apparmor: aa_buffer: Convert 1-element array to flexible array
[platform/kernel/linux-rpi.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60         [LOCKDOWN_DEBUGFS] = "debugfs access",
61         [LOCKDOWN_XMON_WR] = "xmon write access",
62         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64         [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66         [LOCKDOWN_KCORE] = "/proc/kcore access",
67         [LOCKDOWN_KPROBES] = "use of kprobes",
68         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70         [LOCKDOWN_PERF] = "unsafe use of perf",
71         [LOCKDOWN_TRACEFS] = "use of tracefs",
72         [LOCKDOWN_XMON_RW] = "xmon read and write access",
73         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75 };
76
77 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80 static struct kmem_cache *lsm_file_cache;
81 static struct kmem_cache *lsm_inode_cache;
82
83 char *lsm_names;
84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86 /* Boot-time LSM user choice */
87 static __initdata const char *chosen_lsm_order;
88 static __initdata const char *chosen_major_lsm;
89
90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92 /* Ordered list of LSMs to initialize. */
93 static __initdata struct lsm_info **ordered_lsms;
94 static __initdata struct lsm_info *exclusive;
95
96 static __initdata bool debug;
97 #define init_debug(...)                                         \
98         do {                                                    \
99                 if (debug)                                      \
100                         pr_info(__VA_ARGS__);                   \
101         } while (0)
102
103 static bool __init is_enabled(struct lsm_info *lsm)
104 {
105         if (!lsm->enabled)
106                 return false;
107
108         return *lsm->enabled;
109 }
110
111 /* Mark an LSM's enabled flag. */
112 static int lsm_enabled_true __initdata = 1;
113 static int lsm_enabled_false __initdata = 0;
114 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115 {
116         /*
117          * When an LSM hasn't configured an enable variable, we can use
118          * a hard-coded location for storing the default enabled state.
119          */
120         if (!lsm->enabled) {
121                 if (enabled)
122                         lsm->enabled = &lsm_enabled_true;
123                 else
124                         lsm->enabled = &lsm_enabled_false;
125         } else if (lsm->enabled == &lsm_enabled_true) {
126                 if (!enabled)
127                         lsm->enabled = &lsm_enabled_false;
128         } else if (lsm->enabled == &lsm_enabled_false) {
129                 if (enabled)
130                         lsm->enabled = &lsm_enabled_true;
131         } else {
132                 *lsm->enabled = enabled;
133         }
134 }
135
136 /* Is an LSM already listed in the ordered LSMs list? */
137 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138 {
139         struct lsm_info **check;
140
141         for (check = ordered_lsms; *check; check++)
142                 if (*check == lsm)
143                         return true;
144
145         return false;
146 }
147
148 /* Append an LSM to the list of ordered LSMs to initialize. */
149 static int last_lsm __initdata;
150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151 {
152         /* Ignore duplicate selections. */
153         if (exists_ordered_lsm(lsm))
154                 return;
155
156         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157                 return;
158
159         /* Enable this LSM, if it is not already set. */
160         if (!lsm->enabled)
161                 lsm->enabled = &lsm_enabled_true;
162         ordered_lsms[last_lsm++] = lsm;
163
164         init_debug("%s ordered: %s (%s)\n", from, lsm->name,
165                    is_enabled(lsm) ? "enabled" : "disabled");
166 }
167
168 /* Is an LSM allowed to be initialized? */
169 static bool __init lsm_allowed(struct lsm_info *lsm)
170 {
171         /* Skip if the LSM is disabled. */
172         if (!is_enabled(lsm))
173                 return false;
174
175         /* Not allowed if another exclusive LSM already initialized. */
176         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177                 init_debug("exclusive disabled: %s\n", lsm->name);
178                 return false;
179         }
180
181         return true;
182 }
183
184 static void __init lsm_set_blob_size(int *need, int *lbs)
185 {
186         int offset;
187
188         if (*need <= 0)
189                 return;
190
191         offset = ALIGN(*lbs, sizeof(void *));
192         *lbs = offset + *need;
193         *need = offset;
194 }
195
196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
197 {
198         if (!needed)
199                 return;
200
201         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
202         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
203         /*
204          * The inode blob gets an rcu_head in addition to
205          * what the modules might need.
