4305         }
4306
4307         case IPPROTO_UDP: {
4308                 struct udphdr _udph, *uh;
4309
4310                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4311                 if (uh == NULL)
4312                         break;
4313
4314                 ad->u.net->sport = uh->source;
4315                 ad->u.net->dport = uh->dest;
4316                 break;
4317         }
4318
4319         case IPPROTO_DCCP: {
4320                 struct dccp_hdr _dccph, *dh;
4321
4322                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4323                 if (dh == NULL)
4324                         break;
4325
4326                 ad->u.net->sport = dh->dccph_sport;
4327                 ad->u.net->dport = dh->dccph_dport;
4328                 break;
4329         }
4330
4331 #if IS_ENABLED(CONFIG_IP_SCTP)
4332         case IPPROTO_SCTP: {
4333                 struct sctphdr _sctph, *sh;
4334
4335                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4336                 if (sh == NULL)
4337                         break;
4338
4339                 ad->u.net->sport = sh->source;
4340                 ad->u.net->dport = sh->dest;
4341                 break;
4342         }
4343 #endif
4344         /* includes fragments */
4345         default:
4346                 break;
4347         }
4348 out:
4349         return ret;
4350 }
4351
4352 #endif /* IPV6 */
4353
4354 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4355                              char **_addrp, int src, u8 *proto)
4356 {
4357         char *addrp;
4358         int ret;
4359
4360         switch (ad->u.net->family) {
4361         case PF_INET:
4362                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4363                 if (ret)
4364                         goto parse_error;
4365                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4366                                        &ad->u.net->v4info.daddr);
4367                 goto okay;
4368
4369 #if IS_ENABLED(CONFIG_IPV6)
4370         case PF_INET6:
4371                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4372                 if (ret)
4373                         goto parse_error;
4374                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4375                                        &ad->u.net->v6info.daddr);
4376                 goto okay;
4377 #endif  /* IPV6 */
4378         default:
4379                 addrp = NULL;
4380                 goto okay;
4381         }
4382
4383 parse_error:
4384         pr_warn(
4385                "SELinux: failure in selinux_parse_skb(),"
4386                " unable to parse packet\n");
4387         return ret;
4388
4389 okay:
4390         if (_addrp)
4391                 *_addrp = addrp;
4392         return 0;
4393 }
4394
4395 /**
4396  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4397  * @skb: the packet
4398  * @family: protocol family
4399  * @sid: the packet's peer label SID
4400  *
4401  * Description:
4402  * Check the various different forms of network peer labeling and determine
4403  * the peer label/SID for the packet; most of the magic actually occurs in
4404  * the security server function security_net_peersid_cmp().  The function
4405  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4406  * or -EACCES if @sid is invalid due to inconsistencies with the different
4407  * peer labels.
4408  *
4409  */
4410 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4411 {
4412         int err;
4413         u32 xfrm_sid;
4414         u32 nlbl_sid;
4415         u32 nlbl_type;
4416
4417         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4418         if (unlikely(err))
4419                 return -EACCES;
4420         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4421         if (unlikely(err))
4422                 return -EACCES;
4423
4424         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4425                                            nlbl_type, xfrm_sid, sid);
4426         if (unlikely(err)) {
4427                 pr_warn(
4428                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4429                        " unable to determine packet's peer label\n");
4430                 return -EACCES;
4431         }
4432
4433         return 0;
4434 }
4435
4436 /**
4437  * selinux_conn_sid - Determine the child socket label for a connection
4438  * @sk_sid: the parent socket's SID
4439  * @skb_sid: the packet's SID
4440  * @conn_sid: the resulting connection SID
4441  *
4442  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4443  * combined with the MLS information from @skb_sid in order to create
4444  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4445  * of @sk_sid.  Returns zero on success, negative values on failure.
4446  *
4447  */
4448 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4449 {
4450         int err = 0;
4451
4452         if (skb_sid != SECSID_NULL)
4453                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4454                                             conn_sid);
4455         else
4456                 *conn_sid = sk_sid;
4457
4458         return err;
4459 }
4460
4461 /* socket security operations */
4462
4463 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4464                                  u16 secclass, u32 *socksid)
4465 {
4466         if (tsec->sockcreate_sid > SECSID_NULL) {
4467                 *socksid = tsec->sockcreate_sid;
4468                 return 0;
4469         }
4470
4471         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4472                                        secclass, NULL, socksid);
4473 }
4474
4475 static int sock_has_perm(struct sock *sk, u32 perms)
4476 {
4477         struct sk_security_struct *sksec = sk->sk_security;
4478         struct common_audit_data ad;
4479         struct lsm_network_audit net = {0,};
4480
4481         if (sksec->sid == SECINITSID_KERNEL)
4482                 return 0;
4483
4484         ad.type = LSM_AUDIT_DATA_NET;
4485         ad.u.net = &net;
4486         ad.u.net->sk = sk;
4487
4488         return avc_has_perm(&selinux_state,
4489                             current_sid(), sksec->sid, sksec->sclass, perms,
4490                             &ad);
4491 }
4492
4493 static int selinux_socket_create(int family, int type,
4494                                  int protocol, int kern)
4495 {
4496         const struct task_security_struct *tsec = selinux_cred(current_cred());
4497         u32 newsid;
4498         u16 secclass;
4499         int rc;
4500
4501         if (kern)
4502                 return 0;
4503
4504         secclass = socket_type_to_security_class(family, type, protocol);
4505         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4506         if (rc)
4507                 return rc;
4508
4509         return avc_has_perm(&selinux_state,
4510                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4511 }
4512
4513 static int selinux_socket_post_create(struct socket *sock, int family,
4514                                       int type, int protocol, int kern)
4515 {
4516         const struct task_security_struct *tsec = selinux_cred(current_cred());
4517         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4518         struct sk_security_struct *sksec;
4519         u16 sclass = socket_type_to_security_class(family, type, protocol);
4520         u32 sid = SECINITSID_KERNEL;
4521         int err = 0;
4522
4523         if (!kern) {
4524                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4525                 if (err)
4526                         return err;
4527         }
4528
4529         isec->sclass = sclass;
4530         isec->sid = sid;
4531         isec->initialized = LABEL_INITIALIZED;
4532
4533         if (sock->sk) {
4534                 sksec = sock->sk->sk_security;
4535                 sksec->sclass = sclass;
4536                 sksec->sid = sid;
4537                 /* Allows detection of the first association on this socket */
4538                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4539                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4540
4541                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4542         }
4543
4544         return err;
4545 }
4546
4547 static int selinux_socket_socketpair(struct socket *socka,
4548                                      struct socket *sockb)
4549 {
4550         struct sk_security_struct *sksec_a = socka->sk->sk_security;
4551         struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4552
4553         sksec_a->peer_sid = sksec_b->sid;
4554         sksec_b->peer_sid = sksec_a->sid;
4555
4556         return 0;
4557 }
4558
4559 /* Range of port numbers used to automatically bind.
4560    Need to determine whether we should perform a name_bind
4561    permission check between the socket and the port number. */
4562
4563 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4564 {
4565         struct sock *sk = sock->sk;
4566         struct sk_security_struct *sksec = sk->sk_security;
4567         u16 family;
4568         int err;
4569
4570         err = sock_has_perm(sk, SOCKET__BIND);
4571         if (err)
4572                 goto out;
4573
4574         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4575         family = sk->sk_family;
4576         if (family == PF_INET || family == PF_INET6) {
4577                 char *addrp;
4578                 struct common_audit_data ad;
4579                 struct lsm_network_audit net = {0,};
4580                 struct sockaddr_in *addr4 = NULL;
4581                 struct sockaddr_in6 *addr6 = NULL;
4582                 u16 family_sa;
4583                 unsigned short snum;
4584                 u32 sid, node_perm;
4585
4586                 /*
4587                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4588                  * that validates multiple binding addresses. Because of this
4589                  * need to check address->sa_family as it is possible to have
4590                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4591                  */
4592                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4593                         return -EINVAL;
4594                 family_sa = address->sa_family;
4595                 switch (family_sa) {
4596                 case AF_UNSPEC:
4597                 case AF_INET:
4598                         if (addrlen < sizeof(struct sockaddr_in))
4599                                 return -EINVAL;
4600                         addr4 = (struct sockaddr_in *)address;
4601                         if (family_sa == AF_UNSPEC) {
4602                                 /* see __inet_bind(), we only want to allow
4603                                  * AF_UNSPEC if the address is INADDR_ANY
4604                                  */
4605                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4606                                         goto err_af;
4607                                 family_sa = AF_INET;
4608                         }
4609                         snum = ntohs(addr4->sin_port);
4610                         addrp = (char *)&addr4->sin_addr.s_addr;
4611                         break;
4612                 case AF_INET6:
4613                         if (addrlen < SIN6_LEN_RFC2133)
4614                                 return -EINVAL;
4615                         addr6 = (struct sockaddr_in6 *)address;
4616                         snum = ntohs(addr6->sin6_port);
4617                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4618                         break;
4619                 default:
4620                         goto err_af;
4621                 }
4622
4623                 ad.type = LSM_AUDIT_DATA_NET;
4624                 ad.u.net = &net;
4625                 ad.u.net->sport = htons(snum);
4626                 ad.u.net->family = family_sa;
4627
4628                 if (snum) {
4629                         int low, high;
4630
4631                         inet_get_local_port_range(sock_net(sk), &low, &high);
4632
4633                         if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4634                             snum < low || snum > high) {
4635                                 err = sel_netport_sid(sk->sk_protocol,
4636                                                       snum, &sid);
4637                                 if (err)
4638                                         goto out;
4639                                 err = avc_has_perm(&selinux_state,
4640                                                    sksec->sid, sid,
4641                                                    sksec->sclass,
4642                                                    SOCKET__NAME_BIND, &ad);
4643                                 if (err)
4644                                         goto out;
4645                         }
4646                 }
4647
4648                 switch (sksec->sclass) {
4649                 case SECCLASS_TCP_SOCKET:
4650                         node_perm = TCP_SOCKET__NODE_BIND;
4651                         break;
4652
4653                 case SECCLASS_UDP_SOCKET:
4654                         node_perm = UDP_SOCKET__NODE_BIND;
4655                         break;
4656
4657                 case SECCLASS_DCCP_SOCKET:
4658                         node_perm = DCCP_SOCKET__NODE_BIND;
4659                         break;
4660
4661                 case SECCLASS_SCTP_SOCKET:
4662                         node_perm = SCTP_SOCKET__NODE_BIND;
4663                         break;
4664
4665                 default:
4666                         node_perm = RAWIP_SOCKET__NODE_BIND;
4667                         break;
4668                 }
4669
4670                 err = sel_netnode_sid(addrp, family_sa, &sid);
4671                 if (err)
4672                         goto out;
4673
4674                 if (family_sa == AF_INET)
4675                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4676                 else
4677                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4678
4679                 err = avc_has_perm(&selinux_state,
4680                                    sksec->sid, sid,
4681                                    sksec->sclass, node_perm, &ad);
4682                 if (err)
4683                         goto out;
4684         }
4685 out:
4686         return err;
4687 err_af:
4688         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4689         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4690                 return -EINVAL;
4691         return -EAFNOSUPPORT;
4692 }
4693
4694 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4695  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4696  */
4697 static int selinux_socket_connect_helper(struct socket *sock,
4698                                          struct sockaddr *address, int addrlen)
4699 {
4700         struct sock *sk = sock->sk;
4701         struct sk_security_struct *sksec = sk->sk_security;
4702         int err;
4703
4704         err = sock_has_perm(sk, SOCKET__CONNECT);
4705         if (err)
4706                 return err;
4707         if (addrlen < offsetofend(struct sockaddr, sa_family))
4708                 return -EINVAL;
4709
4710         /* connect(AF_UNSPEC) has special handling, as it is a documented
4711          * way to disconnect the socket
4712          */
4713         if (address->sa_family == AF_UNSPEC)
4714                 return 0;
4715
4716         /*
4717          * If a TCP, DCCP or SCTP socket, check name_connect permission
4718          * for the port.
