Merge tag 'mfd-next-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[platform/kernel/linux-rpi.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 /*
38  * These are descriptions of the reasons that can be passed to the
39  * security_locked_down() LSM hook. Placing this array here allows
40  * all security modules to use the same descriptions for auditing
41  * purposes.
42  */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44         [LOCKDOWN_NONE] = "none",
45         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49         [LOCKDOWN_HIBERNATION] = "hibernation",
50         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51         [LOCKDOWN_IOPORT] = "raw io port access",
52         [LOCKDOWN_MSR] = "raw MSR access",
53         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58         [LOCKDOWN_DEBUGFS] = "debugfs access",
59         [LOCKDOWN_XMON_WR] = "xmon write access",
60         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
61         [LOCKDOWN_KCORE] = "/proc/kcore access",
62         [LOCKDOWN_KPROBES] = "use of kprobes",
63         [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64         [LOCKDOWN_PERF] = "unsafe use of perf",
65         [LOCKDOWN_TRACEFS] = "use of tracefs",
66         [LOCKDOWN_XMON_RW] = "xmon read and write access",
67         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68 };
69
70 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72
73 static struct kmem_cache *lsm_file_cache;
74 static struct kmem_cache *lsm_inode_cache;
75
76 char *lsm_names;
77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78
79 /* Boot-time LSM user choice */
80 static __initdata const char *chosen_lsm_order;
81 static __initdata const char *chosen_major_lsm;
82
83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84
85 /* Ordered list of LSMs to initialize. */
86 static __initdata struct lsm_info **ordered_lsms;
87 static __initdata struct lsm_info *exclusive;
88
89 static __initdata bool debug;
90 #define init_debug(...)                                         \
91         do {                                                    \
92                 if (debug)                                      \
93                         pr_info(__VA_ARGS__);                   \
94         } while (0)
95
96 static bool __init is_enabled(struct lsm_info *lsm)
97 {
98         if (!lsm->enabled)
99                 return false;
100
101         return *lsm->enabled;
102 }
103
104 /* Mark an LSM's enabled flag. */
105 static int lsm_enabled_true __initdata = 1;
106 static int lsm_enabled_false __initdata = 0;
107 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108 {
109         /*
110          * When an LSM hasn't configured an enable variable, we can use
111          * a hard-coded location for storing the default enabled state.
112          */
113         if (!lsm->enabled) {
114                 if (enabled)
115                         lsm->enabled = &lsm_enabled_true;
116                 else
117                         lsm->enabled = &lsm_enabled_false;
118         } else if (lsm->enabled == &lsm_enabled_true) {
119                 if (!enabled)
120                         lsm->enabled = &lsm_enabled_false;
121         } else if (lsm->enabled == &lsm_enabled_false) {
122                 if (enabled)
123                         lsm->enabled = &lsm_enabled_true;
124         } else {
125                 *lsm->enabled = enabled;
126         }
127 }
128
129 /* Is an LSM already listed in the ordered LSMs list? */
130 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131 {
132         struct lsm_info **check;
133
134         for (check = ordered_lsms; *check; check++)
135                 if (*check == lsm)
136                         return true;
137
138         return false;
139 }
140
141 /* Append an LSM to the list of ordered LSMs to initialize. */
142 static int last_lsm __initdata;
143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144 {
145         /* Ignore duplicate selections. */
146         if (exists_ordered_lsm(lsm))
147                 return;
148
149         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150                 return;
151
152         /* Enable this LSM, if it is not already set. */
153         if (!lsm->enabled)
154                 lsm->enabled = &lsm_enabled_true;
155         ordered_lsms[last_lsm++] = lsm;
156
157         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158                    is_enabled(lsm) ? "en" : "dis");
159 }
160
161 /* Is an LSM allowed to be initialized? */
162 static bool __init lsm_allowed(struct lsm_info *lsm)
163 {
164         /* Skip if the LSM is disabled. */
165         if (!is_enabled(lsm))
166                 return false;
167
168         /* Not allowed if another exclusive LSM already initialized. */
169         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170                 init_debug("exclusive disabled: %s\n", lsm->name);
171                 return false;
172         }
173
174         return true;
175 }
176
177 static void __init lsm_set_blob_size(int *need, int *lbs)
178 {
179         int offset;
180
181         if (*need > 0) {
182                 offset = *lbs;
183                 *lbs += *need;
184                 *need = offset;
185         }
186 }
187
188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189 {
190         if (!needed)
191                 return;
192
193         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195         /*
196          * The inode blob gets an rcu_head in addition to
197          * what the modules might need.
198          */
199         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
201         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205 }
206
207 /* Prepare LSM for initialization. */
208 static void __init prepare_lsm(struct lsm_info *lsm)
209 {
210         int enabled = lsm_allowed(lsm);
211
212         /* Record enablement (to handle any following exclusive LSMs). */
213         set_enabled(lsm, enabled);
214
215         /* If enabled, do pre-initialization work. */
216         if (enabled) {
217                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218                         exclusive = lsm;
219                         init_debug("exclusive chosen: %s\n", lsm->name);
220                 }
221
222                 lsm_set_blob_sizes(lsm->blobs);
223         }
224 }
225
226 /* Initialize a given LSM, if it is enabled. */
227 static void __init initialize_lsm(struct lsm_info *lsm)
228 {
229         if (is_enabled(lsm)) {
230                 int ret;
231
232                 init_debug("initializing %s\n", lsm->name);
233                 ret = lsm->init();
234                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235         }
236 }
237
238 /* Populate ordered LSMs list from comma-separated LSM name list. */
239 static void __init ordered_lsm_parse(const char *order, const char *origin)
240 {
241         struct lsm_info *lsm;
242         char *sep, *name, *next;
243
244         /* LSM_ORDER_FIRST is always first. */
245         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246                 if (lsm->order == LSM_ORDER_FIRST)
247                         append_ordered_lsm(lsm, "first");
248         }
249
250         /* Process "security=", if given. */
251         if (chosen_major_lsm) {
252                 struct lsm_info *major;
253
254                 /*
255                  * To match the original "security=" behavior, this
256                  * explicitly does NOT fallback to another Legacy Major
257                  * if the selected one was separately disabled: disable
258                  * all non-matching Legacy Major LSMs.
259                  */
260                 for (major = __start_lsm_info; major < __end_lsm_info;
261                      major++) {
262                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263                             strcmp(major->name, chosen_major_lsm) != 0) {
264                                 set_enabled(major, false);
265                                 init_debug("security=%s disabled: %s\n",
266                                            chosen_major_lsm, major->name);
267                         }
268                 }
269         }
270
271         sep = kstrdup(order, GFP_KERNEL);
272         next = sep;
273         /* Walk the list, looking for matching LSMs. */
274         while ((name = strsep(&next, ",")) != NULL) {
275                 bool found = false;
276
277                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278                         if (lsm->order == LSM_ORDER_MUTABLE &&
279                             strcmp(lsm->name, name) == 0) {
280                                 append_ordered_lsm(lsm, origin);
281                                 found = true;
282                         }
283                 }
284
285                 if (!found)
286                         init_debug("%s ignored: %s\n", origin, name);
287         }
288
289         /* Process "security=", if given. */
290         if (chosen_major_lsm) {
291                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292                         if (exists_ordered_lsm(lsm))
293                                 continue;
294                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
295                                 append_ordered_lsm(lsm, "security=");
296                 }
297         }
298
299         /* Disable all LSMs not in the ordered list. */
300         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301                 if (exists_ordered_lsm(lsm))
302                         continue;
303                 set_enabled(lsm, false);
304                 init_debug("%s disabled: %s\n", origin, lsm->name);
305         }
306
307         kfree(sep);
308 }
309
310 static void __init lsm_early_cred(struct cred *cred);
311 static void __init lsm_early_task(struct task_struct *task);
312
313 static int lsm_append(const char *new, char **result);
314
315 static void __init ordered_lsm_init(void)
316 {
317         struct lsm_info **lsm;
318
319         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320                                 GFP_KERNEL);
321
322         if (chosen_lsm_order) {
323                 if (chosen_major_lsm) {
324                         pr_info("security= is ignored because it is superseded by lsm=\n");
325                         chosen_major_lsm = NULL;
326                 }
327                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
328         } else
329                 ordered_lsm_parse(builtin_lsm_order, "builtin");
330
331         for (lsm = ordered_lsms; *lsm; lsm++)
332                 prepare_lsm(*lsm);
333
334         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
335         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
336         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
337         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
338         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
339         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
340
341         /*
342          * Create any kmem_caches needed for blobs
343          */
344         if (blob_sizes.lbs_file)
345                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
346                                                    blob_sizes.lbs_file, 0,
347                                                    SLAB_PANIC, NULL);
348         if (blob_sizes.lbs_inode)
349                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350                                                     blob_sizes.lbs_inode, 0,
351                                                     SLAB_PANIC, NULL);
352
353         lsm_early_cred((struct cred *) current->cred);
354         lsm_early_task(current);
355         for (lsm = ordered_lsms; *lsm; lsm++)
356                 initialize_lsm(*lsm);
357
358         kfree(ordered_lsms);
359 }
360
361 int __init early_security_init(void)
362 {
363         int i;
364         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365         struct lsm_info *lsm;
366
367         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368              i++)
369                 INIT_HLIST_HEAD(&list[i]);
370
371         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372                 if (!lsm->enabled)
373                         lsm->enabled = &lsm_enabled_true;
374                 prepare_lsm(lsm);
375                 initialize_lsm(lsm);
376         }
377
378         return 0;
379 }
380
381 /**
382  * security_init - initializes the security framework
383  *
384  * This should be called early in the kernel initialization sequence.