206          */
207         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
208                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
209         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
210         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
211         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
212         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
213         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
214 }
215
216 /* Prepare LSM for initialization. */
217 static void __init prepare_lsm(struct lsm_info *lsm)
218 {
219         int enabled = lsm_allowed(lsm);
220
221         /* Record enablement (to handle any following exclusive LSMs). */
222         set_enabled(lsm, enabled);
223
224         /* If enabled, do pre-initialization work. */
225         if (enabled) {
226                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
227                         exclusive = lsm;
228                         init_debug("exclusive chosen:   %s\n", lsm->name);
229                 }
230
231                 lsm_set_blob_sizes(lsm->blobs);
232         }
233 }
234
235 /* Initialize a given LSM, if it is enabled. */
236 static void __init initialize_lsm(struct lsm_info *lsm)
237 {
238         if (is_enabled(lsm)) {
239                 int ret;
240
241                 init_debug("initializing %s\n", lsm->name);
242                 ret = lsm->init();
243                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
244         }
245 }
246
247 /* Populate ordered LSMs list from comma-separated LSM name list. */
248 static void __init ordered_lsm_parse(const char *order, const char *origin)
249 {
250         struct lsm_info *lsm;
251         char *sep, *name, *next;
252
253         /* LSM_ORDER_FIRST is always first. */
254         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
255                 if (lsm->order == LSM_ORDER_FIRST)
256                         append_ordered_lsm(lsm, "  first");
257         }
258
259         /* Process "security=", if given. */
260         if (chosen_major_lsm) {
261                 struct lsm_info *major;
262
263                 /*
264                  * To match the original "security=" behavior, this
265                  * explicitly does NOT fallback to another Legacy Major
266                  * if the selected one was separately disabled: disable
267                  * all non-matching Legacy Major LSMs.
268                  */
269                 for (major = __start_lsm_info; major < __end_lsm_info;
270                      major++) {
271                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
272                             strcmp(major->name, chosen_major_lsm) != 0) {
273                                 set_enabled(major, false);
274                                 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
275                                            chosen_major_lsm, major->name);
276                         }
277                 }
278         }
279
280         sep = kstrdup(order, GFP_KERNEL);
281         next = sep;
282         /* Walk the list, looking for matching LSMs. */
283         while ((name = strsep(&next, ",")) != NULL) {
284                 bool found = false;
285
286                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
287                         if (lsm->order == LSM_ORDER_MUTABLE &&
288                             strcmp(lsm->name, name) == 0) {
289                                 append_ordered_lsm(lsm, origin);
290                                 found = true;
291                         }
292                 }
293
294                 if (!found)
295                         init_debug("%s ignored: %s (not built into kernel)\n",
296                                    origin, name);
297         }
298
299         /* Process "security=", if given. */
300         if (chosen_major_lsm) {
301                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302                         if (exists_ordered_lsm(lsm))
303                                 continue;
304                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
305                                 append_ordered_lsm(lsm, "security=");
306                 }
307         }
308
309         /* Disable all LSMs not in the ordered list. */
310         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
311                 if (exists_ordered_lsm(lsm))
312                         continue;
313                 set_enabled(lsm, false);
314                 init_debug("%s skipped: %s (not in requested order)\n",
315                            origin, lsm->name);
316         }
317
318         kfree(sep);
319 }
320
321 static void __init lsm_early_cred(struct cred *cred);
322 static void __init lsm_early_task(struct task_struct *task);
323
324 static int lsm_append(const char *new, char **result);
325
326 static void __init report_lsm_order(void)
327 {
328         struct lsm_info **lsm, *early;
329         int first = 0;
330
331         pr_info("initializing lsm=");
332
333         /* Report each enabled LSM name, comma separated. */
334         for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++)
335                 if (is_enabled(early))
336                         pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
337         for (lsm = ordered_lsms; *lsm; lsm++)
338                 if (is_enabled(*lsm))
339                         pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
340
341         pr_cont("\n");
