0426ce3c19e907b53ad87fb0936c9603b2cbf22b
[platform/kernel/linux-rpi.git] / security / selinux / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *            Chris Vance, <cvance@nai.com>
9  *            Wayne Salamon, <wsalamon@nai.com>
10  *            James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *                                         Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *                          <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *      Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>           /* for Unix socket types */
73 #include <net/af_unix.h>        /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>   /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105
106 struct selinux_state selinux_state;
107
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot;
113
114 static int __init enforcing_setup(char *str)
115 {
116         unsigned long enforcing;
117         if (!kstrtoul(str, 0, &enforcing))
118                 selinux_enforcing_boot = enforcing ? 1 : 0;
119         return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125
126 int selinux_enabled __lsm_ro_after_init = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130         unsigned long enabled;
131         if (!kstrtoul(str, 0, &enabled))
132                 selinux_enabled = enabled ? 1 : 0;
133         return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot))
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147         return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150
151 /**
152  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153  *
154  * Description:
155  * This function checks the SECMARK reference counter to see if any SECMARK
156  * targets are currently configured, if the reference counter is greater than
157  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
158  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
159  * policy capability is enabled, SECMARK is always considered enabled.
160  *
161  */
162 static int selinux_secmark_enabled(void)
163 {
164         return (selinux_policycap_alwaysnetwork() ||
165                 atomic_read(&selinux_secmark_refcount));
166 }
167
168 /**
169  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170  *
171  * Description:
172  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
173  * (1) if any are enabled or false (0) if neither are enabled.  If the
174  * always_check_network policy capability is enabled, peer labeling
175  * is always considered enabled.
176  *
177  */
178 static int selinux_peerlbl_enabled(void)
179 {
180         return (selinux_policycap_alwaysnetwork() ||
181                 netlbl_enabled() || selinux_xfrm_enabled());
182 }
183
184 static int selinux_netcache_avc_callback(u32 event)
185 {
186         if (event == AVC_CALLBACK_RESET) {
187                 sel_netif_flush();
188                 sel_netnode_flush();
189                 sel_netport_flush();
190                 synchronize_net();
191         }
192         return 0;
193 }
194
195 static int selinux_lsm_notifier_avc_callback(u32 event)
196 {
197         if (event == AVC_CALLBACK_RESET) {
198                 sel_ib_pkey_flush();
199                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200         }
201
202         return 0;
203 }
204
205 /*
206  * initialise the security for the init task
207  */
208 static void cred_init_security(void)
209 {
210         struct cred *cred = (struct cred *) current->real_cred;
211         struct task_security_struct *tsec;
212
213         tsec = selinux_cred(cred);
214         tsec->osid = tsec->sid = SECINITSID_KERNEL;
215 }
216
217 /*
218  * get the security ID of a set of credentials
219  */
220 static inline u32 cred_sid(const struct cred *cred)
221 {
222         const struct task_security_struct *tsec;
223
224         tsec = selinux_cred(cred);
225         return tsec->sid;
226 }
227
228 /*
229  * get the objective security ID of a task
230  */
231 static inline u32 task_sid(const struct task_struct *task)
232 {
233         u32 sid;
234
235         rcu_read_lock();
236         sid = cred_sid(__task_cred(task));
237         rcu_read_unlock();
238         return sid;
239 }
240
241 /* Allocate and free functions for each kind of security blob. */
242
243 static int inode_alloc_security(struct inode *inode)
244 {
245         struct inode_security_struct *isec = selinux_inode(inode);
246         u32 sid = current_sid();
247
248         spin_lock_init(&isec->lock);
249         INIT_LIST_HEAD(&isec->list);
250         isec->inode = inode;
251         isec->sid = SECINITSID_UNLABELED;
252         isec->sclass = SECCLASS_FILE;
253         isec->task_sid = sid;
254         isec->initialized = LABEL_INVALID;
255
256         return 0;
257 }
258
259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260
261 /*
262  * Try reloading inode security labels that have been marked as invalid.  The
263  * @may_sleep parameter indicates when sleeping and thus reloading labels is
264  * allowed; when set to false, returns -ECHILD when the label is
265  * invalid.  The @dentry parameter should be set to a dentry of the inode.
266  */
267 static int __inode_security_revalidate(struct inode *inode,
268                                        struct dentry *dentry,
269                                        bool may_sleep)
270 {
271         struct inode_security_struct *isec = selinux_inode(inode);
272
273         might_sleep_if(may_sleep);
274
275         if (selinux_state.initialized &&
276             isec->initialized != LABEL_INITIALIZED) {
277                 if (!may_sleep)
278                         return -ECHILD;
279
280                 /*
281                  * Try reloading the inode security label.  This will fail if
282                  * @opt_dentry is NULL and no dentry for this inode can be
283                  * found; in that case, continue using the old label.
284                  */
285                 inode_doinit_with_dentry(inode, dentry);
286         }
287         return 0;
288 }
289
290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291 {
292         return selinux_inode(inode);
293 }
294
295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296 {
297         int error;
298
299         error = __inode_security_revalidate(inode, NULL, !rcu);
300         if (error)
301                 return ERR_PTR(error);
302         return selinux_inode(inode);
303 }
304
305 /*
306  * Get the security label of an inode.
307  */
308 static struct inode_security_struct *inode_security(struct inode *inode)
309 {
310         __inode_security_revalidate(inode, NULL, true);
311         return selinux_inode(inode);
312 }
313
314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315 {
316         struct inode *inode = d_backing_inode(dentry);
317
318         return selinux_inode(inode);
319 }
320
321 /*
322  * Get the security label of a dentry's backing inode.
323  */
324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325 {
326         struct inode *inode = d_backing_inode(dentry);
327
328         __inode_security_revalidate(inode, dentry, true);
329         return selinux_inode(inode);
330 }
331
332 static void inode_free_security(struct inode *inode)
333 {
334         struct inode_security_struct *isec = selinux_inode(inode);
335         struct superblock_security_struct *sbsec;
336
337         if (!isec)
338                 return;
339         sbsec = inode->i_sb->s_security;
340         /*
341          * As not all inode security structures are in a list, we check for
342          * empty list outside of the lock to make sure that we won't waste
343          * time taking a lock doing nothing.
344          *
345          * The list_del_init() function can be safely called more than once.
346          * It should not be possible for this function to be called with
347          * concurrent list_add(), but for better safety against future changes
348          * in the code, we use list_empty_careful() here.
349          */
350         if (!list_empty_careful(&isec->list)) {
351                 spin_lock(&sbsec->isec_lock);
352                 list_del_init(&isec->list);
353                 spin_unlock(&sbsec->isec_lock);
354         }
355 }
356
357 static int file_alloc_security(struct file *file)
358 {
359         struct file_security_struct *fsec = selinux_file(file);
360         u32 sid = current_sid();
361
362         fsec->sid = sid;
363         fsec->fown_sid = sid;
364
365         return 0;
366 }
367
368 static int superblock_alloc_security(struct super_block *sb)
369 {
370         struct superblock_security_struct *sbsec;
371
372         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373         if (!sbsec)
374                 return -ENOMEM;
375
376         mutex_init(&sbsec->lock);
377         INIT_LIST_HEAD(&sbsec->isec_head);
378         spin_lock_init(&sbsec->isec_lock);
379         sbsec->sb = sb;
380         sbsec->sid = SECINITSID_UNLABELED;
381         sbsec->def_sid = SECINITSID_FILE;
382         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383         sb->s_security = sbsec;
384
385         return 0;
386 }
387
388 static void superblock_free_security(struct super_block *sb)
389 {
390         struct superblock_security_struct *sbsec = sb->s_security;
391         sb->s_security = NULL;
392         kfree(sbsec);
393 }
394
395 struct selinux_mnt_opts {
396         const char *fscontext, *context, *rootcontext, *defcontext;
397 };
398
399 static void selinux_free_mnt_opts(void *mnt_opts)
400 {
401         struct selinux_mnt_opts *opts = mnt_opts;
402         kfree(opts->fscontext);
403         kfree(opts->context);
404         kfree(opts->rootcontext);
405         kfree(opts->defcontext);
406         kfree(opts);
407 }
408
409 static inline int inode_doinit(struct inode *inode)
410 {
411         return inode_doinit_with_dentry(inode, NULL);
412 }
413
414 enum {
415         Opt_error = -1,
416         Opt_context = 0,
417         Opt_defcontext = 1,
418         Opt_fscontext = 2,
419         Opt_rootcontext = 3,
420         Opt_seclabel = 4,
421 };
422
423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424 static struct {
425         const char *name;
426         int len;
427         int opt;
428         bool has_arg;
429 } tokens[] = {
430         A(context, true),
431         A(fscontext, true),
432         A(defcontext, true),
433         A(rootcontext, true),
434         A(seclabel, false),
435 };
436 #undef A
437
438 static int match_opt_prefix(char *s, int l, char **arg)
439 {
440         int i;
441
442         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443                 size_t len = tokens[i].len;
444                 if (len > l || memcmp(s, tokens[i].name, len))
445                         continue;
446                 if (tokens[i].has_arg) {
447                         if (len == l || s[len] != '=')
448                                 continue;
449                         *arg = s + len + 1;
450                 } else if (len != l)
451                         continue;
452                 return tokens[i].opt;
453         }
454         return Opt_error;
455 }
456
457 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
458
459 static int may_context_mount_sb_relabel(u32 sid,
460                         struct superblock_security_struct *sbsec,
461                         const struct cred *cred)
462 {
463         const struct task_security_struct *tsec = selinux_cred(cred);
464         int rc;
465
466         rc = avc_has_perm(&selinux_state,
467                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468                           FILESYSTEM__RELABELFROM, NULL);
469         if (rc)
470                 return rc;
471
472         rc = avc_has_perm(&selinux_state,
473                           tsec->sid, sid, SECCLASS_FILESYSTEM,
474                           FILESYSTEM__RELABELTO, NULL);
475         return rc;
476 }
477
478 static int may_context_mount_inode_relabel(u32 sid,
479                         struct superblock_security_struct *sbsec,
480                         const struct cred *cred)
481 {
482         const struct task_security_struct *tsec = selinux_cred(cred);
483         int rc;
484         rc = avc_has_perm(&selinux_state,
485                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486                           FILESYSTEM__RELABELFROM, NULL);
487         if (rc)
488                 return rc;
489
490         rc = avc_has_perm(&selinux_state,
491                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
492                           FILESYSTEM__ASSOCIATE, NULL);
493         return rc;
494 }
495
496 static int selinux_is_genfs_special_handling(struct super_block *sb)
497 {
498         /* Special handling. Genfs but also in-core setxattr handler */
499         return  !strcmp(sb->s_type->name, "sysfs") ||
500                 !strcmp(sb->s_type->name, "pstore") ||
501                 !strcmp(sb->s_type->name, "debugfs") ||
502                 !strcmp(sb->s_type->name, "tracefs") ||
503                 !strcmp(sb->s_type->name, "rootfs") ||
504                 (selinux_policycap_cgroupseclabel() &&
505                  (!strcmp(sb->s_type->name, "cgroup") ||
506                   !strcmp(sb->s_type->name, "cgroup2")));
507 }
508
509 static int selinux_is_sblabel_mnt(struct super_block *sb)
510 {
511         struct superblock_security_struct *sbsec = sb->s_security;
512
513         /*
514          * IMPORTANT: Double-check logic in this function when adding a new
515          * SECURITY_FS_USE_* definition!
516          */
517         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518
519         switch (sbsec->behavior) {
520         case SECURITY_FS_USE_XATTR:
521         case SECURITY_FS_USE_TRANS:
522         case SECURITY_FS_USE_TASK:
523         case SECURITY_FS_USE_NATIVE:
524                 return 1;
525
526         case SECURITY_FS_USE_GENFS:
527                 return selinux_is_genfs_special_handling(sb);
528
529         /* Never allow relabeling on context mounts */
530         case SECURITY_FS_USE_MNTPOINT:
531         case SECURITY_FS_USE_NONE:
532         default:
533                 return 0;
534         }
535 }
536
537 static int sb_finish_set_opts(struct super_block *sb)
538 {
539         struct superblock_security_struct *sbsec = sb->s_security;
540         struct dentry *root = sb->s_root;
541         struct inode *root_inode = d_backing_inode(root);
542         int rc = 0;
543
544         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545                 /* Make sure that the xattr handler exists and that no
546                    error other than -ENODATA is returned by getxattr on
547                    the root directory.  -ENODATA is ok, as this may be
548                    the first boot of the SELinux kernel before we have
549                    assigned xattr values to the filesystem. */
550                 if (!(root_inode->i_opflags & IOP_XATTR)) {
551                         pr_warn("SELinux: (dev %s, type %s) has no "
552                                "xattr support\n", sb->s_id, sb->s_type->name);
553                         rc = -EOPNOTSUPP;
554                         goto out;
555                 }
556
557                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558                 if (rc < 0 && rc != -ENODATA) {
559                         if (rc == -EOPNOTSUPP)
560                                 pr_warn("SELinux: (dev %s, type "
561                                        "%s) has no security xattr handler\n",
562                                        sb->s_id, sb->s_type->name);
563                         else
564                                 pr_warn("SELinux: (dev %s, type "
565                                        "%s) getxattr errno %d\n", sb->s_id,
566                                        sb->s_type->name, -rc);
567                         goto out;
568                 }
569         }
570
571         sbsec->flags |= SE_SBINITIALIZED;
572
573         /*
574          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
575          * leave the flag untouched because sb_clone_mnt_opts might be handing
576          * us a superblock that needs the flag to be cleared.
577          */
578         if (selinux_is_sblabel_mnt(sb))
579                 sbsec->flags |= SBLABEL_MNT;
580         else
581                 sbsec->flags &= ~SBLABEL_MNT;
582
583         /* Initialize the root inode. */
584         rc = inode_doinit_with_dentry(root_inode, root);
585
586         /* Initialize any other inodes associated with the superblock, e.g.
587            inodes created prior to initial policy load or inodes created
588            during get_sb by a pseudo filesystem that directly
589            populates itself. */
590         spin_lock(&sbsec->isec_lock);
591         while (!list_empty(&sbsec->isec_head)) {
592                 struct inode_security_struct *isec =
593                                 list_first_entry(&sbsec->isec_head,
594                                            struct inode_security_struct, list);
595                 struct inode *inode = isec->inode;
596                 list_del_init(&isec->list);
597                 spin_unlock(&sbsec->isec_lock);
598                 inode = igrab(inode);
599                 if (inode) {
600                         if (!IS_PRIVATE(inode))
601                                 inode_doinit(inode);
602                         iput(inode);
603                 }
604                 spin_lock(&sbsec->isec_lock);
605         }
606         spin_unlock(&sbsec->isec_lock);
607 out:
608         return rc;
609 }
610
611 static int bad_option(struct superblock_security_struct *sbsec, char flag,
612                       u32 old_sid, u32 new_sid)
613 {
614         char mnt_flags = sbsec->flags & SE_MNTMASK;
615
616         /* check if the old mount command had the same options */
617         if (sbsec->flags & SE_SBINITIALIZED)
618                 if (!(sbsec->flags & flag) ||
619                     (old_sid != new_sid))
620                         return 1;
621
622         /* check if we were passed the same options twice,
623          * aka someone passed context=a,context=b
624          */
625         if (!(sbsec->flags & SE_SBINITIALIZED))
626                 if (mnt_flags & flag)
627                         return 1;
628         return 0;
629 }
630
631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632 {
633         int rc = security_context_str_to_sid(&selinux_state, s,
634                                              sid, GFP_KERNEL);
635         if (rc)
636                 pr_warn("SELinux: security_context_str_to_sid"
637                        "(%s) failed for (dev %s, type %s) errno=%d\n",
638                        s, sb->s_id, sb->s_type->name, rc);
639         return rc;
640 }
641
642 /*
643  * Allow filesystems with binary mount data to explicitly set mount point
644  * labeling information.
645  */
646 static int selinux_set_mnt_opts(struct super_block *sb,
647                                 void *mnt_opts,
648                                 unsigned long kern_flags,
649                                 unsigned long *set_kern_flags)
650 {
651         const struct cred *cred = current_cred();
652         struct superblock_security_struct *sbsec = sb->s_security;
653         struct dentry *root = sbsec->sb->s_root;
654         struct selinux_mnt_opts *opts = mnt_opts;
655         struct inode_security_struct *root_isec;
656         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657         u32 defcontext_sid = 0;
658         int rc = 0;
659
660         mutex_lock(&sbsec->lock);
661
662         if (!selinux_state.initialized) {
663                 if (!opts) {
664                         /* Defer initialization until selinux_complete_init,
665                            after the initial policy is loaded and the security
666                            server is ready to handle calls. */
667                         goto out;
668                 }
669                 rc = -EINVAL;
670                 pr_warn("SELinux: Unable to set superblock options "
671                         "before the security server is initialized\n");
672                 goto out;
673         }
674         if (kern_flags && !set_kern_flags) {
675                 /* Specifying internal flags without providing a place to
676                  * place the results is not allowed */
677                 rc = -EINVAL;
678                 goto out;
679         }
680
681         /*
682          * Binary mount data FS will come through this function twice.  Once
683          * from an explicit call and once from the generic calls from the vfs.
684          * Since the generic VFS calls will not contain any security mount data
685          * we need to skip the double mount verification.
686          *
687          * This does open a hole in which we will not notice if the first
688          * mount using this sb set explict options and a second mount using
689          * this sb does not set any security options.  (The first options
690          * will be used for both mounts)
691          */
692         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693             && !opts)
694                 goto out;
695
696         root_isec = backing_inode_security_novalidate(root);
697
698         /*
699          * parse the mount options, check if they are valid sids.
700          * also check if someone is trying to mount the same sb more
701          * than once with different security options.
702          */
703         if (opts) {
704                 if (opts->fscontext) {
705                         rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706                         if (rc)
707                                 goto out;
708                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709                                         fscontext_sid))
710                                 goto out_double_mount;
711                         sbsec->flags |= FSCONTEXT_MNT;
712                 }
713                 if (opts->context) {
714                         rc = parse_sid(sb, opts->context, &context_sid);
715                         if (rc)
716                                 goto out;
717                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718                                         context_sid))
719                                 goto out_double_mount;
720                         sbsec->flags |= CONTEXT_MNT;
721                 }
722                 if (opts->rootcontext) {
723                         rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724                         if (rc)
725                                 goto out;
726                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727                                         rootcontext_sid))
728                                 goto out_double_mount;
729                         sbsec->flags |= ROOTCONTEXT_MNT;
730                 }
731                 if (opts->defcontext) {
732                         rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733                         if (rc)
734                                 goto out;
735                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736                                         defcontext_sid))
737                                 goto out_double_mount;
738                         sbsec->flags |= DEFCONTEXT_MNT;
739                 }
740         }
741
742         if (sbsec->flags & SE_SBINITIALIZED) {
743                 /* previously mounted with options, but not on this attempt? */
744                 if ((sbsec->flags & SE_MNTMASK) && !opts)
745                         goto out_double_mount;
746                 rc = 0;
747                 goto out;
748         }
749
750         if (strcmp(sb->s_type->name, "proc") == 0)
751                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752
753         if (!strcmp(sb->s_type->name, "debugfs") ||
754             !strcmp(sb->s_type->name, "tracefs") ||
755             !strcmp(sb->s_type->name, "pstore"))
756                 sbsec->flags |= SE_SBGENFS;
757
758         if (!strcmp(sb->s_type->name, "sysfs") ||
759             !strcmp(sb->s_type->name, "cgroup") ||
760             !strcmp(sb->s_type->name, "cgroup2"))
761                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
762
763         if (!sbsec->behavior) {
764                 /*
765                  * Determine the labeling behavior to use for this
766                  * filesystem type.
767                  */
768                 rc = security_fs_use(&selinux_state, sb);
769                 if (rc) {
770                         pr_warn("%s: security_fs_use(%s) returned %d\n",
771                                         __func__, sb->s_type->name, rc);
772                         goto out;
773                 }
774         }
775
776         /*
777          * If this is a user namespace mount and the filesystem type is not
778          * explicitly whitelisted, then no contexts are allowed on the command
779          * line and security labels must be ignored.
780          */
781         if (sb->s_user_ns != &init_user_ns &&
782             strcmp(sb->s_type->name, "tmpfs") &&
783             strcmp(sb->s_type->name, "ramfs") &&
784             strcmp(sb->s_type->name, "devpts")) {
785                 if (context_sid || fscontext_sid || rootcontext_sid ||
786                     defcontext_sid) {
787                         rc = -EACCES;
788                         goto out;
789                 }
790                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
791                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792                         rc = security_transition_sid(&selinux_state,
793                                                      current_sid(),
794                                                      current_sid(),
795                                                      SECCLASS_FILE, NULL,
796                                                      &sbsec->mntpoint_sid);
797                         if (rc)
798                                 goto out;
799                 }
800                 goto out_set_opts;
801         }
802
803         /* sets the context of the superblock for the fs being mounted. */
804         if (fscontext_sid) {
805                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
806                 if (rc)
807                         goto out;
808
809                 sbsec->sid = fscontext_sid;
810         }
811
812         /*
813          * Switch to using mount point labeling behavior.
814          * sets the label used on all file below the mountpoint, and will set
815          * the superblock context if not already set.
816          */
817         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
818                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
819                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
820         }
821
822         if (context_sid) {
823                 if (!fscontext_sid) {
824                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
825                                                           cred);
826                         if (rc)
827                                 goto out;
828                         sbsec->sid = context_sid;
829                 } else {
830                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
831                                                              cred);
832                         if (rc)
833                                 goto out;
834                 }
835                 if (!rootcontext_sid)
836                         rootcontext_sid = context_sid;
837
838                 sbsec->mntpoint_sid = context_sid;
839                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
840         }
841
842         if (rootcontext_sid) {
843                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
844                                                      cred);
845                 if (rc)
846                         goto out;
847
848                 root_isec->sid = rootcontext_sid;
849                 root_isec->initialized = LABEL_INITIALIZED;
850         }
851
852         if (defcontext_sid) {
853                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
854                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
855                         rc = -EINVAL;
856                         pr_warn("SELinux: defcontext option is "
857                                "invalid for this filesystem type\n");
858                         goto out;
859                 }
860
861                 if (defcontext_sid != sbsec->def_sid) {
862                         rc = may_context_mount_inode_relabel(defcontext_sid,
863                                                              sbsec, cred);
864                         if (rc)
865                                 goto out;
866                 }
867
868                 sbsec->def_sid = defcontext_sid;
869         }
870
871 out_set_opts:
872         rc = sb_finish_set_opts(sb);
873 out:
874         mutex_unlock(&sbsec->lock);
875         return rc;
876 out_double_mount:
877         rc = -EINVAL;
878         pr_warn("SELinux: mount invalid.  Same superblock, different "
879                "security settings for (dev %s, type %s)\n", sb->s_id,
880                sb->s_type->name);
881         goto out;
882 }
883
884 static int selinux_cmp_sb_context(const struct super_block *oldsb,
885                                     const struct super_block *newsb)
886 {
887         struct superblock_security_struct *old = oldsb->s_security;
888         struct superblock_security_struct *new = newsb->s_security;
889         char oldflags = old->flags & SE_MNTMASK;
890         char newflags = new->flags & SE_MNTMASK;
891
892         if (oldflags != newflags)
893                 goto mismatch;
894         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
895                 goto mismatch;
896         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
897                 goto mismatch;
898         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
899                 goto mismatch;
900         if (oldflags & ROOTCONTEXT_MNT) {
901                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
902                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
903                 if (oldroot->sid != newroot->sid)
904                         goto mismatch;
905         }
906         return 0;
907 mismatch:
908         pr_warn("SELinux: mount invalid.  Same superblock, "
909                             "different security settings for (dev %s, "
910                             "type %s)\n", newsb->s_id, newsb->s_type->name);
911         return -EBUSY;
912 }
913
914 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
915                                         struct super_block *newsb,
916                                         unsigned long kern_flags,
917                                         unsigned long *set_kern_flags)
918 {
919         int rc = 0;
920         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
921         struct superblock_security_struct *newsbsec = newsb->s_security;
922
923         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
924         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
925         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
926
927         /*
928          * if the parent was able to be mounted it clearly had no special lsm
929          * mount options.  thus we can safely deal with this superblock later
930          */
931         if (!selinux_state.initialized)
932                 return 0;
933
934         /*
935          * Specifying internal flags without providing a place to
936          * place the results is not allowed.