385  */
386 int __init security_init(void)
387 {
388         struct lsm_info *lsm;
389
390         pr_info("Security Framework initializing\n");
391
392         /*
393          * Append the names of the early LSM modules now that kmalloc() is
394          * available
395          */
396         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397                 if (lsm->enabled)
398                         lsm_append(lsm->name, &lsm_names);
399         }
400
401         /* Load LSMs in specified order. */
402         ordered_lsm_init();
403
404         return 0;
405 }
406
407 /* Save user chosen LSM */
408 static int __init choose_major_lsm(char *str)
409 {
410         chosen_major_lsm = str;
411         return 1;
412 }
413 __setup("security=", choose_major_lsm);
414
415 /* Explicitly choose LSM initialization order. */
416 static int __init choose_lsm_order(char *str)
417 {
418         chosen_lsm_order = str;
419         return 1;
420 }
421 __setup("lsm=", choose_lsm_order);
422
423 /* Enable LSM order debugging. */
424 static int __init enable_debug(char *str)
425 {
426         debug = true;
427         return 1;
428 }
429 __setup("lsm.debug", enable_debug);
430
431 static bool match_last_lsm(const char *list, const char *lsm)
432 {
433         const char *last;
434
435         if (WARN_ON(!list || !lsm))
436                 return false;
437         last = strrchr(list, ',');
438         if (last)
439                 /* Pass the comma, strcmp() will check for '\0' */
440                 last++;
441         else
442                 last = list;
443         return !strcmp(last, lsm);
444 }
445
446 static int lsm_append(const char *new, char **result)
447 {
448         char *cp;
449
450         if (*result == NULL) {
451                 *result = kstrdup(new, GFP_KERNEL);
452                 if (*result == NULL)
453                         return -ENOMEM;
454         } else {
455                 /* Check if it is the last registered name */
456                 if (match_last_lsm(*result, new))
457                         return 0;
458                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459                 if (cp == NULL)
460                         return -ENOMEM;
461                 kfree(*result);
462                 *result = cp;
463         }
464         return 0;
465 }
466
467 /**
468  * security_add_hooks - Add a modules hooks to the hook lists.
469  * @hooks: the hooks to add
470  * @count: the number of hooks to add
471  * @lsm: the name of the security module
472  *
473  * Each LSM has to register its hooks with the infrastructure.
474  */
475 void __init security_add_hooks(struct security_hook_list *hooks, int count,
476                                 char *lsm)
477 {
478         int i;
479
480         for (i = 0; i < count; i++) {
481                 hooks[i].lsm = lsm;
482                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483         }
484
485         /*
486          * Don't try to append during early_security_init(), we'll come back
487          * and fix this up afterwards.
488          */
489         if (slab_is_available()) {
490                 if (lsm_append(lsm, &lsm_names) < 0)
491                         panic("%s - Cannot get early memory.\n", __func__);
492         }
493 }
494
495 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496 {
497         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498                                             event, data);
499 }
500 EXPORT_SYMBOL(call_blocking_lsm_notifier);
501
502 int register_blocking_lsm_notifier(struct notifier_block *nb)
503 {
504         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505                                                 nb);
506 }
507 EXPORT_SYMBOL(register_blocking_lsm_notifier);
508
509 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512                                                   nb);
513 }
514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515
516 /**
517  * lsm_cred_alloc - allocate a composite cred blob
518  * @cred: the cred that needs a blob
519  * @gfp: allocation type
520  *
521  * Allocate the cred blob for all the modules
522  *
523  * Returns 0, or -ENOMEM if memory can't be allocated.
524  */
525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526 {
527         if (blob_sizes.lbs_cred == 0) {
528                 cred->security = NULL;
529                 return 0;
530         }
531
532         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533         if (cred->security == NULL)
534                 return -ENOMEM;
535         return 0;
536 }
537
538 /**
539  * lsm_early_cred - during initialization allocate a composite cred blob
540  * @cred: the cred that needs a blob
541  *
542  * Allocate the cred blob for all the modules
543  */
544 static void __init lsm_early_cred(struct cred *cred)
545 {
546         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547
548         if (rc)
549                 panic("%s: Early cred alloc failed.\n", __func__);
550 }
551
552 /**
553  * lsm_file_alloc - allocate a composite file blob
554  * @file: the file that needs a blob
555  *
556  * Allocate the file blob for all the modules
557  *
558  * Returns 0, or -ENOMEM if memory can't be allocated.
559  */
560 static int lsm_file_alloc(struct file *file)
561 {
562         if (!lsm_file_cache) {
563                 file->f_security = NULL;
564                 return 0;
565         }
566
567         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568         if (file->f_security == NULL)
569                 return -ENOMEM;
570         return 0;
571 }
572
573 /**
574  * lsm_inode_alloc - allocate a composite inode blob
575  * @inode: the inode that needs a blob
576  *
577  * Allocate the inode blob for all the modules
578  *
579  * Returns 0, or -ENOMEM if memory can't be allocated.
580  */
581 int lsm_inode_alloc(struct inode *inode)
582 {
583         if (!lsm_inode_cache) {
584                 inode->i_security = NULL;
585                 return 0;
586         }
587
588         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589         if (inode->i_security == NULL)
590                 return -ENOMEM;
591         return 0;
592 }
593
594 /**
595  * lsm_task_alloc - allocate a composite task blob
596  * @task: the task that needs a blob
597  *
598  * Allocate the task blob for all the modules
599  *
600  * Returns 0, or -ENOMEM if memory can't be allocated.
601  */
602 static int lsm_task_alloc(struct task_struct *task)
603 {
604         if (blob_sizes.lbs_task == 0) {
605                 task->security = NULL;
606                 return 0;
607         }
608
609         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610         if (task->security == NULL)
611                 return -ENOMEM;
612         return 0;
613 }
614
615 /**
616  * lsm_ipc_alloc - allocate a composite ipc blob
617  * @kip: the ipc that needs a blob
618  *
619  * Allocate the ipc blob for all the modules
620  *
621  * Returns 0, or -ENOMEM if memory can't be allocated.
622  */
623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624 {
625         if (blob_sizes.lbs_ipc == 0) {
626                 kip->security = NULL;
627                 return 0;
628         }
629
630         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631         if (kip->security == NULL)
632                 return -ENOMEM;
633         return 0;
634 }
635
636 /**
637  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638  * @mp: the msg_msg that needs a blob
639  *
640  * Allocate the ipc blob for all the modules
641  *
642  * Returns 0, or -ENOMEM if memory can't be allocated.