4719          */
4720         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4721             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4722             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4723                 struct common_audit_data ad;
4724                 struct lsm_network_audit net = {0,};
4725                 struct sockaddr_in *addr4 = NULL;
4726                 struct sockaddr_in6 *addr6 = NULL;
4727                 unsigned short snum;
4728                 u32 sid, perm;
4729
4730                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4731                  * that validates multiple connect addresses. Because of this
4732                  * need to check address->sa_family as it is possible to have
4733                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4734                  */
4735                 switch (address->sa_family) {
4736                 case AF_INET:
4737                         addr4 = (struct sockaddr_in *)address;
4738                         if (addrlen < sizeof(struct sockaddr_in))
4739                                 return -EINVAL;
4740                         snum = ntohs(addr4->sin_port);
4741                         break;
4742                 case AF_INET6:
4743                         addr6 = (struct sockaddr_in6 *)address;
4744                         if (addrlen < SIN6_LEN_RFC2133)
4745                                 return -EINVAL;
4746                         snum = ntohs(addr6->sin6_port);
4747                         break;
4748                 default:
4749                         /* Note that SCTP services expect -EINVAL, whereas
4750                          * others expect -EAFNOSUPPORT.
4751                          */
4752                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4753                                 return -EINVAL;
4754                         else
4755                                 return -EAFNOSUPPORT;
4756                 }
4757
4758                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4759                 if (err)
4760                         return err;
4761
4762                 switch (sksec->sclass) {
4763                 case SECCLASS_TCP_SOCKET:
4764                         perm = TCP_SOCKET__NAME_CONNECT;
4765                         break;
4766                 case SECCLASS_DCCP_SOCKET:
4767                         perm = DCCP_SOCKET__NAME_CONNECT;
4768                         break;
4769                 case SECCLASS_SCTP_SOCKET:
4770                         perm = SCTP_SOCKET__NAME_CONNECT;
4771                         break;
4772                 }
4773
4774                 ad.type = LSM_AUDIT_DATA_NET;
4775                 ad.u.net = &net;
4776                 ad.u.net->dport = htons(snum);
4777                 ad.u.net->family = address->sa_family;
4778                 err = avc_has_perm(&selinux_state,
4779                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4780                 if (err)
4781                         return err;
4782         }
4783
4784         return 0;
4785 }
4786
4787 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4788 static int selinux_socket_connect(struct socket *sock,
4789                                   struct sockaddr *address, int addrlen)
4790 {
4791         int err;
4792         struct sock *sk = sock->sk;
4793
4794         err = selinux_socket_connect_helper(sock, address, addrlen);
4795         if (err)
4796                 return err;
4797
4798         return selinux_netlbl_socket_connect(sk, address);
4799 }
4800
4801 static int selinux_socket_listen(struct socket *sock, int backlog)
4802 {
4803         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4804 }
4805
4806 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4807 {
4808         int err;
4809         struct inode_security_struct *isec;
4810         struct inode_security_struct *newisec;
4811         u16 sclass;
4812         u32 sid;
4813
4814         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4815         if (err)
4816                 return err;
4817
4818         isec = inode_security_novalidate(SOCK_INODE(sock));
4819         spin_lock(&isec->lock);
4820         sclass = isec->sclass;
4821         sid = isec->sid;
4822         spin_unlock(&isec->lock);
4823
4824         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4825         newisec->sclass = sclass;
4826         newisec->sid = sid;
4827         newisec->initialized = LABEL_INITIALIZED;
4828
4829         return 0;
4830 }
4831
4832 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4833                                   int size)
4834 {
4835         return sock_has_perm(sock->sk, SOCKET__WRITE);
4836 }
4837
4838 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4839                                   int size, int flags)
4840 {
4841         return sock_has_perm(sock->sk, SOCKET__READ);
4842 }
4843
4844 static int selinux_socket_getsockname(struct socket *sock)
4845 {
4846         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4847 }
4848
4849 static int selinux_socket_getpeername(struct socket *sock)
4850 {
4851         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4852 }
4853
4854 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4855 {
4856         int err;
4857
4858         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4859         if (err)
4860                 return err;
4861
4862         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4863 }
4864
4865 static int selinux_socket_getsockopt(struct socket *sock, int level,
4866                                      int optname)
4867 {
4868         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4869 }
4870
4871 static int selinux_socket_shutdown(struct socket *sock, int how)
4872 {
4873         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4874 }
4875
4876 static int selinux_socket_unix_stream_connect(struct sock *sock,
4877                                               struct sock *other,
4878                                               struct sock *newsk)
4879 {
4880         struct sk_security_struct *sksec_sock = sock->sk_security;
4881         struct sk_security_struct *sksec_other = other->sk_security;
4882         struct sk_security_struct *sksec_new = newsk->sk_security;
4883         struct common_audit_data ad;
4884         struct lsm_network_audit net = {0,};
4885         int err;
4886
4887         ad.type = LSM_AUDIT_DATA_NET;
4888         ad.u.net = &net;
4889         ad.u.net->sk = other;
4890
4891         err = avc_has_perm(&selinux_state,
4892                            sksec_sock->sid, sksec_other->sid,
4893                            sksec_other->sclass,
4894                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4895         if (err)
4896                 return err;
4897
4898         /* server child socket */
4899         sksec_new->peer_sid = sksec_sock->sid;
4900         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4901                                     sksec_sock->sid, &sksec_new->sid);
4902         if (err)
4903                 return err;
4904
4905         /* connecting socket */
4906         sksec_sock->peer_sid = sksec_new->sid;
4907
4908         return 0;
4909 }
4910
4911 static int selinux_socket_unix_may_send(struct socket *sock,
4912                                         struct socket *other)
4913 {
4914         struct sk_security_struct *ssec = sock->sk->sk_security;
4915         struct sk_security_struct *osec = other->sk->sk_security;
4916         struct common_audit_data ad;
4917         struct lsm_network_audit net = {0,};
4918
4919         ad.type = LSM_AUDIT_DATA_NET;
4920         ad.u.net = &net;
4921         ad.u.net->sk = other->sk;
4922
4923         return avc_has_perm(&selinux_state,
4924                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4925                             &ad);
4926 }
4927
4928 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4929                                     char *addrp, u16 family, u32 peer_sid,
4930                                     struct common_audit_data *ad)
4931 {
4932         int err;
4933         u32 if_sid;
4934         u32 node_sid;
4935
4936         err = sel_netif_sid(ns, ifindex, &if_sid);
4937         if (err)
4938                 return err;
4939         err = avc_has_perm(&selinux_state,
4940                            peer_sid, if_sid,
4941                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4942         if (err)
4943                 return err;
4944
4945         err = sel_netnode_sid(addrp, family, &node_sid);
4946         if (err)
4947                 return err;
4948         return avc_has_perm(&selinux_state,
4949                             peer_sid, node_sid,
4950                             SECCLASS_NODE, NODE__RECVFROM, ad);
4951 }
4952
4953 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4954                                        u16 family)
4955 {
4956         int err = 0;
4957         struct sk_security_struct *sksec = sk->sk_security;
4958         u32 sk_sid = sksec->sid;
4959         struct common_audit_data ad;
4960         struct lsm_network_audit net = {0,};
4961         char *addrp;
4962
4963         ad.type = LSM_AUDIT_DATA_NET;
4964         ad.u.net = &net;
4965         ad.u.net->netif = skb->skb_iif;
4966         ad.u.net->family = family;
4967         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4968         if (err)
4969                 return err;
4970
4971         if (selinux_secmark_enabled()) {
4972                 err = avc_has_perm(&selinux_state,
4973                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4974                                    PACKET__RECV, &ad);
4975                 if (err)
4976                         return err;
4977         }
4978
4979         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4980         if (err)
4981                 return err;
4982         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4983
4984         return err;
4985 }
4986
4987 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4988 {
4989         int err;
4990         struct sk_security_struct *sksec = sk->sk_security;
4991         u16 family = sk->sk_family;
4992         u32 sk_sid = sksec->sid;
4993         struct common_audit_data ad;
4994         struct lsm_network_audit net = {0,};
4995         char *addrp;
4996         u8 secmark_active;
4997         u8 peerlbl_active;
4998
4999         if (family != PF_INET && family != PF_INET6)
5000                 return 0;
5001
5002         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5003         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5004                 family = PF_INET;
5005
5006         /* If any sort of compatibility mode is enabled then handoff processing
5007          * to the selinux_sock_rcv_skb_compat() function to deal with the
5008          * special handling.  We do this in an attempt to keep this function
5009          * as fast and as clean as possible. */
5010         if (!selinux_policycap_netpeer())
5011                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5012
5013         secmark_active = selinux_secmark_enabled();
5014         peerlbl_active = selinux_peerlbl_enabled();
5015         if (!secmark_active && !peerlbl_active)
5016                 return 0;
5017
5018         ad.type = LSM_AUDIT_DATA_NET;
5019         ad.u.net = &net;
5020         ad.u.net->netif = skb->skb_iif;
5021         ad.u.net->family = family;
5022         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5023         if (err)
5024                 return err;
5025
5026         if (peerlbl_active) {
5027                 u32 peer_sid;
5028
5029                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5030                 if (err)
5031                         return err;
5032                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5033                                                addrp, family, peer_sid, &ad);
5034                 if (err) {
5035                         selinux_netlbl_err(skb, family, err, 0);
5036                         return err;
5037                 }
5038                 err = avc_has_perm(&selinux_state,
5039                                    sk_sid, peer_sid, SECCLASS_PEER,
5040                                    PEER__RECV, &ad);
5041                 if (err) {
5042                         selinux_netlbl_err(skb, family, err, 0);
5043                         return err;
5044                 }
5045         }
5046
5047         if (secmark_active) {
5048                 err = avc_has_perm(&selinux_state,
5049                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5050                                    PACKET__RECV, &ad);
5051                 if (err)
5052                         return err;
5053         }
5054
5055         return err;
5056 }
5057
5058 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5059                                             int __user *optlen, unsigned len)
5060 {
5061         int err = 0;
5062         char *scontext;
5063         u32 scontext_len;
5064         struct sk_security_struct *sksec = sock->sk->sk_security;
5065         u32 peer_sid = SECSID_NULL;
5066
5067         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5068             sksec->sclass == SECCLASS_TCP_SOCKET ||
5069             sksec->sclass == SECCLASS_SCTP_SOCKET)
5070                 peer_sid = sksec->peer_sid;
5071         if (peer_sid == SECSID_NULL)
5072                 return -ENOPROTOOPT;
5073
5074         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5075                                       &scontext_len);
5076         if (err)
5077                 return err;
5078
5079         if (scontext_len > len) {
5080                 err = -ERANGE;
5081                 goto out_len;
5082         }
5083
5084         if (copy_to_user(optval, scontext, scontext_len))
5085                 err = -EFAULT;
5086
5087 out_len:
5088         if (put_user(scontext_len, optlen))
5089                 err = -EFAULT;
5090         kfree(scontext);
5091         return err;
5092 }
5093
5094 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5095 {
5096         u32 peer_secid = SECSID_NULL;
5097         u16 family;
5098         struct inode_security_struct *isec;
5099
5100         if (skb && skb->protocol == htons(ETH_P_IP))
5101                 family = PF_INET;
5102         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5103                 family = PF_INET6;
5104         else if (sock)
5105                 family = sock->sk->sk_family;
5106         else
5107                 goto out;
5108
5109         if (sock && family == PF_UNIX) {
5110                 isec = inode_security_novalidate(SOCK_INODE(sock));
5111                 peer_secid = isec->sid;
5112         } else if (skb)
5113                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5114
5115 out:
5116         *secid = peer_secid;
5117         if (peer_secid == SECSID_NULL)
5118                 return -EINVAL;
5119         return 0;
5120 }
5121
5122 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5123 {
5124         struct sk_security_struct *sksec;
5125
5126         sksec = kzalloc(sizeof(*sksec), priority);
5127         if (!sksec)
5128                 return -ENOMEM;
5129
5130         sksec->peer_sid = SECINITSID_UNLABELED;
5131         sksec->sid = SECINITSID_UNLABELED;
5132         sksec->sclass = SECCLASS_SOCKET;
5133         selinux_netlbl_sk_security_reset(sksec);
5134         sk->sk_security = sksec;
5135
5136         return 0;
5137 }
5138
5139 static void selinux_sk_free_security(struct sock *sk)
5140 {
5141         struct sk_security_struct *sksec = sk->sk_security;
5142
5143         sk->sk_security = NULL;
5144         selinux_netlbl_sk_security_free(sksec);
5145         kfree(sksec);
5146 }
5147
5148 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5149 {
5150         struct sk_security_struct *sksec = sk->sk_security;
5151         struct sk_security_struct *newsksec = newsk->sk_security;
5152
5153         newsksec->sid = sksec->sid;
5154         newsksec->peer_sid = sksec->peer_sid;
5155         newsksec->sclass = sksec->sclass;
5156
5157         selinux_netlbl_sk_security_reset(newsksec);
5158 }
5159
5160 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5161 {
5162         if (!sk)
5163                 *secid = SECINITSID_ANY_SOCKET;
5164         else {
5165                 struct sk_security_struct *sksec = sk->sk_security;
5166
5167                 *secid = sksec->sid;
5168         }
5169 }
5170
5171 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5172 {
5173         struct inode_security_struct *isec =
5174                 inode_security_novalidate(SOCK_INODE(parent));
5175         struct sk_security_struct *sksec = sk->sk_security;
5176
5177         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5178             sk->sk_family == PF_UNIX)
5179                 isec->sid = sksec->sid;
5180         sksec->sclass = isec->sclass;
5181 }
5182
5183 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5184  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5185  * already present).