937          */
938         if (kern_flags && !set_kern_flags)
939                 return -EINVAL;
940
941         /* how can we clone if the old one wasn't set up?? */
942         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944         /* if fs is reusing a sb, make sure that the contexts match */
945         if (newsbsec->flags & SE_SBINITIALIZED) {
946                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
947                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
948                 return selinux_cmp_sb_context(oldsb, newsb);
949         }
950
951         mutex_lock(&newsbsec->lock);
952
953         newsbsec->flags = oldsbsec->flags;
954
955         newsbsec->sid = oldsbsec->sid;
956         newsbsec->def_sid = oldsbsec->def_sid;
957         newsbsec->behavior = oldsbsec->behavior;
958
959         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
960                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
961                 rc = security_fs_use(&selinux_state, newsb);
962                 if (rc)
963                         goto out;
964         }
965
966         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
967                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
968                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
969         }
970
971         if (set_context) {
972                 u32 sid = oldsbsec->mntpoint_sid;
973
974                 if (!set_fscontext)
975                         newsbsec->sid = sid;
976                 if (!set_rootcontext) {
977                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978                         newisec->sid = sid;
979                 }
980                 newsbsec->mntpoint_sid = sid;
981         }
982         if (set_rootcontext) {
983                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
984                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
985
986                 newisec->sid = oldisec->sid;
987         }
988
989         sb_finish_set_opts(newsb);
990 out:
991         mutex_unlock(&newsbsec->lock);
992         return rc;
993 }
994
995 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
996 {
997         struct selinux_mnt_opts *opts = *mnt_opts;
998
999         if (token == Opt_seclabel)      /* eaten and completely ignored */
1000                 return 0;
1001
1002         if (!opts) {
1003                 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004                 if (!opts)
1005                         return -ENOMEM;
1006                 *mnt_opts = opts;
1007         }
1008         if (!s)
1009                 return -ENOMEM;
1010         switch (token) {
1011         case Opt_context:
1012                 if (opts->context || opts->defcontext)
1013                         goto Einval;
1014                 opts->context = s;
1015                 break;
1016         case Opt_fscontext:
1017                 if (opts->fscontext)
1018                         goto Einval;
1019                 opts->fscontext = s;
1020                 break;
1021         case Opt_rootcontext:
1022                 if (opts->rootcontext)
1023                         goto Einval;
1024                 opts->rootcontext = s;
1025                 break;
1026         case Opt_defcontext:
1027                 if (opts->context || opts->defcontext)
1028                         goto Einval;
1029                 opts->defcontext = s;
1030                 break;
1031         }
1032         return 0;
1033 Einval:
1034         pr_warn(SEL_MOUNT_FAIL_MSG);
1035         return -EINVAL;
1036 }
1037
1038 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039                                void **mnt_opts)
1040 {
1041         int token = Opt_error;
1042         int rc, i;
1043
1044         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045                 if (strcmp(option, tokens[i].name) == 0) {
1046                         token = tokens[i].opt;
1047                         break;
1048                 }
1049         }
1050
1051         if (token == Opt_error)
1052                 return -EINVAL;
1053
1054         if (token != Opt_seclabel) {
1055                 val = kmemdup_nul(val, len, GFP_KERNEL);
1056                 if (!val) {
1057                         rc = -ENOMEM;
1058                         goto free_opt;
1059                 }
1060         }
1061         rc = selinux_add_opt(token, val, mnt_opts);
1062         if (unlikely(rc)) {
1063                 kfree(val);
1064                 goto free_opt;
1065         }
1066         return rc;
1067
1068 free_opt:
1069         if (*mnt_opts) {
1070                 selinux_free_mnt_opts(*mnt_opts);
1071                 *mnt_opts = NULL;
1072         }
1073         return rc;
1074 }
1075
1076 static int show_sid(struct seq_file *m, u32 sid)
1077 {
1078         char *context = NULL;
1079         u32 len;
1080         int rc;
1081
1082         rc = security_sid_to_context(&selinux_state, sid,
1083                                              &context, &len);
1084         if (!rc) {
1085                 bool has_comma = context && strchr(context, ',');
1086
1087                 seq_putc(m, '=');
1088                 if (has_comma)
1089                         seq_putc(m, '\"');
1090                 seq_escape(m, context, "\"\n\\");
1091                 if (has_comma)
1092                         seq_putc(m, '\"');
1093         }
1094         kfree(context);
1095         return rc;
1096 }
1097
1098 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099 {
1100         struct superblock_security_struct *sbsec = sb->s_security;
1101         int rc;
1102
1103         if (!(sbsec->flags & SE_SBINITIALIZED))
1104                 return 0;
1105
1106         if (!selinux_state.initialized)
1107                 return 0;
1108
1109         if (sbsec->flags & FSCONTEXT_MNT) {
1110                 seq_putc(m, ',');
1111                 seq_puts(m, FSCONTEXT_STR);
1112                 rc = show_sid(m, sbsec->sid);
1113                 if (rc)
1114                         return rc;
1115         }
1116         if (sbsec->flags & CONTEXT_MNT) {
1117                 seq_putc(m, ',');
1118                 seq_puts(m, CONTEXT_STR);
1119                 rc = show_sid(m, sbsec->mntpoint_sid);
1120                 if (rc)
1121                         return rc;
1122         }
1123         if (sbsec->flags & DEFCONTEXT_MNT) {
1124                 seq_putc(m, ',');
1125                 seq_puts(m, DEFCONTEXT_STR);
1126                 rc = show_sid(m, sbsec->def_sid);
1127                 if (rc)
1128                         return rc;
1129         }
1130         if (sbsec->flags & ROOTCONTEXT_MNT) {
1131                 struct dentry *root = sbsec->sb->s_root;
1132                 struct inode_security_struct *isec = backing_inode_security(root);
1133                 seq_putc(m, ',');
1134                 seq_puts(m, ROOTCONTEXT_STR);
1135                 rc = show_sid(m, isec->sid);
1136                 if (rc)
1137                         return rc;
1138         }
1139         if (sbsec->flags & SBLABEL_MNT) {
1140                 seq_putc(m, ',');
1141                 seq_puts(m, SECLABEL_STR);
1142         }
1143         return 0;
1144 }
1145
1146 static inline u16 inode_mode_to_security_class(umode_t mode)
1147 {
1148         switch (mode & S_IFMT) {
1149         case S_IFSOCK:
1150                 return SECCLASS_SOCK_FILE;
1151         case S_IFLNK:
1152                 return SECCLASS_LNK_FILE;
1153         case S_IFREG:
1154                 return SECCLASS_FILE;
1155         case S_IFBLK:
1156                 return SECCLASS_BLK_FILE;
1157         case S_IFDIR:
1158                 return SECCLASS_DIR;
1159         case S_IFCHR:
1160                 return SECCLASS_CHR_FILE;
1161         case S_IFIFO:
1162                 return SECCLASS_FIFO_FILE;
1163
1164         }
1165
1166         return SECCLASS_FILE;
1167 }
1168
1169 static inline int default_protocol_stream(int protocol)
1170 {
1171         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172 }
1173
1174 static inline int default_protocol_dgram(int protocol)
1175 {
1176         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177 }
1178
1179 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180 {
1181         int extsockclass = selinux_policycap_extsockclass();
1182
1183         switch (family) {
1184         case PF_UNIX:
1185                 switch (type) {
1186                 case SOCK_STREAM:
1187                 case SOCK_SEQPACKET:
1188                         return SECCLASS_UNIX_STREAM_SOCKET;
1189                 case SOCK_DGRAM:
1190                 case SOCK_RAW:
1191                         return SECCLASS_UNIX_DGRAM_SOCKET;
1192                 }
1193                 break;
1194         case PF_INET:
1195         case PF_INET6:
1196                 switch (type) {
1197                 case SOCK_STREAM:
1198                 case SOCK_SEQPACKET:
1199                         if (default_protocol_stream(protocol))
1200                                 return SECCLASS_TCP_SOCKET;
1201                         else if (extsockclass && protocol == IPPROTO_SCTP)
1202                                 return SECCLASS_SCTP_SOCKET;
1203                         else
1204                                 return SECCLASS_RAWIP_SOCKET;
1205                 case SOCK_DGRAM:
1206                         if (default_protocol_dgram(protocol))
1207                                 return SECCLASS_UDP_SOCKET;
1208                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209                                                   protocol == IPPROTO_ICMPV6))
1210                                 return SECCLASS_ICMP_SOCKET;
1211                         else
1212                                 return SECCLASS_RAWIP_SOCKET;
1213                 case SOCK_DCCP:
1214                         return SECCLASS_DCCP_SOCKET;
1215                 default:
1216                         return SECCLASS_RAWIP_SOCKET;
1217                 }
1218                 break;
1219         case PF_NETLINK:
1220                 switch (protocol) {
1221                 case NETLINK_ROUTE:
1222                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1223                 case NETLINK_SOCK_DIAG:
1224                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225                 case NETLINK_NFLOG:
1226                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1227                 case NETLINK_XFRM:
1228                         return SECCLASS_NETLINK_XFRM_SOCKET;
1229                 case NETLINK_SELINUX:
1230                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1231                 case NETLINK_ISCSI:
1232                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1233                 case NETLINK_AUDIT:
1234                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1235                 case NETLINK_FIB_LOOKUP:
1236                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237                 case NETLINK_CONNECTOR:
1238                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239                 case NETLINK_NETFILTER:
1240                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241                 case NETLINK_DNRTMSG:
1242                         return SECCLASS_NETLINK_DNRT_SOCKET;
1243                 case NETLINK_KOBJECT_UEVENT:
1244                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245                 case NETLINK_GENERIC:
1246                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1247                 case NETLINK_SCSITRANSPORT:
1248                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249                 case NETLINK_RDMA:
1250                         return SECCLASS_NETLINK_RDMA_SOCKET;
1251                 case NETLINK_CRYPTO:
1252                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253                 default:
1254                         return SECCLASS_NETLINK_SOCKET;
1255                 }
1256         case PF_PACKET:
1257                 return SECCLASS_PACKET_SOCKET;
1258         case PF_KEY:
1259                 return SECCLASS_KEY_SOCKET;
1260         case PF_APPLETALK:
1261                 return SECCLASS_APPLETALK_SOCKET;
1262         }
1263
1264         if (extsockclass) {
1265                 switch (family) {
1266                 case PF_AX25:
1267                         return SECCLASS_AX25_SOCKET;
1268                 case PF_IPX:
1269                         return SECCLASS_IPX_SOCKET;
1270                 case PF_NETROM:
1271                         return SECCLASS_NETROM_SOCKET;
1272                 case PF_ATMPVC:
1273                         return SECCLASS_ATMPVC_SOCKET;
1274                 case PF_X25:
1275                         return SECCLASS_X25_SOCKET;
1276                 case PF_ROSE:
1277                         return SECCLASS_ROSE_SOCKET;
1278                 case PF_DECnet:
1279                         return SECCLASS_DECNET_SOCKET;
1280                 case PF_ATMSVC:
1281                         return SECCLASS_ATMSVC_SOCKET;
1282                 case PF_RDS:
1283                         return SECCLASS_RDS_SOCKET;
1284                 case PF_IRDA:
1285                         return SECCLASS_IRDA_SOCKET;
1286                 case PF_PPPOX:
1287                         return SECCLASS_PPPOX_SOCKET;
1288                 case PF_LLC:
1289                         return SECCLASS_LLC_SOCKET;
1290                 case PF_CAN:
1291                         return SECCLASS_CAN_SOCKET;
1292                 case PF_TIPC:
1293                         return SECCLASS_TIPC_SOCKET;
1294                 case PF_BLUETOOTH:
1295                         return SECCLASS_BLUETOOTH_SOCKET;
1296                 case PF_IUCV:
1297                         return SECCLASS_IUCV_SOCKET;
1298                 case PF_RXRPC:
1299                         return SECCLASS_RXRPC_SOCKET;
1300                 case PF_ISDN:
1301                         return SECCLASS_ISDN_SOCKET;
1302                 case PF_PHONET:
1303                         return SECCLASS_PHONET_SOCKET;
1304                 case PF_IEEE802154:
1305                         return SECCLASS_IEEE802154_SOCKET;
1306                 case PF_CAIF:
1307                         return SECCLASS_CAIF_SOCKET;
1308                 case PF_ALG:
1309                         return SECCLASS_ALG_SOCKET;
1310                 case PF_NFC:
1311                         return SECCLASS_NFC_SOCKET;
1312                 case PF_VSOCK:
1313                         return SECCLASS_VSOCK_SOCKET;
1314                 case PF_KCM:
1315                         return SECCLASS_KCM_SOCKET;
1316                 case PF_QIPCRTR:
1317                         return SECCLASS_QIPCRTR_SOCKET;
1318                 case PF_SMC:
1319                         return SECCLASS_SMC_SOCKET;
1320                 case PF_XDP:
1321                         return SECCLASS_XDP_SOCKET;
1322 #if PF_MAX > 45
1323 #error New address family defined, please update this function.
1324 #endif
1325                 }
1326         }
1327
1328         return SECCLASS_SOCKET;
1329 }
1330
1331 static int selinux_genfs_get_sid(struct dentry *dentry,
1332                                  u16 tclass,
1333                                  u16 flags,
1334                                  u32 *sid)
1335 {
1336         int rc;
1337         struct super_block *sb = dentry->d_sb;
1338         char *buffer, *path;
1339
1340         buffer = (char *)__get_free_page(GFP_KERNEL);
1341         if (!buffer)
1342                 return -ENOMEM;
1343
1344         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345         if (IS_ERR(path))
1346                 rc = PTR_ERR(path);
1347         else {
1348                 if (flags & SE_SBPROC) {
1349                         /* each process gets a /proc/PID/ entry. Strip off the
1350                          * PID part to get a valid selinux labeling.
1351                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352                         while (path[1] >= '0' && path[1] <= '9') {
1353                                 path[1] = '/';
1354                                 path++;
1355                         }
1356                 }
1357                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358                                         path, tclass, sid);
1359                 if (rc == -ENOENT) {
1360                         /* No match in policy, mark as unlabeled. */
1361                         *sid = SECINITSID_UNLABELED;
1362                         rc = 0;
1363                 }
1364         }
1365         free_page((unsigned long)buffer);
1366         return rc;
1367 }
1368
1369 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370                                   u32 def_sid, u32 *sid)
1371 {
1372 #define INITCONTEXTLEN 255
1373         char *context;
1374         unsigned int len;
1375         int rc;
1376
1377         len = INITCONTEXTLEN;
1378         context = kmalloc(len + 1, GFP_NOFS);
1379         if (!context)
1380                 return -ENOMEM;
1381
1382         context[len] = '\0';
1383         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384         if (rc == -ERANGE) {
1385                 kfree(context);
1386
1387                 /* Need a larger buffer.  Query for the right size. */
1388                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389                 if (rc < 0)
1390                         return rc;
1391
1392                 len = rc;
1393                 context = kmalloc(len + 1, GFP_NOFS);
1394                 if (!context)
1395                         return -ENOMEM;
1396
1397                 context[len] = '\0';
1398                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399                                     context, len);
1400         }
1401         if (rc < 0) {
1402                 kfree(context);
1403                 if (rc != -ENODATA) {
1404                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406                         return rc;
1407                 }
1408                 *sid = def_sid;
1409                 return 0;
1410         }
1411
1412         rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413                                              def_sid, GFP_NOFS);
1414         if (rc) {
1415                 char *dev = inode->i_sb->s_id;
1416                 unsigned long ino = inode->i_ino;
1417
1418                 if (rc == -EINVAL) {
1419                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420                                               ino, dev, context);
1421                 } else {
1422                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423                                 __func__, context, -rc, dev, ino);
1424                 }
1425         }
1426         kfree(context);
1427         return 0;
1428 }
1429
1430 /* The inode's security attributes must be initialized before first use. */
1431 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432 {
1433         struct superblock_security_struct *sbsec = NULL;
1434         struct inode_security_struct *isec = selinux_inode(inode);
1435         u32 task_sid, sid = 0;
1436         u16 sclass;
1437         struct dentry *dentry;
1438         int rc = 0;
1439
1440         if (isec->initialized == LABEL_INITIALIZED)
1441                 return 0;
1442
1443         spin_lock(&isec->lock);
1444         if (isec->initialized == LABEL_INITIALIZED)
1445                 goto out_unlock;
1446
1447         if (isec->sclass == SECCLASS_FILE)
1448                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450         sbsec = inode->i_sb->s_security;
1451         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452                 /* Defer initialization until selinux_complete_init,
1453                    after the initial policy is loaded and the security
1454                    server is ready to handle calls. */
1455                 spin_lock(&sbsec->isec_lock);
1456                 if (list_empty(&isec->list))
1457                         list_add(&isec->list, &sbsec->isec_head);
1458                 spin_unlock(&sbsec->isec_lock);
1459                 goto out_unlock;
1460         }
1461
1462         sclass = isec->sclass;
1463         task_sid = isec->task_sid;
1464         sid = isec->sid;
1465         isec->initialized = LABEL_PENDING;
1466         spin_unlock(&isec->lock);
1467
1468         switch (sbsec->behavior) {
1469         case SECURITY_FS_USE_NATIVE:
1470                 break;
1471         case SECURITY_FS_USE_XATTR:
1472                 if (!(inode->i_opflags & IOP_XATTR)) {
1473                         sid = sbsec->def_sid;
1474                         break;
1475                 }
1476                 /* Need a dentry, since the xattr API requires one.
1477                    Life would be simpler if we could just pass the inode. */
1478                 if (opt_dentry) {
1479                         /* Called from d_instantiate or d_splice_alias. */
1480                         dentry = dget(opt_dentry);
1481                 } else {
1482                         /*
1483                          * Called from selinux_complete_init, try to find a dentry.
1484                          * Some filesystems really want a connected one, so try
1485                          * that first.  We could split SECURITY_FS_USE_XATTR in
1486                          * two, depending upon that...
1487                          */
1488                         dentry = d_find_alias(inode);
1489                         if (!dentry)
1490                                 dentry = d_find_any_alias(inode);
1491                 }
1492                 if (!dentry) {
1493                         /*
1494                          * this is can be hit on boot when a file is accessed
1495                          * before the policy is loaded.  When we load policy we
1496                          * may find inodes that have no dentry on the
1497                          * sbsec->isec_head list.  No reason to complain as these
1498                          * will get fixed up the next time we go through
1499                          * inode_doinit with a dentry, before these inodes could
1500                          * be used again by userspace.
1501                          */
1502                         goto out;
1503                 }
1504
1505                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506                                             &sid);
1507                 dput(dentry);
1508                 if (rc)
1509                         goto out;
1510                 break;
1511         case SECURITY_FS_USE_TASK:
1512                 sid = task_sid;
1513                 break;
1514         case SECURITY_FS_USE_TRANS:
1515                 /* Default to the fs SID. */
1516                 sid = sbsec->sid;
1517
1518                 /* Try to obtain a transition SID. */
1519                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1520                                              sclass, NULL, &sid);
1521                 if (rc)
1522                         goto out;
1523                 break;
1524         case SECURITY_FS_USE_MNTPOINT:
1525                 sid = sbsec->mntpoint_sid;
1526                 break;
1527         default:
1528                 /* Default to the fs superblock SID. */
1529                 sid = sbsec->sid;
1530
1531                 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532                         /* We must have a dentry to determine the label on
1533                          * procfs inodes */
1534                         if (opt_dentry) {
1535                                 /* Called from d_instantiate or
1536                                  * d_splice_alias. */
1537                                 dentry = dget(opt_dentry);
1538                         } else {
1539                                 /* Called from selinux_complete_init, try to
1540                                  * find a dentry.  Some filesystems really want
1541                                  * a connected one, so try that first.
1542                                  */
1543                                 dentry = d_find_alias(inode);
1544                                 if (!dentry)
1545                                         dentry = d_find_any_alias(inode);
1546                         }
1547                         /*
1548                          * This can be hit on boot when a file is accessed
1549                          * before the policy is loaded.  When we load policy we
1550                          * may find inodes that have no dentry on the
1551                          * sbsec->isec_head list.  No reason to complain as
1552                          * these will get fixed up the next time we go through
1553                          * inode_doinit() with a dentry, before these inodes
1554                          * could be used again by userspace.
1555                          */
1556                         if (!dentry)
1557                                 goto out;
1558                         rc = selinux_genfs_get_sid(dentry, sclass,
1559                                                    sbsec->flags, &sid);
1560                         if (rc) {
1561                                 dput(dentry);
1562                                 goto out;
1563                         }
1564
1565                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566                             (inode->i_opflags & IOP_XATTR)) {
1567                                 rc = inode_doinit_use_xattr(inode, dentry,
1568                                                             sid, &sid);
1569                                 if (rc) {
1570                                         dput(dentry);
1571                                         goto out;
1572                                 }
1573                         }
1574                         dput(dentry);
1575                 }
1576                 break;
1577         }
1578
1579 out:
1580         spin_lock(&isec->lock);
1581         if (isec->initialized == LABEL_PENDING) {
1582                 if (!sid || rc) {
1583                         isec->initialized = LABEL_INVALID;
1584                         goto out_unlock;
1585                 }
1586
1587                 isec->initialized = LABEL_INITIALIZED;
1588                 isec->sid = sid;
1589         }
1590
1591 out_unlock:
1592         spin_unlock(&isec->lock);
1593         return rc;
1594 }
1595
1596 /* Convert a Linux signal to an access vector. */
1597 static inline u32 signal_to_av(int sig)
1598 {
1599         u32 perm = 0;
1600
1601         switch (sig) {
1602         case SIGCHLD:
1603                 /* Commonly granted from child to parent. */
1604                 perm = PROCESS__SIGCHLD;
1605                 break;
1606         case SIGKILL:
1607                 /* Cannot be caught or ignored */
1608                 perm = PROCESS__SIGKILL;
1609                 break;
1610         case SIGSTOP:
1611                 /* Cannot be caught or ignored */
1612                 perm = PROCESS__SIGSTOP;
1613                 break;
1614         default:
1615                 /* All other signals. */
1616                 perm = PROCESS__SIGNAL;
1617                 break;
1618         }
1619
1620         return perm;
1621 }
1622
1623 #if CAP_LAST_CAP > 63
1624 #error Fix SELinux to handle capabilities > 63.
1625 #endif
1626
1627 /* Check whether a task is allowed to use a capability. */
1628 static int cred_has_capability(const struct cred *cred,
1629                                int cap, unsigned int opts, bool initns)
1630 {
1631         struct common_audit_data ad;
1632         struct av_decision avd;
1633         u16 sclass;
1634         u32 sid = cred_sid(cred);
1635         u32 av = CAP_TO_MASK(cap);
1636         int rc;
1637
1638         ad.type = LSM_AUDIT_DATA_CAP;
1639         ad.u.cap = cap;
1640
1641         switch (CAP_TO_INDEX(cap)) {
1642         case 0:
1643                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644                 break;
1645         case 1:
1646                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647                 break;
1648         default:
1649                 pr_err("SELinux:  out of range capability %d\n", cap);
1650                 BUG();
1651                 return -EINVAL;
1652         }
1653
1654         rc = avc_has_perm_noaudit(&selinux_state,
1655                                   sid, sid, sclass, av, 0, &avd);
1656         if (!(opts & CAP_OPT_NOAUDIT)) {
1657                 int rc2 = avc_audit(&selinux_state,
1658                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1659                 if (rc2)
1660                         return rc2;
1661         }
1662         return rc;
1663 }
1664
1665 /* Check whether a task has a particular permission to an inode.
1666    The 'adp' parameter is optional and allows other audit
1667    data to be passed (e.g. the dentry). */
1668 static int inode_has_perm(const struct cred *cred,
1669                           struct inode *inode,
1670                           u32 perms,
1671                           struct common_audit_data *adp)
1672 {
1673         struct inode_security_struct *isec;
1674         u32 sid;
1675
1676         validate_creds(cred);
1677
1678         if (unlikely(IS_PRIVATE(inode)))
1679                 return 0;
1680
1681         sid = cred_sid(cred);
1682         isec = selinux_inode(inode);
1683
1684         return avc_has_perm(&selinux_state,
1685                             sid, isec->sid, isec->sclass, perms, adp);
1686 }
1687
1688 /* Same as inode_has_perm, but pass explicit audit data containing
1689    the dentry to help the auditing code to more easily generate the
1690    pathname if needed. */
1691 static inline int dentry_has_perm(const struct cred *cred,
1692                                   struct dentry *dentry,
1693                                   u32 av)
1694 {
1695         struct inode *inode = d_backing_inode(dentry);
1696         struct common_audit_data ad;
1697
1698         ad.type = LSM_AUDIT_DATA_DENTRY;
1699         ad.u.dentry = dentry;
1700         __inode_security_revalidate(inode, dentry, true);
1701         return inode_has_perm(cred, inode, av, &ad);
1702 }
1703
1704 /* Same as inode_has_perm, but pass explicit audit data containing
1705    the path to help the auditing code to more easily generate the
1706    pathname if needed. */
1707 static inline int path_has_perm(const struct cred *cred,
1708                                 const struct path *path,
1709                                 u32 av)
1710 {
1711         struct inode *inode = d_backing_inode(path->dentry);
1712         struct common_audit_data ad;
1713
1714         ad.type = LSM_AUDIT_DATA_PATH;
1715         ad.u.path = *path;
1716         __inode_security_revalidate(inode, path->dentry, true);
1717         return inode_has_perm(cred, inode, av, &ad);
1718 }
1719
1720 /* Same as path_has_perm, but uses the inode from the file struct. */
1721 static inline int file_path_has_perm(const struct cred *cred,
1722                                      struct file *file,
1723                                      u32 av)
1724 {
1725         struct common_audit_data ad;
1726
1727         ad.type = LSM_AUDIT_DATA_FILE;
1728         ad.u.file = file;
1729         return inode_has_perm(cred, file_inode(file), av, &ad);
1730 }
1731
1732 #ifdef CONFIG_BPF_SYSCALL
1733 static int bpf_fd_pass(struct file *file, u32 sid);
1734 #endif
1735
1736 /* Check whether a task can use an open file descriptor to
1737    access an inode in a given way.  Check access to the
1738    descriptor itself, and then use dentry_has_perm to
1739    check a particular permission to the file.
1740    Access to the descriptor is implicitly granted if it
1741    has the same SID as the process.  If av is zero, then
1742    access to the file is not checked, e.g. for cases
1743    where only the descriptor is affected like seek. */
1744 static int file_has_perm(const struct cred *cred,
1745                          struct file *file,
1746                          u32 av)
1747 {
1748         struct file_security_struct *fsec = selinux_file(file);
1749         struct inode *inode = file_inode(file);
1750         struct common_audit_data ad;
1751         u32 sid = cred_sid(cred);
1752         int rc;
1753
1754         ad.type = LSM_AUDIT_DATA_FILE;
1755         ad.u.file = file;
1756
1757         if (sid != fsec->sid) {
1758                 rc = avc_has_perm(&selinux_state,
1759                                   sid, fsec->sid,
1760                                   SECCLASS_FD,
1761                                   FD__USE,
1762                                   &ad);
1763                 if (rc)
1764                         goto out;
1765         }
1766
1767 #ifdef CONFIG_BPF_SYSCALL
1768         rc = bpf_fd_pass(file, cred_sid(cred));
1769         if (rc)
1770                 return rc;
1771 #endif
1772
1773         /* av is zero if only checking access to the descriptor. */
1774         rc = 0;
1775         if (av)
1776                 rc = inode_has_perm(cred, inode, av, &ad);
1777
1778 out:
1779         return rc;
1780 }
1781
1782 /*
1783  * Determine the label for an inode that might be unioned.