342 }
343
344 static void __init ordered_lsm_init(void)
345 {
346         struct lsm_info **lsm;
347
348         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
349                                 GFP_KERNEL);
350
351         if (chosen_lsm_order) {
352                 if (chosen_major_lsm) {
353                         pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
354                                 chosen_major_lsm, chosen_lsm_order);
355                         chosen_major_lsm = NULL;
356                 }
357                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
358         } else
359                 ordered_lsm_parse(builtin_lsm_order, "builtin");
360
361         for (lsm = ordered_lsms; *lsm; lsm++)
362                 prepare_lsm(*lsm);
363
364         report_lsm_order();
365
366         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
367         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
368         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
369         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
370         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
371         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
372         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
373
374         /*
375          * Create any kmem_caches needed for blobs
376          */
377         if (blob_sizes.lbs_file)
378                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
379                                                    blob_sizes.lbs_file, 0,
380                                                    SLAB_PANIC, NULL);
381         if (blob_sizes.lbs_inode)
382                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
383                                                     blob_sizes.lbs_inode, 0,
384                                                     SLAB_PANIC, NULL);
385
386         lsm_early_cred((struct cred *) current->cred);
387         lsm_early_task(current);
388         for (lsm = ordered_lsms; *lsm; lsm++)
389                 initialize_lsm(*lsm);
390
391         kfree(ordered_lsms);
392 }
393
394 int __init early_security_init(void)
395 {
396         struct lsm_info *lsm;
397
398 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
399         INIT_HLIST_HEAD(&security_hook_heads.NAME);
400 #include "linux/lsm_hook_defs.h"
401 #undef LSM_HOOK
402
403         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404                 if (!lsm->enabled)
405                         lsm->enabled = &lsm_enabled_true;
406                 prepare_lsm(lsm);
407                 initialize_lsm(lsm);
408         }
409
410         return 0;
411 }
412
413 /**
414  * security_init - initializes the security framework
415  *
416  * This should be called early in the kernel initialization sequence.
417  */
418 int __init security_init(void)
419 {
420         struct lsm_info *lsm;
421
422         init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*");
423         init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
424         init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*");
425
426         /*
427          * Append the names of the early LSM modules now that kmalloc() is
428          * available
429          */
430         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
431                 init_debug("  early started: %s (%s)\n", lsm->name,
432                            is_enabled(lsm) ? "enabled" : "disabled");
433                 if (lsm->enabled)
434                         lsm_append(lsm->name, &lsm_names);
435         }
436
437         /* Load LSMs in specified order. */
438         ordered_lsm_init();
439
440         return 0;
441 }
442
443 /* Save user chosen LSM */
444 static int __init choose_major_lsm(char *str)
445 {
446         chosen_major_lsm = str;
447         return 1;
448 }
449 __setup("security=", choose_major_lsm);
450
451 /* Explicitly choose LSM initialization order. */
452 static int __init choose_lsm_order(char *str)
453 {
454         chosen_lsm_order = str;
455         return 1;
456 }
457 __setup("lsm=", choose_lsm_order);
458
459 /* Enable LSM order debugging. */
460 static int __init enable_debug(char *str)
461 {
462         debug = true;
463         return 1;
464 }
465 __setup("lsm.debug", enable_debug);
466
467 static bool match_last_lsm(const char *list, const char *lsm)
468 {
469         const char *last;
470
471         if (WARN_ON(!list || !lsm))
472                 return false;
473         last = strrchr(list, ',');
474         if (last)
475                 /* Pass the comma, strcmp() will check for '\0' */
476                 last++;
477         else
478                 last = list;
479         return !strcmp(last, lsm);
480 }
481
482 static int lsm_append(const char *new, char **result)
483 {
484         char *cp;
485
486         if (*result == NULL) {
487                 *result = kstrdup(new, GFP_KERNEL);
488                 if (*result == NULL)
489                         return -ENOMEM;
490         } else {
491                 /* Check if it is the last registered name */
492                 if (match_last_lsm(*result, new))
493                         return 0;
494                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
495                 if (cp == NULL)
496                         return -ENOMEM;
497                 kfree(*result);
498                 *result = cp;
499         }
500         return 0;
501 }
502
503 /**
504  * security_add_hooks - Add a modules hooks to the hook lists.