5186  */
5187 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5188                                       struct sk_buff *skb)
5189 {
5190         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5191         struct common_audit_data ad;
5192         struct lsm_network_audit net = {0,};
5193         u8 peerlbl_active;
5194         u32 peer_sid = SECINITSID_UNLABELED;
5195         u32 conn_sid;
5196         int err = 0;
5197
5198         if (!selinux_policycap_extsockclass())
5199                 return 0;
5200
5201         peerlbl_active = selinux_peerlbl_enabled();
5202
5203         if (peerlbl_active) {
5204                 /* This will return peer_sid = SECSID_NULL if there are
5205                  * no peer labels, see security_net_peersid_resolve().
5206                  */
5207                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5208                                               &peer_sid);
5209                 if (err)
5210                         return err;
5211
5212                 if (peer_sid == SECSID_NULL)
5213                         peer_sid = SECINITSID_UNLABELED;
5214         }
5215
5216         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5217                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5218
5219                 /* Here as first association on socket. As the peer SID
5220                  * was allowed by peer recv (and the netif/node checks),
5221                  * then it is approved by policy and used as the primary
5222                  * peer SID for getpeercon(3).
5223                  */
5224                 sksec->peer_sid = peer_sid;
5225         } else if  (sksec->peer_sid != peer_sid) {
5226                 /* Other association peer SIDs are checked to enforce
5227                  * consistency among the peer SIDs.
5228                  */
5229                 ad.type = LSM_AUDIT_DATA_NET;
5230                 ad.u.net = &net;
5231                 ad.u.net->sk = ep->base.sk;
5232                 err = avc_has_perm(&selinux_state,
5233                                    sksec->peer_sid, peer_sid, sksec->sclass,
5234                                    SCTP_SOCKET__ASSOCIATION, &ad);
5235                 if (err)
5236                         return err;
5237         }
5238
5239         /* Compute the MLS component for the connection and store
5240          * the information in ep. This will be used by SCTP TCP type
5241          * sockets and peeled off connections as they cause a new
5242          * socket to be generated. selinux_sctp_sk_clone() will then
5243          * plug this into the new socket.
5244          */
5245         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5246         if (err)
5247                 return err;
5248
5249         ep->secid = conn_sid;
5250         ep->peer_secid = peer_sid;
5251
5252         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5253         return selinux_netlbl_sctp_assoc_request(ep, skb);
5254 }
5255
5256 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5257  * based on their @optname.
5258  */
5259 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5260                                      struct sockaddr *address,
5261                                      int addrlen)
5262 {
5263         int len, err = 0, walk_size = 0;
5264         void *addr_buf;
5265         struct sockaddr *addr;
5266         struct socket *sock;
5267
5268         if (!selinux_policycap_extsockclass())
5269                 return 0;
5270
5271         /* Process one or more addresses that may be IPv4 or IPv6 */
5272         sock = sk->sk_socket;
5273         addr_buf = address;
5274
5275         while (walk_size < addrlen) {
5276                 if (walk_size + sizeof(sa_family_t) > addrlen)
5277                         return -EINVAL;
5278
5279                 addr = addr_buf;
5280                 switch (addr->sa_family) {
5281                 case AF_UNSPEC:
5282                 case AF_INET:
5283                         len = sizeof(struct sockaddr_in);
5284                         break;
5285                 case AF_INET6:
5286                         len = sizeof(struct sockaddr_in6);
5287                         break;
5288                 default:
5289                         return -EINVAL;
5290                 }
5291
5292                 if (walk_size + len > addrlen)
5293                         return -EINVAL;
5294
5295                 err = -EINVAL;
5296                 switch (optname) {
5297                 /* Bind checks */
5298                 case SCTP_PRIMARY_ADDR:
5299                 case SCTP_SET_PEER_PRIMARY_ADDR:
5300                 case SCTP_SOCKOPT_BINDX_ADD:
5301                         err = selinux_socket_bind(sock, addr, len);
5302                         break;
5303                 /* Connect checks */
5304                 case SCTP_SOCKOPT_CONNECTX:
5305                 case SCTP_PARAM_SET_PRIMARY:
5306                 case SCTP_PARAM_ADD_IP:
5307                 case SCTP_SENDMSG_CONNECT:
5308                         err = selinux_socket_connect_helper(sock, addr, len);
5309                         if (err)
5310                                 return err;
5311
5312                         /* As selinux_sctp_bind_connect() is called by the
5313                          * SCTP protocol layer, the socket is already locked,
5314                          * therefore selinux_netlbl_socket_connect_locked() is
5315                          * is called here. The situations handled are:
5316                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5317                          * whenever a new IP address is added or when a new
5318                          * primary address is selected.
5319                          * Note that an SCTP connect(2) call happens before
5320                          * the SCTP protocol layer and is handled via
5321                          * selinux_socket_connect().
5322                          */
5323                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5324                         break;
5325                 }
5326
5327                 if (err)
5328                         return err;
5329
5330                 addr_buf += len;
5331                 walk_size += len;
5332         }
5333
5334         return 0;
5335 }
5336
5337 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5338 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5339                                   struct sock *newsk)
5340 {
5341         struct sk_security_struct *sksec = sk->sk_security;
5342         struct sk_security_struct *newsksec = newsk->sk_security;
5343
5344         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5345          * the non-sctp clone version.
5346          */
5347         if (!selinux_policycap_extsockclass())
5348                 return selinux_sk_clone_security(sk, newsk);
5349
5350         newsksec->sid = ep->secid;
5351         newsksec->peer_sid = ep->peer_secid;
5352         newsksec->sclass = sksec->sclass;
5353         selinux_netlbl_sctp_sk_clone(sk, newsk);
5354 }
5355
5356 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5357                                      struct request_sock *req)
5358 {
5359         struct sk_security_struct *sksec = sk->sk_security;
5360         int err;
5361         u16 family = req->rsk_ops->family;
5362         u32 connsid;
5363         u32 peersid;
5364
5365         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5366         if (err)
5367                 return err;
5368         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5369         if (err)
5370                 return err;
5371         req->secid = connsid;
5372         req->peer_secid = peersid;
5373
5374         return selinux_netlbl_inet_conn_request(req, family);
5375 }
5376
5377 static void selinux_inet_csk_clone(struct sock *newsk,
5378                                    const struct request_sock *req)
5379 {
5380         struct sk_security_struct *newsksec = newsk->sk_security;
5381
5382         newsksec->sid = req->secid;
5383         newsksec->peer_sid = req->peer_secid;
5384         /* NOTE: Ideally, we should also get the isec->sid for the
5385            new socket in sync, but we don't have the isec available yet.