1784  */
1785 static int
1786 selinux_determine_inode_label(const struct task_security_struct *tsec,
1787                                  struct inode *dir,
1788                                  const struct qstr *name, u16 tclass,
1789                                  u32 *_new_isid)
1790 {
1791         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793         if ((sbsec->flags & SE_SBINITIALIZED) &&
1794             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795                 *_new_isid = sbsec->mntpoint_sid;
1796         } else if ((sbsec->flags & SBLABEL_MNT) &&
1797                    tsec->create_sid) {
1798                 *_new_isid = tsec->create_sid;
1799         } else {
1800                 const struct inode_security_struct *dsec = inode_security(dir);
1801                 return security_transition_sid(&selinux_state, tsec->sid,
1802                                                dsec->sid, tclass,
1803                                                name, _new_isid);
1804         }
1805
1806         return 0;
1807 }
1808
1809 /* Check whether a task can create a file. */
1810 static int may_create(struct inode *dir,
1811                       struct dentry *dentry,
1812                       u16 tclass)
1813 {
1814         const struct task_security_struct *tsec = selinux_cred(current_cred());
1815         struct inode_security_struct *dsec;
1816         struct superblock_security_struct *sbsec;
1817         u32 sid, newsid;
1818         struct common_audit_data ad;
1819         int rc;
1820
1821         dsec = inode_security(dir);
1822         sbsec = dir->i_sb->s_security;
1823
1824         sid = tsec->sid;
1825
1826         ad.type = LSM_AUDIT_DATA_DENTRY;
1827         ad.u.dentry = dentry;
1828
1829         rc = avc_has_perm(&selinux_state,
1830                           sid, dsec->sid, SECCLASS_DIR,
1831                           DIR__ADD_NAME | DIR__SEARCH,
1832                           &ad);
1833         if (rc)
1834                 return rc;
1835
1836         rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837                                            &dentry->d_name, tclass, &newsid);
1838         if (rc)
1839                 return rc;
1840
1841         rc = avc_has_perm(&selinux_state,
1842                           sid, newsid, tclass, FILE__CREATE, &ad);
1843         if (rc)
1844                 return rc;
1845
1846         return avc_has_perm(&selinux_state,
1847                             newsid, sbsec->sid,
1848                             SECCLASS_FILESYSTEM,
1849                             FILESYSTEM__ASSOCIATE, &ad);
1850 }
1851
1852 #define MAY_LINK        0
1853 #define MAY_UNLINK      1
1854 #define MAY_RMDIR       2
1855
1856 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1857 static int may_link(struct inode *dir,
1858                     struct dentry *dentry,
1859                     int kind)
1860
1861 {
1862         struct inode_security_struct *dsec, *isec;
1863         struct common_audit_data ad;
1864         u32 sid = current_sid();
1865         u32 av;
1866         int rc;
1867
1868         dsec = inode_security(dir);
1869         isec = backing_inode_security(dentry);
1870
1871         ad.type = LSM_AUDIT_DATA_DENTRY;
1872         ad.u.dentry = dentry;
1873
1874         av = DIR__SEARCH;
1875         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876         rc = avc_has_perm(&selinux_state,
1877                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878         if (rc)
1879                 return rc;
1880
1881         switch (kind) {
1882         case MAY_LINK:
1883                 av = FILE__LINK;
1884                 break;
1885         case MAY_UNLINK:
1886                 av = FILE__UNLINK;
1887                 break;
1888         case MAY_RMDIR:
1889                 av = DIR__RMDIR;
1890                 break;
1891         default:
1892                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893                         __func__, kind);
1894                 return 0;
1895         }
1896
1897         rc = avc_has_perm(&selinux_state,
1898                           sid, isec->sid, isec->sclass, av, &ad);
1899         return rc;
1900 }
1901
1902 static inline int may_rename(struct inode *old_dir,
1903                              struct dentry *old_dentry,
1904                              struct inode *new_dir,
1905                              struct dentry *new_dentry)
1906 {
1907         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908         struct common_audit_data ad;
1909         u32 sid = current_sid();
1910         u32 av;
1911         int old_is_dir, new_is_dir;
1912         int rc;
1913
1914         old_dsec = inode_security(old_dir);
1915         old_isec = backing_inode_security(old_dentry);
1916         old_is_dir = d_is_dir(old_dentry);
1917         new_dsec = inode_security(new_dir);
1918
1919         ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921         ad.u.dentry = old_dentry;
1922         rc = avc_has_perm(&selinux_state,
1923                           sid, old_dsec->sid, SECCLASS_DIR,
1924                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925         if (rc)
1926                 return rc;
1927         rc = avc_has_perm(&selinux_state,
1928                           sid, old_isec->sid,
1929                           old_isec->sclass, FILE__RENAME, &ad);
1930         if (rc)
1931                 return rc;
1932         if (old_is_dir && new_dir != old_dir) {
1933                 rc = avc_has_perm(&selinux_state,
1934                                   sid, old_isec->sid,
1935                                   old_isec->sclass, DIR__REPARENT, &ad);
1936                 if (rc)
1937                         return rc;
1938         }
1939
1940         ad.u.dentry = new_dentry;
1941         av = DIR__ADD_NAME | DIR__SEARCH;
1942         if (d_is_positive(new_dentry))
1943                 av |= DIR__REMOVE_NAME;
1944         rc = avc_has_perm(&selinux_state,
1945                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946         if (rc)
1947                 return rc;
1948         if (d_is_positive(new_dentry)) {
1949                 new_isec = backing_inode_security(new_dentry);
1950                 new_is_dir = d_is_dir(new_dentry);
1951                 rc = avc_has_perm(&selinux_state,
1952                                   sid, new_isec->sid,
1953                                   new_isec->sclass,
1954                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955                 if (rc)
1956                         return rc;
1957         }
1958
1959         return 0;
1960 }
1961
1962 /* Check whether a task can perform a filesystem operation. */
1963 static int superblock_has_perm(const struct cred *cred,
1964                                struct super_block *sb,
1965                                u32 perms,
1966                                struct common_audit_data *ad)
1967 {
1968         struct superblock_security_struct *sbsec;
1969         u32 sid = cred_sid(cred);
1970
1971         sbsec = sb->s_security;
1972         return avc_has_perm(&selinux_state,
1973                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974 }
1975
1976 /* Convert a Linux mode and permission mask to an access vector. */
1977 static inline u32 file_mask_to_av(int mode, int mask)
1978 {
1979         u32 av = 0;
1980
1981         if (!S_ISDIR(mode)) {
1982                 if (mask & MAY_EXEC)
1983                         av |= FILE__EXECUTE;
1984                 if (mask & MAY_READ)
1985                         av |= FILE__READ;
1986
1987                 if (mask & MAY_APPEND)
1988                         av |= FILE__APPEND;
1989                 else if (mask & MAY_WRITE)
1990                         av |= FILE__WRITE;
1991
1992         } else {
1993                 if (mask & MAY_EXEC)
1994                         av |= DIR__SEARCH;
1995                 if (mask & MAY_WRITE)
1996                         av |= DIR__WRITE;
1997                 if (mask & MAY_READ)
1998                         av |= DIR__READ;
1999         }
2000
2001         return av;
2002 }
2003
2004 /* Convert a Linux file to an access vector. */
2005 static inline u32 file_to_av(struct file *file)
2006 {
2007         u32 av = 0;
2008
2009         if (file->f_mode & FMODE_READ)
2010                 av |= FILE__READ;
2011         if (file->f_mode & FMODE_WRITE) {
2012                 if (file->f_flags & O_APPEND)
2013                         av |= FILE__APPEND;
2014                 else
2015                         av |= FILE__WRITE;
2016         }
2017         if (!av) {
2018                 /*
2019                  * Special file opened with flags 3 for ioctl-only use.
2020                  */
2021                 av = FILE__IOCTL;
2022         }
2023
2024         return av;
2025 }
2026
2027 /*
2028  * Convert a file to an access vector and include the correct open
2029  * open permission.
2030  */
2031 static inline u32 open_file_to_av(struct file *file)
2032 {
2033         u32 av = file_to_av(file);
2034         struct inode *inode = file_inode(file);
2035
2036         if (selinux_policycap_openperm() &&
2037             inode->i_sb->s_magic != SOCKFS_MAGIC)
2038                 av |= FILE__OPEN;
2039
2040         return av;
2041 }
2042
2043 /* Hook functions begin here. */
2044
2045 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046 {
2047         u32 mysid = current_sid();
2048         u32 mgrsid = task_sid(mgr);
2049
2050         return avc_has_perm(&selinux_state,
2051                             mysid, mgrsid, SECCLASS_BINDER,
2052                             BINDER__SET_CONTEXT_MGR, NULL);
2053 }
2054
2055 static int selinux_binder_transaction(struct task_struct *from,
2056                                       struct task_struct *to)
2057 {
2058         u32 mysid = current_sid();
2059         u32 fromsid = task_sid(from);
2060         u32 tosid = task_sid(to);
2061         int rc;
2062
2063         if (mysid != fromsid) {
2064                 rc = avc_has_perm(&selinux_state,
2065                                   mysid, fromsid, SECCLASS_BINDER,
2066                                   BINDER__IMPERSONATE, NULL);
2067                 if (rc)
2068                         return rc;
2069         }
2070
2071         return avc_has_perm(&selinux_state,
2072                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073                             NULL);
2074 }
2075
2076 static int selinux_binder_transfer_binder(struct task_struct *from,
2077                                           struct task_struct *to)
2078 {
2079         u32 fromsid = task_sid(from);
2080         u32 tosid = task_sid(to);
2081
2082         return avc_has_perm(&selinux_state,
2083                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084                             NULL);
2085 }
2086
2087 static int selinux_binder_transfer_file(struct task_struct *from,
2088                                         struct task_struct *to,
2089                                         struct file *file)
2090 {
2091         u32 sid = task_sid(to);
2092         struct file_security_struct *fsec = selinux_file(file);
2093         struct dentry *dentry = file->f_path.dentry;
2094         struct inode_security_struct *isec;
2095         struct common_audit_data ad;
2096         int rc;
2097
2098         ad.type = LSM_AUDIT_DATA_PATH;
2099         ad.u.path = file->f_path;
2100
2101         if (sid != fsec->sid) {
2102                 rc = avc_has_perm(&selinux_state,
2103                                   sid, fsec->sid,
2104                                   SECCLASS_FD,
2105                                   FD__USE,
2106                                   &ad);
2107                 if (rc)
2108                         return rc;
2109         }
2110
2111 #ifdef CONFIG_BPF_SYSCALL
2112         rc = bpf_fd_pass(file, sid);
2113         if (rc)
2114                 return rc;
2115 #endif
2116
2117         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118                 return 0;
2119
2120         isec = backing_inode_security(dentry);
2121         return avc_has_perm(&selinux_state,
2122                             sid, isec->sid, isec->sclass, file_to_av(file),
2123                             &ad);
2124 }
2125
2126 static int selinux_ptrace_access_check(struct task_struct *child,
2127                                      unsigned int mode)
2128 {
2129         u32 sid = current_sid();
2130         u32 csid = task_sid(child);
2131
2132         if (mode & PTRACE_MODE_READ)
2133                 return avc_has_perm(&selinux_state,
2134                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136         return avc_has_perm(&selinux_state,
2137                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138 }
2139
2140 static int selinux_ptrace_traceme(struct task_struct *parent)
2141 {
2142         return avc_has_perm(&selinux_state,
2143                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144                             PROCESS__PTRACE, NULL);
2145 }
2146
2147 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149 {
2150         return avc_has_perm(&selinux_state,
2151                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2152                             PROCESS__GETCAP, NULL);
2153 }
2154
2155 static int selinux_capset(struct cred *new, const struct cred *old,
2156                           const kernel_cap_t *effective,
2157                           const kernel_cap_t *inheritable,
2158                           const kernel_cap_t *permitted)
2159 {
2160         return avc_has_perm(&selinux_state,
2161                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162                             PROCESS__SETCAP, NULL);
2163 }
2164
2165 /*
2166  * (This comment used to live with the selinux_task_setuid hook,
2167  * which was removed).
2168  *
2169  * Since setuid only affects the current process, and since the SELinux
2170  * controls are not based on the Linux identity attributes, SELinux does not
2171  * need to control this operation.  However, SELinux does control the use of
2172  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173  */
2174
2175 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176                            int cap, unsigned int opts)
2177 {
2178         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179 }
2180
2181 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182 {
2183         const struct cred *cred = current_cred();
2184         int rc = 0;
2185
2186         if (!sb)
2187                 return 0;
2188
2189         switch (cmds) {
2190         case Q_SYNC:
2191         case Q_QUOTAON:
2192         case Q_QUOTAOFF:
2193         case Q_SETINFO:
2194         case Q_SETQUOTA:
2195                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196                 break;
2197         case Q_GETFMT:
2198         case Q_GETINFO:
2199         case Q_GETQUOTA:
2200                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201                 break;
2202         default:
2203                 rc = 0;  /* let the kernel handle invalid cmds */
2204                 break;
2205         }
2206         return rc;
2207 }
2208
2209 static int selinux_quota_on(struct dentry *dentry)
2210 {
2211         const struct cred *cred = current_cred();
2212
2213         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214 }
2215
2216 static int selinux_syslog(int type)
2217 {
2218         switch (type) {
2219         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2220         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2221                 return avc_has_perm(&selinux_state,
2222                                     current_sid(), SECINITSID_KERNEL,
2223                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2225         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2226         /* Set level of messages printed to console */
2227         case SYSLOG_ACTION_CONSOLE_LEVEL:
2228                 return avc_has_perm(&selinux_state,
2229                                     current_sid(), SECINITSID_KERNEL,
2230                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231                                     NULL);
2232         }
2233         /* All other syslog types */
2234         return avc_has_perm(&selinux_state,
2235                             current_sid(), SECINITSID_KERNEL,
2236                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237 }
2238
2239 /*
2240  * Check that a process has enough memory to allocate a new virtual
2241  * mapping. 0 means there is enough memory for the allocation to
2242  * succeed and -ENOMEM implies there is not.
2243  *
2244  * Do not audit the selinux permission check, as this is applied to all
2245  * processes that allocate mappings.
2246  */
2247 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248 {
2249         int rc, cap_sys_admin = 0;
2250
2251         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252                                  CAP_OPT_NOAUDIT, true);
2253         if (rc == 0)
2254                 cap_sys_admin = 1;
2255
2256         return cap_sys_admin;
2257 }
2258
2259 /* binprm security operations */
2260
2261 static u32 ptrace_parent_sid(void)
2262 {
2263         u32 sid = 0;
2264         struct task_struct *tracer;
2265
2266         rcu_read_lock();
2267         tracer = ptrace_parent(current);
2268         if (tracer)
2269                 sid = task_sid(tracer);
2270         rcu_read_unlock();
2271
2272         return sid;
2273 }
2274
2275 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276                             const struct task_security_struct *old_tsec,
2277                             const struct task_security_struct *new_tsec)
2278 {
2279         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281         int rc;
2282         u32 av;
2283
2284         if (!nnp && !nosuid)
2285                 return 0; /* neither NNP nor nosuid */
2286
2287         if (new_tsec->sid == old_tsec->sid)
2288                 return 0; /* No change in credentials */
2289
2290         /*
2291          * If the policy enables the nnp_nosuid_transition policy capability,
2292          * then we permit transitions under NNP or nosuid if the
2293          * policy allows the corresponding permission between
2294          * the old and new contexts.
2295          */
2296         if (selinux_policycap_nnp_nosuid_transition()) {
2297                 av = 0;
2298                 if (nnp)
2299                         av |= PROCESS2__NNP_TRANSITION;
2300                 if (nosuid)
2301                         av |= PROCESS2__NOSUID_TRANSITION;
2302                 rc = avc_has_perm(&selinux_state,
2303                                   old_tsec->sid, new_tsec->sid,
2304                                   SECCLASS_PROCESS2, av, NULL);
2305                 if (!rc)
2306                         return 0;
2307         }
2308
2309         /*
2310          * We also permit NNP or nosuid transitions to bounded SIDs,
2311          * i.e. SIDs that are guaranteed to only be allowed a subset
2312          * of the permissions of the current SID.
2313          */
2314         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315                                          new_tsec->sid);
2316         if (!rc)
2317                 return 0;
2318
2319         /*
2320          * On failure, preserve the errno values for NNP vs nosuid.
2321          * NNP:  Operation not permitted for caller.
2322          * nosuid:  Permission denied to file.
2323          */
2324         if (nnp)
2325                 return -EPERM;
2326         return -EACCES;
2327 }
2328
2329 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330 {
2331         const struct task_security_struct *old_tsec;
2332         struct task_security_struct *new_tsec;
2333         struct inode_security_struct *isec;
2334         struct common_audit_data ad;
2335         struct inode *inode = file_inode(bprm->file);
2336         int rc;
2337
2338         /* SELinux context only depends on initial program or script and not
2339          * the script interpreter */
2340         if (bprm->called_set_creds)
2341                 return 0;
2342
2343         old_tsec = selinux_cred(current_cred());
2344         new_tsec = selinux_cred(bprm->cred);
2345         isec = inode_security(inode);
2346
2347         /* Default to the current task SID. */
2348         new_tsec->sid = old_tsec->sid;
2349         new_tsec->osid = old_tsec->sid;
2350
2351         /* Reset fs, key, and sock SIDs on execve. */
2352         new_tsec->create_sid = 0;
2353         new_tsec->keycreate_sid = 0;
2354         new_tsec->sockcreate_sid = 0;
2355
2356         if (old_tsec->exec_sid) {
2357                 new_tsec->sid = old_tsec->exec_sid;
2358                 /* Reset exec SID on execve. */
2359                 new_tsec->exec_sid = 0;
2360
2361                 /* Fail on NNP or nosuid if not an allowed transition. */
2362                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363                 if (rc)
2364                         return rc;
2365         } else {
2366                 /* Check for a default transition on this program. */
2367                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368                                              isec->sid, SECCLASS_PROCESS, NULL,
2369                                              &new_tsec->sid);
2370                 if (rc)
2371                         return rc;
2372
2373                 /*
2374                  * Fallback to old SID on NNP or nosuid if not an allowed
2375                  * transition.
2376                  */
2377                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378                 if (rc)
2379                         new_tsec->sid = old_tsec->sid;
2380         }
2381
2382         ad.type = LSM_AUDIT_DATA_FILE;
2383         ad.u.file = bprm->file;
2384
2385         if (new_tsec->sid == old_tsec->sid) {
2386                 rc = avc_has_perm(&selinux_state,
2387                                   old_tsec->sid, isec->sid,
2388                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389                 if (rc)
2390                         return rc;
2391         } else {
2392                 /* Check permissions for the transition. */
2393                 rc = avc_has_perm(&selinux_state,
2394                                   old_tsec->sid, new_tsec->sid,
2395                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396                 if (rc)
2397                         return rc;
2398
2399                 rc = avc_has_perm(&selinux_state,
2400                                   new_tsec->sid, isec->sid,
2401                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402                 if (rc)
2403                         return rc;
2404
2405                 /* Check for shared state */
2406                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407                         rc = avc_has_perm(&selinux_state,
2408                                           old_tsec->sid, new_tsec->sid,
2409                                           SECCLASS_PROCESS, PROCESS__SHARE,
2410                                           NULL);
2411                         if (rc)
2412                                 return -EPERM;
2413                 }
2414
2415                 /* Make sure that anyone attempting to ptrace over a task that
2416                  * changes its SID has the appropriate permit */
2417                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418                         u32 ptsid = ptrace_parent_sid();
2419                         if (ptsid != 0) {
2420                                 rc = avc_has_perm(&selinux_state,
2421                                                   ptsid, new_tsec->sid,
2422                                                   SECCLASS_PROCESS,
2423                                                   PROCESS__PTRACE, NULL);
2424                                 if (rc)
2425                                         return -EPERM;
2426                         }
2427                 }
2428
2429                 /* Clear any possibly unsafe personality bits on exec: */
2430                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432                 /* Enable secure mode for SIDs transitions unless
2433                    the noatsecure permission is granted between
2434                    the two SIDs, i.e. ahp returns 0. */
2435                 rc = avc_has_perm(&selinux_state,
2436                                   old_tsec->sid, new_tsec->sid,
2437                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438                                   NULL);
2439                 bprm->secureexec |= !!rc;
2440         }
2441
2442         return 0;
2443 }
2444
2445 static int match_file(const void *p, struct file *file, unsigned fd)
2446 {
2447         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448 }
2449
2450 /* Derived from fs/exec.c:flush_old_files. */
2451 static inline void flush_unauthorized_files(const struct cred *cred,
2452                                             struct files_struct *files)
2453 {
2454         struct file *file, *devnull = NULL;
2455         struct tty_struct *tty;
2456         int drop_tty = 0;
2457         unsigned n;
2458
2459         tty = get_current_tty();
2460         if (tty) {
2461                 spin_lock(&tty->files_lock);
2462                 if (!list_empty(&tty->tty_files)) {
2463                         struct tty_file_private *file_priv;
2464
2465                         /* Revalidate access to controlling tty.
2466                            Use file_path_has_perm on the tty path directly
2467                            rather than using file_has_perm, as this particular
2468                            open file may belong to another process and we are
2469                            only interested in the inode-based check here. */
2470                         file_priv = list_first_entry(&tty->tty_files,
2471                                                 struct tty_file_private, list);
2472                         file = file_priv->file;
2473                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474                                 drop_tty = 1;
2475                 }
2476                 spin_unlock(&tty->files_lock);
2477                 tty_kref_put(tty);
2478         }
2479         /* Reset controlling tty. */
2480         if (drop_tty)
2481                 no_tty();
2482
2483         /* Revalidate access to inherited open files. */
2484         n = iterate_fd(files, 0, match_file, cred);
2485         if (!n) /* none found? */
2486                 return;
2487
2488         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489         if (IS_ERR(devnull))
2490                 devnull = NULL;
2491         /* replace all the matching ones with this */
2492         do {
2493                 replace_fd(n - 1, devnull, 0);
2494         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495         if (devnull)
2496                 fput(devnull);
2497 }
2498
2499 /*
2500  * Prepare a process for imminent new credential changes due to exec
2501  */
2502 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503 {
2504         struct task_security_struct *new_tsec;
2505         struct rlimit *rlim, *initrlim;
2506         int rc, i;
2507
2508         new_tsec = selinux_cred(bprm->cred);
2509         if (new_tsec->sid == new_tsec->osid)
2510                 return;
2511
2512         /* Close files for which the new task SID is not authorized. */
2513         flush_unauthorized_files(bprm->cred, current->files);
2514
2515         /* Always clear parent death signal on SID transitions. */
2516         current->pdeath_signal = 0;
2517
2518         /* Check whether the new SID can inherit resource limits from the old
2519          * SID.  If not, reset all soft limits to the lower of the current
2520          * task's hard limit and the init task's soft limit.
2521          *
2522          * Note that the setting of hard limits (even to lower them) can be
2523          * controlled by the setrlimit check.  The inclusion of the init task's
2524          * soft limit into the computation is to avoid resetting soft limits
2525          * higher than the default soft limit for cases where the default is
2526          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527          */
2528         rc = avc_has_perm(&selinux_state,
2529                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530                           PROCESS__RLIMITINH, NULL);
2531         if (rc) {
2532                 /* protect against do_prlimit() */
2533                 task_lock(current);
2534                 for (i = 0; i < RLIM_NLIMITS; i++) {
2535                         rlim = current->signal->rlim + i;
2536                         initrlim = init_task.signal->rlim + i;
2537                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538                 }
2539                 task_unlock(current);
2540                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542         }
2543 }
2544
2545 /*
2546  * Clean up the process immediately after the installation of new credentials
2547  * due to exec
2548  */
2549 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550 {
2551         const struct task_security_struct *tsec = selinux_cred(current_cred());
2552         struct itimerval itimer;
2553         u32 osid, sid;
2554         int rc, i;
2555
2556         osid = tsec->osid;
2557         sid = tsec->sid;
2558
2559         if (sid == osid)
2560                 return;
2561
2562         /* Check whether the new SID can inherit signal state from the old SID.
2563          * If not, clear itimers to avoid subsequent signal generation and
2564          * flush and unblock signals.
2565          *
2566          * This must occur _after_ the task SID has been updated so that any
2567          * kill done after the flush will be checked against the new SID.