643  */
644 static int lsm_msg_msg_alloc(struct msg_msg *mp)
645 {
646         if (blob_sizes.lbs_msg_msg == 0) {
647                 mp->security = NULL;
648                 return 0;
649         }
650
651         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652         if (mp->security == NULL)
653                 return -ENOMEM;
654         return 0;
655 }
656
657 /**
658  * lsm_early_task - during initialization allocate a composite task blob
659  * @task: the task that needs a blob
660  *
661  * Allocate the task blob for all the modules
662  */
663 static void __init lsm_early_task(struct task_struct *task)
664 {
665         int rc = lsm_task_alloc(task);
666
667         if (rc)
668                 panic("%s: Early task alloc failed.\n", __func__);
669 }
670
671 /*
672  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673  * can be accessed with:
674  *
675  *      LSM_RET_DEFAULT(<hook_name>)
676  *
677  * The macros below define static constants for the default value of each
678  * LSM hook.
679  */
680 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
681 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683         static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686
687 #include <linux/lsm_hook_defs.h>
688 #undef LSM_HOOK
689
690 /*
691  * Hook list operation macros.
692  *
693  * call_void_hook:
694  *      This is a hook that does not return a value.
695  *
696  * call_int_hook:
697  *      This is a hook that returns a value.
698  */
699
700 #define call_void_hook(FUNC, ...)                               \
701         do {                                                    \
702                 struct security_hook_list *P;                   \
703                                                                 \
704                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705                         P->hook.FUNC(__VA_ARGS__);              \
706         } while (0)
707
708 #define call_int_hook(FUNC, IRC, ...) ({                        \
709         int RC = IRC;                                           \
710         do {                                                    \
711                 struct security_hook_list *P;                   \
712                                                                 \
713                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714                         RC = P->hook.FUNC(__VA_ARGS__);         \
715                         if (RC != 0)                            \
716                                 break;                          \
717                 }                                               \
718         } while (0);                                            \
719         RC;                                                     \
720 })
721
722 /* Security operations */
723
724 int security_binder_set_context_mgr(struct task_struct *mgr)
725 {
726         return call_int_hook(binder_set_context_mgr, 0, mgr);
727 }
728
729 int security_binder_transaction(struct task_struct *from,
730                                 struct task_struct *to)
731 {
732         return call_int_hook(binder_transaction, 0, from, to);
733 }
734
735 int security_binder_transfer_binder(struct task_struct *from,
736                                     struct task_struct *to)
737 {
738         return call_int_hook(binder_transfer_binder, 0, from, to);
739 }
740
741 int security_binder_transfer_file(struct task_struct *from,
742                                   struct task_struct *to, struct file *file)
743 {
744         return call_int_hook(binder_transfer_file, 0, from, to, file);
745 }
746
747 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748 {
749         return call_int_hook(ptrace_access_check, 0, child, mode);
750 }
751
752 int security_ptrace_traceme(struct task_struct *parent)
753 {
754         return call_int_hook(ptrace_traceme, 0, parent);
755 }
756
757 int security_capget(struct task_struct *target,
758                      kernel_cap_t *effective,
759                      kernel_cap_t *inheritable,
760                      kernel_cap_t *permitted)
761 {
762         return call_int_hook(capget, 0, target,
763                                 effective, inheritable, permitted);
764 }
765
766 int security_capset(struct cred *new, const struct cred *old,
767                     const kernel_cap_t *effective,
768                     const kernel_cap_t *inheritable,
769                     const kernel_cap_t *permitted)
770 {
771         return call_int_hook(capset, 0, new, old,
772                                 effective, inheritable, permitted);
773 }
774
775 int security_capable(const struct cred *cred,
776                      struct user_namespace *ns,
777                      int cap,
778                      unsigned int opts)
779 {
780         return call_int_hook(capable, 0, cred, ns, cap, opts);
781 }
782
783 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784 {
785         return call_int_hook(quotactl, 0, cmds, type, id, sb);
786 }
787
788 int security_quota_on(struct dentry *dentry)
789 {
790         return call_int_hook(quota_on, 0, dentry);
791 }
792
793 int security_syslog(int type)
794 {
795         return call_int_hook(syslog, 0, type);
796 }
797
798 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799 {
800         return call_int_hook(settime, 0, ts, tz);
801 }
802
803 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804 {
805         struct security_hook_list *hp;
806         int cap_sys_admin = 1;
807         int rc;
808
809         /*
810          * The module will respond with a positive value if
811          * it thinks the __vm_enough_memory() call should be
812          * made with the cap_sys_admin set. If all of the modules
813          * agree that it should be set it will. If any module
814          * thinks it should not be set it won't.
815          */
816         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817                 rc = hp->hook.vm_enough_memory(mm, pages);
818                 if (rc <= 0) {
819                         cap_sys_admin = 0;
820                         break;
821                 }
822         }
823         return __vm_enough_memory(mm, pages, cap_sys_admin);
824 }
825
826 int security_bprm_set_creds(struct linux_binprm *bprm)
827 {
828         return call_int_hook(bprm_set_creds, 0, bprm);
829 }
830
831 int security_bprm_check(struct linux_binprm *bprm)
832 {
833         int ret;
834
835         ret = call_int_hook(bprm_check_security, 0, bprm);
836         if (ret)
837                 return ret;
838         return ima_bprm_check(bprm);
839 }
840
841 void security_bprm_committing_creds(struct linux_binprm *bprm)
842 {
843         call_void_hook(bprm_committing_creds, bprm);
844 }
845
846 void security_bprm_committed_creds(struct linux_binprm *bprm)
847 {
848         call_void_hook(bprm_committed_creds, bprm);
849 }
850
851 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
852 {
853         return call_int_hook(fs_context_dup, 0, fc, src_fc);
854 }
855
856 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
857 {
858         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
859 }
860
861 int security_sb_alloc(struct super_block *sb)
862 {
863         return call_int_hook(sb_alloc_security, 0, sb);
864 }
865
866 void security_sb_free(struct super_block *sb)
867 {
868         call_void_hook(sb_free_security, sb);
869 }
870
871 void security_free_mnt_opts(void **mnt_opts)
872 {
873         if (!*mnt_opts)
874                 return;
875         call_void_hook(sb_free_mnt_opts, *mnt_opts);
876         *mnt_opts = NULL;
877 }
878 EXPORT_SYMBOL(security_free_mnt_opts);
879
880 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
881 {
882         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
883 }
884 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
885
886 int security_sb_remount(struct super_block *sb,
887                         void *mnt_opts)
888 {
889         return call_int_hook(sb_remount, 0, sb, mnt_opts);
890 }
891 EXPORT_SYMBOL(security_sb_remount);
892
893 int security_sb_kern_mount(struct super_block *sb)
894 {
895         return call_int_hook(sb_kern_mount, 0, sb);
896 }
897
898 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
899 {
900         return call_int_hook(sb_show_options, 0, m, sb);
901 }
902
903 int security_sb_statfs(struct dentry *dentry)
904 {
905         return call_int_hook(sb_statfs, 0, dentry);
906 }
907
908 int security_sb_mount(const char *dev_name, const struct path *path,
909                        const char *type, unsigned long flags, void *data)
910 {
911         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
912 }
913
914 int security_sb_umount(struct vfsmount *mnt, int flags)
915 {
916         return call_int_hook(sb_umount, 0, mnt, flags);
917 }
918
919 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
920 {
921         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
922 }
923
924 int security_sb_set_mnt_opts(struct super_block *sb,
925                                 void *mnt_opts,
926                                 unsigned long kern_flags,
927                                 unsigned long *set_kern_flags)
928 {
929         return call_int_hook(sb_set_mnt_opts,
930                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
931                                 mnt_opts, kern_flags, set_kern_flags);
932 }
933 EXPORT_SYMBOL(security_sb_set_mnt_opts);
934
935 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
936                                 struct super_block *newsb,
937                                 unsigned long kern_flags,
938                                 unsigned long *set_kern_flags)
939 {
940         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
941                                 kern_flags, set_kern_flags);
942 }
943 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
944
945 int security_add_mnt_opt(const char *option, const char *val, int len,
946                          void **mnt_opts)
947 {
948         return call_int_hook(sb_add_mnt_opt, -EINVAL,
949                                         option, val, len, mnt_opts);
950 }
951 EXPORT_SYMBOL(security_add_mnt_opt);
952
953 int security_move_mount(const struct path *from_path, const struct path *to_path)
954 {
955         return call_int_hook(move_mount, 0, from_path, to_path);
956 }
957
958 int security_path_notify(const struct path *path, u64 mask,
959                                 unsigned int obj_type)
960 {
961         return call_int_hook(path_notify, 0, path, mask, obj_type);
962 }
963
964 int security_inode_alloc(struct inode *inode)
965 {
966         int rc = lsm_inode_alloc(inode);
967
968         if (unlikely(rc))
969                 return rc;
970         rc = call_int_hook(inode_alloc_security, 0, inode);
971         if (unlikely(rc))
972                 security_inode_free(inode);
973         return rc;
974 }
975
976 static void inode_free_by_rcu(struct rcu_head *head)
977 {
978         /*
979          * The rcu head is at the start of the inode blob
980          */
981         kmem_cache_free(lsm_inode_cache, head);
982 }
983
984 void security_inode_free(struct inode *inode)
985 {
986         integrity_inode_free(inode);
987         call_void_hook(inode_free_security, inode);
988         /*
989          * The inode may still be referenced in a path walk and
990          * a call to security_inode_permission() can be made
991          * after inode_free_security() is called. Ideally, the VFS
992          * wouldn't do this, but fixing that is a much harder
993          * job. For now, simply free the i_security via RCU, and
994          * leave the current inode->i_security pointer intact.