5386            So we will wait until sock_graft to do it, by which
5387            time it will have been created and available. */
5388
5389         /* We don't need to take any sort of lock here as we are the only
5390          * thread with access to newsksec */
5391         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5392 }
5393
5394 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5395 {
5396         u16 family = sk->sk_family;
5397         struct sk_security_struct *sksec = sk->sk_security;
5398
5399         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5400         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5401                 family = PF_INET;
5402
5403         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5404 }
5405
5406 static int selinux_secmark_relabel_packet(u32 sid)
5407 {
5408         const struct task_security_struct *__tsec;
5409         u32 tsid;
5410
5411         __tsec = selinux_cred(current_cred());
5412         tsid = __tsec->sid;
5413
5414         return avc_has_perm(&selinux_state,
5415                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5416                             NULL);
5417 }
5418
5419 static void selinux_secmark_refcount_inc(void)
5420 {
5421         atomic_inc(&selinux_secmark_refcount);
5422 }
5423
5424 static void selinux_secmark_refcount_dec(void)
5425 {
5426         atomic_dec(&selinux_secmark_refcount);
5427 }
5428
5429 static void selinux_req_classify_flow(const struct request_sock *req,
5430                                       struct flowi *fl)
5431 {
5432         fl->flowi_secid = req->secid;
5433 }
5434
5435 static int selinux_tun_dev_alloc_security(void **security)
5436 {
5437         struct tun_security_struct *tunsec;
5438
5439         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5440         if (!tunsec)
5441                 return -ENOMEM;
5442         tunsec->sid = current_sid();
5443
5444         *security = tunsec;
5445         return 0;
5446 }
5447
5448 static void selinux_tun_dev_free_security(void *security)
5449 {
5450         kfree(security);
5451 }
5452
5453 static int selinux_tun_dev_create(void)
5454 {
5455         u32 sid = current_sid();
5456
5457         /* we aren't taking into account the "sockcreate" SID since the socket
5458          * that is being created here is not a socket in the traditional sense,
5459          * instead it is a private sock, accessible only to the kernel, and
5460          * representing a wide range of network traffic spanning multiple
5461          * connections unlike traditional sockets - check the TUN driver to
5462          * get a better understanding of why this socket is special */
5463
5464         return avc_has_perm(&selinux_state,
5465                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5466                             NULL);
5467 }
5468
5469 static int selinux_tun_dev_attach_queue(void *security)
5470 {
5471         struct tun_security_struct *tunsec = security;
5472
5473         return avc_has_perm(&selinux_state,
5474                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5475                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5476 }
5477
5478 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5479 {
5480         struct tun_security_struct *tunsec = security;
5481         struct sk_security_struct *sksec = sk->sk_security;
5482
5483         /* we don't currently perform any NetLabel based labeling here and it
5484          * isn't clear that we would want to do so anyway; while we could apply
5485          * labeling without the support of the TUN user the resulting labeled
5486          * traffic from the other end of the connection would almost certainly
5487          * cause confusion to the TUN user that had no idea network labeling
5488          * protocols were being used */
5489
5490         sksec->sid = tunsec->sid;
5491         sksec->sclass = SECCLASS_TUN_SOCKET;
5492
5493         return 0;
5494 }
5495
5496 static int selinux_tun_dev_open(void *security)
5497 {
5498         struct tun_security_struct *tunsec = security;
5499         u32 sid = current_sid();
5500         int err;
5501
5502         err = avc_has_perm(&selinux_state,
5503                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5504                            TUN_SOCKET__RELABELFROM, NULL);
5505         if (err)
5506                 return err;
5507         err = avc_has_perm(&selinux_state,
5508                            sid, sid, SECCLASS_TUN_SOCKET,
5509                            TUN_SOCKET__RELABELTO, NULL);
5510         if (err)
5511                 return err;
5512         tunsec->sid = sid;
5513
5514         return 0;
5515 }
5516
5517 #ifdef CONFIG_NETFILTER
5518
5519 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5520                                        const struct net_device *indev,
5521                                        u16 family)
5522 {
5523         int err;
5524         char *addrp;
5525         u32 peer_sid;
5526         struct common_audit_data ad;
5527         struct lsm_network_audit net = {0,};
5528         u8 secmark_active;
5529         u8 netlbl_active;
5530         u8 peerlbl_active;
5531
5532         if (!selinux_policycap_netpeer())
5533                 return NF_ACCEPT;
5534
5535         secmark_active = selinux_secmark_enabled();
5536         netlbl_active = netlbl_enabled();
5537         peerlbl_active = selinux_peerlbl_enabled();
5538         if (!secmark_active && !peerlbl_active)
5539                 return NF_ACCEPT;
5540
5541         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5542                 return NF_DROP;
5543
5544         ad.type = LSM_AUDIT_DATA_NET;
5545         ad.u.net = &net;
5546         ad.u.net->netif = indev->ifindex;
5547         ad.u.net->family = family;
5548         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5549                 return NF_DROP;
5550
5551         if (peerlbl_active) {
5552                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5553                                                addrp, family, peer_sid, &ad);
5554                 if (err) {
5555                         selinux_netlbl_err(skb, family, err, 1);
5556                         return NF_DROP;
5557                 }
5558         }
5559
5560         if (secmark_active)
5561                 if (avc_has_perm(&selinux_state,
5562                                  peer_sid, skb->secmark,
5563                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5564                         return NF_DROP;
5565
5566         if (netlbl_active)
5567                 /* we do this in the FORWARD path and not the POST_ROUTING
5568                  * path because we want to make sure we apply the necessary
5569                  * labeling before IPsec is applied so we can leverage AH
5570                  * protection */
5571                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5572                         return NF_DROP;
5573
5574         return NF_ACCEPT;
5575 }
5576
5577 static unsigned int selinux_ipv4_forward(void *priv,
5578                                          struct sk_buff *skb,
5579                                          const struct nf_hook_state *state)
5580 {
5581         return selinux_ip_forward(skb, state->in, PF_INET);
5582 }
5583
5584 #if IS_ENABLED(CONFIG_IPV6)
5585 static unsigned int selinux_ipv6_forward(void *priv,
5586                                          struct sk_buff *skb,
5587                                          const struct nf_hook_state *state)
5588 {
5589         return selinux_ip_forward(skb, state->in, PF_INET6);
5590 }
5591 #endif  /* IPV6 */
5592
5593 static unsigned int selinux_ip_output(struct sk_buff *skb,
5594                                       u16 family)
5595 {
5596         struct sock *sk;
5597         u32 sid;
5598
5599         if (!netlbl_enabled())
5600                 return NF_ACCEPT;
5601
5602         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5603          * because we want to make sure we apply the necessary labeling
5604          * before IPsec is applied so we can leverage AH protection */
5605         sk = skb->sk;
5606         if (sk) {
5607                 struct sk_security_struct *sksec;
5608
5609                 if (sk_listener(sk))
5610                         /* if the socket is the listening state then this
5611                          * packet is a SYN-ACK packet which means it needs to
5612                          * be labeled based on the connection/request_sock and
5613                          * not the parent socket.  unfortunately, we can't
5614                          * lookup the request_sock yet as it isn't queued on
5615                          * the parent socket until after the SYN-ACK is sent.
5616                          * the "solution" is to simply pass the packet as-is
5617                          * as any IP option based labeling should be copied
5618                          * from the initial connection request (in the IP
5619                          * layer).  it is far from ideal, but until we get a
5620                          * security label in the packet itself this is the
5621                          * best we can do. */
5622                         return NF_ACCEPT;
5623
5624                 /* standard practice, label using the parent socket */
5625                 sksec = sk->sk_security;
5626                 sid = sksec->sid;
5627         } else
5628                 sid = SECINITSID_KERNEL;
5629         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5630                 return NF_DROP;
5631
5632         return NF_ACCEPT;
5633 }
5634
5635 static unsigned int selinux_ipv4_output(void *priv,
5636                                         struct sk_buff *skb,
5637                                         const struct nf_hook_state *state)
5638 {
5639         return selinux_ip_output(skb, PF_INET);
5640 }
5641
5642 #if IS_ENABLED(CONFIG_IPV6)
5643 static unsigned int selinux_ipv6_output(void *priv,
5644                                         struct sk_buff *skb,
5645                                         const struct nf_hook_state *state)
5646 {
5647         return selinux_ip_output(skb, PF_INET6);
5648 }
5649 #endif  /* IPV6 */
5650
5651 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5652                                                 int ifindex,
5653                                                 u16 family)
5654 {
5655         struct sock *sk = skb_to_full_sk(skb);
5656         struct sk_security_struct *sksec;
5657         struct common_audit_data ad;
5658         struct lsm_network_audit net = {0,};
5659         char *addrp;
5660         u8 proto;
5661
5662         if (sk == NULL)
5663                 return NF_ACCEPT;
5664         sksec = sk->sk_security;
5665
5666         ad.type = LSM_AUDIT_DATA_NET;
5667         ad.u.net = &net;
5668         ad.u.net->netif = ifindex;
5669         ad.u.net->family = family;
5670         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5671                 return NF_DROP;
5672
5673         if (selinux_secmark_enabled())
5674                 if (avc_has_perm(&selinux_state,
5675                                  sksec->sid, skb->secmark,
5676                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5677                         return NF_DROP_ERR(-ECONNREFUSED);
5678
5679         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5680                 return NF_DROP_ERR(-ECONNREFUSED);
5681
5682         return NF_ACCEPT;
5683 }
5684
5685 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5686                                          const struct net_device *outdev,
5687                                          u16 family)
5688 {
5689         u32 secmark_perm;
5690         u32 peer_sid;
5691         int ifindex = outdev->ifindex;
5692         struct sock *sk;
5693         struct common_audit_data ad;
5694         struct lsm_network_audit net = {0,};
5695         char *addrp;
5696         u8 secmark_active;
5697         u8 peerlbl_active;
5698
5699         /* If any sort of compatibility mode is enabled then handoff processing
5700          * to the selinux_ip_postroute_compat() function to deal with the
5701          * special handling.  We do this in an attempt to keep this function
5702          * as fast and as clean as possible. */
5703         if (!selinux_policycap_netpeer())
5704                 return selinux_ip_postroute_compat(skb, ifindex, family);
5705
5706         secmark_active = selinux_secmark_enabled();
5707         peerlbl_active = selinux_peerlbl_enabled();
5708         if (!secmark_active && !peerlbl_active)
5709                 return NF_ACCEPT;
5710
5711         sk = skb_to_full_sk(skb);
5712
5713 #ifdef CONFIG_XFRM
5714         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5715          * packet transformation so allow the packet to pass without any checks
5716          * since we'll have another chance to perform access control checks
5717          * when the packet is on it's final way out.
5718          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5719          *       is NULL, in this case go ahead and apply access control.