2568          */
2569         rc = avc_has_perm(&selinux_state,
2570                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571         if (rc) {
2572                 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573                         memset(&itimer, 0, sizeof itimer);
2574                         for (i = 0; i < 3; i++)
2575                                 do_setitimer(i, &itimer, NULL);
2576                 }
2577                 spin_lock_irq(&current->sighand->siglock);
2578                 if (!fatal_signal_pending(current)) {
2579                         flush_sigqueue(&current->pending);
2580                         flush_sigqueue(&current->signal->shared_pending);
2581                         flush_signal_handlers(current, 1);
2582                         sigemptyset(&current->blocked);
2583                         recalc_sigpending();
2584                 }
2585                 spin_unlock_irq(&current->sighand->siglock);
2586         }
2587
2588         /* Wake up the parent if it is waiting so that it can recheck
2589          * wait permission to the new task SID. */
2590         read_lock(&tasklist_lock);
2591         __wake_up_parent(current, current->real_parent);
2592         read_unlock(&tasklist_lock);
2593 }
2594
2595 /* superblock security operations */
2596
2597 static int selinux_sb_alloc_security(struct super_block *sb)
2598 {
2599         return superblock_alloc_security(sb);
2600 }
2601
2602 static void selinux_sb_free_security(struct super_block *sb)
2603 {
2604         superblock_free_security(sb);
2605 }
2606
2607 static inline int opt_len(const char *s)
2608 {
2609         bool open_quote = false;
2610         int len;
2611         char c;
2612
2613         for (len = 0; (c = s[len]) != '\0'; len++) {
2614                 if (c == '"')
2615                         open_quote = !open_quote;
2616                 if (c == ',' && !open_quote)
2617                         break;
2618         }
2619         return len;
2620 }
2621
2622 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623 {
2624         char *from = options;
2625         char *to = options;
2626         bool first = true;
2627         int rc;
2628
2629         while (1) {
2630                 int len = opt_len(from);
2631                 int token;
2632                 char *arg = NULL;
2633
2634                 token = match_opt_prefix(from, len, &arg);
2635
2636                 if (token != Opt_error) {
2637                         char *p, *q;
2638
2639                         /* strip quotes */
2640                         if (arg) {
2641                                 for (p = q = arg; p < from + len; p++) {
2642                                         char c = *p;
2643                                         if (c != '"')
2644                                                 *q++ = c;
2645                                 }
2646                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647                                 if (!arg) {
2648                                         rc = -ENOMEM;
2649                                         goto free_opt;
2650                                 }
2651                         }
2652                         rc = selinux_add_opt(token, arg, mnt_opts);
2653                         if (unlikely(rc)) {
2654                                 kfree(arg);
2655                                 goto free_opt;
2656                         }
2657                 } else {
2658                         if (!first) {   // copy with preceding comma
2659                                 from--;
2660                                 len++;
2661                         }
2662                         if (to != from)
2663                                 memmove(to, from, len);
2664                         to += len;
2665                         first = false;
2666                 }
2667                 if (!from[len])
2668                         break;
2669                 from += len + 1;
2670         }
2671         *to = '\0';
2672         return 0;
2673
2674 free_opt:
2675         if (*mnt_opts) {
2676                 selinux_free_mnt_opts(*mnt_opts);
2677                 *mnt_opts = NULL;
2678         }
2679         return rc;
2680 }
2681
2682 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683 {
2684         struct selinux_mnt_opts *opts = mnt_opts;
2685         struct superblock_security_struct *sbsec = sb->s_security;
2686         u32 sid;
2687         int rc;
2688
2689         if (!(sbsec->flags & SE_SBINITIALIZED))
2690                 return 0;
2691
2692         if (!opts)
2693                 return 0;
2694
2695         if (opts->fscontext) {
2696                 rc = parse_sid(sb, opts->fscontext, &sid);
2697                 if (rc)
2698                         return rc;
2699                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700                         goto out_bad_option;
2701         }
2702         if (opts->context) {
2703                 rc = parse_sid(sb, opts->context, &sid);
2704                 if (rc)
2705                         return rc;
2706                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707                         goto out_bad_option;
2708         }
2709         if (opts->rootcontext) {
2710                 struct inode_security_struct *root_isec;
2711                 root_isec = backing_inode_security(sb->s_root);
2712                 rc = parse_sid(sb, opts->rootcontext, &sid);
2713                 if (rc)
2714                         return rc;
2715                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716                         goto out_bad_option;
2717         }
2718         if (opts->defcontext) {
2719                 rc = parse_sid(sb, opts->defcontext, &sid);
2720                 if (rc)
2721                         return rc;
2722                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723                         goto out_bad_option;
2724         }
2725         return 0;
2726
2727 out_bad_option:
2728         pr_warn("SELinux: unable to change security options "
2729                "during remount (dev %s, type=%s)\n", sb->s_id,
2730                sb->s_type->name);
2731         return -EINVAL;
2732 }
2733
2734 static int selinux_sb_kern_mount(struct super_block *sb)
2735 {
2736         const struct cred *cred = current_cred();
2737         struct common_audit_data ad;
2738
2739         ad.type = LSM_AUDIT_DATA_DENTRY;
2740         ad.u.dentry = sb->s_root;
2741         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742 }
2743
2744 static int selinux_sb_statfs(struct dentry *dentry)
2745 {
2746         const struct cred *cred = current_cred();
2747         struct common_audit_data ad;
2748
2749         ad.type = LSM_AUDIT_DATA_DENTRY;
2750         ad.u.dentry = dentry->d_sb->s_root;
2751         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752 }
2753
2754 static int selinux_mount(const char *dev_name,
2755                          const struct path *path,
2756                          const char *type,
2757                          unsigned long flags,
2758                          void *data)
2759 {
2760         const struct cred *cred = current_cred();
2761
2762         if (flags & MS_REMOUNT)
2763                 return superblock_has_perm(cred, path->dentry->d_sb,
2764                                            FILESYSTEM__REMOUNT, NULL);
2765         else
2766                 return path_has_perm(cred, path, FILE__MOUNTON);
2767 }
2768
2769 static int selinux_move_mount(const struct path *from_path,
2770                               const struct path *to_path)
2771 {
2772         const struct cred *cred = current_cred();
2773
2774         return path_has_perm(cred, to_path, FILE__MOUNTON);
2775 }
2776
2777 static int selinux_umount(struct vfsmount *mnt, int flags)
2778 {
2779         const struct cred *cred = current_cred();
2780
2781         return superblock_has_perm(cred, mnt->mnt_sb,
2782                                    FILESYSTEM__UNMOUNT, NULL);
2783 }
2784
2785 static int selinux_fs_context_dup(struct fs_context *fc,
2786                                   struct fs_context *src_fc)
2787 {
2788         const struct selinux_mnt_opts *src = src_fc->security;
2789         struct selinux_mnt_opts *opts;
2790
2791         if (!src)
2792                 return 0;
2793
2794         fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2795         if (!fc->security)
2796                 return -ENOMEM;
2797
2798         opts = fc->security;
2799
2800         if (src->fscontext) {
2801                 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2802                 if (!opts->fscontext)
2803                         return -ENOMEM;
2804         }
2805         if (src->context) {
2806                 opts->context = kstrdup(src->context, GFP_KERNEL);
2807                 if (!opts->context)
2808                         return -ENOMEM;
2809         }
2810         if (src->rootcontext) {
2811                 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2812                 if (!opts->rootcontext)
2813                         return -ENOMEM;
2814         }
2815         if (src->defcontext) {
2816                 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2817                 if (!opts->defcontext)
2818                         return -ENOMEM;
2819         }
2820         return 0;
2821 }
2822
2823 static const struct fs_parameter_spec selinux_param_specs[] = {
2824         fsparam_string(CONTEXT_STR,     Opt_context),
2825         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2826         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2827         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2828         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2829         {}
2830 };
2831
2832 static const struct fs_parameter_description selinux_fs_parameters = {
2833         .name           = "SELinux",
2834         .specs          = selinux_param_specs,
2835 };
2836
2837 static int selinux_fs_context_parse_param(struct fs_context *fc,
2838                                           struct fs_parameter *param)
2839 {
2840         struct fs_parse_result result;
2841         int opt, rc;
2842
2843         opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2844         if (opt < 0)
2845                 return opt;
2846
2847         rc = selinux_add_opt(opt, param->string, &fc->security);
2848         if (!rc) {
2849                 param->string = NULL;
2850                 rc = 1;
2851         }
2852         return rc;
2853 }
2854
2855 /* inode security operations */
2856
2857 static int selinux_inode_alloc_security(struct inode *inode)
2858 {
2859         return inode_alloc_security(inode);
2860 }
2861
2862 static void selinux_inode_free_security(struct inode *inode)
2863 {
2864         inode_free_security(inode);
2865 }
2866
2867 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2868                                         const struct qstr *name, void **ctx,
2869                                         u32 *ctxlen)
2870 {
2871         u32 newsid;
2872         int rc;
2873
2874         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2875                                            d_inode(dentry->d_parent), name,
2876                                            inode_mode_to_security_class(mode),
2877                                            &newsid);
2878         if (rc)
2879                 return rc;
2880
2881         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2882                                        ctxlen);
2883 }
2884
2885 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2886                                           struct qstr *name,
2887                                           const struct cred *old,
2888                                           struct cred *new)
2889 {
2890         u32 newsid;
2891         int rc;
2892         struct task_security_struct *tsec;
2893
2894         rc = selinux_determine_inode_label(selinux_cred(old),
2895                                            d_inode(dentry->d_parent), name,
2896                                            inode_mode_to_security_class(mode),
2897                                            &newsid);
2898         if (rc)
2899                 return rc;
2900
2901         tsec = selinux_cred(new);
2902         tsec->create_sid = newsid;
2903         return 0;
2904 }
2905
2906 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2907                                        const struct qstr *qstr,
2908                                        const char **name,
2909                                        void **value, size_t *len)
2910 {
2911         const struct task_security_struct *tsec = selinux_cred(current_cred());
2912         struct superblock_security_struct *sbsec;
2913         u32 newsid, clen;
2914         int rc;
2915         char *context;
2916
2917         sbsec = dir->i_sb->s_security;
2918
2919         newsid = tsec->create_sid;
2920
2921         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2922                 dir, qstr,
2923                 inode_mode_to_security_class(inode->i_mode),
2924                 &newsid);
2925         if (rc)
2926                 return rc;
2927
2928         /* Possibly defer initialization to selinux_complete_init. */
2929         if (sbsec->flags & SE_SBINITIALIZED) {
2930                 struct inode_security_struct *isec = selinux_inode(inode);
2931                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2932                 isec->sid = newsid;
2933                 isec->initialized = LABEL_INITIALIZED;
2934         }
2935
2936         if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2937                 return -EOPNOTSUPP;
2938
2939         if (name)
2940                 *name = XATTR_SELINUX_SUFFIX;
2941
2942         if (value && len) {
2943                 rc = security_sid_to_context_force(&selinux_state, newsid,
2944                                                    &context, &clen);
2945                 if (rc)
2946                         return rc;
2947                 *value = context;
2948                 *len = clen;
2949         }
2950
2951         return 0;
2952 }
2953
2954 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2955 {
2956         return may_create(dir, dentry, SECCLASS_FILE);
2957 }
2958
2959 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2960 {
2961         return may_link(dir, old_dentry, MAY_LINK);
2962 }
2963
2964 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2965 {
2966         return may_link(dir, dentry, MAY_UNLINK);
2967 }
2968
2969 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2970 {
2971         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2972 }
2973
2974 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2975 {
2976         return may_create(dir, dentry, SECCLASS_DIR);
2977 }
2978
2979 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2980 {
2981         return may_link(dir, dentry, MAY_RMDIR);
2982 }
2983
2984 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2985 {
2986         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2987 }
2988
2989 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2990                                 struct inode *new_inode, struct dentry *new_dentry)
2991 {
2992         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2993 }
2994
2995 static int selinux_inode_readlink(struct dentry *dentry)
2996 {
2997         const struct cred *cred = current_cred();
2998
2999         return dentry_has_perm(cred, dentry, FILE__READ);
3000 }
3001
3002 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3003                                      bool rcu)
3004 {
3005         const struct cred *cred = current_cred();
3006         struct common_audit_data ad;
3007         struct inode_security_struct *isec;
3008         u32 sid;
3009
3010         validate_creds(cred);
3011
3012         ad.type = LSM_AUDIT_DATA_DENTRY;
3013         ad.u.dentry = dentry;
3014         sid = cred_sid(cred);
3015         isec = inode_security_rcu(inode, rcu);
3016         if (IS_ERR(isec))
3017                 return PTR_ERR(isec);
3018
3019         return avc_has_perm_flags(&selinux_state,
3020                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
3021                                   rcu ? MAY_NOT_BLOCK : 0);
3022 }
3023
3024 static noinline int audit_inode_permission(struct inode *inode,
3025                                            u32 perms, u32 audited, u32 denied,
3026                                            int result,
3027                                            unsigned flags)
3028 {
3029         struct common_audit_data ad;
3030         struct inode_security_struct *isec = selinux_inode(inode);
3031         int rc;
3032
3033         ad.type = LSM_AUDIT_DATA_INODE;
3034         ad.u.inode = inode;
3035
3036         rc = slow_avc_audit(&selinux_state,
3037                             current_sid(), isec->sid, isec->sclass, perms,
3038                             audited, denied, result, &ad, flags);
3039         if (rc)
3040                 return rc;
3041         return 0;
3042 }
3043
3044 static int selinux_inode_permission(struct inode *inode, int mask)
3045 {
3046         const struct cred *cred = current_cred();
3047         u32 perms;
3048         bool from_access;
3049         unsigned flags = mask & MAY_NOT_BLOCK;
3050         struct inode_security_struct *isec;
3051         u32 sid;
3052         struct av_decision avd;
3053         int rc, rc2;
3054         u32 audited, denied;
3055
3056         from_access = mask & MAY_ACCESS;
3057         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3058
3059         /* No permission to check.  Existence test. */
3060         if (!mask)
3061                 return 0;
3062
3063         validate_creds(cred);
3064
3065         if (unlikely(IS_PRIVATE(inode)))
3066                 return 0;
3067
3068         perms = file_mask_to_av(inode->i_mode, mask);
3069
3070         sid = cred_sid(cred);
3071         isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3072         if (IS_ERR(isec))
3073                 return PTR_ERR(isec);
3074
3075         rc = avc_has_perm_noaudit(&selinux_state,
3076                                   sid, isec->sid, isec->sclass, perms,
3077                                   (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3078                                   &avd);
3079         audited = avc_audit_required(perms, &avd, rc,
3080                                      from_access ? FILE__AUDIT_ACCESS : 0,
3081                                      &denied);
3082         if (likely(!audited))
3083                 return rc;
3084
3085         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3086         if (rc2)
3087                 return rc2;
3088         return rc;
3089 }
3090
3091 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3092 {
3093         const struct cred *cred = current_cred();
3094         struct inode *inode = d_backing_inode(dentry);
3095         unsigned int ia_valid = iattr->ia_valid;
3096         __u32 av = FILE__WRITE;
3097
3098         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3099         if (ia_valid & ATTR_FORCE) {
3100                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3101                               ATTR_FORCE);
3102                 if (!ia_valid)
3103                         return 0;
3104         }
3105
3106         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3107                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3108                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3109
3110         if (selinux_policycap_openperm() &&
3111             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3112             (ia_valid & ATTR_SIZE) &&
3113             !(ia_valid & ATTR_FILE))
3114                 av |= FILE__OPEN;
3115
3116         return dentry_has_perm(cred, dentry, av);
3117 }
3118
3119 static int selinux_inode_getattr(const struct path *path)
3120 {
3121         return path_has_perm(current_cred(), path, FILE__GETATTR);
3122 }
3123
3124 static bool has_cap_mac_admin(bool audit)
3125 {
3126         const struct cred *cred = current_cred();
3127         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3128
3129         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3130                 return false;
3131         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3132                 return false;
3133         return true;
3134 }
3135
3136 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3137                                   const void *value, size_t size, int flags)
3138 {
3139         struct inode *inode = d_backing_inode(dentry);
3140         struct inode_security_struct *isec;
3141         struct superblock_security_struct *sbsec;
3142         struct common_audit_data ad;
3143         u32 newsid, sid = current_sid();
3144         int rc = 0;
3145
3146         if (strcmp(name, XATTR_NAME_SELINUX)) {
3147                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3148                 if (rc)
3149                         return rc;
3150
3151                 /* Not an attribute we recognize, so just check the
3152                    ordinary setattr permission. */
3153                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3154         }
3155
3156         sbsec = inode->i_sb->s_security;
3157         if (!(sbsec->flags & SBLABEL_MNT))
3158                 return -EOPNOTSUPP;
3159
3160         if (!inode_owner_or_capable(inode))
3161                 return -EPERM;
3162
3163         ad.type = LSM_AUDIT_DATA_DENTRY;
3164         ad.u.dentry = dentry;
3165
3166         isec = backing_inode_security(dentry);
3167         rc = avc_has_perm(&selinux_state,
3168                           sid, isec->sid, isec->sclass,
3169                           FILE__RELABELFROM, &ad);
3170         if (rc)
3171                 return rc;
3172
3173         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3174                                      GFP_KERNEL);
3175         if (rc == -EINVAL) {
3176                 if (!has_cap_mac_admin(true)) {
3177                         struct audit_buffer *ab;
3178                         size_t audit_size;
3179
3180                         /* We strip a nul only if it is at the end, otherwise the
3181                          * context contains a nul and we should audit that */
3182                         if (value) {
3183                                 const char *str = value;
3184
3185                                 if (str[size - 1] == '\0')
3186                                         audit_size = size - 1;
3187                                 else
3188                                         audit_size = size;
3189                         } else {
3190                                 audit_size = 0;
3191                         }
3192                         ab = audit_log_start(audit_context(),
3193                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3194                         audit_log_format(ab, "op=setxattr invalid_context=");
3195                         audit_log_n_untrustedstring(ab, value, audit_size);
3196                         audit_log_end(ab);
3197
3198                         return rc;
3199                 }
3200                 rc = security_context_to_sid_force(&selinux_state, value,
3201                                                    size, &newsid);
3202         }
3203         if (rc)
3204                 return rc;
3205
3206         rc = avc_has_perm(&selinux_state,
3207                           sid, newsid, isec->sclass,
3208                           FILE__RELABELTO, &ad);
3209         if (rc)
3210                 return rc;
3211
3212         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3213                                           sid, isec->sclass);
3214         if (rc)
3215                 return rc;
3216
3217         return avc_has_perm(&selinux_state,
3218                             newsid,
3219                             sbsec->sid,
3220                             SECCLASS_FILESYSTEM,
3221                             FILESYSTEM__ASSOCIATE,
3222                             &ad);
3223 }
3224
3225 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3226                                         const void *value, size_t size,
3227                                         int flags)
3228 {
3229         struct inode *inode = d_backing_inode(dentry);
3230         struct inode_security_struct *isec;
3231         u32 newsid;
3232         int rc;
3233
3234         if (strcmp(name, XATTR_NAME_SELINUX)) {
3235                 /* Not an attribute we recognize, so nothing to do. */
3236                 return;
3237         }
3238
3239         rc = security_context_to_sid_force(&selinux_state, value, size,
3240                                            &newsid);
3241         if (rc) {
3242                 pr_err("SELinux:  unable to map context to SID"
3243                        "for (%s, %lu), rc=%d\n",
3244                        inode->i_sb->s_id, inode->i_ino, -rc);
3245                 return;
3246         }
3247
3248         isec = backing_inode_security(dentry);
3249         spin_lock(&isec->lock);
3250         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3251         isec->sid = newsid;
3252         isec->initialized = LABEL_INITIALIZED;
3253         spin_unlock(&isec->lock);
3254
3255         return;
3256 }
3257
3258 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3259 {
3260         const struct cred *cred = current_cred();
3261
3262         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3263 }
3264
3265 static int selinux_inode_listxattr(struct dentry *dentry)
3266 {
3267         const struct cred *cred = current_cred();
3268
3269         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3270 }
3271
3272 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3273 {
3274         if (strcmp(name, XATTR_NAME_SELINUX)) {
3275                 int rc = cap_inode_removexattr(dentry, name);
3276                 if (rc)
3277                         return rc;
3278
3279                 /* Not an attribute we recognize, so just check the
3280                    ordinary setattr permission. */
3281                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3282         }
3283
3284         /* No one is allowed to remove a SELinux security label.
3285            You can change the label, but all data must be labeled. */
3286         return -EACCES;
3287 }
3288
3289 static int selinux_path_notify(const struct path *path, u64 mask,
3290                                                 unsigned int obj_type)
3291 {
3292         int ret;
3293         u32 perm;
3294
3295         struct common_audit_data ad;
3296
3297         ad.type = LSM_AUDIT_DATA_PATH;
3298         ad.u.path = *path;
3299
3300         /*
3301          * Set permission needed based on the type of mark being set.
3302          * Performs an additional check for sb watches.
3303          */
3304         switch (obj_type) {
3305         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3306                 perm = FILE__WATCH_MOUNT;
3307                 break;
3308         case FSNOTIFY_OBJ_TYPE_SB:
3309                 perm = FILE__WATCH_SB;
3310                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3311                                                 FILESYSTEM__WATCH, &ad);
3312                 if (ret)
3313                         return ret;
3314                 break;
3315         case FSNOTIFY_OBJ_TYPE_INODE:
3316                 perm = FILE__WATCH;
3317                 break;
3318         default:
3319                 return -EINVAL;
3320         }
3321
3322         /* blocking watches require the file:watch_with_perm permission */
3323         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3324                 perm |= FILE__WATCH_WITH_PERM;
3325
3326         /* watches on read-like events need the file:watch_reads permission */
3327         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3328                 perm |= FILE__WATCH_READS;
3329
3330         return path_has_perm(current_cred(), path, perm);
3331 }
3332
3333 /*
3334  * Copy the inode security context value to the user.
3335  *
3336  * Permission check is handled by selinux_inode_getxattr hook.
3337  */
3338 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3339 {
3340         u32 size;
3341         int error;
3342         char *context = NULL;
3343         struct inode_security_struct *isec;
3344
3345         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3346                 return -EOPNOTSUPP;
3347
3348         /*
3349          * If the caller has CAP_MAC_ADMIN, then get the raw context
3350          * value even if it is not defined by current policy; otherwise,
3351          * use the in-core value under current policy.
3352          * Use the non-auditing forms of the permission checks since
3353          * getxattr may be called by unprivileged processes commonly
3354          * and lack of permission just means that we fall back to the
3355          * in-core context value, not a denial.
3356          */
3357         isec = inode_security(inode);
3358         if (has_cap_mac_admin(false))
3359                 error = security_sid_to_context_force(&selinux_state,
3360                                                       isec->sid, &context,
3361                                                       &size);
3362         else
3363                 error = security_sid_to_context(&selinux_state, isec->sid,
3364                                                 &context, &size);
3365         if (error)
3366                 return error;
3367         error = size;
3368         if (alloc) {
3369                 *buffer = context;
3370                 goto out_nofree;
3371         }
3372         kfree(context);
3373 out_nofree:
3374         return error;
3375 }
3376
3377 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3378                                      const void *value, size_t size, int flags)
3379 {
3380         struct inode_security_struct *isec = inode_security_novalidate(inode);
3381         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3382         u32 newsid;
3383         int rc;
3384
3385         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3386                 return -EOPNOTSUPP;
3387
3388         if (!(sbsec->flags & SBLABEL_MNT))
3389                 return -EOPNOTSUPP;
3390
3391         if (!value || !size)
3392                 return -EACCES;
3393
3394         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3395                                      GFP_KERNEL);
3396         if (rc)
3397                 return rc;
3398
3399         spin_lock(&isec->lock);
3400         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3401         isec->sid = newsid;
3402         isec->initialized = LABEL_INITIALIZED;
3403         spin_unlock(&isec->lock);
3404         return 0;
3405 }
3406
3407 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3408 {
3409         const int len = sizeof(XATTR_NAME_SELINUX);
3410         if (buffer && len <= buffer_size)
3411                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3412         return len;
3413 }
3414
3415 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3416 {
3417         struct inode_security_struct *isec = inode_security_novalidate(inode);
3418         *secid = isec->sid;
3419 }
3420
3421 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3422 {
3423         u32 sid;
3424         struct task_security_struct *tsec;
3425         struct cred *new_creds = *new;
3426
3427         if (new_creds == NULL) {
3428                 new_creds = prepare_creds();
3429                 if (!new_creds)
3430                         return -ENOMEM;
3431         }
3432
3433         tsec = selinux_cred(new_creds);
3434         /* Get label from overlay inode and set it in create_sid */
3435         selinux_inode_getsecid(d_inode(src), &sid);
3436         tsec->create_sid = sid;
3437         *new = new_creds;
3438         return 0;
3439 }
3440
3441 static int selinux_inode_copy_up_xattr(const char *name)
3442 {
3443         /* The copy_up hook above sets the initial context on an inode, but we
3444          * don't then want to overwrite it by blindly copying all the lower
3445          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3446          */
3447         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3448                 return 1; /* Discard */
3449         /*
3450          * Any other attribute apart from SELINUX is not claimed, supported
3451          * by selinux.
3452          */
3453         return -EOPNOTSUPP;
3454 }
3455
3456 /* kernfs node operations */
3457
3458 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3459                                         struct kernfs_node *kn)
3460 {
3461         const struct task_security_struct *tsec = selinux_cred(current_cred());
3462         u32 parent_sid, newsid, clen;
3463         int rc;
3464         char *context;
3465
3466         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3467         if (rc == -ENODATA)
3468                 return 0;
3469         else if (rc < 0)
3470                 return rc;
3471
3472         clen = (u32)rc;
3473         context = kmalloc(clen, GFP_KERNEL);
3474         if (!context)
3475                 return -ENOMEM;
3476
3477         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3478         if (rc < 0) {
3479                 kfree(context);
3480                 return rc;
3481         }
3482
3483         rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3484                                      GFP_KERNEL);
3485         kfree(context);
3486         if (rc)
3487                 return rc;
3488
3489         if (tsec->create_sid) {
3490                 newsid = tsec->create_sid;
3491         } else {
3492                 u16 secclass = inode_mode_to_security_class(kn->mode);
3493                 struct qstr q;
3494
3495                 q.name = kn->name;
3496                 q.hash_len = hashlen_string(kn_dir, kn->name);
3497
3498                 rc = security_transition_sid(&selinux_state, tsec->sid,
3499                                              parent_sid, secclass, &q,
3500                                              &newsid);
3501                 if (rc)
3502                         return rc;
3503         }
3504
3505         rc = security_sid_to_context_force(&selinux_state, newsid,
3506                                            &context, &clen);
3507         if (rc)
3508                 return rc;
3509
3510         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3511                               XATTR_CREATE);
3512         kfree(context);
3513         return rc;
3514 }
3515
3516
3517 /* file security operations */
3518
3519 static int selinux_revalidate_file_permission(struct file *file, int mask)
3520 {
3521         const struct cred *cred = current_cred();
3522         struct inode *inode = file_inode(file);
3523
3524         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3525         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3526                 mask |= MAY_APPEND;
3527
3528         return file_has_perm(cred, file,
3529                              file_mask_to_av(inode->i_mode, mask));
3530 }
3531
3532 static int selinux_file_permission(struct file *file, int mask)
3533 {
3534         struct inode *inode = file_inode(file);
3535         struct file_security_struct *fsec = selinux_file(file);
3536         struct inode_security_struct *isec;
3537         u32 sid = current_sid();
3538
3539         if (!mask)
3540                 /* No permission to check.  Existence test. */
3541                 return 0;
3542
3543         isec = inode_security(inode);
3544         if (sid == fsec->sid && fsec->isid == isec->sid &&
3545             fsec->pseqno == avc_policy_seqno(&selinux_state))
3546                 /* No change since file_open check. */
3547                 return 0;
3548
3549         return selinux_revalidate_file_permission(file, mask);
3550 }
3551
3552 static int selinux_file_alloc_security(struct file *file)
3553 {
3554         return file_alloc_security(file);
3555 }
3556
3557 /*
3558  * Check whether a task has the ioctl permission and cmd
3559  * operation to an inode.
3560  */
3561 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3562                 u32 requested, u16 cmd)
3563 {
3564         struct common_audit_data ad;
3565         struct file_security_struct *fsec = selinux_file(file);
3566         struct inode *inode = file_inode(file);
3567         struct inode_security_struct *isec;
3568         struct lsm_ioctlop_audit ioctl;
3569         u32 ssid = cred_sid(cred);
3570         int rc;
3571         u8 driver = cmd >> 8;
3572         u8 xperm = cmd & 0xff;
3573
3574         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3575         ad.u.op = &ioctl;
3576         ad.u.op->cmd = cmd;
3577         ad.u.op->path = file->f_path;
3578
3579         if (ssid != fsec->sid) {
3580                 rc = avc_has_perm(&selinux_state,
3581                                   ssid, fsec->sid,
3582                                 SECCLASS_FD,
3583                                 FD__USE,
3584                                 &ad);
3585                 if (rc)
3586                         goto out;
3587         }
3588
3589         if (unlikely(IS_PRIVATE(inode)))
3590                 return 0;
3591
3592         isec = inode_security(inode);
3593         rc = avc_has_extended_perms(&selinux_state,
3594                                     ssid, isec->sid, isec->sclass,
3595                                     requested, driver, xperm, &ad);
3596 out:
3597         return rc;
3598 }
3599
3600 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3601                               unsigned long arg)
3602 {
3603         const struct cred *cred = current_cred();
3604         int error = 0;
3605
3606         switch (cmd) {
3607         case FIONREAD:
3608         /* fall through */
3609         case FIBMAP:
3610         /* fall through */
3611         case FIGETBSZ:
3612         /* fall through */
3613         case FS_IOC_GETFLAGS:
3614         /* fall through */
3615         case FS_IOC_GETVERSION:
3616                 error = file_has_perm(cred, file, FILE__GETATTR);
3617                 break;
3618
3619         case FS_IOC_SETFLAGS:
3620         /* fall through */
3621         case FS_IOC_SETVERSION:
3622                 error = file_has_perm(cred, file, FILE__SETATTR);
3623                 break;
3624
3625         /* sys_ioctl() checks */
3626         case FIONBIO:
3627         /* fall through */
3628         case FIOASYNC:
3629                 error = file_has_perm(cred, file, 0);
3630                 break;
3631
3632         case KDSKBENT:
3633         case KDSKBSENT:
3634                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3635                                             CAP_OPT_NONE, true);
3636                 break;
3637
3638         /* default case assumes that the command will go
3639          * to the file's ioctl() function.