505  * @hooks: the hooks to add
506  * @count: the number of hooks to add
507  * @lsm: the name of the security module
508  *
509  * Each LSM has to register its hooks with the infrastructure.
510  */
511 void __init security_add_hooks(struct security_hook_list *hooks, int count,
512                                 const char *lsm)
513 {
514         int i;
515
516         for (i = 0; i < count; i++) {
517                 hooks[i].lsm = lsm;
518                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
519         }
520
521         /*
522          * Don't try to append during early_security_init(), we'll come back
523          * and fix this up afterwards.
524          */
525         if (slab_is_available()) {
526                 if (lsm_append(lsm, &lsm_names) < 0)
527                         panic("%s - Cannot get early memory.\n", __func__);
528         }
529 }
530
531 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
532 {
533         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
534                                             event, data);
535 }
536 EXPORT_SYMBOL(call_blocking_lsm_notifier);
537
538 int register_blocking_lsm_notifier(struct notifier_block *nb)
539 {
540         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
541                                                 nb);
542 }
543 EXPORT_SYMBOL(register_blocking_lsm_notifier);
544
545 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
546 {
547         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
548                                                   nb);
549 }
550 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
551
552 /**
553  * lsm_cred_alloc - allocate a composite cred blob
554  * @cred: the cred that needs a blob
555  * @gfp: allocation type
556  *
557  * Allocate the cred blob for all the modules
558  *
559  * Returns 0, or -ENOMEM if memory can't be allocated.
560  */
561 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
562 {
563         if (blob_sizes.lbs_cred == 0) {
564                 cred->security = NULL;
565                 return 0;
566         }
567
568         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
569         if (cred->security == NULL)
570                 return -ENOMEM;
571         return 0;
572 }
573
574 /**
575  * lsm_early_cred - during initialization allocate a composite cred blob
576  * @cred: the cred that needs a blob
577  *
578  * Allocate the cred blob for all the modules
579  */
580 static void __init lsm_early_cred(struct cred *cred)
581 {
582         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
583
584         if (rc)
585                 panic("%s: Early cred alloc failed.\n", __func__);
586 }
587
588 /**
589  * lsm_file_alloc - allocate a composite file blob
590  * @file: the file that needs a blob
591  *
592  * Allocate the file blob for all the modules
593  *
594  * Returns 0, or -ENOMEM if memory can't be allocated.
595  */
596 static int lsm_file_alloc(struct file *file)
597 {
598         if (!lsm_file_cache) {
599                 file->f_security = NULL;
600                 return 0;
601         }
602
603         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
604         if (file->f_security == NULL)
605                 return -ENOMEM;
606         return 0;
607 }
608
609 /**
610  * lsm_inode_alloc - allocate a composite inode blob
611  * @inode: the inode that needs a blob
612  *
613  * Allocate the inode blob for all the modules
614  *
615  * Returns 0, or -ENOMEM if memory can't be allocated.
616  */
617 int lsm_inode_alloc(struct inode *inode)
618 {
619         if (!lsm_inode_cache) {
620                 inode->i_security = NULL;
621                 return 0;
622         }
623
624         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
625         if (inode->i_security == NULL)
626                 return -ENOMEM;
627         return 0;
628 }
629
630 /**
631  * lsm_task_alloc - allocate a composite task blob
632  * @task: the task that needs a blob
633  *
634  * Allocate the task blob for all the modules
635  *
636  * Returns 0, or -ENOMEM if memory can't be allocated.