5720          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5721          *       TCP listening state we cannot wait until the XFRM processing
5722          *       is done as we will miss out on the SA label if we do;
5723          *       unfortunately, this means more work, but it is only once per
5724          *       connection. */
5725         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5726             !(sk && sk_listener(sk)))
5727                 return NF_ACCEPT;
5728 #endif
5729
5730         if (sk == NULL) {
5731                 /* Without an associated socket the packet is either coming
5732                  * from the kernel or it is being forwarded; check the packet
5733                  * to determine which and if the packet is being forwarded
5734                  * query the packet directly to determine the security label. */
5735                 if (skb->skb_iif) {
5736                         secmark_perm = PACKET__FORWARD_OUT;
5737                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5738                                 return NF_DROP;
5739                 } else {
5740                         secmark_perm = PACKET__SEND;
5741                         peer_sid = SECINITSID_KERNEL;
5742                 }
5743         } else if (sk_listener(sk)) {
5744                 /* Locally generated packet but the associated socket is in the
5745                  * listening state which means this is a SYN-ACK packet.  In
5746                  * this particular case the correct security label is assigned
5747                  * to the connection/request_sock but unfortunately we can't
5748                  * query the request_sock as it isn't queued on the parent
5749                  * socket until after the SYN-ACK packet is sent; the only
5750                  * viable choice is to regenerate the label like we do in
5751                  * selinux_inet_conn_request().  See also selinux_ip_output()
5752                  * for similar problems. */
5753                 u32 skb_sid;
5754                 struct sk_security_struct *sksec;
5755
5756                 sksec = sk->sk_security;
5757                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5758                         return NF_DROP;
5759                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5760                  * and the packet has been through at least one XFRM
5761                  * transformation then we must be dealing with the "final"
5762                  * form of labeled IPsec packet; since we've already applied
5763                  * all of our access controls on this packet we can safely
5764                  * pass the packet. */
5765                 if (skb_sid == SECSID_NULL) {
5766                         switch (family) {
5767                         case PF_INET:
5768                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5769                                         return NF_ACCEPT;
5770                                 break;
5771                         case PF_INET6:
5772                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5773                                         return NF_ACCEPT;
5774                                 break;
5775                         default:
5776                                 return NF_DROP_ERR(-ECONNREFUSED);
5777                         }
5778                 }
5779                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5780                         return NF_DROP;
5781                 secmark_perm = PACKET__SEND;
5782         } else {
5783                 /* Locally generated packet, fetch the security label from the
5784                  * associated socket. */
5785                 struct sk_security_struct *sksec = sk->sk_security;
5786                 peer_sid = sksec->sid;
5787                 secmark_perm = PACKET__SEND;
5788         }
5789
5790         ad.type = LSM_AUDIT_DATA_NET;
5791         ad.u.net = &net;
5792         ad.u.net->netif = ifindex;
5793         ad.u.net->family = family;
5794         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5795                 return NF_DROP;
5796
5797         if (secmark_active)
5798                 if (avc_has_perm(&selinux_state,
5799                                  peer_sid, skb->secmark,
5800                                  SECCLASS_PACKET, secmark_perm, &ad))
5801                         return NF_DROP_ERR(-ECONNREFUSED);
5802
5803         if (peerlbl_active) {
5804                 u32 if_sid;
5805                 u32 node_sid;
5806
5807                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5808                         return NF_DROP;
5809                 if (avc_has_perm(&selinux_state,
5810                                  peer_sid, if_sid,
5811                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5812                         return NF_DROP_ERR(-ECONNREFUSED);
5813
5814                 if (sel_netnode_sid(addrp, family, &node_sid))
5815                         return NF_DROP;
5816                 if (avc_has_perm(&selinux_state,
5817                                  peer_sid, node_sid,
5818                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5819                         return NF_DROP_ERR(-ECONNREFUSED);
5820         }
5821
5822         return NF_ACCEPT;
5823 }
5824
5825 static unsigned int selinux_ipv4_postroute(void *priv,
5826                                            struct sk_buff *skb,
5827                                            const struct nf_hook_state *state)
5828 {
5829         return selinux_ip_postroute(skb, state->out, PF_INET);
5830 }
5831
5832 #if IS_ENABLED(CONFIG_IPV6)
5833 static unsigned int selinux_ipv6_postroute(void *priv,
5834                                            struct sk_buff *skb,
5835                                            const struct nf_hook_state *state)
5836 {
5837         return selinux_ip_postroute(skb, state->out, PF_INET6);
5838 }
5839 #endif  /* IPV6 */
5840
5841 #endif  /* CONFIG_NETFILTER */
5842
5843 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5844 {
5845         int rc = 0;
5846         unsigned int msg_len;
5847         unsigned int data_len = skb->len;
5848         unsigned char *data = skb->data;
5849         struct nlmsghdr *nlh;
5850         struct sk_security_struct *sksec = sk->sk_security;
5851         u16 sclass = sksec->sclass;
5852         u32 perm;
5853
5854         while (data_len >= nlmsg_total_size(0)) {
5855                 nlh = (struct nlmsghdr *)data;
5856
5857                 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5858                  *       users which means we can't reject skb's with bogus
5859                  *       length fields; our solution is to follow what
5860                  *       netlink_rcv_skb() does and simply skip processing at
5861                  *       messages with length fields that are clearly junk
5862                  */
5863                 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5864                         return 0;
5865
5866                 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5867                 if (rc == 0) {
5868                         rc = sock_has_perm(sk, perm);
5869                         if (rc)
5870                                 return rc;
5871                 } else if (rc == -EINVAL) {
5872                         /* -EINVAL is a missing msg/perm mapping */
5873                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5874                                 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5875                                 " pid=%d comm=%s\n",
5876                                 sk->sk_protocol, nlh->nlmsg_type,
5877                                 secclass_map[sclass - 1].name,
5878                                 task_pid_nr(current), current->comm);
5879                         if (enforcing_enabled(&selinux_state) &&
5880                             !security_get_allow_unknown(&selinux_state))
5881                                 return rc;
5882                         rc = 0;
5883                 } else if (rc == -ENOENT) {
5884                         /* -ENOENT is a missing socket/class mapping, ignore */
5885                         rc = 0;
5886                 } else {
5887                         return rc;
5888                 }
5889
5890                 /* move to the next message after applying netlink padding */
5891                 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5892                 if (msg_len >= data_len)
5893                         return 0;
5894                 data_len -= msg_len;
5895                 data += msg_len;
5896         }
5897
5898         return rc;
5899 }
5900
5901 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5902 {
5903         isec->sclass = sclass;
5904         isec->sid = current_sid();
5905 }
5906
5907 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5908                         u32 perms)
5909 {
5910         struct ipc_security_struct *isec;
5911         struct common_audit_data ad;
5912         u32 sid = current_sid();
5913
5914         isec = selinux_ipc(ipc_perms);
5915
5916         ad.type = LSM_AUDIT_DATA_IPC;
5917         ad.u.ipc_id = ipc_perms->key;
5918
5919         return avc_has_perm(&selinux_state,
5920                             sid, isec->sid, isec->sclass, perms, &ad);
5921 }
5922
5923 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5924 {
5925         struct msg_security_struct *msec;
5926
5927         msec = selinux_msg_msg(msg);
5928         msec->sid = SECINITSID_UNLABELED;
5929
5930         return 0;
5931 }
5932
5933 /* message queue security operations */
5934 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5935 {
5936         struct ipc_security_struct *isec;
5937         struct common_audit_data ad;
5938         u32 sid = current_sid();
5939         int rc;
5940
5941         isec = selinux_ipc(msq);
5942         ipc_init_security(isec, SECCLASS_MSGQ);
5943
5944         ad.type = LSM_AUDIT_DATA_IPC;
5945         ad.u.ipc_id = msq->key;
5946
5947         rc = avc_has_perm(&selinux_state,
5948                           sid, isec->sid, SECCLASS_MSGQ,
5949                           MSGQ__CREATE, &ad);
5950         return rc;
5951 }
5952
5953 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5954 {
5955         struct ipc_security_struct *isec;
5956         struct common_audit_data ad;
5957         u32 sid = current_sid();
5958
5959         isec = selinux_ipc(msq);
5960
5961         ad.type = LSM_AUDIT_DATA_IPC;
5962         ad.u.ipc_id = msq->key;
5963
5964         return avc_has_perm(&selinux_state,
5965                             sid, isec->sid, SECCLASS_MSGQ,
5966                             MSGQ__ASSOCIATE, &ad);
5967 }
5968
5969 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5970 {
5971         int err;
5972         int perms;
5973
5974         switch (cmd) {
5975         case IPC_INFO:
5976         case MSG_INFO:
5977                 /* No specific object, just general system-wide information. */
5978                 return avc_has_perm(&selinux_state,
5979                                     current_sid(), SECINITSID_KERNEL,
5980                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5981         case IPC_STAT:
5982         case MSG_STAT:
5983         case MSG_STAT_ANY:
5984                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5985                 break;
5986         case IPC_SET:
5987                 perms = MSGQ__SETATTR;
5988                 break;
5989         case IPC_RMID:
5990                 perms = MSGQ__DESTROY;
5991                 break;
5992         default:
5993                 return 0;
5994         }
5995
5996         err = ipc_has_perm(msq, perms);
5997         return err;
5998 }
5999
6000 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6001 {
6002         struct ipc_security_struct *isec;
6003         struct msg_security_struct *msec;
6004         struct common_audit_data ad;
6005         u32 sid = current_sid();
6006         int rc;
6007
6008         isec = selinux_ipc(msq);
6009         msec = selinux_msg_msg(msg);
6010
6011         /*
6012          * First time through, need to assign label to the message
6013          */
6014         if (msec->sid == SECINITSID_UNLABELED) {
6015                 /*
6016                  * Compute new sid based on current process and
6017                  * message queue this message will be stored in
6018                  */
6019                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6020                                              SECCLASS_MSG, NULL, &msec->sid);
6021                 if (rc)
6022                         return rc;
6023         }
6024
6025         ad.type = LSM_AUDIT_DATA_IPC;
6026         ad.u.ipc_id = msq->key;
6027
6028         /* Can this process write to the queue? */
6029         rc = avc_has_perm(&selinux_state,
6030                           sid, isec->sid, SECCLASS_MSGQ,
6031                           MSGQ__WRITE, &ad);
6032         if (!rc)
6033                 /* Can this process send the message */
6034                 rc = avc_has_perm(&selinux_state,
6035                                   sid, msec->sid, SECCLASS_MSG,
6036                                   MSG__SEND, &ad);
6037         if (!rc)
6038                 /* Can the message be put in the queue? */
6039                 rc = avc_has_perm(&selinux_state,
6040                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6041                                   MSGQ__ENQUEUE, &ad);
6042
6043         return rc;
6044 }
6045
6046 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6047                                     struct task_struct *target,
6048                                     long type, int mode)
6049 {
6050         struct ipc_security_struct *isec;
6051         struct msg_security_struct *msec;
6052         struct common_audit_data ad;
6053         u32 sid = task_sid(target);
6054         int rc;
6055
6056         isec = selinux_ipc(msq);
6057         msec = selinux_msg_msg(msg);
6058
6059         ad.type = LSM_AUDIT_DATA_IPC;
6060         ad.u.ipc_id = msq->key;
6061
6062         rc = avc_has_perm(&selinux_state,
6063                           sid, isec->sid,
6064                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6065         if (!rc)