3640          */
3641         default:
3642                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3643         }
3644         return error;
3645 }
3646
3647 static int default_noexec;
3648
3649 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3650 {
3651         const struct cred *cred = current_cred();
3652         u32 sid = cred_sid(cred);
3653         int rc = 0;
3654
3655         if (default_noexec &&
3656             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3657                                    (!shared && (prot & PROT_WRITE)))) {
3658                 /*
3659                  * We are making executable an anonymous mapping or a
3660                  * private file mapping that will also be writable.
3661                  * This has an additional check.
3662                  */
3663                 rc = avc_has_perm(&selinux_state,
3664                                   sid, sid, SECCLASS_PROCESS,
3665                                   PROCESS__EXECMEM, NULL);
3666                 if (rc)
3667                         goto error;
3668         }
3669
3670         if (file) {
3671                 /* read access is always possible with a mapping */
3672                 u32 av = FILE__READ;
3673
3674                 /* write access only matters if the mapping is shared */
3675                 if (shared && (prot & PROT_WRITE))
3676                         av |= FILE__WRITE;
3677
3678                 if (prot & PROT_EXEC)
3679                         av |= FILE__EXECUTE;
3680
3681                 return file_has_perm(cred, file, av);
3682         }
3683
3684 error:
3685         return rc;
3686 }
3687
3688 static int selinux_mmap_addr(unsigned long addr)
3689 {
3690         int rc = 0;
3691
3692         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3693                 u32 sid = current_sid();
3694                 rc = avc_has_perm(&selinux_state,
3695                                   sid, sid, SECCLASS_MEMPROTECT,
3696                                   MEMPROTECT__MMAP_ZERO, NULL);
3697         }
3698
3699         return rc;
3700 }
3701
3702 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3703                              unsigned long prot, unsigned long flags)
3704 {
3705         struct common_audit_data ad;
3706         int rc;
3707
3708         if (file) {
3709                 ad.type = LSM_AUDIT_DATA_FILE;
3710                 ad.u.file = file;
3711                 rc = inode_has_perm(current_cred(), file_inode(file),
3712                                     FILE__MAP, &ad);
3713                 if (rc)
3714                         return rc;
3715         }
3716
3717         if (selinux_state.checkreqprot)
3718                 prot = reqprot;
3719
3720         return file_map_prot_check(file, prot,
3721                                    (flags & MAP_TYPE) == MAP_SHARED);
3722 }
3723
3724 static int selinux_file_mprotect(struct vm_area_struct *vma,
3725                                  unsigned long reqprot,
3726                                  unsigned long prot)
3727 {
3728         const struct cred *cred = current_cred();
3729         u32 sid = cred_sid(cred);
3730
3731         if (selinux_state.checkreqprot)
3732                 prot = reqprot;
3733
3734         if (default_noexec &&
3735             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3736                 int rc = 0;
3737                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3738                     vma->vm_end <= vma->vm_mm->brk) {
3739                         rc = avc_has_perm(&selinux_state,
3740                                           sid, sid, SECCLASS_PROCESS,
3741                                           PROCESS__EXECHEAP, NULL);
3742                 } else if (!vma->vm_file &&
3743                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3744                              vma->vm_end >= vma->vm_mm->start_stack) ||
3745                             vma_is_stack_for_current(vma))) {
3746                         rc = avc_has_perm(&selinux_state,
3747                                           sid, sid, SECCLASS_PROCESS,
3748                                           PROCESS__EXECSTACK, NULL);
3749                 } else if (vma->vm_file && vma->anon_vma) {
3750                         /*
3751                          * We are making executable a file mapping that has
3752                          * had some COW done. Since pages might have been
3753                          * written, check ability to execute the possibly
3754                          * modified content.  This typically should only
3755                          * occur for text relocations.
3756                          */
3757                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3758                 }
3759                 if (rc)
3760                         return rc;
3761         }
3762
3763         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3764 }
3765
3766 static int selinux_file_lock(struct file *file, unsigned int cmd)
3767 {
3768         const struct cred *cred = current_cred();
3769
3770         return file_has_perm(cred, file, FILE__LOCK);
3771 }
3772
3773 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3774                               unsigned long arg)
3775 {
3776         const struct cred *cred = current_cred();
3777         int err = 0;
3778
3779         switch (cmd) {
3780         case F_SETFL:
3781                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3782                         err = file_has_perm(cred, file, FILE__WRITE);
3783                         break;
3784                 }
3785                 /* fall through */
3786         case F_SETOWN:
3787         case F_SETSIG:
3788         case F_GETFL:
3789         case F_GETOWN:
3790         case F_GETSIG:
3791         case F_GETOWNER_UIDS:
3792                 /* Just check FD__USE permission */
3793                 err = file_has_perm(cred, file, 0);
3794                 break;
3795         case F_GETLK:
3796         case F_SETLK:
3797         case F_SETLKW:
3798         case F_OFD_GETLK:
3799         case F_OFD_SETLK:
3800         case F_OFD_SETLKW:
3801 #if BITS_PER_LONG == 32
3802         case F_GETLK64:
3803         case F_SETLK64:
3804         case F_SETLKW64:
3805 #endif
3806                 err = file_has_perm(cred, file, FILE__LOCK);
3807                 break;
3808         }
3809
3810         return err;
3811 }
3812
3813 static void selinux_file_set_fowner(struct file *file)
3814 {
3815         struct file_security_struct *fsec;
3816
3817         fsec = selinux_file(file);
3818         fsec->fown_sid = current_sid();
3819 }
3820
3821 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3822                                        struct fown_struct *fown, int signum)
3823 {
3824         struct file *file;
3825         u32 sid = task_sid(tsk);
3826         u32 perm;
3827         struct file_security_struct *fsec;
3828
3829         /* struct fown_struct is never outside the context of a struct file */
3830         file = container_of(fown, struct file, f_owner);
3831
3832         fsec = selinux_file(file);
3833
3834         if (!signum)
3835                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3836         else
3837                 perm = signal_to_av(signum);
3838
3839         return avc_has_perm(&selinux_state,
3840                             fsec->fown_sid, sid,
3841                             SECCLASS_PROCESS, perm, NULL);
3842 }
3843
3844 static int selinux_file_receive(struct file *file)
3845 {
3846         const struct cred *cred = current_cred();
3847
3848         return file_has_perm(cred, file, file_to_av(file));
3849 }
3850
3851 static int selinux_file_open(struct file *file)
3852 {
3853         struct file_security_struct *fsec;
3854         struct inode_security_struct *isec;
3855
3856         fsec = selinux_file(file);
3857         isec = inode_security(file_inode(file));
3858         /*
3859          * Save inode label and policy sequence number
3860          * at open-time so that selinux_file_permission
3861          * can determine whether revalidation is necessary.
3862          * Task label is already saved in the file security
3863          * struct as its SID.
3864          */
3865         fsec->isid = isec->sid;
3866         fsec->pseqno = avc_policy_seqno(&selinux_state);
3867         /*
3868          * Since the inode label or policy seqno may have changed
3869          * between the selinux_inode_permission check and the saving
3870          * of state above, recheck that access is still permitted.
3871          * Otherwise, access might never be revalidated against the
3872          * new inode label or new policy.
3873          * This check is not redundant - do not remove.
3874          */
3875         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3876 }
3877
3878 /* task security operations */
3879
3880 static int selinux_task_alloc(struct task_struct *task,
3881                               unsigned long clone_flags)
3882 {
3883         u32 sid = current_sid();
3884
3885         return avc_has_perm(&selinux_state,
3886                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3887 }
3888
3889 /*
3890  * prepare a new set of credentials for modification
3891  */
3892 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3893                                 gfp_t gfp)
3894 {
3895         const struct task_security_struct *old_tsec = selinux_cred(old);
3896         struct task_security_struct *tsec = selinux_cred(new);
3897
3898         *tsec = *old_tsec;
3899         return 0;
3900 }
3901
3902 /*
3903  * transfer the SELinux data to a blank set of creds
3904  */
3905 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3906 {
3907         const struct task_security_struct *old_tsec = selinux_cred(old);
3908         struct task_security_struct *tsec = selinux_cred(new);
3909
3910         *tsec = *old_tsec;
3911 }
3912
3913 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3914 {
3915         *secid = cred_sid(c);
3916 }
3917
3918 /*
3919  * set the security data for a kernel service
3920  * - all the creation contexts are set to unlabelled
3921  */
3922 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3923 {
3924         struct task_security_struct *tsec = selinux_cred(new);
3925         u32 sid = current_sid();
3926         int ret;
3927
3928         ret = avc_has_perm(&selinux_state,
3929                            sid, secid,
3930                            SECCLASS_KERNEL_SERVICE,
3931                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3932                            NULL);
3933         if (ret == 0) {
3934                 tsec->sid = secid;
3935                 tsec->create_sid = 0;
3936                 tsec->keycreate_sid = 0;
3937                 tsec->sockcreate_sid = 0;
3938         }
3939         return ret;
3940 }
3941
3942 /*
3943  * set the file creation context in a security record to the same as the
3944  * objective context of the specified inode
3945  */
3946 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3947 {
3948         struct inode_security_struct *isec = inode_security(inode);
3949         struct task_security_struct *tsec = selinux_cred(new);
3950         u32 sid = current_sid();
3951         int ret;
3952
3953         ret = avc_has_perm(&selinux_state,
3954                            sid, isec->sid,
3955                            SECCLASS_KERNEL_SERVICE,
3956                            KERNEL_SERVICE__CREATE_FILES_AS,
3957                            NULL);
3958
3959         if (ret == 0)
3960                 tsec->create_sid = isec->sid;
3961         return ret;
3962 }
3963
3964 static int selinux_kernel_module_request(char *kmod_name)
3965 {
3966         struct common_audit_data ad;
3967
3968         ad.type = LSM_AUDIT_DATA_KMOD;
3969         ad.u.kmod_name = kmod_name;
3970
3971         return avc_has_perm(&selinux_state,
3972                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3973                             SYSTEM__MODULE_REQUEST, &ad);
3974 }
3975
3976 static int selinux_kernel_module_from_file(struct file *file)
3977 {
3978         struct common_audit_data ad;
3979         struct inode_security_struct *isec;
3980         struct file_security_struct *fsec;
3981         u32 sid = current_sid();
3982         int rc;
3983
3984         /* init_module */
3985         if (file == NULL)
3986                 return avc_has_perm(&selinux_state,
3987                                     sid, sid, SECCLASS_SYSTEM,
3988                                         SYSTEM__MODULE_LOAD, NULL);
3989
3990         /* finit_module */
3991
3992         ad.type = LSM_AUDIT_DATA_FILE;
3993         ad.u.file = file;
3994
3995         fsec = selinux_file(file);
3996         if (sid != fsec->sid) {
3997                 rc = avc_has_perm(&selinux_state,
3998                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3999                 if (rc)
4000                         return rc;
4001         }
4002
4003         isec = inode_security(file_inode(file));
4004         return avc_has_perm(&selinux_state,
4005                             sid, isec->sid, SECCLASS_SYSTEM,
4006                                 SYSTEM__MODULE_LOAD, &ad);
4007 }
4008
4009 static int selinux_kernel_read_file(struct file *file,
4010                                     enum kernel_read_file_id id)
4011 {
4012         int rc = 0;
4013
4014         switch (id) {
4015         case READING_MODULE:
4016                 rc = selinux_kernel_module_from_file(file);
4017                 break;
4018         default:
4019                 break;
4020         }
4021
4022         return rc;
4023 }
4024
4025 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4026 {
4027         int rc = 0;
4028
4029         switch (id) {
4030         case LOADING_MODULE:
4031                 rc = selinux_kernel_module_from_file(NULL);
4032         default:
4033                 break;
4034         }
4035
4036         return rc;
4037 }
4038
4039 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4040 {
4041         return avc_has_perm(&selinux_state,
4042                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4043                             PROCESS__SETPGID, NULL);
4044 }
4045
4046 static int selinux_task_getpgid(struct task_struct *p)
4047 {
4048         return avc_has_perm(&selinux_state,
4049                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4050                             PROCESS__GETPGID, NULL);
4051 }
4052
4053 static int selinux_task_getsid(struct task_struct *p)
4054 {
4055         return avc_has_perm(&selinux_state,
4056                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4057                             PROCESS__GETSESSION, NULL);
4058 }
4059
4060 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4061 {
4062         *secid = task_sid(p);
4063 }
4064
4065 static int selinux_task_setnice(struct task_struct *p, int nice)
4066 {
4067         return avc_has_perm(&selinux_state,
4068                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4069                             PROCESS__SETSCHED, NULL);
4070 }
4071
4072 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4073 {
4074         return avc_has_perm(&selinux_state,
4075                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4076                             PROCESS__SETSCHED, NULL);
4077 }
4078
4079 static int selinux_task_getioprio(struct task_struct *p)
4080 {
4081         return avc_has_perm(&selinux_state,
4082                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4083                             PROCESS__GETSCHED, NULL);
4084 }
4085
4086 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4087                                 unsigned int flags)
4088 {
4089         u32 av = 0;
4090
4091         if (!flags)
4092                 return 0;
4093         if (flags & LSM_PRLIMIT_WRITE)
4094                 av |= PROCESS__SETRLIMIT;
4095         if (flags & LSM_PRLIMIT_READ)
4096                 av |= PROCESS__GETRLIMIT;
4097         return avc_has_perm(&selinux_state,
4098                             cred_sid(cred), cred_sid(tcred),
4099                             SECCLASS_PROCESS, av, NULL);
4100 }
4101
4102 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4103                 struct rlimit *new_rlim)
4104 {
4105         struct rlimit *old_rlim = p->signal->rlim + resource;
4106
4107         /* Control the ability to change the hard limit (whether
4108            lowering or raising it), so that the hard limit can
4109            later be used as a safe reset point for the soft limit
4110            upon context transitions.  See selinux_bprm_committing_creds. */
4111         if (old_rlim->rlim_max != new_rlim->rlim_max)
4112                 return avc_has_perm(&selinux_state,
4113                                     current_sid(), task_sid(p),
4114                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4115
4116         return 0;
4117 }
4118
4119 static int selinux_task_setscheduler(struct task_struct *p)
4120 {
4121         return avc_has_perm(&selinux_state,
4122                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4123                             PROCESS__SETSCHED, NULL);
4124 }
4125
4126 static int selinux_task_getscheduler(struct task_struct *p)
4127 {
4128         return avc_has_perm(&selinux_state,
4129                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4130                             PROCESS__GETSCHED, NULL);
4131 }
4132
4133 static int selinux_task_movememory(struct task_struct *p)
4134 {
4135         return avc_has_perm(&selinux_state,
4136                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4137                             PROCESS__SETSCHED, NULL);
4138 }
4139
4140 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4141                                 int sig, const struct cred *cred)
4142 {
4143         u32 secid;
4144         u32 perm;
4145
4146         if (!sig)
4147                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4148         else
4149                 perm = signal_to_av(sig);
4150         if (!cred)
4151                 secid = current_sid();
4152         else
4153                 secid = cred_sid(cred);
4154         return avc_has_perm(&selinux_state,
4155                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4156 }
4157
4158 static void selinux_task_to_inode(struct task_struct *p,
4159                                   struct inode *inode)
4160 {
4161         struct inode_security_struct *isec = selinux_inode(inode);
4162         u32 sid = task_sid(p);
4163
4164         spin_lock(&isec->lock);
4165         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4166         isec->sid = sid;
4167         isec->initialized = LABEL_INITIALIZED;
4168         spin_unlock(&isec->lock);
4169 }
4170
4171 /* Returns error only if unable to parse addresses */
4172 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4173                         struct common_audit_data *ad, u8 *proto)
4174 {
4175         int offset, ihlen, ret = -EINVAL;
4176         struct iphdr _iph, *ih;
4177
4178         offset = skb_network_offset(skb);
4179         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4180         if (ih == NULL)
4181                 goto out;
4182
4183         ihlen = ih->ihl * 4;
4184         if (ihlen < sizeof(_iph))
4185                 goto out;
4186
4187         ad->u.net->v4info.saddr = ih->saddr;
4188         ad->u.net->v4info.daddr = ih->daddr;
4189         ret = 0;
4190
4191         if (proto)
4192                 *proto = ih->protocol;
4193
4194         switch (ih->protocol) {
4195         case IPPROTO_TCP: {
4196                 struct tcphdr _tcph, *th;
4197
4198                 if (ntohs(ih->frag_off) & IP_OFFSET)
4199                         break;
4200
4201                 offset += ihlen;
4202                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4203                 if (th == NULL)
4204                         break;
4205
4206                 ad->u.net->sport = th->source;
4207                 ad->u.net->dport = th->dest;
4208                 break;
4209         }
4210
4211         case IPPROTO_UDP: {
4212                 struct udphdr _udph, *uh;
4213
4214                 if (ntohs(ih->frag_off) & IP_OFFSET)
4215                         break;
4216
4217                 offset += ihlen;
4218                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4219                 if (uh == NULL)
4220                         break;
4221
4222                 ad->u.net->sport = uh->source;
4223                 ad->u.net->dport = uh->dest;
4224                 break;
4225         }
4226
4227         case IPPROTO_DCCP: {
4228                 struct dccp_hdr _dccph, *dh;
4229
4230                 if (ntohs(ih->frag_off) & IP_OFFSET)
4231                         break;
4232
4233                 offset += ihlen;
4234                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4235                 if (dh == NULL)
4236                         break;
4237
4238                 ad->u.net->sport = dh->dccph_sport;
4239                 ad->u.net->dport = dh->dccph_dport;
4240                 break;
4241         }
4242
4243 #if IS_ENABLED(CONFIG_IP_SCTP)
4244         case IPPROTO_SCTP: {
4245                 struct sctphdr _sctph, *sh;
4246
4247                 if (ntohs(ih->frag_off) & IP_OFFSET)
4248                         break;
4249
4250                 offset += ihlen;
4251                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4252                 if (sh == NULL)
4253                         break;
4254
4255                 ad->u.net->sport = sh->source;
4256                 ad->u.net->dport = sh->dest;
4257                 break;
4258         }
4259 #endif
4260         default:
4261                 break;
4262         }
4263 out:
4264         return ret;
4265 }
4266
4267 #if IS_ENABLED(CONFIG_IPV6)
4268
4269 /* Returns error only if unable to parse addresses */
4270 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4271                         struct common_audit_data *ad, u8 *proto)
4272 {
4273         u8 nexthdr;
4274         int ret = -EINVAL, offset;
4275         struct ipv6hdr _ipv6h, *ip6;
4276         __be16 frag_off;
4277
4278         offset = skb_network_offset(skb);
4279         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4280         if (ip6 == NULL)
4281                 goto out;
4282
4283         ad->u.net->v6info.saddr = ip6->saddr;
4284         ad->u.net->v6info.daddr = ip6->daddr;
4285         ret = 0;
4286
4287         nexthdr = ip6->nexthdr;
4288         offset += sizeof(_ipv6h);
4289         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4290         if (offset < 0)
4291                 goto out;
4292
4293         if (proto)
4294                 *proto = nexthdr;
4295
4296         switch (nexthdr) {
4297         case IPPROTO_TCP: {
4298                 struct tcphdr _tcph, *th;
4299
4300                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4301                 if (th == NULL)
4302                         break;
4303
4304                 ad->u.net->sport = th->source;
4305                 ad->u.net->dport = th->dest;
4306                 break;
4307         }
4308
4309         case IPPROTO_UDP: {
4310                 struct udphdr _udph, *uh;
4311
4312                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4313                 if (uh == NULL)
4314                         break;
4315
4316                 ad->u.net->sport = uh->source;
4317                 ad->u.net->dport = uh->dest;
4318                 break;
4319         }
4320
4321         case IPPROTO_DCCP: {
4322                 struct dccp_hdr _dccph, *dh;
4323
4324                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4325                 if (dh == NULL)
4326                         break;
4327
4328                 ad->u.net->sport = dh->dccph_sport;
4329                 ad->u.net->dport = dh->dccph_dport;
4330                 break;
4331         }
4332
4333 #if IS_ENABLED(CONFIG_IP_SCTP)
4334         case IPPROTO_SCTP: {
4335                 struct sctphdr _sctph, *sh;
4336
4337                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4338                 if (sh == NULL)
4339                         break;
4340
4341                 ad->u.net->sport = sh->source;
4342                 ad->u.net->dport = sh->dest;
4343                 break;
4344         }
4345 #endif
4346         /* includes fragments */
4347         default:
4348                 break;
4349         }
4350 out:
4351         return ret;
4352 }
4353
4354 #endif /* IPV6 */
4355
4356 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4357                              char **_addrp, int src, u8 *proto)
4358 {
4359         char *addrp;
4360         int ret;
4361
4362         switch (ad->u.net->family) {
4363         case PF_INET:
4364                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4365                 if (ret)
4366                         goto parse_error;
4367                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4368                                        &ad->u.net->v4info.daddr);
4369                 goto okay;
4370
4371 #if IS_ENABLED(CONFIG_IPV6)
4372         case PF_INET6:
4373                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4374                 if (ret)
4375                         goto parse_error;
4376                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4377                                        &ad->u.net->v6info.daddr);
4378                 goto okay;
4379 #endif  /* IPV6 */
4380         default:
4381                 addrp = NULL;
4382                 goto okay;
4383         }
4384
4385 parse_error:
4386         pr_warn(
4387                "SELinux: failure in selinux_parse_skb(),"
4388                " unable to parse packet\n");
4389         return ret;
4390
4391 okay:
4392         if (_addrp)
4393                 *_addrp = addrp;
4394         return 0;
4395 }
4396
4397 /**
4398  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4399  * @skb: the packet
4400  * @family: protocol family
4401  * @sid: the packet's peer label SID
4402  *
4403  * Description:
4404  * Check the various different forms of network peer labeling and determine
4405  * the peer label/SID for the packet; most of the magic actually occurs in
4406  * the security server function security_net_peersid_cmp().  The function
4407  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4408  * or -EACCES if @sid is invalid due to inconsistencies with the different
4409  * peer labels.
4410  *
4411  */
4412 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4413 {
4414         int err;
4415         u32 xfrm_sid;
4416         u32 nlbl_sid;
4417         u32 nlbl_type;
4418
4419         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4420         if (unlikely(err))
4421                 return -EACCES;
4422         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4423         if (unlikely(err))
4424                 return -EACCES;
4425
4426         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4427                                            nlbl_type, xfrm_sid, sid);
4428         if (unlikely(err)) {
4429                 pr_warn(
4430                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4431                        " unable to determine packet's peer label\n");
4432                 return -EACCES;
4433         }
4434
4435         return 0;
4436 }
4437
4438 /**
4439  * selinux_conn_sid - Determine the child socket label for a connection
4440  * @sk_sid: the parent socket's SID
4441  * @skb_sid: the packet's SID
4442  * @conn_sid: the resulting connection SID
4443  *
4444  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4445  * combined with the MLS information from @skb_sid in order to create
4446  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4447  * of @sk_sid.  Returns zero on success, negative values on failure.
4448  *
4449  */
4450 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4451 {
4452         int err = 0;
4453
4454         if (skb_sid != SECSID_NULL)
4455                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4456                                             conn_sid);
4457         else
4458                 *conn_sid = sk_sid;
4459
4460         return err;
4461 }
4462
4463 /* socket security operations */
4464
4465 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4466                                  u16 secclass, u32 *socksid)
4467 {
4468         if (tsec->sockcreate_sid > SECSID_NULL) {
4469                 *socksid = tsec->sockcreate_sid;
4470                 return 0;
4471         }
4472
4473         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4474                                        secclass, NULL, socksid);
4475 }
4476
4477 static int sock_has_perm(struct sock *sk, u32 perms)
4478 {
4479         struct sk_security_struct *sksec = sk->sk_security;
4480         struct common_audit_data ad;
4481         struct lsm_network_audit net = {0,};
4482
4483         if (sksec->sid == SECINITSID_KERNEL)
4484                 return 0;
4485
4486         ad.type = LSM_AUDIT_DATA_NET;
4487         ad.u.net = &net;
4488         ad.u.net->sk = sk;
4489
4490         return avc_has_perm(&selinux_state,
4491                             current_sid(), sksec->sid, sksec->sclass, perms,
4492                             &ad);
4493 }
4494
4495 static int selinux_socket_create(int family, int type,
4496                                  int protocol, int kern)
4497 {
4498         const struct task_security_struct *tsec = selinux_cred(current_cred());
4499         u32 newsid;
4500         u16 secclass;
4501         int rc;
4502
4503         if (kern)
4504                 return 0;
4505
4506         secclass = socket_type_to_security_class(family, type, protocol);
4507         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4508         if (rc)
4509                 return rc;
4510
4511         return avc_has_perm(&selinux_state,
4512                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4513 }
4514
4515 static int selinux_socket_post_create(struct socket *sock, int family,
4516                                       int type, int protocol, int kern)
4517 {
4518         const struct task_security_struct *tsec = selinux_cred(current_cred());
4519         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4520         struct sk_security_struct *sksec;
4521         u16 sclass = socket_type_to_security_class(family, type, protocol);
4522         u32 sid = SECINITSID_KERNEL;
4523         int err = 0;
4524
4525         if (!kern) {
4526                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4527                 if (err)
4528                         return err;
4529         }
4530
4531         isec->sclass = sclass;
4532         isec->sid = sid;
4533         isec->initialized = LABEL_INITIALIZED;
4534
4535         if (sock->sk) {
4536                 sksec = sock->sk->sk_security;
4537                 sksec->sclass = sclass;
4538                 sksec->sid = sid;
4539                 /* Allows detection of the first association on this socket */
4540                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4541                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4542
4543                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4544         }
4545
4546         return err;
4547 }
4548
4549 static int selinux_socket_socketpair(struct socket *socka,
4550                                      struct socket *sockb)
4551 {
4552         struct sk_security_struct *sksec_a = socka->sk->sk_security;
4553         struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4554
4555         sksec_a->peer_sid = sksec_b->sid;
4556         sksec_b->peer_sid = sksec_a->sid;
4557
4558         return 0;
4559 }
4560
4561 /* Range of port numbers used to automatically bind.