995          * The inode will be freed after the RCU grace period too.
996          */
997         if (inode->i_security)
998                 call_rcu((struct rcu_head *)inode->i_security,
999                                 inode_free_by_rcu);
1000 }
1001
1002 int security_dentry_init_security(struct dentry *dentry, int mode,
1003                                         const struct qstr *name, void **ctx,
1004                                         u32 *ctxlen)
1005 {
1006         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1007                                 name, ctx, ctxlen);
1008 }
1009 EXPORT_SYMBOL(security_dentry_init_security);
1010
1011 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1012                                     struct qstr *name,
1013                                     const struct cred *old, struct cred *new)
1014 {
1015         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1016                                 name, old, new);
1017 }
1018 EXPORT_SYMBOL(security_dentry_create_files_as);
1019
1020 int security_inode_init_security(struct inode *inode, struct inode *dir,
1021                                  const struct qstr *qstr,
1022                                  const initxattrs initxattrs, void *fs_data)
1023 {
1024         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1025         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1026         int ret;
1027
1028         if (unlikely(IS_PRIVATE(inode)))
1029                 return 0;
1030
1031         if (!initxattrs)
1032                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1033                                      dir, qstr, NULL, NULL, NULL);
1034         memset(new_xattrs, 0, sizeof(new_xattrs));
1035         lsm_xattr = new_xattrs;
1036         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1037                                                 &lsm_xattr->name,
1038                                                 &lsm_xattr->value,
1039                                                 &lsm_xattr->value_len);
1040         if (ret)
1041                 goto out;
1042
1043         evm_xattr = lsm_xattr + 1;
1044         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1045         if (ret)
1046                 goto out;
1047         ret = initxattrs(inode, new_xattrs, fs_data);
1048 out:
1049         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1050                 kfree(xattr->value);
1051         return (ret == -EOPNOTSUPP) ? 0 : ret;
1052 }
1053 EXPORT_SYMBOL(security_inode_init_security);
1054
1055 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1056                                      const struct qstr *qstr, const char **name,
1057                                      void **value, size_t *len)
1058 {
1059         if (unlikely(IS_PRIVATE(inode)))
1060                 return -EOPNOTSUPP;
1061         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1062                              qstr, name, value, len);
1063 }
1064 EXPORT_SYMBOL(security_old_inode_init_security);
1065
1066 #ifdef CONFIG_SECURITY_PATH
1067 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1068                         unsigned int dev)
1069 {
1070         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1071                 return 0;
1072         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1073 }
1074 EXPORT_SYMBOL(security_path_mknod);
1075
1076 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1077 {
1078         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1079                 return 0;
1080         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1081 }
1082 EXPORT_SYMBOL(security_path_mkdir);
1083
1084 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1085 {
1086         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1087                 return 0;
1088         return call_int_hook(path_rmdir, 0, dir, dentry);
1089 }
1090
1091 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1092 {
1093         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1094                 return 0;
1095         return call_int_hook(path_unlink, 0, dir, dentry);
1096 }
1097 EXPORT_SYMBOL(security_path_unlink);
1098
1099 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1100                           const char *old_name)
1101 {
1102         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1103                 return 0;
1104         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1105 }
1106
1107 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1108                        struct dentry *new_dentry)
1109 {
1110         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1111                 return 0;
1112         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1113 }
1114
1115 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1116                          const struct path *new_dir, struct dentry *new_dentry,
1117                          unsigned int flags)
1118 {
1119         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1120                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1121                 return 0;
1122
1123         if (flags & RENAME_EXCHANGE) {
1124                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1125                                         old_dir, old_dentry);
1126                 if (err)
1127                         return err;
1128         }
1129
1130         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1131                                 new_dentry);
1132 }
1133 EXPORT_SYMBOL(security_path_rename);
1134
1135 int security_path_truncate(const struct path *path)
1136 {
1137         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1138                 return 0;
1139         return call_int_hook(path_truncate, 0, path);
1140 }
1141
1142 int security_path_chmod(const struct path *path, umode_t mode)
1143 {
1144         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1145                 return 0;
1146         return call_int_hook(path_chmod, 0, path, mode);
1147 }
1148
1149 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1150 {
1151         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1152                 return 0;
1153         return call_int_hook(path_chown, 0, path, uid, gid);
1154 }
1155
1156 int security_path_chroot(const struct path *path)
1157 {
1158         return call_int_hook(path_chroot, 0, path);
1159 }
1160 #endif
1161
1162 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1163 {
1164         if (unlikely(IS_PRIVATE(dir)))
1165                 return 0;
1166         return call_int_hook(inode_create, 0, dir, dentry, mode);
1167 }
1168 EXPORT_SYMBOL_GPL(security_inode_create);
1169
1170 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1171                          struct dentry *new_dentry)
1172 {
1173         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1174                 return 0;
1175         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1176 }
1177
1178 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1179 {
1180         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1181                 return 0;
1182         return call_int_hook(inode_unlink, 0, dir, dentry);
1183 }
1184
1185 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1186                             const char *old_name)
1187 {
1188         if (unlikely(IS_PRIVATE(dir)))
1189                 return 0;
1190         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1191 }
1192
1193 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1194 {
1195         if (unlikely(IS_PRIVATE(dir)))
1196                 return 0;
1197         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1198 }
1199 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1200
1201 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1202 {
1203         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1204                 return 0;
1205         return call_int_hook(inode_rmdir, 0, dir, dentry);
1206 }
1207
1208 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1209 {
1210         if (unlikely(IS_PRIVATE(dir)))
1211                 return 0;
1212         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1213 }
1214
1215 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1216                            struct inode *new_dir, struct dentry *new_dentry,
1217                            unsigned int flags)
1218 {
1219         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1220             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1221                 return 0;
1222
1223         if (flags & RENAME_EXCHANGE) {
1224                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1225                                                      old_dir, old_dentry);
1226                 if (err)
1227                         return err;
1228         }
1229
1230         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1231                                            new_dir, new_dentry);
1232 }
1233
1234 int security_inode_readlink(struct dentry *dentry)
1235 {
1236         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1237                 return 0;
1238         return call_int_hook(inode_readlink, 0, dentry);
1239 }
1240
1241 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1242                                bool rcu)
1243 {
1244         if (unlikely(IS_PRIVATE(inode)))
1245                 return 0;
1246         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1247 }
1248
1249 int security_inode_permission(struct inode *inode, int mask)
1250 {
1251         if (unlikely(IS_PRIVATE(inode)))
1252                 return 0;
1253         return call_int_hook(inode_permission, 0, inode, mask);
1254 }
1255
1256 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1257 {
1258         int ret;
1259
1260         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261                 return 0;
1262         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1263         if (ret)
1264                 return ret;
1265         return evm_inode_setattr(dentry, attr);
1266 }
1267 EXPORT_SYMBOL_GPL(security_inode_setattr);
1268
1269 int security_inode_getattr(const struct path *path)
1270 {
1271         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1272                 return 0;
1273         return call_int_hook(inode_getattr, 0, path);
1274 }
1275
1276 int security_inode_setxattr(struct dentry *dentry, const char *name,
1277                             const void *value, size_t size, int flags)
1278 {
1279         int ret;
1280
1281         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282                 return 0;
1283         /*
1284          * SELinux and Smack integrate the cap call,
1285          * so assume that all LSMs supplying this call do so.