6066                 rc = avc_has_perm(&selinux_state,
6067                                   sid, msec->sid,
6068                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6069         return rc;
6070 }
6071
6072 /* Shared Memory security operations */
6073 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6074 {
6075         struct ipc_security_struct *isec;
6076         struct common_audit_data ad;
6077         u32 sid = current_sid();
6078         int rc;
6079
6080         isec = selinux_ipc(shp);
6081         ipc_init_security(isec, SECCLASS_SHM);
6082
6083         ad.type = LSM_AUDIT_DATA_IPC;
6084         ad.u.ipc_id = shp->key;
6085
6086         rc = avc_has_perm(&selinux_state,
6087                           sid, isec->sid, SECCLASS_SHM,
6088                           SHM__CREATE, &ad);
6089         return rc;
6090 }
6091
6092 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6093 {
6094         struct ipc_security_struct *isec;
6095         struct common_audit_data ad;
6096         u32 sid = current_sid();
6097
6098         isec = selinux_ipc(shp);
6099
6100         ad.type = LSM_AUDIT_DATA_IPC;
6101         ad.u.ipc_id = shp->key;
6102
6103         return avc_has_perm(&selinux_state,
6104                             sid, isec->sid, SECCLASS_SHM,
6105                             SHM__ASSOCIATE, &ad);
6106 }
6107
6108 /* Note, at this point, shp is locked down */
6109 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6110 {
6111         int perms;
6112         int err;
6113
6114         switch (cmd) {
6115         case IPC_INFO:
6116         case SHM_INFO:
6117                 /* No specific object, just general system-wide information. */
6118                 return avc_has_perm(&selinux_state,
6119                                     current_sid(), SECINITSID_KERNEL,
6120                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6121         case IPC_STAT:
6122         case SHM_STAT:
6123         case SHM_STAT_ANY:
6124                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6125                 break;
6126         case IPC_SET:
6127                 perms = SHM__SETATTR;
6128                 break;
6129         case SHM_LOCK:
6130         case SHM_UNLOCK:
6131                 perms = SHM__LOCK;
6132                 break;
6133         case IPC_RMID:
6134                 perms = SHM__DESTROY;
6135                 break;
6136         default:
6137                 return 0;
6138         }
6139
6140         err = ipc_has_perm(shp, perms);
6141         return err;
6142 }
6143
6144 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6145                              char __user *shmaddr, int shmflg)
6146 {
6147         u32 perms;
6148
6149         if (shmflg & SHM_RDONLY)
6150                 perms = SHM__READ;
6151         else
6152                 perms = SHM__READ | SHM__WRITE;
6153
6154         return ipc_has_perm(shp, perms);
6155 }
6156
6157 /* Semaphore security operations */
6158 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6159 {
6160         struct ipc_security_struct *isec;
6161         struct common_audit_data ad;
6162         u32 sid = current_sid();
6163         int rc;
6164
6165         isec = selinux_ipc(sma);
6166         ipc_init_security(isec, SECCLASS_SEM);
6167
6168         ad.type = LSM_AUDIT_DATA_IPC;
6169         ad.u.ipc_id = sma->key;
6170
6171         rc = avc_has_perm(&selinux_state,
6172                           sid, isec->sid, SECCLASS_SEM,
6173                           SEM__CREATE, &ad);
6174         return rc;
6175 }
6176
6177 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6178 {
6179         struct ipc_security_struct *isec;
6180         struct common_audit_data ad;
6181         u32 sid = current_sid();
6182
6183         isec = selinux_ipc(sma);
6184
6185         ad.type = LSM_AUDIT_DATA_IPC;
6186         ad.u.ipc_id = sma->key;
6187
6188         return avc_has_perm(&selinux_state,
6189                             sid, isec->sid, SECCLASS_SEM,
6190                             SEM__ASSOCIATE, &ad);
6191 }
6192
6193 /* Note, at this point, sma is locked down */
6194 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6195 {
6196         int err;
6197         u32 perms;
6198
6199         switch (cmd) {
6200         case IPC_INFO:
6201         case SEM_INFO:
6202                 /* No specific object, just general system-wide information. */
6203                 return avc_has_perm(&selinux_state,
6204                                     current_sid(), SECINITSID_KERNEL,
6205                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6206         case GETPID:
6207         case GETNCNT:
6208         case GETZCNT:
6209                 perms = SEM__GETATTR;
6210                 break;
6211         case GETVAL:
6212         case GETALL:
6213                 perms = SEM__READ;
6214                 break;
6215         case SETVAL:
6216         case SETALL:
6217                 perms = SEM__WRITE;
6218                 break;
6219         case IPC_RMID:
6220                 perms = SEM__DESTROY;
6221                 break;
6222         case IPC_SET:
6223                 perms = SEM__SETATTR;
6224                 break;
6225         case IPC_STAT:
6226         case SEM_STAT:
6227         case SEM_STAT_ANY:
6228                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6229                 break;
6230         default:
6231                 return 0;
6232         }
6233
6234         err = ipc_has_perm(sma, perms);
6235         return err;
6236 }
6237
6238 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6239                              struct sembuf *sops, unsigned nsops, int alter)
6240 {
6241         u32 perms;
6242
6243         if (alter)
6244                 perms = SEM__READ | SEM__WRITE;
6245         else
6246                 perms = SEM__READ;
6247
6248         return ipc_has_perm(sma, perms);
6249 }
6250
6251 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6252 {
6253         u32 av = 0;
6254
6255         av = 0;
6256         if (flag & S_IRUGO)
6257                 av |= IPC__UNIX_READ;
6258         if (flag & S_IWUGO)
6259                 av |= IPC__UNIX_WRITE;
6260
6261         if (av == 0)
6262                 return 0;
6263
6264         return ipc_has_perm(ipcp, av);
6265 }
6266
6267 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6268 {
6269         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6270         *secid = isec->sid;
6271 }
6272
6273 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6274 {
6275         if (inode)
6276                 inode_doinit_with_dentry(inode, dentry);
6277 }
6278
6279 static int selinux_getprocattr(struct task_struct *p,
6280                                char *name, char **value)
6281 {
6282         const struct task_security_struct *__tsec;
6283         u32 sid;
6284         int error;
6285         unsigned len;
6286
6287         rcu_read_lock();
6288         __tsec = selinux_cred(__task_cred(p));
6289
6290         if (current != p) {
6291                 error = avc_has_perm(&selinux_state,
6292                                      current_sid(), __tsec->sid,
6293                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6294                 if (error)
6295                         goto bad;
6296         }
6297
6298         if (!strcmp(name, "current"))
6299                 sid = __tsec->sid;
6300         else if (!strcmp(name, "prev"))
6301                 sid = __tsec->osid;
6302         else if (!strcmp(name, "exec"))
6303                 sid = __tsec->exec_sid;
6304         else if (!strcmp(name, "fscreate"))
6305                 sid = __tsec->create_sid;
6306         else if (!strcmp(name, "keycreate"))
6307                 sid = __tsec->keycreate_sid;
6308         else if (!strcmp(name, "sockcreate"))
6309                 sid = __tsec->sockcreate_sid;
6310         else {
6311                 error = -EINVAL;
6312                 goto bad;
6313         }
6314         rcu_read_unlock();
6315
6316         if (!sid)
6317                 return 0;
6318
6319         error = security_sid_to_context(&selinux_state, sid, value, &len);
6320         if (error)
6321                 return error;
6322         return len;
6323
6324 bad:
6325         rcu_read_unlock();
6326         return error;
6327 }
6328
6329 static int selinux_setprocattr(const char *name, void *value, size_t size)
6330 {
6331         struct task_security_struct *tsec;
6332         struct cred *new;
6333         u32 mysid = current_sid(), sid = 0, ptsid;
6334         int error;
6335         char *str = value;
6336
6337         /*
6338          * Basic control over ability to set these attributes at all.
6339          */
6340         if (!strcmp(name, "exec"))
6341                 error = avc_has_perm(&selinux_state,
6342                                      mysid, mysid, SECCLASS_PROCESS,
6343                                      PROCESS__SETEXEC, NULL);
6344         else if (!strcmp(name, "fscreate"))
6345                 error = avc_has_perm(&selinux_state,
6346                                      mysid, mysid, SECCLASS_PROCESS,
6347                                      PROCESS__SETFSCREATE, NULL);
6348         else if (!strcmp(name, "keycreate"))
6349                 error = avc_has_perm(&selinux_state,
6350                                      mysid, mysid, SECCLASS_PROCESS,
6351                                      PROCESS__SETKEYCREATE, NULL);
6352         else if (!strcmp(name, "sockcreate"))
6353                 error = avc_has_perm(&selinux_state,
6354                                      mysid, mysid, SECCLASS_PROCESS,
6355                                      PROCESS__SETSOCKCREATE, NULL);
6356         else if (!strcmp(name, "current"))
6357                 error = avc_has_perm(&selinux_state,
6358                                      mysid, mysid, SECCLASS_PROCESS,
6359                                      PROCESS__SETCURRENT, NULL);
6360         else
6361                 error = -EINVAL;
6362         if (error)
6363                 return error;
6364
6365         /* Obtain a SID for the context, if one was specified. */
6366         if (size && str[0] && str[0] != '\n') {
6367                 if (str[size-1] == '\n') {
6368                         str[size-1] = 0;
6369                         size--;
6370                 }
6371                 error = security_context_to_sid(&selinux_state, value, size,
6372                                                 &sid, GFP_KERNEL);
6373                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6374                         if (!has_cap_mac_admin(true)) {
6375                                 struct audit_buffer *ab;
6376                                 size_t audit_size;
6377
6378                                 /* We strip a nul only if it is at the end, otherwise the
6379                                  * context contains a nul and we should audit that */
6380                                 if (str[size - 1] == '\0')
6381                                         audit_size = size - 1;
6382                                 else
6383                                         audit_size = size;
6384                                 ab = audit_log_start(audit_context(),
6385                                                      GFP_ATOMIC,
6386                                                      AUDIT_SELINUX_ERR);
6387                                 audit_log_format(ab, "op=fscreate invalid_context=");
6388                                 audit_log_n_untrustedstring(ab, value, audit_size);
6389                                 audit_log_end(ab);
6390
6391                                 return error;
6392                         }
6393                         error = security_context_to_sid_force(
6394                                                       &selinux_state,
6395                                                       value, size, &sid);
6396                 }
6397                 if (error)
6398                         return error;
6399         }
6400
6401         new = prepare_creds();
6402         if (!new)
6403                 return -ENOMEM;
6404
6405         /* Permission checking based on the specified context is
6406            performed during the actual operation (execve,
6407            open/mkdir/...), when we know the full context of the
6408            operation.  See selinux_bprm_set_creds for the execve
6409            checks and may_create for the file creation checks. The
6410            operation will then fail if the context is not permitted. */
6411         tsec = selinux_cred(new);
6412         if (!strcmp(name, "exec")) {
6413                 tsec->exec_sid = sid;
6414         } else if (!strcmp(name, "fscreate")) {
6415                 tsec->create_sid = sid;
6416         } else if (!strcmp(name, "keycreate")) {
6417                 if (sid) {
6418                         error = avc_has_perm(&selinux_state, mysid, sid,
6419                                              SECCLASS_KEY, KEY__CREATE, NULL);
6420                         if (error)
6421                                 goto abort_change;
6422                 }
6423                 tsec->keycreate_sid = sid;
6424         } else if (!strcmp(name, "sockcreate")) {
6425                 tsec->sockcreate_sid = sid;
6426         } else if (!strcmp(name, "current")) {
6427                 error = -EINVAL;
6428                 if (sid == 0)
6429                         goto abort_change;
6430
6431                 /* Only allow single threaded processes to change context */
6432                 error = -EPERM;
6433                 if (!current_is_single_threaded()) {
6434                         error = security_bounded_transition(&selinux_state,
6435                                                             tsec->sid, sid);
6436                         if (error)
6437                                 goto abort_change;
6438                 }
6439
6440                 /* Check permissions for the transition. */
6441                 error = avc_has_perm(&selinux_state,
6442                                      tsec->sid, sid, SECCLASS_PROCESS,
6443                                      PROCESS__DYNTRANSITION, NULL);
6444                 if (error)
6445                         goto abort_change;
6446
6447                 /* Check for ptracing, and update the task SID if ok.