4562    Need to determine whether we should perform a name_bind
4563    permission check between the socket and the port number. */
4564
4565 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4566 {
4567         struct sock *sk = sock->sk;
4568         struct sk_security_struct *sksec = sk->sk_security;
4569         u16 family;
4570         int err;
4571
4572         err = sock_has_perm(sk, SOCKET__BIND);
4573         if (err)
4574                 goto out;
4575
4576         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4577         family = sk->sk_family;
4578         if (family == PF_INET || family == PF_INET6) {
4579                 char *addrp;
4580                 struct common_audit_data ad;
4581                 struct lsm_network_audit net = {0,};
4582                 struct sockaddr_in *addr4 = NULL;
4583                 struct sockaddr_in6 *addr6 = NULL;
4584                 u16 family_sa;
4585                 unsigned short snum;
4586                 u32 sid, node_perm;
4587
4588                 /*
4589                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4590                  * that validates multiple binding addresses. Because of this
4591                  * need to check address->sa_family as it is possible to have
4592                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4593                  */
4594                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4595                         return -EINVAL;
4596                 family_sa = address->sa_family;
4597                 switch (family_sa) {
4598                 case AF_UNSPEC:
4599                 case AF_INET:
4600                         if (addrlen < sizeof(struct sockaddr_in))
4601                                 return -EINVAL;
4602                         addr4 = (struct sockaddr_in *)address;
4603                         if (family_sa == AF_UNSPEC) {
4604                                 /* see __inet_bind(), we only want to allow
4605                                  * AF_UNSPEC if the address is INADDR_ANY
4606                                  */
4607                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4608                                         goto err_af;
4609                                 family_sa = AF_INET;
4610                         }
4611                         snum = ntohs(addr4->sin_port);
4612                         addrp = (char *)&addr4->sin_addr.s_addr;
4613                         break;
4614                 case AF_INET6:
4615                         if (addrlen < SIN6_LEN_RFC2133)
4616                                 return -EINVAL;
4617                         addr6 = (struct sockaddr_in6 *)address;
4618                         snum = ntohs(addr6->sin6_port);
4619                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4620                         break;
4621                 default:
4622                         goto err_af;
4623                 }
4624
4625                 ad.type = LSM_AUDIT_DATA_NET;
4626                 ad.u.net = &net;
4627                 ad.u.net->sport = htons(snum);
4628                 ad.u.net->family = family_sa;
4629
4630                 if (snum) {
4631                         int low, high;
4632
4633                         inet_get_local_port_range(sock_net(sk), &low, &high);
4634
4635                         if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4636                             snum > high) {
4637                                 err = sel_netport_sid(sk->sk_protocol,
4638                                                       snum, &sid);
4639                                 if (err)
4640                                         goto out;
4641                                 err = avc_has_perm(&selinux_state,
4642                                                    sksec->sid, sid,
4643                                                    sksec->sclass,
4644                                                    SOCKET__NAME_BIND, &ad);
4645                                 if (err)
4646                                         goto out;
4647                         }
4648                 }
4649
4650                 switch (sksec->sclass) {
4651                 case SECCLASS_TCP_SOCKET:
4652                         node_perm = TCP_SOCKET__NODE_BIND;
4653                         break;
4654
4655                 case SECCLASS_UDP_SOCKET:
4656                         node_perm = UDP_SOCKET__NODE_BIND;
4657                         break;
4658
4659                 case SECCLASS_DCCP_SOCKET:
4660                         node_perm = DCCP_SOCKET__NODE_BIND;
4661                         break;
4662
4663                 case SECCLASS_SCTP_SOCKET:
4664                         node_perm = SCTP_SOCKET__NODE_BIND;
4665                         break;
4666
4667                 default:
4668                         node_perm = RAWIP_SOCKET__NODE_BIND;
4669                         break;
4670                 }
4671
4672                 err = sel_netnode_sid(addrp, family_sa, &sid);
4673                 if (err)
4674                         goto out;
4675
4676                 if (family_sa == AF_INET)
4677                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4678                 else
4679                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4680
4681                 err = avc_has_perm(&selinux_state,
4682                                    sksec->sid, sid,
4683                                    sksec->sclass, node_perm, &ad);
4684                 if (err)
4685                         goto out;
4686         }
4687 out:
4688         return err;
4689 err_af:
4690         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4691         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4692                 return -EINVAL;
4693         return -EAFNOSUPPORT;
4694 }
4695
4696 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4697  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4698  */
4699 static int selinux_socket_connect_helper(struct socket *sock,
4700                                          struct sockaddr *address, int addrlen)
4701 {
4702         struct sock *sk = sock->sk;
4703         struct sk_security_struct *sksec = sk->sk_security;
4704         int err;
4705
4706         err = sock_has_perm(sk, SOCKET__CONNECT);
4707         if (err)
4708                 return err;
4709         if (addrlen < offsetofend(struct sockaddr, sa_family))
4710                 return -EINVAL;
4711
4712         /* connect(AF_UNSPEC) has special handling, as it is a documented
4713          * way to disconnect the socket
4714          */
4715         if (address->sa_family == AF_UNSPEC)
4716                 return 0;
4717
4718         /*
4719          * If a TCP, DCCP or SCTP socket, check name_connect permission
4720          * for the port.
4721          */
4722         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4723             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4724             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4725                 struct common_audit_data ad;
4726                 struct lsm_network_audit net = {0,};
4727                 struct sockaddr_in *addr4 = NULL;
4728                 struct sockaddr_in6 *addr6 = NULL;
4729                 unsigned short snum;
4730                 u32 sid, perm;
4731
4732                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4733                  * that validates multiple connect addresses. Because of this
4734                  * need to check address->sa_family as it is possible to have
4735                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4736                  */
4737                 switch (address->sa_family) {
4738                 case AF_INET:
4739                         addr4 = (struct sockaddr_in *)address;
4740                         if (addrlen < sizeof(struct sockaddr_in))
4741                                 return -EINVAL;
4742                         snum = ntohs(addr4->sin_port);
4743                         break;
4744                 case AF_INET6:
4745                         addr6 = (struct sockaddr_in6 *)address;
4746                         if (addrlen < SIN6_LEN_RFC2133)
4747                                 return -EINVAL;
4748                         snum = ntohs(addr6->sin6_port);
4749                         break;
4750                 default:
4751                         /* Note that SCTP services expect -EINVAL, whereas
4752                          * others expect -EAFNOSUPPORT.
4753                          */
4754                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4755                                 return -EINVAL;
4756                         else
4757                                 return -EAFNOSUPPORT;
4758                 }
4759
4760                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4761                 if (err)
4762                         return err;
4763
4764                 switch (sksec->sclass) {
4765                 case SECCLASS_TCP_SOCKET:
4766                         perm = TCP_SOCKET__NAME_CONNECT;
4767                         break;
4768                 case SECCLASS_DCCP_SOCKET:
4769                         perm = DCCP_SOCKET__NAME_CONNECT;
4770                         break;
4771                 case SECCLASS_SCTP_SOCKET:
4772                         perm = SCTP_SOCKET__NAME_CONNECT;
4773                         break;
4774                 }
4775
4776                 ad.type = LSM_AUDIT_DATA_NET;
4777                 ad.u.net = &net;
4778                 ad.u.net->dport = htons(snum);
4779                 ad.u.net->family = address->sa_family;
4780                 err = avc_has_perm(&selinux_state,
4781                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4782                 if (err)
4783                         return err;
4784         }
4785
4786         return 0;
4787 }
4788
4789 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4790 static int selinux_socket_connect(struct socket *sock,
4791                                   struct sockaddr *address, int addrlen)
4792 {
4793         int err;
4794         struct sock *sk = sock->sk;
4795
4796         err = selinux_socket_connect_helper(sock, address, addrlen);
4797         if (err)
4798                 return err;
4799
4800         return selinux_netlbl_socket_connect(sk, address);
4801 }
4802
4803 static int selinux_socket_listen(struct socket *sock, int backlog)
4804 {
4805         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4806 }
4807
4808 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4809 {
4810         int err;
4811         struct inode_security_struct *isec;
4812         struct inode_security_struct *newisec;
4813         u16 sclass;
4814         u32 sid;
4815
4816         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4817         if (err)
4818                 return err;
4819
4820         isec = inode_security_novalidate(SOCK_INODE(sock));
4821         spin_lock(&isec->lock);
4822         sclass = isec->sclass;
4823         sid = isec->sid;
4824         spin_unlock(&isec->lock);
4825
4826         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4827         newisec->sclass = sclass;
4828         newisec->sid = sid;
4829         newisec->initialized = LABEL_INITIALIZED;
4830
4831         return 0;
4832 }
4833
4834 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4835                                   int size)
4836 {
4837         return sock_has_perm(sock->sk, SOCKET__WRITE);
4838 }
4839
4840 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4841                                   int size, int flags)
4842 {
4843         return sock_has_perm(sock->sk, SOCKET__READ);
4844 }
4845
4846 static int selinux_socket_getsockname(struct socket *sock)
4847 {
4848         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849 }
4850
4851 static int selinux_socket_getpeername(struct socket *sock)
4852 {
4853         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4854 }
4855
4856 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4857 {
4858         int err;
4859
4860         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4861         if (err)
4862                 return err;
4863
4864         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4865 }
4866
4867 static int selinux_socket_getsockopt(struct socket *sock, int level,
4868                                      int optname)
4869 {
4870         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4871 }
4872
4873 static int selinux_socket_shutdown(struct socket *sock, int how)
4874 {
4875         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4876 }
4877
4878 static int selinux_socket_unix_stream_connect(struct sock *sock,
4879                                               struct sock *other,
4880                                               struct sock *newsk)
4881 {
4882         struct sk_security_struct *sksec_sock = sock->sk_security;
4883         struct sk_security_struct *sksec_other = other->sk_security;
4884         struct sk_security_struct *sksec_new = newsk->sk_security;
4885         struct common_audit_data ad;
4886         struct lsm_network_audit net = {0,};
4887         int err;
4888
4889         ad.type = LSM_AUDIT_DATA_NET;
4890         ad.u.net = &net;
4891         ad.u.net->sk = other;
4892
4893         err = avc_has_perm(&selinux_state,
4894                            sksec_sock->sid, sksec_other->sid,
4895                            sksec_other->sclass,
4896                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4897         if (err)
4898                 return err;
4899
4900         /* server child socket */
4901         sksec_new->peer_sid = sksec_sock->sid;
4902         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4903                                     sksec_sock->sid, &sksec_new->sid);
4904         if (err)
4905                 return err;
4906
4907         /* connecting socket */
4908         sksec_sock->peer_sid = sksec_new->sid;
4909
4910         return 0;
4911 }
4912
4913 static int selinux_socket_unix_may_send(struct socket *sock,
4914                                         struct socket *other)
4915 {
4916         struct sk_security_struct *ssec = sock->sk->sk_security;
4917         struct sk_security_struct *osec = other->sk->sk_security;
4918         struct common_audit_data ad;
4919         struct lsm_network_audit net = {0,};
4920
4921         ad.type = LSM_AUDIT_DATA_NET;
4922         ad.u.net = &net;
4923         ad.u.net->sk = other->sk;
4924
4925         return avc_has_perm(&selinux_state,
4926                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4927                             &ad);
4928 }
4929
4930 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4931                                     char *addrp, u16 family, u32 peer_sid,
4932                                     struct common_audit_data *ad)
4933 {
4934         int err;
4935         u32 if_sid;
4936         u32 node_sid;
4937
4938         err = sel_netif_sid(ns, ifindex, &if_sid);
4939         if (err)
4940                 return err;
4941         err = avc_has_perm(&selinux_state,
4942                            peer_sid, if_sid,
4943                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4944         if (err)
4945                 return err;
4946
4947         err = sel_netnode_sid(addrp, family, &node_sid);
4948         if (err)
4949                 return err;
4950         return avc_has_perm(&selinux_state,
4951                             peer_sid, node_sid,
4952                             SECCLASS_NODE, NODE__RECVFROM, ad);
4953 }
4954
4955 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4956                                        u16 family)
4957 {
4958         int err = 0;
4959         struct sk_security_struct *sksec = sk->sk_security;
4960         u32 sk_sid = sksec->sid;
4961         struct common_audit_data ad;
4962         struct lsm_network_audit net = {0,};
4963         char *addrp;
4964
4965         ad.type = LSM_AUDIT_DATA_NET;
4966         ad.u.net = &net;
4967         ad.u.net->netif = skb->skb_iif;
4968         ad.u.net->family = family;
4969         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4970         if (err)
4971                 return err;
4972
4973         if (selinux_secmark_enabled()) {
4974                 err = avc_has_perm(&selinux_state,
4975                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4976                                    PACKET__RECV, &ad);
4977                 if (err)
4978                         return err;
4979         }
4980
4981         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4982         if (err)
4983                 return err;
4984         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4985
4986         return err;
4987 }
4988
4989 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4990 {
4991         int err;
4992         struct sk_security_struct *sksec = sk->sk_security;
4993         u16 family = sk->sk_family;
4994         u32 sk_sid = sksec->sid;
4995         struct common_audit_data ad;
4996         struct lsm_network_audit net = {0,};
4997         char *addrp;
4998         u8 secmark_active;
4999         u8 peerlbl_active;
5000
5001         if (family != PF_INET && family != PF_INET6)
5002                 return 0;
5003
5004         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5005         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5006                 family = PF_INET;
5007
5008         /* If any sort of compatibility mode is enabled then handoff processing
5009          * to the selinux_sock_rcv_skb_compat() function to deal with the
5010          * special handling.  We do this in an attempt to keep this function
5011          * as fast and as clean as possible. */
5012         if (!selinux_policycap_netpeer())
5013                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5014
5015         secmark_active = selinux_secmark_enabled();
5016         peerlbl_active = selinux_peerlbl_enabled();
5017         if (!secmark_active && !peerlbl_active)
5018                 return 0;
5019
5020         ad.type = LSM_AUDIT_DATA_NET;
5021         ad.u.net = &net;
5022         ad.u.net->netif = skb->skb_iif;
5023         ad.u.net->family = family;
5024         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5025         if (err)
5026                 return err;
5027
5028         if (peerlbl_active) {
5029                 u32 peer_sid;
5030
5031                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5032                 if (err)
5033                         return err;
5034                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5035                                                addrp, family, peer_sid, &ad);
5036                 if (err) {
5037                         selinux_netlbl_err(skb, family, err, 0);
5038                         return err;
5039                 }
5040                 err = avc_has_perm(&selinux_state,
5041                                    sk_sid, peer_sid, SECCLASS_PEER,
5042                                    PEER__RECV, &ad);
5043                 if (err) {
5044                         selinux_netlbl_err(skb, family, err, 0);
5045                         return err;
5046                 }
5047         }
5048
5049         if (secmark_active) {
5050                 err = avc_has_perm(&selinux_state,
5051                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5052                                    PACKET__RECV, &ad);
5053                 if (err)
5054                         return err;
5055         }
5056
5057         return err;
5058 }
5059
5060 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5061                                             int __user *optlen, unsigned len)
5062 {
5063         int err = 0;
5064         char *scontext;
5065         u32 scontext_len;
5066         struct sk_security_struct *sksec = sock->sk->sk_security;
5067         u32 peer_sid = SECSID_NULL;
5068
5069         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5070             sksec->sclass == SECCLASS_TCP_SOCKET ||
5071             sksec->sclass == SECCLASS_SCTP_SOCKET)
5072                 peer_sid = sksec->peer_sid;
5073         if (peer_sid == SECSID_NULL)
5074                 return -ENOPROTOOPT;
5075
5076         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5077                                       &scontext_len);
5078         if (err)
5079                 return err;
5080
5081         if (scontext_len > len) {
5082                 err = -ERANGE;
5083                 goto out_len;
5084         }
5085
5086         if (copy_to_user(optval, scontext, scontext_len))
5087                 err = -EFAULT;
5088
5089 out_len:
5090         if (put_user(scontext_len, optlen))
5091                 err = -EFAULT;
5092         kfree(scontext);
5093         return err;
5094 }
5095
5096 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5097 {
5098         u32 peer_secid = SECSID_NULL;
5099         u16 family;
5100         struct inode_security_struct *isec;
5101
5102         if (skb && skb->protocol == htons(ETH_P_IP))
5103                 family = PF_INET;
5104         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5105                 family = PF_INET6;
5106         else if (sock)
5107                 family = sock->sk->sk_family;
5108         else
5109                 goto out;
5110
5111         if (sock && family == PF_UNIX) {
5112                 isec = inode_security_novalidate(SOCK_INODE(sock));
5113                 peer_secid = isec->sid;
5114         } else if (skb)
5115                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5116
5117 out:
5118         *secid = peer_secid;
5119         if (peer_secid == SECSID_NULL)
5120                 return -EINVAL;
5121         return 0;
5122 }
5123
5124 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5125 {
5126         struct sk_security_struct *sksec;
5127
5128         sksec = kzalloc(sizeof(*sksec), priority);
5129         if (!sksec)
5130                 return -ENOMEM;
5131
5132         sksec->peer_sid = SECINITSID_UNLABELED;
5133         sksec->sid = SECINITSID_UNLABELED;
5134         sksec->sclass = SECCLASS_SOCKET;
5135         selinux_netlbl_sk_security_reset(sksec);
5136         sk->sk_security = sksec;
5137
5138         return 0;
5139 }
5140
5141 static void selinux_sk_free_security(struct sock *sk)
5142 {
5143         struct sk_security_struct *sksec = sk->sk_security;
5144
5145         sk->sk_security = NULL;
5146         selinux_netlbl_sk_security_free(sksec);
5147         kfree(sksec);
5148 }
5149
5150 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5151 {
5152         struct sk_security_struct *sksec = sk->sk_security;
5153         struct sk_security_struct *newsksec = newsk->sk_security;
5154
5155         newsksec->sid = sksec->sid;
5156         newsksec->peer_sid = sksec->peer_sid;
5157         newsksec->sclass = sksec->sclass;
5158
5159         selinux_netlbl_sk_security_reset(newsksec);
5160 }
5161
5162 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5163 {
5164         if (!sk)
5165                 *secid = SECINITSID_ANY_SOCKET;
5166         else {
5167                 struct sk_security_struct *sksec = sk->sk_security;
5168
5169                 *secid = sksec->sid;
5170         }
5171 }
5172
5173 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5174 {
5175         struct inode_security_struct *isec =
5176                 inode_security_novalidate(SOCK_INODE(parent));
5177         struct sk_security_struct *sksec = sk->sk_security;
5178
5179         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5180             sk->sk_family == PF_UNIX)
5181                 isec->sid = sksec->sid;
5182         sksec->sclass = isec->sclass;
5183 }
5184
5185 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5186  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5187  * already present).
5188  */
5189 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5190                                       struct sk_buff *skb)
5191 {
5192         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5193         struct common_audit_data ad;
5194         struct lsm_network_audit net = {0,};
5195         u8 peerlbl_active;
5196         u32 peer_sid = SECINITSID_UNLABELED;
5197         u32 conn_sid;
5198         int err = 0;
5199
5200         if (!selinux_policycap_extsockclass())
5201                 return 0;
5202
5203         peerlbl_active = selinux_peerlbl_enabled();
5204
5205         if (peerlbl_active) {
5206                 /* This will return peer_sid = SECSID_NULL if there are
5207                  * no peer labels, see security_net_peersid_resolve().
5208                  */
5209                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5210                                               &peer_sid);
5211                 if (err)
5212                         return err;
5213
5214                 if (peer_sid == SECSID_NULL)
5215                         peer_sid = SECINITSID_UNLABELED;
5216         }
5217
5218         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5219                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5220
5221                 /* Here as first association on socket. As the peer SID
5222                  * was allowed by peer recv (and the netif/node checks),
5223                  * then it is approved by policy and used as the primary
5224                  * peer SID for getpeercon(3).
5225                  */
5226                 sksec->peer_sid = peer_sid;
5227         } else if  (sksec->peer_sid != peer_sid) {
5228                 /* Other association peer SIDs are checked to enforce
5229                  * consistency among the peer SIDs.
5230                  */
5231                 ad.type = LSM_AUDIT_DATA_NET;
5232                 ad.u.net = &net;
5233                 ad.u.net->sk = ep->base.sk;
5234                 err = avc_has_perm(&selinux_state,
5235                                    sksec->peer_sid, peer_sid, sksec->sclass,
5236                                    SCTP_SOCKET__ASSOCIATION, &ad);
5237                 if (err)
5238                         return err;
5239         }
5240
5241         /* Compute the MLS component for the connection and store
5242          * the information in ep. This will be used by SCTP TCP type
5243          * sockets and peeled off connections as they cause a new
5244          * socket to be generated. selinux_sctp_sk_clone() will then
5245          * plug this into the new socket.
5246          */
5247         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5248         if (err)
5249                 return err;
5250
5251         ep->secid = conn_sid;
5252         ep->peer_secid = peer_sid;
5253
5254         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5255         return selinux_netlbl_sctp_assoc_request(ep, skb);
5256 }
5257
5258 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5259  * based on their @optname.
5260  */
5261 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5262                                      struct sockaddr *address,
5263                                      int addrlen)
5264 {
5265         int len, err = 0, walk_size = 0;
5266         void *addr_buf;
5267         struct sockaddr *addr;
5268         struct socket *sock;
5269
5270         if (!selinux_policycap_extsockclass())
5271                 return 0;
5272
5273         /* Process one or more addresses that may be IPv4 or IPv6 */
5274         sock = sk->sk_socket;
5275         addr_buf = address;
5276
5277         while (walk_size < addrlen) {
5278                 if (walk_size + sizeof(sa_family_t) > addrlen)
5279                         return -EINVAL;
5280
5281                 addr = addr_buf;
5282                 switch (addr->sa_family) {
5283                 case AF_UNSPEC:
5284                 case AF_INET:
5285                         len = sizeof(struct sockaddr_in);
5286                         break;
5287                 case AF_INET6:
5288                         len = sizeof(struct sockaddr_in6);
5289                         break;
5290                 default:
5291                         return -EINVAL;
5292                 }
5293
5294                 if (walk_size + len > addrlen)
5295                         return -EINVAL;
5296
5297                 err = -EINVAL;
5298                 switch (optname) {
5299                 /* Bind checks */
5300                 case SCTP_PRIMARY_ADDR:
5301                 case SCTP_SET_PEER_PRIMARY_ADDR:
5302                 case SCTP_SOCKOPT_BINDX_ADD:
5303                         err = selinux_socket_bind(sock, addr, len);
5304                         break;
5305                 /* Connect checks */
5306                 case SCTP_SOCKOPT_CONNECTX:
5307                 case SCTP_PARAM_SET_PRIMARY:
5308                 case SCTP_PARAM_ADD_IP:
5309                 case SCTP_SENDMSG_CONNECT:
5310                         err = selinux_socket_connect_helper(sock, addr, len);
5311                         if (err)
5312                                 return err;
5313
5314                         /* As selinux_sctp_bind_connect() is called by the
5315                          * SCTP protocol layer, the socket is already locked,
5316                          * therefore selinux_netlbl_socket_connect_locked() is
5317                          * is called here. The situations handled are:
5318                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5319                          * whenever a new IP address is added or when a new
5320                          * primary address is selected.
5321                          * Note that an SCTP connect(2) call happens before
5322                          * the SCTP protocol layer and is handled via
5323                          * selinux_socket_connect().
5324                          */
5325                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5326                         break;
5327                 }
5328
5329                 if (err)
5330                         return err;
5331
5332                 addr_buf += len;
5333                 walk_size += len;
5334         }
5335
5336         return 0;
5337 }
5338
5339 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5340 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5341                                   struct sock *newsk)
5342 {
5343         struct sk_security_struct *sksec = sk->sk_security;
5344         struct sk_security_struct *newsksec = newsk->sk_security;
5345
5346         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5347          * the non-sctp clone version.
5348          */
5349         if (!selinux_policycap_extsockclass())
5350                 return selinux_sk_clone_security(sk, newsk);
5351
5352         newsksec->sid = ep->secid;
5353         newsksec->peer_sid = ep->peer_secid;
5354         newsksec->sclass = sksec->sclass;
5355         selinux_netlbl_sctp_sk_clone(sk, newsk);
5356 }
5357
5358 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5359                                      struct request_sock *req)
5360 {
5361         struct sk_security_struct *sksec = sk->sk_security;
5362         int err;
5363         u16 family = req->rsk_ops->family;
5364         u32 connsid;
5365         u32 peersid;
5366
5367         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5368         if (err)
5369                 return err;
5370         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5371         if (err)
5372                 return err;
5373         req->secid = connsid;
5374         req->peer_secid = peersid;
5375
5376         return selinux_netlbl_inet_conn_request(req, family);
5377 }
5378
5379 static void selinux_inet_csk_clone(struct sock *newsk,
5380                                    const struct request_sock *req)
5381 {
5382         struct sk_security_struct *newsksec = newsk->sk_security;
5383
5384         newsksec->sid = req->secid;
5385         newsksec->peer_sid = req->peer_secid;
5386         /* NOTE: Ideally, we should also get the isec->sid for the
5387            new socket in sync, but we don't have the isec available yet.