1286          */
1287         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1288                                 flags);
1289
1290         if (ret == 1)
1291                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1292         if (ret)
1293                 return ret;
1294         ret = ima_inode_setxattr(dentry, name, value, size);
1295         if (ret)
1296                 return ret;
1297         return evm_inode_setxattr(dentry, name, value, size);
1298 }
1299
1300 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1301                                   const void *value, size_t size, int flags)
1302 {
1303         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1304                 return;
1305         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1306         evm_inode_post_setxattr(dentry, name, value, size);
1307 }
1308
1309 int security_inode_getxattr(struct dentry *dentry, const char *name)
1310 {
1311         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1312                 return 0;
1313         return call_int_hook(inode_getxattr, 0, dentry, name);
1314 }
1315
1316 int security_inode_listxattr(struct dentry *dentry)
1317 {
1318         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1319                 return 0;
1320         return call_int_hook(inode_listxattr, 0, dentry);
1321 }
1322
1323 int security_inode_removexattr(struct dentry *dentry, const char *name)
1324 {
1325         int ret;
1326
1327         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1328                 return 0;
1329         /*
1330          * SELinux and Smack integrate the cap call,
1331          * so assume that all LSMs supplying this call do so.
1332          */
1333         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1334         if (ret == 1)
1335                 ret = cap_inode_removexattr(dentry, name);
1336         if (ret)
1337                 return ret;
1338         ret = ima_inode_removexattr(dentry, name);
1339         if (ret)
1340                 return ret;
1341         return evm_inode_removexattr(dentry, name);
1342 }
1343
1344 int security_inode_need_killpriv(struct dentry *dentry)
1345 {
1346         return call_int_hook(inode_need_killpriv, 0, dentry);
1347 }
1348
1349 int security_inode_killpriv(struct dentry *dentry)
1350 {
1351         return call_int_hook(inode_killpriv, 0, dentry);
1352 }
1353
1354 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1355 {
1356         struct security_hook_list *hp;
1357         int rc;
1358
1359         if (unlikely(IS_PRIVATE(inode)))
1360                 return LSM_RET_DEFAULT(inode_getsecurity);
1361         /*
1362          * Only one module will provide an attribute with a given name.
1363          */
1364         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1365                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1366                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1367                         return rc;
1368         }
1369         return LSM_RET_DEFAULT(inode_getsecurity);
1370 }
1371
1372 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1373 {
1374         struct security_hook_list *hp;
1375         int rc;
1376
1377         if (unlikely(IS_PRIVATE(inode)))
1378                 return LSM_RET_DEFAULT(inode_setsecurity);
1379         /*
1380          * Only one module will provide an attribute with a given name.
1381          */
1382         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1383                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1384                                                                 flags);
1385                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1386                         return rc;
1387         }
1388         return LSM_RET_DEFAULT(inode_setsecurity);
1389 }
1390
1391 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1392 {
1393         if (unlikely(IS_PRIVATE(inode)))
1394                 return 0;
1395         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1396 }
1397 EXPORT_SYMBOL(security_inode_listsecurity);
1398
1399 void security_inode_getsecid(struct inode *inode, u32 *secid)
1400 {
1401         call_void_hook(inode_getsecid, inode, secid);
1402 }
1403
1404 int security_inode_copy_up(struct dentry *src, struct cred **new)
1405 {
1406         return call_int_hook(inode_copy_up, 0, src, new);
1407 }
1408 EXPORT_SYMBOL(security_inode_copy_up);
1409
1410 int security_inode_copy_up_xattr(const char *name)
1411 {
1412         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1413 }
1414 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1415
1416 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1417                                   struct kernfs_node *kn)
1418 {
1419         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1420 }
1421
1422 int security_file_permission(struct file *file, int mask)
1423 {
1424         int ret;
1425
1426         ret = call_int_hook(file_permission, 0, file, mask);
1427         if (ret)
1428                 return ret;
1429
1430         return fsnotify_perm(file, mask);
1431 }
1432
1433 int security_file_alloc(struct file *file)
1434 {
1435         int rc = lsm_file_alloc(file);
1436
1437         if (rc)
1438                 return rc;
1439         rc = call_int_hook(file_alloc_security, 0, file);
1440         if (unlikely(rc))
1441                 security_file_free(file);
1442         return rc;
1443 }
1444
1445 void security_file_free(struct file *file)
1446 {
1447         void *blob;
1448
1449         call_void_hook(file_free_security, file);
1450
1451         blob = file->f_security;
1452         if (blob) {
1453                 file->f_security = NULL;
1454                 kmem_cache_free(lsm_file_cache, blob);
1455         }
1456 }
1457
1458 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1459 {
1460         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1461 }
1462
1463 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1464 {
1465         /*
1466          * Does we have PROT_READ and does the application expect
1467          * it to imply PROT_EXEC?  If not, nothing to talk about...
1468          */
1469         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1470                 return prot;
1471         if (!(current->personality & READ_IMPLIES_EXEC))
1472                 return prot;
1473         /*
1474          * if that's an anonymous mapping, let it.
1475          */
1476         if (!file)
1477                 return prot | PROT_EXEC;
1478         /*
1479          * ditto if it's not on noexec mount, except that on !MMU we need
1480          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1481          */
1482         if (!path_noexec(&file->f_path)) {
1483 #ifndef CONFIG_MMU
1484                 if (file->f_op->mmap_capabilities) {
1485                         unsigned caps = file->f_op->mmap_capabilities(file);
1486                         if (!(caps & NOMMU_MAP_EXEC))
1487                                 return prot;
1488                 }
1489 #endif
1490                 return prot | PROT_EXEC;
1491         }
1492         /* anything on noexec mount won't get PROT_EXEC */
1493         return prot;
1494 }
1495
1496 int security_mmap_file(struct file *file, unsigned long prot,
1497                         unsigned long flags)
1498 {
1499         int ret;
1500         ret = call_int_hook(mmap_file, 0, file, prot,
1501                                         mmap_prot(file, prot), flags);
1502         if (ret)
1503                 return ret;
1504         return ima_file_mmap(file, prot);
1505 }
1506
1507 int security_mmap_addr(unsigned long addr)
1508 {
1509         return call_int_hook(mmap_addr, 0, addr);
1510 }
1511
1512 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1513                             unsigned long prot)
1514 {
1515         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1516 }
1517
1518 int security_file_lock(struct file *file, unsigned int cmd)
1519 {
1520         return call_int_hook(file_lock, 0, file, cmd);
1521 }
1522
1523 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1524 {
1525         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1526 }
1527
1528 void security_file_set_fowner(struct file *file)
1529 {
1530         call_void_hook(file_set_fowner, file);
1531 }
1532
1533 int security_file_send_sigiotask(struct task_struct *tsk,
1534                                   struct fown_struct *fown, int sig)
1535 {
1536         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1537 }
1538
1539 int security_file_receive(struct file *file)
1540 {
1541         return call_int_hook(file_receive, 0, file);
1542 }
1543
1544 int security_file_open(struct file *file)
1545 {
1546         int ret;
1547
1548         ret = call_int_hook(file_open, 0, file);
1549         if (ret)
1550                 return ret;
1551
1552         return fsnotify_perm(file, MAY_OPEN);
1553 }
1554
1555 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1556 {
1557         int rc = lsm_task_alloc(task);
1558
1559         if (rc)
1560                 return rc;
1561         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1562         if (unlikely(rc))
1563                 security_task_free(task);
1564         return rc;
1565 }
1566
1567 void security_task_free(struct task_struct *task)
1568 {
1569         call_void_hook(task_free, task);
1570
1571         kfree(task->security);
1572         task->security = NULL;
1573 }
1574
1575 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1576 {
1577         int rc = lsm_cred_alloc(cred, gfp);
1578
1579         if (rc)
1580                 return rc;
1581
1582         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1583         if (unlikely(rc))
1584                 security_cred_free(cred);
1585         return rc;
1586 }
1587
1588 void security_cred_free(struct cred *cred)
1589 {
1590         /*
1591          * There is a failure case in prepare_creds() that
1592          * may result in a call here with ->security being NULL.