6448                    Otherwise, leave SID unchanged and fail. */
6449                 ptsid = ptrace_parent_sid();
6450                 if (ptsid != 0) {
6451                         error = avc_has_perm(&selinux_state,
6452                                              ptsid, sid, SECCLASS_PROCESS,
6453                                              PROCESS__PTRACE, NULL);
6454                         if (error)
6455                                 goto abort_change;
6456                 }
6457
6458                 tsec->sid = sid;
6459         } else {
6460                 error = -EINVAL;
6461                 goto abort_change;
6462         }
6463
6464         commit_creds(new);
6465         return size;
6466
6467 abort_change:
6468         abort_creds(new);
6469         return error;
6470 }
6471
6472 static int selinux_ismaclabel(const char *name)
6473 {
6474         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6475 }
6476
6477 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6478 {
6479         return security_sid_to_context(&selinux_state, secid,
6480                                        secdata, seclen);
6481 }
6482
6483 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6484 {
6485         return security_context_to_sid(&selinux_state, secdata, seclen,
6486                                        secid, GFP_KERNEL);
6487 }
6488
6489 static void selinux_release_secctx(char *secdata, u32 seclen)
6490 {
6491         kfree(secdata);
6492 }
6493
6494 static void selinux_inode_invalidate_secctx(struct inode *inode)
6495 {
6496         struct inode_security_struct *isec = selinux_inode(inode);
6497
6498         spin_lock(&isec->lock);
6499         isec->initialized = LABEL_INVALID;
6500         spin_unlock(&isec->lock);
6501 }
6502
6503 /*
6504  *      called with inode->i_mutex locked
6505  */
6506 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6507 {
6508         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6509                                            ctx, ctxlen, 0);
6510         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6511         return rc == -EOPNOTSUPP ? 0 : rc;
6512 }
6513
6514 /*
6515  *      called with inode->i_mutex locked
6516  */
6517 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6518 {
6519         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6520 }
6521
6522 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6523 {
6524         int len = 0;
6525         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6526                                                 ctx, true);
6527         if (len < 0)
6528                 return len;
6529         *ctxlen = len;
6530         return 0;
6531 }
6532 #ifdef CONFIG_KEYS
6533
6534 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6535                              unsigned long flags)
6536 {
6537         const struct task_security_struct *tsec;
6538         struct key_security_struct *ksec;
6539
6540         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6541         if (!ksec)
6542                 return -ENOMEM;
6543
6544         tsec = selinux_cred(cred);
6545         if (tsec->keycreate_sid)
6546                 ksec->sid = tsec->keycreate_sid;
6547         else
6548                 ksec->sid = tsec->sid;
6549
6550         k->security = ksec;
6551         return 0;
6552 }
6553
6554 static void selinux_key_free(struct key *k)
6555 {
6556         struct key_security_struct *ksec = k->security;
6557
6558         k->security = NULL;
6559         kfree(ksec);
6560 }
6561
6562 static int selinux_key_permission(key_ref_t key_ref,
6563                                   const struct cred *cred,
6564                                   unsigned perm)
6565 {
6566         struct key *key;
6567         struct key_security_struct *ksec;
6568         u32 sid;
6569
6570         /* if no specific permissions are requested, we skip the
6571            permission check. No serious, additional covert channels
6572            appear to be created. */
6573         if (perm == 0)
6574                 return 0;
6575
6576         sid = cred_sid(cred);
6577
6578         key = key_ref_to_ptr(key_ref);
6579         ksec = key->security;
6580
6581         return avc_has_perm(&selinux_state,
6582                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6583 }
6584
6585 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6586 {
6587         struct key_security_struct *ksec = key->security;
6588         char *context = NULL;
6589         unsigned len;
6590         int rc;
6591
6592         rc = security_sid_to_context(&selinux_state, ksec->sid,
6593                                      &context, &len);
6594         if (!rc)
6595                 rc = len;
6596         *_buffer = context;
6597         return rc;
6598 }
6599 #endif
6600
6601 #ifdef CONFIG_SECURITY_INFINIBAND
6602 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6603 {
6604         struct common_audit_data ad;
6605         int err;
6606         u32 sid = 0;
6607         struct ib_security_struct *sec = ib_sec;
6608         struct lsm_ibpkey_audit ibpkey;
6609
6610         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6611         if (err)
6612                 return err;
6613
6614         ad.type = LSM_AUDIT_DATA_IBPKEY;
6615         ibpkey.subnet_prefix = subnet_prefix;
6616         ibpkey.pkey = pkey_val;
6617         ad.u.ibpkey = &ibpkey;
6618         return avc_has_perm(&selinux_state,
6619                             sec->sid, sid,
6620                             SECCLASS_INFINIBAND_PKEY,
6621                             INFINIBAND_PKEY__ACCESS, &ad);
6622 }
6623
6624 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6625                                             u8 port_num)
6626 {
6627         struct common_audit_data ad;
6628         int err;
6629         u32 sid = 0;
6630         struct ib_security_struct *sec = ib_sec;
6631         struct lsm_ibendport_audit ibendport;
6632
6633         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6634                                       &sid);
6635
6636         if (err)
6637                 return err;
6638
6639         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6640         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6641         ibendport.port = port_num;
6642         ad.u.ibendport = &ibendport;
6643         return avc_has_perm(&selinux_state,
6644                             sec->sid, sid,
6645                             SECCLASS_INFINIBAND_ENDPORT,
6646                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6647 }
6648
6649 static int selinux_ib_alloc_security(void **ib_sec)
6650 {
6651         struct ib_security_struct *sec;
6652
6653         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6654         if (!sec)
6655                 return -ENOMEM;
6656         sec->sid = current_sid();
6657
6658         *ib_sec = sec;
6659         return 0;
6660 }
6661
6662 static void selinux_ib_free_security(void *ib_sec)
6663 {
6664         kfree(ib_sec);
6665 }
6666 #endif
6667
6668 #ifdef CONFIG_BPF_SYSCALL
6669 static int selinux_bpf(int cmd, union bpf_attr *attr,
6670                                      unsigned int size)
6671 {
6672         u32 sid = current_sid();
6673         int ret;
6674
6675         switch (cmd) {
6676         case BPF_MAP_CREATE:
6677                 ret = avc_has_perm(&selinux_state,
6678                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6679                                    NULL);
6680                 break;
6681         case BPF_PROG_LOAD:
6682                 ret = avc_has_perm(&selinux_state,
6683                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6684                                    NULL);
6685                 break;
6686         default:
6687                 ret = 0;
6688                 break;
6689         }
6690
6691         return ret;
6692 }
6693
6694 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6695 {
6696         u32 av = 0;
6697
6698         if (fmode & FMODE_READ)
6699                 av |= BPF__MAP_READ;
6700         if (fmode & FMODE_WRITE)
6701                 av |= BPF__MAP_WRITE;
6702         return av;
6703 }
6704
6705 /* This function will check the file pass through unix socket or binder to see
6706  * if it is a bpf related object. And apply correspinding checks on the bpf
6707  * object based on the type. The bpf maps and programs, not like other files and
6708  * socket, are using a shared anonymous inode inside the kernel as their inode.
6709  * So checking that inode cannot identify if the process have privilege to
6710  * access the bpf object and that's why we have to add this additional check in
6711  * selinux_file_receive and selinux_binder_transfer_files.
6712  */
6713 static int bpf_fd_pass(struct file *file, u32 sid)
6714 {
6715         struct bpf_security_struct *bpfsec;
6716         struct bpf_prog *prog;
6717         struct bpf_map *map;
6718         int ret;
6719
6720         if (file->f_op == &bpf_map_fops) {
6721                 map = file->private_data;
6722                 bpfsec = map->security;
6723                 ret = avc_has_perm(&selinux_state,
6724                                    sid, bpfsec->sid, SECCLASS_BPF,
6725                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6726                 if (ret)
6727                         return ret;
6728         } else if (file->f_op == &bpf_prog_fops) {
6729                 prog = file->private_data;
6730                 bpfsec = prog->aux->security;
6731                 ret = avc_has_perm(&selinux_state,
6732                                    sid, bpfsec->sid, SECCLASS_BPF,
6733                                    BPF__PROG_RUN, NULL);
6734                 if (ret)
6735                         return ret;
6736         }
6737         return 0;
6738 }
6739
6740 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6741 {
6742         u32 sid = current_sid();
6743         struct bpf_security_struct *bpfsec;
6744
6745         bpfsec = map->security;
6746         return avc_has_perm(&selinux_state,
6747                             sid, bpfsec->sid, SECCLASS_BPF,
6748                             bpf_map_fmode_to_av(fmode), NULL);
6749 }
6750
6751 static int selinux_bpf_prog(struct bpf_prog *prog)
6752 {
6753         u32 sid = current_sid();
6754         struct bpf_security_struct *bpfsec;
6755
6756         bpfsec = prog->aux->security;
6757         return avc_has_perm(&selinux_state,
6758                             sid, bpfsec->sid, SECCLASS_BPF,
6759                             BPF__PROG_RUN, NULL);
6760 }
6761
6762 static int selinux_bpf_map_alloc(struct bpf_map *map)
6763 {
6764         struct bpf_security_struct *bpfsec;
6765
6766         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6767         if (!bpfsec)
6768                 return -ENOMEM;
6769
6770         bpfsec->sid = current_sid();
6771         map->security = bpfsec;
6772
6773         return 0;
6774 }
6775
6776 static void selinux_bpf_map_free(struct bpf_map *map)
6777 {
6778         struct bpf_security_struct *bpfsec = map->security;
6779
6780         map->security = NULL;
6781         kfree(bpfsec);
6782 }
6783
6784 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6785 {
6786         struct bpf_security_struct *bpfsec;
6787
6788         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6789         if (!bpfsec)
6790                 return -ENOMEM;
6791
6792         bpfsec->sid = current_sid();
6793         aux->security = bpfsec;
6794
6795         return 0;
6796 }
6797
6798 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6799 {
6800         struct bpf_security_struct *bpfsec = aux->security;
6801
6802         aux->security = NULL;
6803         kfree(bpfsec);
6804 }
6805 #endif
6806
6807 static int selinux_lockdown(enum lockdown_reason what)
6808 {
6809         struct common_audit_data ad;
6810         u32 sid = current_sid();
6811         int invalid_reason = (what <= LOCKDOWN_NONE) ||
6812                              (what == LOCKDOWN_INTEGRITY_MAX) ||
6813                              (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6814
6815         if (WARN(invalid_reason, "Invalid lockdown reason")) {
6816                 audit_log(audit_context(),
6817                           GFP_ATOMIC, AUDIT_SELINUX_ERR,
6818                           "lockdown_reason=invalid");
6819                 return -EINVAL;
6820         }
6821
6822         ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6823         ad.u.reason = what;
6824
6825         if (what <= LOCKDOWN_INTEGRITY_MAX)
6826                 return avc_has_perm(&selinux_state,
6827                                     sid, sid, SECCLASS_LOCKDOWN,
6828                                     LOCKDOWN__INTEGRITY, &ad);
6829         else
6830                 return avc_has_perm(&selinux_state,
6831                                     sid, sid, SECCLASS_LOCKDOWN,
6832                                     LOCKDOWN__CONFIDENTIALITY, &ad);
6833 }
6834
6835 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6836         .lbs_cred = sizeof(struct task_security_struct),
6837         .lbs_file = sizeof(struct file_security_struct),
6838         .lbs_inode = sizeof(struct inode_security_struct),
6839         .lbs_ipc = sizeof(struct ipc_security_struct),
6840         .lbs_msg_msg = sizeof(struct msg_security_struct),
6841 };
6842
6843 #ifdef CONFIG_PERF_EVENTS
6844 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6845 {
6846         u32 requested, sid = current_sid();
6847
6848         if (type == PERF_SECURITY_OPEN)
6849                 requested = PERF_EVENT__OPEN;
6850         else if (type == PERF_SECURITY_CPU)
6851                 requested = PERF_EVENT__CPU;
6852         else if (type == PERF_SECURITY_KERNEL)
6853                 requested = PERF_EVENT__KERNEL;
6854         else if (type == PERF_SECURITY_TRACEPOINT)
6855                 requested = PERF_EVENT__TRACEPOINT;
6856         else
6857                 return -EINVAL;
6858
6859         return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6860                             requested, NULL);
6861 }
6862
6863 static int selinux_perf_event_alloc(struct perf_event *event)
6864 {
6865         struct perf_event_security_struct *perfsec;
6866
6867         perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6868         if (!perfsec)
6869                 return -ENOMEM;
6870
6871         perfsec->sid = current_sid();
6872         event->security = perfsec;
6873
6874         return 0;
6875 }
6876
6877 static void selinux_perf_event_free(struct perf_event *event)
6878 {
6879         struct perf_event_security_struct *perfsec = event->security;
6880
6881         event->security = NULL;
6882         kfree(perfsec);
6883 }
6884
6885 static int selinux_perf_event_read(struct perf_event *event)
6886 {
6887         struct perf_event_security_struct *perfsec = event->security;
6888         u32 sid = current_sid();
6889
6890         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6891                             SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6892 }
6893
6894 static int selinux_perf_event_write(struct perf_event *event)
6895 {
6896         struct perf_event_security_struct *perfsec = event->security;
6897         u32 sid = current_sid();
6898
6899         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6900                             SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6901 }
6902 #endif
6903
6904 /*
6905  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6906  * 1. any hooks that don't belong to (2.) or (3.) below,
6907  * 2. hooks that both access structures allocated by other hooks, and allocate
6908  *    structures that can be later accessed by other hooks (mostly "cloning"
6909  *    hooks),
6910  * 3. hooks that only allocate structures that can be later accessed by other
6911  *    hooks ("allocating" hooks).