5388            So we will wait until sock_graft to do it, by which
5389            time it will have been created and available. */
5390
5391         /* We don't need to take any sort of lock here as we are the only
5392          * thread with access to newsksec */
5393         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5394 }
5395
5396 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5397 {
5398         u16 family = sk->sk_family;
5399         struct sk_security_struct *sksec = sk->sk_security;
5400
5401         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5402         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5403                 family = PF_INET;
5404
5405         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5406 }
5407
5408 static int selinux_secmark_relabel_packet(u32 sid)
5409 {
5410         const struct task_security_struct *__tsec;
5411         u32 tsid;
5412
5413         __tsec = selinux_cred(current_cred());
5414         tsid = __tsec->sid;
5415
5416         return avc_has_perm(&selinux_state,
5417                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5418                             NULL);
5419 }
5420
5421 static void selinux_secmark_refcount_inc(void)
5422 {
5423         atomic_inc(&selinux_secmark_refcount);
5424 }
5425
5426 static void selinux_secmark_refcount_dec(void)
5427 {
5428         atomic_dec(&selinux_secmark_refcount);
5429 }
5430
5431 static void selinux_req_classify_flow(const struct request_sock *req,
5432                                       struct flowi *fl)
5433 {
5434         fl->flowi_secid = req->secid;
5435 }
5436
5437 static int selinux_tun_dev_alloc_security(void **security)
5438 {
5439         struct tun_security_struct *tunsec;
5440
5441         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5442         if (!tunsec)
5443                 return -ENOMEM;
5444         tunsec->sid = current_sid();
5445
5446         *security = tunsec;
5447         return 0;
5448 }
5449
5450 static void selinux_tun_dev_free_security(void *security)
5451 {
5452         kfree(security);
5453 }
5454
5455 static int selinux_tun_dev_create(void)
5456 {
5457         u32 sid = current_sid();
5458
5459         /* we aren't taking into account the "sockcreate" SID since the socket
5460          * that is being created here is not a socket in the traditional sense,
5461          * instead it is a private sock, accessible only to the kernel, and
5462          * representing a wide range of network traffic spanning multiple
5463          * connections unlike traditional sockets - check the TUN driver to
5464          * get a better understanding of why this socket is special */
5465
5466         return avc_has_perm(&selinux_state,
5467                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5468                             NULL);
5469 }
5470
5471 static int selinux_tun_dev_attach_queue(void *security)
5472 {
5473         struct tun_security_struct *tunsec = security;
5474
5475         return avc_has_perm(&selinux_state,
5476                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5477                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5478 }
5479
5480 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5481 {
5482         struct tun_security_struct *tunsec = security;
5483         struct sk_security_struct *sksec = sk->sk_security;
5484
5485         /* we don't currently perform any NetLabel based labeling here and it
5486          * isn't clear that we would want to do so anyway; while we could apply
5487          * labeling without the support of the TUN user the resulting labeled
5488          * traffic from the other end of the connection would almost certainly
5489          * cause confusion to the TUN user that had no idea network labeling
5490          * protocols were being used */
5491
5492         sksec->sid = tunsec->sid;
5493         sksec->sclass = SECCLASS_TUN_SOCKET;
5494
5495         return 0;
5496 }
5497
5498 static int selinux_tun_dev_open(void *security)
5499 {
5500         struct tun_security_struct *tunsec = security;
5501         u32 sid = current_sid();
5502         int err;
5503
5504         err = avc_has_perm(&selinux_state,
5505                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5506                            TUN_SOCKET__RELABELFROM, NULL);
5507         if (err)
5508                 return err;
5509         err = avc_has_perm(&selinux_state,
5510                            sid, sid, SECCLASS_TUN_SOCKET,
5511                            TUN_SOCKET__RELABELTO, NULL);
5512         if (err)
5513                 return err;
5514         tunsec->sid = sid;
5515
5516         return 0;
5517 }
5518
5519 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5520 {
5521         int err = 0;
5522         u32 perm;
5523         struct nlmsghdr *nlh;
5524         struct sk_security_struct *sksec = sk->sk_security;
5525
5526         if (skb->len < NLMSG_HDRLEN) {
5527                 err = -EINVAL;
5528                 goto out;
5529         }
5530         nlh = nlmsg_hdr(skb);
5531
5532         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5533         if (err) {
5534                 if (err == -EINVAL) {
5535                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5536                                " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5537                                " pig=%d comm=%s\n",
5538                                sk->sk_protocol, nlh->nlmsg_type,
5539                                secclass_map[sksec->sclass - 1].name,
5540                                task_pid_nr(current), current->comm);
5541                         if (!enforcing_enabled(&selinux_state) ||
5542                             security_get_allow_unknown(&selinux_state))
5543                                 err = 0;
5544                 }
5545
5546                 /* Ignore */
5547                 if (err == -ENOENT)
5548                         err = 0;
5549                 goto out;
5550         }
5551
5552         err = sock_has_perm(sk, perm);
5553 out:
5554         return err;
5555 }
5556
5557 #ifdef CONFIG_NETFILTER
5558
5559 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5560                                        const struct net_device *indev,
5561                                        u16 family)
5562 {
5563         int err;
5564         char *addrp;
5565         u32 peer_sid;
5566         struct common_audit_data ad;
5567         struct lsm_network_audit net = {0,};
5568         u8 secmark_active;
5569         u8 netlbl_active;
5570         u8 peerlbl_active;
5571
5572         if (!selinux_policycap_netpeer())
5573                 return NF_ACCEPT;
5574
5575         secmark_active = selinux_secmark_enabled();
5576         netlbl_active = netlbl_enabled();
5577         peerlbl_active = selinux_peerlbl_enabled();
5578         if (!secmark_active && !peerlbl_active)
5579                 return NF_ACCEPT;
5580
5581         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5582                 return NF_DROP;
5583
5584         ad.type = LSM_AUDIT_DATA_NET;
5585         ad.u.net = &net;
5586         ad.u.net->netif = indev->ifindex;
5587         ad.u.net->family = family;
5588         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5589                 return NF_DROP;
5590
5591         if (peerlbl_active) {
5592                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5593                                                addrp, family, peer_sid, &ad);
5594                 if (err) {
5595                         selinux_netlbl_err(skb, family, err, 1);
5596                         return NF_DROP;
5597                 }
5598         }
5599
5600         if (secmark_active)
5601                 if (avc_has_perm(&selinux_state,
5602                                  peer_sid, skb->secmark,
5603                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5604                         return NF_DROP;
5605
5606         if (netlbl_active)
5607                 /* we do this in the FORWARD path and not the POST_ROUTING
5608                  * path because we want to make sure we apply the necessary
5609                  * labeling before IPsec is applied so we can leverage AH
5610                  * protection */
5611                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5612                         return NF_DROP;
5613
5614         return NF_ACCEPT;
5615 }
5616
5617 static unsigned int selinux_ipv4_forward(void *priv,
5618                                          struct sk_buff *skb,
5619                                          const struct nf_hook_state *state)
5620 {
5621         return selinux_ip_forward(skb, state->in, PF_INET);
5622 }
5623
5624 #if IS_ENABLED(CONFIG_IPV6)
5625 static unsigned int selinux_ipv6_forward(void *priv,
5626                                          struct sk_buff *skb,
5627                                          const struct nf_hook_state *state)
5628 {
5629         return selinux_ip_forward(skb, state->in, PF_INET6);
5630 }
5631 #endif  /* IPV6 */
5632
5633 static unsigned int selinux_ip_output(struct sk_buff *skb,
5634                                       u16 family)
5635 {
5636         struct sock *sk;
5637         u32 sid;
5638
5639         if (!netlbl_enabled())
5640                 return NF_ACCEPT;
5641
5642         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5643          * because we want to make sure we apply the necessary labeling
5644          * before IPsec is applied so we can leverage AH protection */
5645         sk = skb->sk;
5646         if (sk) {
5647                 struct sk_security_struct *sksec;
5648
5649                 if (sk_listener(sk))
5650                         /* if the socket is the listening state then this
5651                          * packet is a SYN-ACK packet which means it needs to
5652                          * be labeled based on the connection/request_sock and
5653                          * not the parent socket.  unfortunately, we can't
5654                          * lookup the request_sock yet as it isn't queued on
5655                          * the parent socket until after the SYN-ACK is sent.
5656                          * the "solution" is to simply pass the packet as-is
5657                          * as any IP option based labeling should be copied
5658                          * from the initial connection request (in the IP
5659                          * layer).  it is far from ideal, but until we get a
5660                          * security label in the packet itself this is the
5661                          * best we can do. */
5662                         return NF_ACCEPT;
5663
5664                 /* standard practice, label using the parent socket */
5665                 sksec = sk->sk_security;
5666                 sid = sksec->sid;
5667         } else
5668                 sid = SECINITSID_KERNEL;
5669         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5670                 return NF_DROP;
5671
5672         return NF_ACCEPT;
5673 }
5674
5675 static unsigned int selinux_ipv4_output(void *priv,
5676                                         struct sk_buff *skb,
5677                                         const struct nf_hook_state *state)
5678 {
5679         return selinux_ip_output(skb, PF_INET);
5680 }
5681
5682 #if IS_ENABLED(CONFIG_IPV6)
5683 static unsigned int selinux_ipv6_output(void *priv,
5684                                         struct sk_buff *skb,
5685                                         const struct nf_hook_state *state)
5686 {
5687         return selinux_ip_output(skb, PF_INET6);
5688 }
5689 #endif  /* IPV6 */
5690
5691 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5692                                                 int ifindex,
5693                                                 u16 family)
5694 {
5695         struct sock *sk = skb_to_full_sk(skb);
5696         struct sk_security_struct *sksec;
5697         struct common_audit_data ad;
5698         struct lsm_network_audit net = {0,};
5699         char *addrp;
5700         u8 proto;
5701
5702         if (sk == NULL)
5703                 return NF_ACCEPT;
5704         sksec = sk->sk_security;
5705
5706         ad.type = LSM_AUDIT_DATA_NET;
5707         ad.u.net = &net;
5708         ad.u.net->netif = ifindex;
5709         ad.u.net->family = family;
5710         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5711                 return NF_DROP;
5712
5713         if (selinux_secmark_enabled())
5714                 if (avc_has_perm(&selinux_state,
5715                                  sksec->sid, skb->secmark,
5716                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5717                         return NF_DROP_ERR(-ECONNREFUSED);
5718
5719         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5720                 return NF_DROP_ERR(-ECONNREFUSED);
5721
5722         return NF_ACCEPT;
5723 }
5724
5725 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5726                                          const struct net_device *outdev,
5727                                          u16 family)
5728 {
5729         u32 secmark_perm;
5730         u32 peer_sid;
5731         int ifindex = outdev->ifindex;
5732         struct sock *sk;
5733         struct common_audit_data ad;
5734         struct lsm_network_audit net = {0,};
5735         char *addrp;
5736         u8 secmark_active;
5737         u8 peerlbl_active;
5738
5739         /* If any sort of compatibility mode is enabled then handoff processing
5740          * to the selinux_ip_postroute_compat() function to deal with the
5741          * special handling.  We do this in an attempt to keep this function
5742          * as fast and as clean as possible. */
5743         if (!selinux_policycap_netpeer())
5744                 return selinux_ip_postroute_compat(skb, ifindex, family);
5745
5746         secmark_active = selinux_secmark_enabled();
5747         peerlbl_active = selinux_peerlbl_enabled();
5748         if (!secmark_active && !peerlbl_active)
5749                 return NF_ACCEPT;
5750
5751         sk = skb_to_full_sk(skb);
5752
5753 #ifdef CONFIG_XFRM
5754         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5755          * packet transformation so allow the packet to pass without any checks
5756          * since we'll have another chance to perform access control checks
5757          * when the packet is on it's final way out.
5758          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5759          *       is NULL, in this case go ahead and apply access control.
5760          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5761          *       TCP listening state we cannot wait until the XFRM processing
5762          *       is done as we will miss out on the SA label if we do;
5763          *       unfortunately, this means more work, but it is only once per
5764          *       connection. */
5765         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5766             !(sk && sk_listener(sk)))
5767                 return NF_ACCEPT;
5768 #endif
5769
5770         if (sk == NULL) {
5771                 /* Without an associated socket the packet is either coming
5772                  * from the kernel or it is being forwarded; check the packet
5773                  * to determine which and if the packet is being forwarded
5774                  * query the packet directly to determine the security label. */
5775                 if (skb->skb_iif) {
5776                         secmark_perm = PACKET__FORWARD_OUT;
5777                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5778                                 return NF_DROP;
5779                 } else {
5780                         secmark_perm = PACKET__SEND;
5781                         peer_sid = SECINITSID_KERNEL;
5782                 }
5783         } else if (sk_listener(sk)) {
5784                 /* Locally generated packet but the associated socket is in the
5785                  * listening state which means this is a SYN-ACK packet.  In
5786                  * this particular case the correct security label is assigned
5787                  * to the connection/request_sock but unfortunately we can't
5788                  * query the request_sock as it isn't queued on the parent
5789                  * socket until after the SYN-ACK packet is sent; the only
5790                  * viable choice is to regenerate the label like we do in
5791                  * selinux_inet_conn_request().  See also selinux_ip_output()
5792                  * for similar problems. */
5793                 u32 skb_sid;
5794                 struct sk_security_struct *sksec;
5795
5796                 sksec = sk->sk_security;
5797                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5798                         return NF_DROP;
5799                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5800                  * and the packet has been through at least one XFRM
5801                  * transformation then we must be dealing with the "final"
5802                  * form of labeled IPsec packet; since we've already applied
5803                  * all of our access controls on this packet we can safely
5804                  * pass the packet. */
5805                 if (skb_sid == SECSID_NULL) {
5806                         switch (family) {
5807                         case PF_INET:
5808                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5809                                         return NF_ACCEPT;
5810                                 break;
5811                         case PF_INET6:
5812                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5813                                         return NF_ACCEPT;
5814                                 break;
5815                         default:
5816                                 return NF_DROP_ERR(-ECONNREFUSED);
5817                         }
5818                 }
5819                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5820                         return NF_DROP;
5821                 secmark_perm = PACKET__SEND;
5822         } else {
5823                 /* Locally generated packet, fetch the security label from the
5824                  * associated socket. */
5825                 struct sk_security_struct *sksec = sk->sk_security;
5826                 peer_sid = sksec->sid;
5827                 secmark_perm = PACKET__SEND;
5828         }
5829
5830         ad.type = LSM_AUDIT_DATA_NET;
5831         ad.u.net = &net;
5832         ad.u.net->netif = ifindex;
5833         ad.u.net->family = family;
5834         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5835                 return NF_DROP;
5836
5837         if (secmark_active)
5838                 if (avc_has_perm(&selinux_state,
5839                                  peer_sid, skb->secmark,
5840                                  SECCLASS_PACKET, secmark_perm, &ad))
5841                         return NF_DROP_ERR(-ECONNREFUSED);
5842
5843         if (peerlbl_active) {
5844                 u32 if_sid;
5845                 u32 node_sid;
5846
5847                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5848                         return NF_DROP;
5849                 if (avc_has_perm(&selinux_state,
5850                                  peer_sid, if_sid,
5851                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5852                         return NF_DROP_ERR(-ECONNREFUSED);
5853
5854                 if (sel_netnode_sid(addrp, family, &node_sid))
5855                         return NF_DROP;
5856                 if (avc_has_perm(&selinux_state,
5857                                  peer_sid, node_sid,
5858                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5859                         return NF_DROP_ERR(-ECONNREFUSED);
5860         }
5861
5862         return NF_ACCEPT;
5863 }
5864
5865 static unsigned int selinux_ipv4_postroute(void *priv,
5866                                            struct sk_buff *skb,
5867                                            const struct nf_hook_state *state)
5868 {
5869         return selinux_ip_postroute(skb, state->out, PF_INET);
5870 }
5871
5872 #if IS_ENABLED(CONFIG_IPV6)
5873 static unsigned int selinux_ipv6_postroute(void *priv,
5874                                            struct sk_buff *skb,
5875                                            const struct nf_hook_state *state)
5876 {
5877         return selinux_ip_postroute(skb, state->out, PF_INET6);
5878 }
5879 #endif  /* IPV6 */
5880
5881 #endif  /* CONFIG_NETFILTER */
5882
5883 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5884 {
5885         return selinux_nlmsg_perm(sk, skb);
5886 }
5887
5888 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5889 {
5890         isec->sclass = sclass;
5891         isec->sid = current_sid();
5892 }
5893
5894 static int msg_msg_alloc_security(struct msg_msg *msg)
5895 {
5896         struct msg_security_struct *msec;
5897
5898         msec = selinux_msg_msg(msg);
5899         msec->sid = SECINITSID_UNLABELED;
5900
5901         return 0;
5902 }
5903
5904 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905                         u32 perms)
5906 {
5907         struct ipc_security_struct *isec;
5908         struct common_audit_data ad;
5909         u32 sid = current_sid();
5910
5911         isec = selinux_ipc(ipc_perms);
5912
5913         ad.type = LSM_AUDIT_DATA_IPC;
5914         ad.u.ipc_id = ipc_perms->key;
5915
5916         return avc_has_perm(&selinux_state,
5917                             sid, isec->sid, isec->sclass, perms, &ad);
5918 }
5919
5920 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921 {
5922         return msg_msg_alloc_security(msg);
5923 }
5924
5925 /* message queue security operations */
5926 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5927 {
5928         struct ipc_security_struct *isec;
5929         struct common_audit_data ad;
5930         u32 sid = current_sid();
5931         int rc;
5932
5933         isec = selinux_ipc(msq);
5934         ipc_init_security(isec, SECCLASS_MSGQ);
5935
5936         ad.type = LSM_AUDIT_DATA_IPC;
5937         ad.u.ipc_id = msq->key;
5938
5939         rc = avc_has_perm(&selinux_state,
5940                           sid, isec->sid, SECCLASS_MSGQ,
5941                           MSGQ__CREATE, &ad);
5942         return rc;
5943 }
5944
5945 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5946 {
5947         struct ipc_security_struct *isec;
5948         struct common_audit_data ad;
5949         u32 sid = current_sid();
5950
5951         isec = selinux_ipc(msq);
5952
5953         ad.type = LSM_AUDIT_DATA_IPC;
5954         ad.u.ipc_id = msq->key;
5955
5956         return avc_has_perm(&selinux_state,
5957                             sid, isec->sid, SECCLASS_MSGQ,
5958                             MSGQ__ASSOCIATE, &ad);
5959 }
5960
5961 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5962 {
5963         int err;
5964         int perms;
5965
5966         switch (cmd) {
5967         case IPC_INFO:
5968         case MSG_INFO:
5969                 /* No specific object, just general system-wide information. */
5970                 return avc_has_perm(&selinux_state,
5971                                     current_sid(), SECINITSID_KERNEL,
5972                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5973         case IPC_STAT:
5974         case MSG_STAT:
5975         case MSG_STAT_ANY:
5976                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5977                 break;
5978         case IPC_SET:
5979                 perms = MSGQ__SETATTR;
5980                 break;
5981         case IPC_RMID:
5982                 perms = MSGQ__DESTROY;
5983                 break;
5984         default:
5985                 return 0;
5986         }
5987
5988         err = ipc_has_perm(msq, perms);
5989         return err;
5990 }
5991
5992 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5993 {
5994         struct ipc_security_struct *isec;
5995         struct msg_security_struct *msec;
5996         struct common_audit_data ad;
5997         u32 sid = current_sid();
5998         int rc;
5999
6000         isec = selinux_ipc(msq);
6001         msec = selinux_msg_msg(msg);
6002
6003         /*
6004          * First time through, need to assign label to the message
6005          */
6006         if (msec->sid == SECINITSID_UNLABELED) {
6007                 /*
6008                  * Compute new sid based on current process and
6009                  * message queue this message will be stored in
6010                  */
6011                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6012                                              SECCLASS_MSG, NULL, &msec->sid);
6013                 if (rc)
6014                         return rc;
6015         }
6016
6017         ad.type = LSM_AUDIT_DATA_IPC;
6018         ad.u.ipc_id = msq->key;
6019
6020         /* Can this process write to the queue? */
6021         rc = avc_has_perm(&selinux_state,
6022                           sid, isec->sid, SECCLASS_MSGQ,
6023                           MSGQ__WRITE, &ad);
6024         if (!rc)
6025                 /* Can this process send the message */
6026                 rc = avc_has_perm(&selinux_state,
6027                                   sid, msec->sid, SECCLASS_MSG,
6028                                   MSG__SEND, &ad);
6029         if (!rc)
6030                 /* Can the message be put in the queue? */
6031                 rc = avc_has_perm(&selinux_state,
6032                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6033                                   MSGQ__ENQUEUE, &ad);
6034
6035         return rc;
6036 }
6037
6038 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6039                                     struct task_struct *target,
6040                                     long type, int mode)
6041 {
6042         struct ipc_security_struct *isec;
6043         struct msg_security_struct *msec;
6044         struct common_audit_data ad;
6045         u32 sid = task_sid(target);
6046         int rc;
6047
6048         isec = selinux_ipc(msq);
6049         msec = selinux_msg_msg(msg);
6050
6051         ad.type = LSM_AUDIT_DATA_IPC;
6052         ad.u.ipc_id = msq->key;
6053
6054         rc = avc_has_perm(&selinux_state,
6055                           sid, isec->sid,
6056                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6057         if (!rc)
6058                 rc = avc_has_perm(&selinux_state,
6059                                   sid, msec->sid,
6060                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6061         return rc;
6062 }
6063
6064 /* Shared Memory security operations */
6065 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6066 {
6067         struct ipc_security_struct *isec;
6068         struct common_audit_data ad;
6069         u32 sid = current_sid();
6070         int rc;
6071
6072         isec = selinux_ipc(shp);
6073         ipc_init_security(isec, SECCLASS_SHM);
6074
6075         ad.type = LSM_AUDIT_DATA_IPC;
6076         ad.u.ipc_id = shp->key;
6077
6078         rc = avc_has_perm(&selinux_state,
6079                           sid, isec->sid, SECCLASS_SHM,
6080                           SHM__CREATE, &ad);
6081         return rc;
6082 }
6083
6084 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6085 {
6086         struct ipc_security_struct *isec;
6087         struct common_audit_data ad;
6088         u32 sid = current_sid();
6089
6090         isec = selinux_ipc(shp);
6091
6092         ad.type = LSM_AUDIT_DATA_IPC;
6093         ad.u.ipc_id = shp->key;
6094
6095         return avc_has_perm(&selinux_state,
6096                             sid, isec->sid, SECCLASS_SHM,
6097                             SHM__ASSOCIATE, &ad);
6098 }
6099
6100 /* Note, at this point, shp is locked down */
6101 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6102 {
6103         int perms;
6104         int err;
6105
6106         switch (cmd) {
6107         case IPC_INFO:
6108         case SHM_INFO:
6109                 /* No specific object, just general system-wide information. */
6110                 return avc_has_perm(&selinux_state,
6111                                     current_sid(), SECINITSID_KERNEL,
6112                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6113         case IPC_STAT:
6114         case SHM_STAT:
6115         case SHM_STAT_ANY:
6116                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6117                 break;
6118         case IPC_SET:
6119                 perms = SHM__SETATTR;
6120                 break;
6121         case SHM_LOCK:
6122         case SHM_UNLOCK:
6123                 perms = SHM__LOCK;
6124                 break;
6125         case IPC_RMID:
6126                 perms = SHM__DESTROY;
6127                 break;
6128         default:
6129                 return 0;
6130         }
6131
6132         err = ipc_has_perm(shp, perms);
6133         return err;
6134 }
6135
6136 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6137                              char __user *shmaddr, int shmflg)
6138 {
6139         u32 perms;
6140
6141         if (shmflg & SHM_RDONLY)
6142                 perms = SHM__READ;
6143         else
6144                 perms = SHM__READ | SHM__WRITE;
6145
6146         return ipc_has_perm(shp, perms);
6147 }
6148
6149 /* Semaphore security operations */
6150 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6151 {
6152         struct ipc_security_struct *isec;
6153         struct common_audit_data ad;
6154         u32 sid = current_sid();
6155         int rc;
6156
6157         isec = selinux_ipc(sma);
6158         ipc_init_security(isec, SECCLASS_SEM);
6159
6160         ad.type = LSM_AUDIT_DATA_IPC;
6161         ad.u.ipc_id = sma->key;
6162
6163         rc = avc_has_perm(&selinux_state,
6164                           sid, isec->sid, SECCLASS_SEM,
6165                           SEM__CREATE, &ad);
6166         return rc;
6167 }
6168
6169 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6170 {
6171         struct ipc_security_struct *isec;
6172         struct common_audit_data ad;
6173         u32 sid = current_sid();
6174
6175         isec = selinux_ipc(sma);
6176
6177         ad.type = LSM_AUDIT_DATA_IPC;
6178         ad.u.ipc_id = sma->key;
6179
6180         return avc_has_perm(&selinux_state,
6181                             sid, isec->sid, SECCLASS_SEM,
6182                             SEM__ASSOCIATE, &ad);
6183 }
6184
6185 /* Note, at this point, sma is locked down */
6186 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6187 {
6188         int err;
6189         u32 perms;
6190
6191         switch (cmd) {
6192         case IPC_INFO:
6193         case SEM_INFO:
6194                 /* No specific object, just general system-wide information. */
6195                 return avc_has_perm(&selinux_state,
6196                                     current_sid(), SECINITSID_KERNEL,
6197                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6198         case GETPID:
6199         case GETNCNT:
6200         case GETZCNT:
6201                 perms = SEM__GETATTR;
6202                 break;
6203         case GETVAL:
6204         case GETALL:
6205                 perms = SEM__READ;
6206                 break;
6207         case SETVAL:
6208         case SETALL:
6209                 perms = SEM__WRITE;
6210                 break;
6211         case IPC_RMID:
6212                 perms = SEM__DESTROY;
6213                 break;
6214         case IPC_SET:
6215                 perms = SEM__SETATTR;
6216                 break;
6217         case IPC_STAT:
6218         case SEM_STAT:
6219         case SEM_STAT_ANY:
6220                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6221                 break;
6222         default:
6223                 return 0;
6224         }
6225
6226         err = ipc_has_perm(sma, perms);
6227         return err;
6228 }
6229
6230 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6231                              struct sembuf *sops, unsigned nsops, int alter)
6232 {
6233         u32 perms;
6234
6235         if (alter)
6236                 perms = SEM__READ | SEM__WRITE;
6237         else
6238                 perms = SEM__READ;
6239
6240         return ipc_has_perm(sma, perms);
6241 }
6242
6243 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6244 {
6245         u32 av = 0;
6246
6247         av = 0;
6248         if (flag & S_IRUGO)
6249                 av |= IPC__UNIX_READ;
6250         if (flag & S_IWUGO)
6251                 av |= IPC__UNIX_WRITE;
6252
6253         if (av == 0)
6254                 return 0;
6255
6256         return ipc_has_perm(ipcp, av);
6257 }
6258
6259 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6260 {
6261         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6262         *secid = isec->sid;
6263 }
6264
6265 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6266 {
6267         if (inode)
6268                 inode_doinit_with_dentry(inode, dentry);
6269 }
6270
6271 static int selinux_getprocattr(struct task_struct *p,
6272                                char *name, char **value)
6273 {
6274         const struct task_security_struct *__tsec;
6275         u32 sid;
6276         int error;
6277         unsigned len;
6278
6279         rcu_read_lock();
6280         __tsec = selinux_cred(__task_cred(p));
6281
6282         if (current != p) {
6283                 error = avc_has_perm(&selinux_state,
6284                                      current_sid(), __tsec->sid,
6285                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6286                 if (error)
6287                         goto bad;
6288         }
6289
6290         if (!strcmp(name, "current"))
6291                 sid = __tsec->sid;
6292         else if (!strcmp(name, "prev"))
6293                 sid = __tsec->osid;
6294         else if (!strcmp(name, "exec"))
6295                 sid = __tsec->exec_sid;
6296         else if (!strcmp(name, "fscreate"))
6297                 sid = __tsec->create_sid;
6298         else if (!strcmp(name, "keycreate"))
6299                 sid = __tsec->keycreate_sid;
6300         else if (!strcmp(name, "sockcreate"))
6301                 sid = __tsec->sockcreate_sid;
6302         else {
6303                 error = -EINVAL;
6304                 goto bad;
6305         }
6306         rcu_read_unlock();
6307
6308         if (!sid)
6309                 return 0;
6310
6311         error = security_sid_to_context(&selinux_state, sid, value, &len);
6312         if (error)
6313                 return error;
6314         return len;
6315
6316 bad:
6317         rcu_read_unlock();
6318         return error;
6319 }
6320
6321 static int selinux_setprocattr(const char *name, void *value, size_t size)
6322 {
6323         struct task_security_struct *tsec;
6324         struct cred *new;
6325         u32 mysid = current_sid(), sid = 0, ptsid;
6326         int error;
6327         char *str = value;
6328
6329         /*
6330          * Basic control over ability to set these attributes at all.