1593          */
1594         if (unlikely(cred->security == NULL))
1595                 return;
1596
1597         call_void_hook(cred_free, cred);
1598
1599         kfree(cred->security);
1600         cred->security = NULL;
1601 }
1602
1603 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1604 {
1605         int rc = lsm_cred_alloc(new, gfp);
1606
1607         if (rc)
1608                 return rc;
1609
1610         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1611         if (unlikely(rc))
1612                 security_cred_free(new);
1613         return rc;
1614 }
1615
1616 void security_transfer_creds(struct cred *new, const struct cred *old)
1617 {
1618         call_void_hook(cred_transfer, new, old);
1619 }
1620
1621 void security_cred_getsecid(const struct cred *c, u32 *secid)
1622 {
1623         *secid = 0;
1624         call_void_hook(cred_getsecid, c, secid);
1625 }
1626 EXPORT_SYMBOL(security_cred_getsecid);
1627
1628 int security_kernel_act_as(struct cred *new, u32 secid)
1629 {
1630         return call_int_hook(kernel_act_as, 0, new, secid);
1631 }
1632
1633 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1634 {
1635         return call_int_hook(kernel_create_files_as, 0, new, inode);
1636 }
1637
1638 int security_kernel_module_request(char *kmod_name)
1639 {
1640         int ret;
1641
1642         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1643         if (ret)
1644                 return ret;
1645         return integrity_kernel_module_request(kmod_name);
1646 }
1647
1648 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1649 {
1650         int ret;
1651
1652         ret = call_int_hook(kernel_read_file, 0, file, id);
1653         if (ret)
1654                 return ret;
1655         return ima_read_file(file, id);
1656 }
1657 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1658
1659 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1660                                    enum kernel_read_file_id id)
1661 {
1662         int ret;
1663
1664         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1665         if (ret)
1666                 return ret;
1667         return ima_post_read_file(file, buf, size, id);
1668 }
1669 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1670
1671 int security_kernel_load_data(enum kernel_load_data_id id)
1672 {
1673         int ret;
1674
1675         ret = call_int_hook(kernel_load_data, 0, id);
1676         if (ret)
1677                 return ret;
1678         return ima_load_data(id);
1679 }
1680 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1681
1682 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1683                              int flags)
1684 {
1685         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1686 }
1687
1688 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1689 {
1690         return call_int_hook(task_setpgid, 0, p, pgid);
1691 }
1692
1693 int security_task_getpgid(struct task_struct *p)
1694 {
1695         return call_int_hook(task_getpgid, 0, p);
1696 }
1697
1698 int security_task_getsid(struct task_struct *p)
1699 {
1700         return call_int_hook(task_getsid, 0, p);
1701 }
1702
1703 void security_task_getsecid(struct task_struct *p, u32 *secid)
1704 {
1705         *secid = 0;
1706         call_void_hook(task_getsecid, p, secid);
1707 }
1708 EXPORT_SYMBOL(security_task_getsecid);
1709
1710 int security_task_setnice(struct task_struct *p, int nice)
1711 {
1712         return call_int_hook(task_setnice, 0, p, nice);
1713 }
1714
1715 int security_task_setioprio(struct task_struct *p, int ioprio)
1716 {
1717         return call_int_hook(task_setioprio, 0, p, ioprio);
1718 }
1719
1720 int security_task_getioprio(struct task_struct *p)
1721 {
1722         return call_int_hook(task_getioprio, 0, p);
1723 }
1724
1725 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1726                           unsigned int flags)
1727 {
1728         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1729 }
1730
1731 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1732                 struct rlimit *new_rlim)
1733 {
1734         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1735 }
1736
1737 int security_task_setscheduler(struct task_struct *p)
1738 {
1739         return call_int_hook(task_setscheduler, 0, p);
1740 }
1741
1742 int security_task_getscheduler(struct task_struct *p)
1743 {
1744         return call_int_hook(task_getscheduler, 0, p);
1745 }
1746
1747 int security_task_movememory(struct task_struct *p)
1748 {
1749         return call_int_hook(task_movememory, 0, p);
1750 }
1751
1752 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1753                         int sig, const struct cred *cred)
1754 {
1755         return call_int_hook(task_kill, 0, p, info, sig, cred);
1756 }
1757
1758 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1759                          unsigned long arg4, unsigned long arg5)
1760 {
1761         int thisrc;
1762         int rc = LSM_RET_DEFAULT(task_prctl);
1763         struct security_hook_list *hp;
1764
1765         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1766                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1767                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1768                         rc = thisrc;
1769                         if (thisrc != 0)
1770                                 break;
1771                 }
1772         }
1773         return rc;
1774 }
1775
1776 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1777 {
1778         call_void_hook(task_to_inode, p, inode);
1779 }
1780
1781 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1782 {
1783         return call_int_hook(ipc_permission, 0, ipcp, flag);
1784 }
1785
1786 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1787 {
1788         *secid = 0;
1789         call_void_hook(ipc_getsecid, ipcp, secid);
1790 }
1791
1792 int security_msg_msg_alloc(struct msg_msg *msg)
1793 {
1794         int rc = lsm_msg_msg_alloc(msg);
1795
1796         if (unlikely(rc))
1797                 return rc;
1798         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1799         if (unlikely(rc))
1800                 security_msg_msg_free(msg);
1801         return rc;
1802 }
1803
1804 void security_msg_msg_free(struct msg_msg *msg)
1805 {
1806         call_void_hook(msg_msg_free_security, msg);
1807         kfree(msg->security);
1808         msg->security = NULL;
1809 }
1810
1811 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1812 {
1813         int rc = lsm_ipc_alloc(msq);
1814
1815         if (unlikely(rc))
1816                 return rc;
1817         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1818         if (unlikely(rc))
1819                 security_msg_queue_free(msq);
1820         return rc;
1821 }
1822
1823 void security_msg_queue_free(struct kern_ipc_perm *msq)
1824 {
1825         call_void_hook(msg_queue_free_security, msq);
1826         kfree(msq->security);
1827         msq->security = NULL;
1828 }
1829
1830 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1831 {
1832         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1833 }
1834
1835 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1836 {
1837         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1838 }
1839
1840 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1841                                struct msg_msg *msg, int msqflg)
1842 {
1843         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1844 }
1845
1846 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1847                                struct task_struct *target, long type, int mode)
1848 {
1849         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1850 }
1851
1852 int security_shm_alloc(struct kern_ipc_perm *shp)
1853 {
1854         int rc = lsm_ipc_alloc(shp);
1855
1856         if (unlikely(rc))
1857                 return rc;
1858         rc = call_int_hook(shm_alloc_security, 0, shp);
1859         if (unlikely(rc))
1860                 security_shm_free(shp);
1861         return rc;
1862 }
1863
1864 void security_shm_free(struct kern_ipc_perm *shp)
1865 {
1866         call_void_hook(shm_free_security, shp);
1867         kfree(shp->security);
1868         shp->security = NULL;
1869 }
1870
1871 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1872 {
1873         return call_int_hook(shm_associate, 0, shp, shmflg);
1874 }
1875
1876 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1877 {
1878         return call_int_hook(shm_shmctl, 0, shp, cmd);
1879 }
1880
1881 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1882 {
1883         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1884 }
1885
1886 int security_sem_alloc(struct kern_ipc_perm *sma)
1887 {
1888         int rc = lsm_ipc_alloc(sma);
1889
1890         if (unlikely(rc))
1891                 return rc;
1892         rc = call_int_hook(sem_alloc_security, 0, sma);
1893         if (unlikely(rc))
1894                 security_sem_free(sma);
1895         return rc;
1896 }
1897
1898 void security_sem_free(struct kern_ipc_perm *sma)
1899 {
1900         call_void_hook(sem_free_security, sma);
1901         kfree(sma->security);
1902         sma->security = NULL;
1903 }
1904