6912  *
6913  * Please follow block comment delimiters in the list to keep this order.
6914  *
6915  * This ordering is needed for SELinux runtime disable to work at least somewhat
6916  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6917  * when disabling SELinux at runtime.
6918  */
6919 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6920         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6921         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6922         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6923         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6924
6925         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6926         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6927         LSM_HOOK_INIT(capget, selinux_capget),
6928         LSM_HOOK_INIT(capset, selinux_capset),
6929         LSM_HOOK_INIT(capable, selinux_capable),
6930         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6931         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6932         LSM_HOOK_INIT(syslog, selinux_syslog),
6933         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6934
6935         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6936
6937         LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6938         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6939         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6940
6941         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6942         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6943         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6944         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6945         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6946         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6947         LSM_HOOK_INIT(sb_mount, selinux_mount),
6948         LSM_HOOK_INIT(sb_umount, selinux_umount),
6949         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6950         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6951
6952         LSM_HOOK_INIT(move_mount, selinux_move_mount),
6953
6954         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6955         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6956
6957         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6958         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6959         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6960         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6961         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6962         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6963         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6964         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6965         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6966         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6967         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6968         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6969         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6970         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6971         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6972         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6973         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6974         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6975         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6976         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6977         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6978         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6979         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6980         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6981         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6982         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6983         LSM_HOOK_INIT(path_notify, selinux_path_notify),
6984
6985         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6986
6987         LSM_HOOK_INIT(file_permission, selinux_file_permission),
6988         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6989         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6990         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6991         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6992         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6993         LSM_HOOK_INIT(file_lock, selinux_file_lock),
6994         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6995         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6996         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6997         LSM_HOOK_INIT(file_receive, selinux_file_receive),
6998
6999         LSM_HOOK_INIT(file_open, selinux_file_open),
7000
7001         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7002         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7003         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7004         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7005         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7006         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7007         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7008         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7009         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7010         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7011         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7012         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7013         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7014         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7015         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7016         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7017         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7018         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7019         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7020         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7021         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7022         LSM_HOOK_INIT(task_kill, selinux_task_kill),
7023         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7024
7025         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7026         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7027
7028         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7029         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7030         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7031         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7032
7033         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7034         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7035         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7036
7037         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7038         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7039         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7040
7041         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7042
7043         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7044         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7045
7046         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7047         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7048         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7049         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7050         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7051         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7052
7053         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7054         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7055
7056         LSM_HOOK_INIT(socket_create, selinux_socket_create),
7057         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7058         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7059         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7060         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7061         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7062         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7063         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7064         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7065         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7066         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7067         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7068         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7069         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7070         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7071         LSM_HOOK_INIT(socket_getpeersec_stream,
7072                         selinux_socket_getpeersec_stream),
7073         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7074         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7075         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7076         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7077         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7078         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7079         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7080         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7081         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7082         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7083         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7084         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7085         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7086         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7087         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7088         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7089         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7090         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7091         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7092         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7093 #ifdef CONFIG_SECURITY_INFINIBAND
7094         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7095         LSM_HOOK_INIT(ib_endport_manage_subnet,
7096                       selinux_ib_endport_manage_subnet),
7097         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7098 #endif
7099 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7100         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7101         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7102         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7103         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7104         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7105         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7106                         selinux_xfrm_state_pol_flow_match),
7107         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7108 #endif
7109
7110 #ifdef CONFIG_KEYS
7111         LSM_HOOK_INIT(key_free, selinux_key_free),
7112         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7113         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7114 #endif
7115
7116 #ifdef CONFIG_AUDIT
7117         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7118         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7119         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7120 #endif
7121
7122 #ifdef CONFIG_BPF_SYSCALL
7123         LSM_HOOK_INIT(bpf, selinux_bpf),
7124         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7125         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7126         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7127         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7128 #endif
7129
7130 #ifdef CONFIG_PERF_EVENTS
7131         LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7132         LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7133         LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7134         LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7135 #endif
7136
7137         LSM_HOOK_INIT(locked_down, selinux_lockdown),
7138
7139         /*
7140          * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7141          */
7142         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7143         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7144         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7145         LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7146 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7147         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7148 #endif
7149
7150         /*
7151          * PUT "ALLOCATING" HOOKS HERE
7152          */
7153         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7154         LSM_HOOK_INIT(msg_queue_alloc_security,
7155                       selinux_msg_queue_alloc_security),
7156         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7157         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7158         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7159         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7160         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7161         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7162         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7163         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7164 #ifdef CONFIG_SECURITY_INFINIBAND
7165         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7166 #endif
7167 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7168         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7169         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7170         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7171                       selinux_xfrm_state_alloc_acquire),
7172 #endif
7173 #ifdef CONFIG_KEYS
7174         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7175 #endif
7176 #ifdef CONFIG_AUDIT
7177         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7178 #endif
7179 #ifdef CONFIG_BPF_SYSCALL
7180         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7181         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7182 #endif
7183 #ifdef CONFIG_PERF_EVENTS
7184         LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7185 #endif
7186 };
7187
7188 static __init int selinux_init(void)
7189 {
7190         pr_info("SELinux:  Initializing.\n");
7191
7192         memset(&selinux_state, 0, sizeof(selinux_state));
7193         enforcing_set(&selinux_state, selinux_enforcing_boot);
7194         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7195         selinux_ss_init(&selinux_state.ss);
7196         selinux_avc_init(&selinux_state.avc);
7197         mutex_init(&selinux_state.status_lock);
7198
7199         /* Set the security state for the initial task. */
7200         cred_init_security();
7201
7202         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7203
7204         avc_init();
7205
7206         avtab_cache_init();
7207
7208         ebitmap_cache_init();
7209
7210         hashtab_cache_init();
7211
7212         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7213
7214         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7215                 panic("SELinux: Unable to register AVC netcache callback\n");
7216
7217         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7218                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7219
7220         if (selinux_enforcing_boot)
7221                 pr_debug("SELinux:  Starting in enforcing mode\n");
7222         else
7223                 pr_debug("SELinux:  Starting in permissive mode\n");
7224
7225         fs_validate_description("selinux", selinux_fs_parameters);
7226
7227         return 0;
7228 }
7229
7230 static void delayed_superblock_init(struct super_block *sb, void *unused)
7231 {
7232         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7233 }
7234
7235 void selinux_complete_init(void)
7236 {
7237         pr_debug("SELinux:  Completing initialization.\n");
7238
7239         /* Set up any superblocks initialized prior to the policy load. */
7240         pr_debug("SELinux:  Setting up existing superblocks.\n");
7241         iterate_supers(delayed_superblock_init, NULL);
7242 }
7243
7244 /* SELinux requires early initialization in order to label
7245    all processes and objects when they are created. */
7246 DEFINE_LSM(selinux) = {
7247         .name = "selinux",
7248         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7249         .enabled = &selinux_enabled_boot,
7250         .blobs = &selinux_blob_sizes,
7251         .init = selinux_init,
7252 };
7253
7254 #if defined(CONFIG_NETFILTER)
7255
7256 static const struct nf_hook_ops selinux_nf_ops[] = {
7257         {
7258                 .hook =         selinux_ipv4_postroute,
7259                 .pf =           NFPROTO_IPV4,
7260                 .hooknum =      NF_INET_POST_ROUTING,
7261                 .priority =     NF_IP_PRI_SELINUX_LAST,
7262         },
7263         {
7264                 .hook =         selinux_ipv4_forward,
7265                 .pf =           NFPROTO_IPV4,
7266                 .hooknum =      NF_INET_FORWARD,
7267                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7268         },
7269         {
7270                 .hook =         selinux_ipv4_output,
7271                 .pf =           NFPROTO_IPV4,
7272                 .hooknum =      NF_INET_LOCAL_OUT,
7273                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7274         },
7275 #if IS_ENABLED(CONFIG_IPV6)
7276         {
7277                 .hook =         selinux_ipv6_postroute,
7278                 .pf =           NFPROTO_IPV6,
7279                 .hooknum =      NF_INET_POST_ROUTING,
7280                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7281         },
7282         {
7283                 .hook =         selinux_ipv6_forward,
7284                 .pf =           NFPROTO_IPV6,
7285                 .hooknum =      NF_INET_FORWARD,
7286                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7287         },
7288         {
7289                 .hook =         selinux_ipv6_output,
7290                 .pf =           NFPROTO_IPV6,
7291                 .hooknum =      NF_INET_LOCAL_OUT,
7292                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7293         },
7294 #endif  /* IPV6 */
7295 };
7296
7297 static int __net_init selinux_nf_register(struct net *net)
7298 {
7299         return nf_register_net_hooks(net, selinux_nf_ops,
7300                                      ARRAY_SIZE(selinux_nf_ops));
7301 }
7302
7303 static void __net_exit selinux_nf_unregister(struct net *net)
7304 {
7305         nf_unregister_net_hooks(net, selinux_nf_ops,
7306                                 ARRAY_SIZE(selinux_nf_ops));
7307 }
7308
7309 static struct pernet_operations selinux_net_ops = {
7310         .init = selinux_nf_register,
7311         .exit = selinux_nf_unregister,
7312 };
7313
7314 static int __init selinux_nf_ip_init(void)
7315 {
7316         int err;
7317
7318         if (!selinux_enabled_boot)
7319                 return 0;
7320
7321         pr_debug("SELinux:  Registering netfilter hooks\n");
7322
7323         err = register_pernet_subsys(&selinux_net_ops);
7324         if (err)
7325                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7326
7327         return 0;
7328 }
7329 __initcall(selinux_nf_ip_init);
7330
7331 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7332 static void selinux_nf_ip_exit(void)
7333 {
7334         pr_debug("SELinux:  Unregistering netfilter hooks\n");
7335
7336         unregister_pernet_subsys(&selinux_net_ops);
7337 }
7338 #endif
7339
7340 #else /* CONFIG_NETFILTER */
7341
7342 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7343 #define selinux_nf_ip_exit()
7344 #endif
7345
7346 #endif /* CONFIG_NETFILTER */
7347
7348 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7349 int selinux_disable(struct selinux_state *state)
7350 {
7351         if (selinux_initialized(state)) {
7352                 /* Not permitted after initial policy load. */
7353                 return -EINVAL;
7354         }
7355
7356         if (selinux_disabled(state)) {
7357                 /* Only do this once. */
7358                 return -EINVAL;
7359         }
7360
7361         selinux_mark_disabled(state);
7362
7363         pr_info("SELinux:  Disabled at runtime.\n");
7364
7365         /*
7366          * Unregister netfilter hooks.
7367          * Must be done before security_delete_hooks() to avoid breaking
7368          * runtime disable.
7369          */
7370         selinux_nf_ip_exit();
7371
7372         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7373
7374         /* Try to destroy the avc node cache */
7375         avc_disable();
7376
7377         /* Unregister selinuxfs. */
7378         exit_sel_fs();
7379
7380         return 0;
7381 }
7382 #endif