6331          */
6332         if (!strcmp(name, "exec"))
6333                 error = avc_has_perm(&selinux_state,
6334                                      mysid, mysid, SECCLASS_PROCESS,
6335                                      PROCESS__SETEXEC, NULL);
6336         else if (!strcmp(name, "fscreate"))
6337                 error = avc_has_perm(&selinux_state,
6338                                      mysid, mysid, SECCLASS_PROCESS,
6339                                      PROCESS__SETFSCREATE, NULL);
6340         else if (!strcmp(name, "keycreate"))
6341                 error = avc_has_perm(&selinux_state,
6342                                      mysid, mysid, SECCLASS_PROCESS,
6343                                      PROCESS__SETKEYCREATE, NULL);
6344         else if (!strcmp(name, "sockcreate"))
6345                 error = avc_has_perm(&selinux_state,
6346                                      mysid, mysid, SECCLASS_PROCESS,
6347                                      PROCESS__SETSOCKCREATE, NULL);
6348         else if (!strcmp(name, "current"))
6349                 error = avc_has_perm(&selinux_state,
6350                                      mysid, mysid, SECCLASS_PROCESS,
6351                                      PROCESS__SETCURRENT, NULL);
6352         else
6353                 error = -EINVAL;
6354         if (error)
6355                 return error;
6356
6357         /* Obtain a SID for the context, if one was specified. */
6358         if (size && str[0] && str[0] != '\n') {
6359                 if (str[size-1] == '\n') {
6360                         str[size-1] = 0;
6361                         size--;
6362                 }
6363                 error = security_context_to_sid(&selinux_state, value, size,
6364                                                 &sid, GFP_KERNEL);
6365                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6366                         if (!has_cap_mac_admin(true)) {
6367                                 struct audit_buffer *ab;
6368                                 size_t audit_size;
6369
6370                                 /* We strip a nul only if it is at the end, otherwise the
6371                                  * context contains a nul and we should audit that */
6372                                 if (str[size - 1] == '\0')
6373                                         audit_size = size - 1;
6374                                 else
6375                                         audit_size = size;
6376                                 ab = audit_log_start(audit_context(),
6377                                                      GFP_ATOMIC,
6378                                                      AUDIT_SELINUX_ERR);
6379                                 audit_log_format(ab, "op=fscreate invalid_context=");
6380                                 audit_log_n_untrustedstring(ab, value, audit_size);
6381                                 audit_log_end(ab);
6382
6383                                 return error;
6384                         }
6385                         error = security_context_to_sid_force(
6386                                                       &selinux_state,
6387                                                       value, size, &sid);
6388                 }
6389                 if (error)
6390                         return error;
6391         }
6392
6393         new = prepare_creds();
6394         if (!new)
6395                 return -ENOMEM;
6396
6397         /* Permission checking based on the specified context is
6398            performed during the actual operation (execve,
6399            open/mkdir/...), when we know the full context of the
6400            operation.  See selinux_bprm_set_creds for the execve
6401            checks and may_create for the file creation checks. The
6402            operation will then fail if the context is not permitted. */
6403         tsec = selinux_cred(new);
6404         if (!strcmp(name, "exec")) {
6405                 tsec->exec_sid = sid;
6406         } else if (!strcmp(name, "fscreate")) {
6407                 tsec->create_sid = sid;
6408         } else if (!strcmp(name, "keycreate")) {
6409                 if (sid) {
6410                         error = avc_has_perm(&selinux_state, mysid, sid,
6411                                              SECCLASS_KEY, KEY__CREATE, NULL);
6412                         if (error)
6413                                 goto abort_change;
6414                 }
6415                 tsec->keycreate_sid = sid;
6416         } else if (!strcmp(name, "sockcreate")) {
6417                 tsec->sockcreate_sid = sid;
6418         } else if (!strcmp(name, "current")) {
6419                 error = -EINVAL;
6420                 if (sid == 0)
6421                         goto abort_change;
6422
6423                 /* Only allow single threaded processes to change context */
6424                 error = -EPERM;
6425                 if (!current_is_single_threaded()) {
6426                         error = security_bounded_transition(&selinux_state,
6427                                                             tsec->sid, sid);
6428                         if (error)
6429                                 goto abort_change;
6430                 }
6431
6432                 /* Check permissions for the transition. */
6433                 error = avc_has_perm(&selinux_state,
6434                                      tsec->sid, sid, SECCLASS_PROCESS,
6435                                      PROCESS__DYNTRANSITION, NULL);
6436                 if (error)
6437                         goto abort_change;
6438
6439                 /* Check for ptracing, and update the task SID if ok.
6440                    Otherwise, leave SID unchanged and fail. */
6441                 ptsid = ptrace_parent_sid();
6442                 if (ptsid != 0) {
6443                         error = avc_has_perm(&selinux_state,
6444                                              ptsid, sid, SECCLASS_PROCESS,
6445                                              PROCESS__PTRACE, NULL);
6446                         if (error)
6447                                 goto abort_change;
6448                 }
6449
6450                 tsec->sid = sid;
6451         } else {
6452                 error = -EINVAL;
6453                 goto abort_change;
6454         }
6455
6456         commit_creds(new);
6457         return size;
6458
6459 abort_change:
6460         abort_creds(new);
6461         return error;
6462 }
6463
6464 static int selinux_ismaclabel(const char *name)
6465 {
6466         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6467 }
6468
6469 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6470 {
6471         return security_sid_to_context(&selinux_state, secid,
6472                                        secdata, seclen);
6473 }
6474
6475 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6476 {
6477         return security_context_to_sid(&selinux_state, secdata, seclen,
6478                                        secid, GFP_KERNEL);
6479 }
6480
6481 static void selinux_release_secctx(char *secdata, u32 seclen)
6482 {
6483         kfree(secdata);
6484 }
6485
6486 static void selinux_inode_invalidate_secctx(struct inode *inode)
6487 {
6488         struct inode_security_struct *isec = selinux_inode(inode);
6489
6490         spin_lock(&isec->lock);
6491         isec->initialized = LABEL_INVALID;
6492         spin_unlock(&isec->lock);
6493 }
6494
6495 /*
6496  *      called with inode->i_mutex locked
6497  */
6498 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6499 {
6500         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6501                                            ctx, ctxlen, 0);
6502         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6503         return rc == -EOPNOTSUPP ? 0 : rc;
6504 }
6505
6506 /*
6507  *      called with inode->i_mutex locked
6508  */
6509 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6510 {
6511         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6512 }
6513
6514 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6515 {
6516         int len = 0;
6517         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6518                                                 ctx, true);
6519         if (len < 0)
6520                 return len;
6521         *ctxlen = len;
6522         return 0;
6523 }
6524 #ifdef CONFIG_KEYS
6525
6526 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6527                              unsigned long flags)
6528 {
6529         const struct task_security_struct *tsec;
6530         struct key_security_struct *ksec;
6531
6532         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6533         if (!ksec)
6534                 return -ENOMEM;
6535
6536         tsec = selinux_cred(cred);
6537         if (tsec->keycreate_sid)
6538                 ksec->sid = tsec->keycreate_sid;
6539         else
6540                 ksec->sid = tsec->sid;
6541
6542         k->security = ksec;
6543         return 0;
6544 }
6545
6546 static void selinux_key_free(struct key *k)
6547 {
6548         struct key_security_struct *ksec = k->security;
6549
6550         k->security = NULL;
6551         kfree(ksec);
6552 }
6553
6554 static int selinux_key_permission(key_ref_t key_ref,
6555                                   const struct cred *cred,
6556                                   unsigned perm)
6557 {
6558         struct key *key;
6559         struct key_security_struct *ksec;
6560         u32 sid;
6561
6562         /* if no specific permissions are requested, we skip the
6563            permission check. No serious, additional covert channels
6564            appear to be created. */
6565         if (perm == 0)
6566                 return 0;
6567
6568         sid = cred_sid(cred);
6569
6570         key = key_ref_to_ptr(key_ref);
6571         ksec = key->security;
6572
6573         return avc_has_perm(&selinux_state,
6574                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6575 }
6576
6577 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6578 {
6579         struct key_security_struct *ksec = key->security;
6580         char *context = NULL;
6581         unsigned len;
6582         int rc;
6583
6584         rc = security_sid_to_context(&selinux_state, ksec->sid,
6585                                      &context, &len);
6586         if (!rc)
6587                 rc = len;
6588         *_buffer = context;
6589         return rc;
6590 }
6591 #endif
6592
6593 #ifdef CONFIG_SECURITY_INFINIBAND
6594 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6595 {
6596         struct common_audit_data ad;
6597         int err;
6598         u32 sid = 0;
6599         struct ib_security_struct *sec = ib_sec;
6600         struct lsm_ibpkey_audit ibpkey;
6601
6602         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6603         if (err)
6604                 return err;
6605
6606         ad.type = LSM_AUDIT_DATA_IBPKEY;
6607         ibpkey.subnet_prefix = subnet_prefix;
6608         ibpkey.pkey = pkey_val;
6609         ad.u.ibpkey = &ibpkey;
6610         return avc_has_perm(&selinux_state,
6611                             sec->sid, sid,
6612                             SECCLASS_INFINIBAND_PKEY,
6613                             INFINIBAND_PKEY__ACCESS, &ad);
6614 }
6615
6616 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6617                                             u8 port_num)
6618 {
6619         struct common_audit_data ad;
6620         int err;
6621         u32 sid = 0;
6622         struct ib_security_struct *sec = ib_sec;
6623         struct lsm_ibendport_audit ibendport;
6624
6625         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6626                                       &sid);
6627
6628         if (err)
6629                 return err;
6630
6631         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6632         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6633         ibendport.port = port_num;
6634         ad.u.ibendport = &ibendport;
6635         return avc_has_perm(&selinux_state,
6636                             sec->sid, sid,
6637                             SECCLASS_INFINIBAND_ENDPORT,
6638                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6639 }
6640
6641 static int selinux_ib_alloc_security(void **ib_sec)
6642 {
6643         struct ib_security_struct *sec;
6644
6645         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6646         if (!sec)
6647                 return -ENOMEM;
6648         sec->sid = current_sid();
6649
6650         *ib_sec = sec;
6651         return 0;
6652 }
6653
6654 static void selinux_ib_free_security(void *ib_sec)
6655 {
6656         kfree(ib_sec);
6657 }
6658 #endif
6659
6660 #ifdef CONFIG_BPF_SYSCALL
6661 static int selinux_bpf(int cmd, union bpf_attr *attr,
6662                                      unsigned int size)
6663 {
6664         u32 sid = current_sid();
6665         int ret;
6666
6667         switch (cmd) {
6668         case BPF_MAP_CREATE:
6669                 ret = avc_has_perm(&selinux_state,
6670                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6671                                    NULL);
6672                 break;
6673         case BPF_PROG_LOAD:
6674                 ret = avc_has_perm(&selinux_state,
6675                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6676                                    NULL);
6677                 break;
6678         default:
6679                 ret = 0;
6680                 break;
6681         }
6682
6683         return ret;
6684 }
6685
6686 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6687 {
6688         u32 av = 0;
6689
6690         if (fmode & FMODE_READ)
6691                 av |= BPF__MAP_READ;
6692         if (fmode & FMODE_WRITE)
6693                 av |= BPF__MAP_WRITE;
6694         return av;
6695 }
6696
6697 /* This function will check the file pass through unix socket or binder to see
6698  * if it is a bpf related object. And apply correspinding checks on the bpf
6699  * object based on the type. The bpf maps and programs, not like other files and
6700  * socket, are using a shared anonymous inode inside the kernel as their inode.
6701  * So checking that inode cannot identify if the process have privilege to
6702  * access the bpf object and that's why we have to add this additional check in
6703  * selinux_file_receive and selinux_binder_transfer_files.
6704  */
6705 static int bpf_fd_pass(struct file *file, u32 sid)
6706 {
6707         struct bpf_security_struct *bpfsec;
6708         struct bpf_prog *prog;
6709         struct bpf_map *map;
6710         int ret;
6711
6712         if (file->f_op == &bpf_map_fops) {
6713                 map = file->private_data;
6714                 bpfsec = map->security;
6715                 ret = avc_has_perm(&selinux_state,
6716                                    sid, bpfsec->sid, SECCLASS_BPF,
6717                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6718                 if (ret)
6719                         return ret;
6720         } else if (file->f_op == &bpf_prog_fops) {
6721                 prog = file->private_data;
6722                 bpfsec = prog->aux->security;
6723                 ret = avc_has_perm(&selinux_state,
6724                                    sid, bpfsec->sid, SECCLASS_BPF,
6725                                    BPF__PROG_RUN, NULL);
6726                 if (ret)
6727                         return ret;
6728         }
6729         return 0;
6730 }
6731
6732 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6733 {
6734         u32 sid = current_sid();
6735         struct bpf_security_struct *bpfsec;
6736
6737         bpfsec = map->security;
6738         return avc_has_perm(&selinux_state,
6739                             sid, bpfsec->sid, SECCLASS_BPF,
6740                             bpf_map_fmode_to_av(fmode), NULL);
6741 }
6742
6743 static int selinux_bpf_prog(struct bpf_prog *prog)
6744 {
6745         u32 sid = current_sid();
6746         struct bpf_security_struct *bpfsec;
6747
6748         bpfsec = prog->aux->security;
6749         return avc_has_perm(&selinux_state,
6750                             sid, bpfsec->sid, SECCLASS_BPF,
6751                             BPF__PROG_RUN, NULL);
6752 }
6753
6754 static int selinux_bpf_map_alloc(struct bpf_map *map)
6755 {
6756         struct bpf_security_struct *bpfsec;
6757
6758         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6759         if (!bpfsec)
6760                 return -ENOMEM;
6761
6762         bpfsec->sid = current_sid();
6763         map->security = bpfsec;
6764
6765         return 0;
6766 }
6767
6768 static void selinux_bpf_map_free(struct bpf_map *map)
6769 {
6770         struct bpf_security_struct *bpfsec = map->security;
6771
6772         map->security = NULL;
6773         kfree(bpfsec);
6774 }
6775
6776 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6777 {
6778         struct bpf_security_struct *bpfsec;
6779
6780         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6781         if (!bpfsec)
6782                 return -ENOMEM;
6783
6784         bpfsec->sid = current_sid();
6785         aux->security = bpfsec;
6786
6787         return 0;
6788 }
6789
6790 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6791 {
6792         struct bpf_security_struct *bpfsec = aux->security;
6793
6794         aux->security = NULL;
6795         kfree(bpfsec);
6796 }
6797 #endif
6798
6799 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6800         .lbs_cred = sizeof(struct task_security_struct),
6801         .lbs_file = sizeof(struct file_security_struct),
6802         .lbs_inode = sizeof(struct inode_security_struct),
6803         .lbs_ipc = sizeof(struct ipc_security_struct),
6804         .lbs_msg_msg = sizeof(struct msg_security_struct),
6805 };
6806
6807 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6808         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6809         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6810         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6811         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6812
6813         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6814         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6815         LSM_HOOK_INIT(capget, selinux_capget),
6816         LSM_HOOK_INIT(capset, selinux_capset),
6817         LSM_HOOK_INIT(capable, selinux_capable),
6818         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6819         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6820         LSM_HOOK_INIT(syslog, selinux_syslog),
6821         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6822
6823         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6824
6825         LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6826         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6827         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6828
6829         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6830         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6831
6832         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6833         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6834         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6835         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6836         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6837         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6838         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6839         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6840         LSM_HOOK_INIT(sb_mount, selinux_mount),
6841         LSM_HOOK_INIT(sb_umount, selinux_umount),
6842         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6843         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6844         LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6845
6846         LSM_HOOK_INIT(move_mount, selinux_move_mount),
6847
6848         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6849         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6850
6851         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6852         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6853         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6854         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6855         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6856         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6857         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6858         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6859         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6860         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6861         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6862         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6863         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6864         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6865         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6866         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6867         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6868         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6869         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6870         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6871         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6872         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6873         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6874         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6875         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6876         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6877         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6878         LSM_HOOK_INIT(path_notify, selinux_path_notify),
6879
6880         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6881
6882         LSM_HOOK_INIT(file_permission, selinux_file_permission),
6883         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6884         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6885         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6886         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6887         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6888         LSM_HOOK_INIT(file_lock, selinux_file_lock),
6889         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6890         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6891         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6892         LSM_HOOK_INIT(file_receive, selinux_file_receive),
6893
6894         LSM_HOOK_INIT(file_open, selinux_file_open),
6895
6896         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6897         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6898         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6899         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6900         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6901         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6902         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6903         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6904         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6905         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6906         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6907         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6908         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6909         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6910         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6911         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6912         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6913         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6914         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6915         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6916         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6917         LSM_HOOK_INIT(task_kill, selinux_task_kill),
6918         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6919
6920         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6921         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6922
6923         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6924
6925         LSM_HOOK_INIT(msg_queue_alloc_security,
6926                         selinux_msg_queue_alloc_security),
6927         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6928         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6929         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6930         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6931
6932         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6933         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6934         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6935         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6936
6937         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6938         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6939         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6940         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6941
6942         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6943
6944         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6945         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6946
6947         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6948         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6949         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6950         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6951         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6952         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6953         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6954         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6955
6956         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6957         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6958
6959         LSM_HOOK_INIT(socket_create, selinux_socket_create),
6960         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6961         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6962         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6963         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6964         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6965         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6966         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6967         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6968         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6969         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6970         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6971         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6972         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6973         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6974         LSM_HOOK_INIT(socket_getpeersec_stream,
6975                         selinux_socket_getpeersec_stream),
6976         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6977         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6978         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6979         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6980         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6981         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6982         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6983         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6984         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6985         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6986         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6987         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6988         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6989         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6990         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6991         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6992         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6993         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6994         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6995         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6996         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6997         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6998 #ifdef CONFIG_SECURITY_INFINIBAND
6999         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7000         LSM_HOOK_INIT(ib_endport_manage_subnet,
7001                       selinux_ib_endport_manage_subnet),
7002         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7003         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7004 #endif
7005 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7006         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7007         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7008         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7009         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7010         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7011         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7012                         selinux_xfrm_state_alloc_acquire),
7013         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7014         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7015         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7016         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7017                         selinux_xfrm_state_pol_flow_match),
7018         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7019 #endif
7020
7021 #ifdef CONFIG_KEYS
7022         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7023         LSM_HOOK_INIT(key_free, selinux_key_free),
7024         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7025         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7026 #endif
7027
7028 #ifdef CONFIG_AUDIT
7029         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7030         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7031         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7032         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7033 #endif
7034
7035 #ifdef CONFIG_BPF_SYSCALL
7036         LSM_HOOK_INIT(bpf, selinux_bpf),
7037         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7038         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7039         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7040         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7041         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7042         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7043 #endif
7044 };
7045
7046 static __init int selinux_init(void)
7047 {
7048         pr_info("SELinux:  Initializing.\n");
7049
7050         memset(&selinux_state, 0, sizeof(selinux_state));
7051         enforcing_set(&selinux_state, selinux_enforcing_boot);
7052         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7053         selinux_ss_init(&selinux_state.ss);
7054         selinux_avc_init(&selinux_state.avc);
7055
7056         /* Set the security state for the initial task. */
7057         cred_init_security();
7058
7059         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7060
7061         avc_init();
7062
7063         avtab_cache_init();
7064
7065         ebitmap_cache_init();
7066
7067         hashtab_cache_init();
7068
7069         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7070
7071         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7072                 panic("SELinux: Unable to register AVC netcache callback\n");
7073
7074         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7075                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7076
7077         if (selinux_enforcing_boot)
7078                 pr_debug("SELinux:  Starting in enforcing mode\n");
7079         else
7080                 pr_debug("SELinux:  Starting in permissive mode\n");
7081
7082         fs_validate_description(&selinux_fs_parameters);
7083
7084         return 0;
7085 }
7086
7087 static void delayed_superblock_init(struct super_block *sb, void *unused)
7088 {
7089         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7090 }
7091
7092 void selinux_complete_init(void)
7093 {
7094         pr_debug("SELinux:  Completing initialization.\n");
7095
7096         /* Set up any superblocks initialized prior to the policy load. */
7097         pr_debug("SELinux:  Setting up existing superblocks.\n");
7098         iterate_supers(delayed_superblock_init, NULL);
7099 }
7100
7101 /* SELinux requires early initialization in order to label
7102    all processes and objects when they are created. */
7103 DEFINE_LSM(selinux) = {
7104         .name = "selinux",
7105         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7106         .enabled = &selinux_enabled,
7107         .blobs = &selinux_blob_sizes,
7108         .init = selinux_init,
7109 };
7110
7111 #if defined(CONFIG_NETFILTER)
7112
7113 static const struct nf_hook_ops selinux_nf_ops[] = {
7114         {
7115                 .hook =         selinux_ipv4_postroute,
7116                 .pf =           NFPROTO_IPV4,
7117                 .hooknum =      NF_INET_POST_ROUTING,
7118                 .priority =     NF_IP_PRI_SELINUX_LAST,
7119         },
7120         {
7121                 .hook =         selinux_ipv4_forward,
7122                 .pf =           NFPROTO_IPV4,
7123                 .hooknum =      NF_INET_FORWARD,
7124                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7125         },
7126         {
7127                 .hook =         selinux_ipv4_output,
7128                 .pf =           NFPROTO_IPV4,
7129                 .hooknum =      NF_INET_LOCAL_OUT,
7130                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7131         },
7132 #if IS_ENABLED(CONFIG_IPV6)
7133         {
7134                 .hook =         selinux_ipv6_postroute,
7135                 .pf =           NFPROTO_IPV6,
7136                 .hooknum =      NF_INET_POST_ROUTING,
7137                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7138         },
7139         {
7140                 .hook =         selinux_ipv6_forward,
7141                 .pf =           NFPROTO_IPV6,
7142                 .hooknum =      NF_INET_FORWARD,
7143                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7144         },
7145         {
7146                 .hook =         selinux_ipv6_output,
7147                 .pf =           NFPROTO_IPV6,
7148                 .hooknum =      NF_INET_LOCAL_OUT,
7149                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7150         },
7151 #endif  /* IPV6 */
7152 };
7153
7154 static int __net_init selinux_nf_register(struct net *net)
7155 {
7156         return nf_register_net_hooks(net, selinux_nf_ops,
7157                                      ARRAY_SIZE(selinux_nf_ops));
7158 }
7159
7160 static void __net_exit selinux_nf_unregister(struct net *net)
7161 {
7162         nf_unregister_net_hooks(net, selinux_nf_ops,
7163                                 ARRAY_SIZE(selinux_nf_ops));
7164 }
7165
7166 static struct pernet_operations selinux_net_ops = {
7167         .init = selinux_nf_register,
7168         .exit = selinux_nf_unregister,
7169 };
7170
7171 static int __init selinux_nf_ip_init(void)
7172 {
7173         int err;
7174
7175         if (!selinux_enabled)
7176                 return 0;
7177
7178         pr_debug("SELinux:  Registering netfilter hooks\n");
7179
7180         err = register_pernet_subsys(&selinux_net_ops);
7181         if (err)
7182                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7183
7184         return 0;
7185 }
7186 __initcall(selinux_nf_ip_init);
7187
7188 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189 static void selinux_nf_ip_exit(void)
7190 {
7191         pr_debug("SELinux:  Unregistering netfilter hooks\n");
7192
7193         unregister_pernet_subsys(&selinux_net_ops);
7194 }
7195 #endif
7196
7197 #else /* CONFIG_NETFILTER */
7198
7199 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7200 #define selinux_nf_ip_exit()
7201 #endif
7202
7203 #endif /* CONFIG_NETFILTER */
7204
7205 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7206 int selinux_disable(struct selinux_state *state)
7207 {
7208         if (state->initialized) {
7209                 /* Not permitted after initial policy load. */
7210                 return -EINVAL;
7211         }
7212
7213         if (state->disabled) {
7214                 /* Only do this once. */
7215                 return -EINVAL;
7216         }
7217
7218         state->disabled = 1;
7219
7220         pr_info("SELinux:  Disabled at runtime.\n");
7221
7222         selinux_enabled = 0;
7223
7224         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7225
7226         /* Try to destroy the avc node cache */
7227         avc_disable();
7228
7229         /* Unregister netfilter hooks. */
7230         selinux_nf_ip_exit();
7231
7232         /* Unregister selinuxfs. */
7233         exit_sel_fs();
7234
7235         return 0;
7236 }
7237 #endif