1905 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1906 {
1907         return call_int_hook(sem_associate, 0, sma, semflg);
1908 }
1909
1910 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1911 {
1912         return call_int_hook(sem_semctl, 0, sma, cmd);
1913 }
1914
1915 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1916                         unsigned nsops, int alter)
1917 {
1918         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1919 }
1920
1921 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1922 {
1923         if (unlikely(inode && IS_PRIVATE(inode)))
1924                 return;
1925         call_void_hook(d_instantiate, dentry, inode);
1926 }
1927 EXPORT_SYMBOL(security_d_instantiate);
1928
1929 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1930                                 char **value)
1931 {
1932         struct security_hook_list *hp;
1933
1934         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1935                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1936                         continue;
1937                 return hp->hook.getprocattr(p, name, value);
1938         }
1939         return LSM_RET_DEFAULT(getprocattr);
1940 }
1941
1942 int security_setprocattr(const char *lsm, const char *name, void *value,
1943                          size_t size)
1944 {
1945         struct security_hook_list *hp;
1946
1947         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1948                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1949                         continue;
1950                 return hp->hook.setprocattr(name, value, size);
1951         }
1952         return LSM_RET_DEFAULT(setprocattr);
1953 }
1954
1955 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1956 {
1957         return call_int_hook(netlink_send, 0, sk, skb);
1958 }
1959
1960 int security_ismaclabel(const char *name)
1961 {
1962         return call_int_hook(ismaclabel, 0, name);
1963 }
1964 EXPORT_SYMBOL(security_ismaclabel);
1965
1966 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1967 {
1968         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1969                                 seclen);
1970 }
1971 EXPORT_SYMBOL(security_secid_to_secctx);
1972
1973 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1974 {
1975         *secid = 0;
1976         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1977 }
1978 EXPORT_SYMBOL(security_secctx_to_secid);
1979
1980 void security_release_secctx(char *secdata, u32 seclen)
1981 {
1982         call_void_hook(release_secctx, secdata, seclen);
1983 }
1984 EXPORT_SYMBOL(security_release_secctx);
1985
1986 void security_inode_invalidate_secctx(struct inode *inode)
1987 {
1988         call_void_hook(inode_invalidate_secctx, inode);
1989 }
1990 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1991
1992 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1993 {
1994         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1995 }
1996 EXPORT_SYMBOL(security_inode_notifysecctx);
1997
1998 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1999 {
2000         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2001 }
2002 EXPORT_SYMBOL(security_inode_setsecctx);
2003
2004 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2005 {
2006         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2007 }
2008 EXPORT_SYMBOL(security_inode_getsecctx);
2009
2010 #ifdef CONFIG_SECURITY_NETWORK
2011
2012 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2013 {
2014         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2015 }
2016 EXPORT_SYMBOL(security_unix_stream_connect);
2017
2018 int security_unix_may_send(struct socket *sock,  struct socket *other)
2019 {
2020         return call_int_hook(unix_may_send, 0, sock, other);
2021 }
2022 EXPORT_SYMBOL(security_unix_may_send);
2023
2024 int security_socket_create(int family, int type, int protocol, int kern)
2025 {
2026         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2027 }
2028
2029 int security_socket_post_create(struct socket *sock, int family,
2030                                 int type, int protocol, int kern)
2031 {
2032         return call_int_hook(socket_post_create, 0, sock, family, type,
2033                                                 protocol, kern);
2034 }
2035
2036 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2037 {
2038         return call_int_hook(socket_socketpair, 0, socka, sockb);
2039 }
2040 EXPORT_SYMBOL(security_socket_socketpair);
2041
2042 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2043 {
2044         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2045 }
2046
2047 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2048 {
2049         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2050 }
2051
2052 int security_socket_listen(struct socket *sock, int backlog)
2053 {
2054         return call_int_hook(socket_listen, 0, sock, backlog);
2055 }
2056
2057 int security_socket_accept(struct socket *sock, struct socket *newsock)
2058 {
2059         return call_int_hook(socket_accept, 0, sock, newsock);
2060 }
2061
2062 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2063 {
2064         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2065 }
2066
2067 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2068                             int size, int flags)
2069 {
2070         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2071 }
2072
2073 int security_socket_getsockname(struct socket *sock)
2074 {
2075         return call_int_hook(socket_getsockname, 0, sock);
2076 }
2077
2078 int security_socket_getpeername(struct socket *sock)
2079 {
2080         return call_int_hook(socket_getpeername, 0, sock);
2081 }
2082
2083 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2084 {
2085         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2086 }
2087
2088 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2089 {
2090         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2091 }
2092
2093 int security_socket_shutdown(struct socket *sock, int how)
2094 {
2095         return call_int_hook(socket_shutdown, 0, sock, how);
2096 }
2097
2098 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2099 {
2100         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2101 }
2102 EXPORT_SYMBOL(security_sock_rcv_skb);
2103
2104 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2105                                       int __user *optlen, unsigned len)
2106 {
2107         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2108                                 optval, optlen, len);
2109 }
2110
2111 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2112 {
2113         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2114                              skb, secid);
2115 }
2116 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2117
2118 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2119 {
2120         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2121 }
2122
2123 void security_sk_free(struct sock *sk)
2124 {
2125         call_void_hook(sk_free_security, sk);
2126 }
2127
2128 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2129 {
2130         call_void_hook(sk_clone_security, sk, newsk);
2131 }
2132 EXPORT_SYMBOL(security_sk_clone);
2133
2134 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2135 {
2136         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2137 }
2138 EXPORT_SYMBOL(security_sk_classify_flow);
2139
2140 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2141 {
2142         call_void_hook(req_classify_flow, req, fl);
2143 }
2144 EXPORT_SYMBOL(security_req_classify_flow);
2145
2146 void security_sock_graft(struct sock *sk, struct socket *parent)
2147 {
2148         call_void_hook(sock_graft, sk, parent);
2149 }
2150 EXPORT_SYMBOL(security_sock_graft);
2151
2152 int security_inet_conn_request(struct sock *sk,
2153                         struct sk_buff *skb, struct request_sock *req)
2154 {
2155         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2156 }
2157 EXPORT_SYMBOL(security_inet_conn_request);
2158
2159 void security_inet_csk_clone(struct sock *newsk,
2160                         const struct request_sock *req)
2161 {
2162         call_void_hook(inet_csk_clone, newsk, req);
2163 }
2164
2165 void security_inet_conn_established(struct sock *sk,
2166                         struct sk_buff *skb)
2167 {
2168         call_void_hook(inet_conn_established, sk, skb);
2169 }
2170 EXPORT_SYMBOL(security_inet_conn_established);
2171
2172 int security_secmark_relabel_packet(u32 secid)
2173 {
2174         return call_int_hook(secmark_relabel_packet, 0, secid);
2175 }
2176 EXPORT_SYMBOL(security_secmark_relabel_packet);
2177
2178 void security_secmark_refcount_inc(void)
2179 {
2180         call_void_hook(secmark_refcount_inc);
2181 }
2182 EXPORT_SYMBOL(security_secmark_refcount_inc);
2183
2184 void security_secmark_refcount_dec(void)
2185 {
2186         call_void_hook(secmark_refcount_dec);
2187 }
2188 EXPORT_SYMBOL(security_secmark_refcount_dec);
2189
2190 int security_tun_dev_alloc_security(void **security)
2191 {
2192         return call_int_hook(tun_dev_alloc_security, 0, security);
2193 }
2194 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2195
2196 void security_tun_dev_free_security(void *security)
2197 {
2198         call_void_hook(tun_dev_free_security, security);
2199 }
2200 EXPORT_SYMBOL(security_tun_dev_free_security);
2201
2202 int security_tun_dev_create(void)
2203 {
2204         return call_int_hook(tun_dev_create, 0);
2205 }
2206 EXPORT_SYMBOL(security_tun_dev_create);
2207
2208 int security_tun_dev_attach_queue(void *security)
2209 {
2210         return call_int_hook(tun_dev_attach_queue, 0, security);
2211 }
2212 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2213
2214 int security_tun_dev_attach(struct sock *sk, void *security)
2215 {
2216         return call_int_hook(tun_dev_attach, 0, sk, security);
2217 }
2218 EXPORT_SYMBOL(security_tun_dev_attach);
2219
2220 int security_tun_dev_open(void *security)
2221 {
2222         return call_int_hook(tun_dev_open, 0, security);
2223 }
2224 EXPORT_SYMBOL(security_tun_dev_open);
2225
2226 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2227 {
2228         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2229 }
2230 EXPORT_SYMBOL(security_sctp_assoc_request);
2231
2232 int security_sctp_bind_connect(struct sock *sk, int optname,
2233                                struct sockaddr *address, int addrlen)
2234 {
2235         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2236                              address, addrlen);
2237 }
2238 EXPORT_SYMBOL(security_sctp_bind_connect);
2239
2240 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2241                             struct sock *newsk)
2242 {
2243         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2244 }
2245 EXPORT_SYMBOL(security_sctp_sk_clone);
2246
2247 #endif  /* CONFIG_SECURITY_NETWORK */
2248
2249 #ifdef CONFIG_SECURITY_INFINIBAND
2250
2251 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2252 {
2253         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2254 }
2255 EXPORT_SYMBOL(security_ib_pkey_access);
2256
2257 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2258 {
2259         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2260 }
2261 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2262
2263 int security_ib_alloc_security(void **sec)
2264 {
2265         return call_int_hook(ib_alloc_security, 0, sec);
2266 }
2267 EXPORT_SYMBOL(security_ib_alloc_security);
2268
2269 void security_ib_free_security(void *sec)
2270 {
2271         call_void_hook(ib_free_security, sec);
2272 }
2273 EXPORT_SYMBOL(security_ib_free_security);
2274 #endif  /* CONFIG_SECURITY_INFINIBAND */
2275
2276 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2277
2278 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2279                                struct xfrm_user_sec_ctx *sec_ctx,
2280                                gfp_t gfp)
2281 {
2282         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2283 }
2284 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2285
2286 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2287                               struct xfrm_sec_ctx **new_ctxp)
2288 {
2289         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2290 }
2291
2292 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2293 {
2294         call_void_hook(xfrm_policy_free_security, ctx);
2295 }
2296 EXPORT_SYMBOL(security_xfrm_policy_free);
2297
2298 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2299 {
2300         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2301 }
2302
2303 int security_xfrm_state_alloc(struct xfrm_state *x,
2304                               struct xfrm_user_sec_ctx *sec_ctx)
2305 {
2306         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2307 }
2308 EXPORT_SYMBOL(security_xfrm_state_alloc);
2309
2310 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2311                                       struct xfrm_sec_ctx *polsec, u32 secid)
2312 {
2313         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2314 }
2315
2316 int security_xfrm_state_delete(struct xfrm_state *x)
2317 {
2318         return call_int_hook(xfrm_state_delete_security, 0, x);
2319 }
2320 EXPORT_SYMBOL(security_xfrm_state_delete);
2321
2322 void security_xfrm_state_free(struct xfrm_state *x)
2323 {
2324         call_void_hook(xfrm_state_free_security, x);
2325 }
2326
2327 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2328 {
2329         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2330 }
2331
2332 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2333                                        struct xfrm_policy *xp,
2334                                        const struct flowi *fl)
2335 {
2336         struct security_hook_list *hp;
2337         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2338
2339         /*
2340          * Since this function is expected to return 0 or 1, the judgment
2341          * becomes difficult if multiple LSMs supply this call. Fortunately,
2342          * we can use the first LSM's judgment because currently only SELinux
2343          * supplies this call.
2344          *
2345          * For speed optimization, we explicitly break the loop rather than
2346          * using the macro
2347          */
2348         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2349                                 list) {
2350                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2351                 break;
2352         }
2353         return rc;
2354 }
2355
2356 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2357 {
2358         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2359 }
2360
2361 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2362 {
2363         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2364                                 0);
2365
2366         BUG_ON(rc);
2367 }
2368 EXPORT_SYMBOL(security_skb_classify_flow);
2369
2370 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2371
2372 #ifdef CONFIG_KEYS
2373
2374 int security_key_alloc(struct key *key, const struct cred *cred,
2375                        unsigned long flags)
2376 {
2377         return call_int_hook(key_alloc, 0, key, cred, flags);
2378 }
2379
2380 void security_key_free(struct key *key)
2381 {
2382         call_void_hook(key_free, key);
2383 }
2384
2385 int security_key_permission(key_ref_t key_ref,
2386                             const struct cred *cred, unsigned perm)
2387 {
2388         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2389 }
2390
2391 int security_key_getsecurity(struct key *key, char **_buffer)
2392 {
2393         *_buffer = NULL;
2394         return call_int_hook(key_getsecurity, 0, key, _buffer);
2395 }
2396
2397 #endif  /* CONFIG_KEYS */
2398
2399 #ifdef CONFIG_AUDIT
2400
2401 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2402 {
2403         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2404 }
2405
2406 int security_audit_rule_known(struct audit_krule *krule)
2407 {
2408         return call_int_hook(audit_rule_known, 0, krule);
2409 }
2410
2411 void security_audit_rule_free(void *lsmrule)
2412 {
2413         call_void_hook(audit_rule_free, lsmrule);
2414 }
2415
2416 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2417 {
2418         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2419 }
2420 #endif /* CONFIG_AUDIT */
2421
2422 #ifdef CONFIG_BPF_SYSCALL
2423 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2424 {
2425         return call_int_hook(bpf, 0, cmd, attr, size);
2426 }
2427 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2428 {
2429         return call_int_hook(bpf_map, 0, map, fmode);
2430 }
2431 int security_bpf_prog(struct bpf_prog *prog)
2432 {
2433         return call_int_hook(bpf_prog, 0, prog);
2434 }
2435 int security_bpf_map_alloc(struct bpf_map *map)
2436 {
2437         return call_int_hook(bpf_map_alloc_security, 0, map);
2438 }
2439 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2440 {
2441         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2442 }
2443 void security_bpf_map_free(struct bpf_map *map)
2444 {
2445         call_void_hook(bpf_map_free_security, map);
2446 }
2447 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2448 {
2449         call_void_hook(bpf_prog_free_security, aux);
2450 }
2451 #endif /* CONFIG_BPF_SYSCALL */
2452
2453 int security_locked_down(enum lockdown_reason what)
2454 {
2455         return call_int_hook(locked_down, 0, what);
2456 }
2457 EXPORT_SYMBOL(security_locked_down);
2458
2459 #ifdef CONFIG_PERF_EVENTS
2460 int security_perf_event_open(struct perf_event_attr *attr, int type)
2461 {
2462         return call_int_hook(perf_event_open, 0, attr, type);
2463 }
2464
2465 int security_perf_event_alloc(struct perf_event *event)
2466 {
2467         return call_int_hook(perf_event_alloc, 0, event);
2468 }
2469
2470 void security_perf_event_free(struct perf_event *event)
2471 {
2472         call_void_hook(perf_event_free, event);
2473 }
2474
2475 int security_perf_event_read(struct perf_event *event)
2476 {
2477         return call_int_hook(perf_event_read, 0, event);
2478 }
2479
2480 int security_perf_event_write(struct perf_event *event)
2481 {
2482         return call_int_hook(perf_event_write, 0, event);
2483 }
2484 #endif /* CONFIG_PERF_EVENTS */