637  */
638 static int lsm_task_alloc(struct task_struct *task)
639 {
640         if (blob_sizes.lbs_task == 0) {
641                 task->security = NULL;
642                 return 0;
643         }
644
645         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
646         if (task->security == NULL)
647                 return -ENOMEM;
648         return 0;
649 }
650
651 /**
652  * lsm_ipc_alloc - allocate a composite ipc blob
653  * @kip: the ipc that needs a blob
654  *
655  * Allocate the ipc blob for all the modules
656  *
657  * Returns 0, or -ENOMEM if memory can't be allocated.
658  */
659 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
660 {
661         if (blob_sizes.lbs_ipc == 0) {
662                 kip->security = NULL;
663                 return 0;
664         }
665
666         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
667         if (kip->security == NULL)
668                 return -ENOMEM;
669         return 0;
670 }
671
672 /**
673  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
674  * @mp: the msg_msg that needs a blob
675  *
676  * Allocate the ipc blob for all the modules
677  *
678  * Returns 0, or -ENOMEM if memory can't be allocated.
679  */
680 static int lsm_msg_msg_alloc(struct msg_msg *mp)
681 {
682         if (blob_sizes.lbs_msg_msg == 0) {
683                 mp->security = NULL;
684                 return 0;
685         }
686
687         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
688         if (mp->security == NULL)
689                 return -ENOMEM;
690         return 0;
691 }
692
693 /**
694  * lsm_early_task - during initialization allocate a composite task blob
695  * @task: the task that needs a blob
696  *
697  * Allocate the task blob for all the modules
698  */
699 static void __init lsm_early_task(struct task_struct *task)
700 {
701         int rc = lsm_task_alloc(task);
702
703         if (rc)
704                 panic("%s: Early task alloc failed.\n", __func__);
705 }
706
707 /**
708  * lsm_superblock_alloc - allocate a composite superblock blob
709  * @sb: the superblock that needs a blob
710  *
711  * Allocate the superblock blob for all the modules
712  *
713  * Returns 0, or -ENOMEM if memory can't be allocated.
714  */
715 static int lsm_superblock_alloc(struct super_block *sb)
716 {
717         if (blob_sizes.lbs_superblock == 0) {
718                 sb->s_security = NULL;
719                 return 0;
720         }
721
722         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
723         if (sb->s_security == NULL)
724                 return -ENOMEM;
725         return 0;
726 }
727
728 /*
729  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
730  * can be accessed with:
731  *
732  *      LSM_RET_DEFAULT(<hook_name>)
733  *
734  * The macros below define static constants for the default value of each
735  * LSM hook.
736  */
737 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
738 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
739 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
740         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
741 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
742         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
743
744 #include <linux/lsm_hook_defs.h>
745 #undef LSM_HOOK
746
747 /*
748  * Hook list operation macros.
749  *
750  * call_void_hook:
751  *      This is a hook that does not return a value.
752  *
753  * call_int_hook:
754  *      This is a hook that returns a value.
755  */
756
757 #define call_void_hook(FUNC, ...)                               \
758         do {                                                    \
759                 struct security_hook_list *P;                   \
760                                                                 \
761                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
762                         P->hook.FUNC(__VA_ARGS__);              \
763         } while (0)
764
765 #define call_int_hook(FUNC, IRC, ...) ({                        \
766         int RC = IRC;                                           \
767         do {                                                    \
768                 struct security_hook_list *P;                   \
769                                                                 \
770                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
771                         RC = P->hook.FUNC(__VA_ARGS__);         \
772                         if (RC != 0)                            \
773                                 break;                          \
774                 }                                               \
775         } while (0);                                            \
776         RC;                                                     \
777 })
778
779 /* Security operations */
780
781 int security_binder_set_context_mgr(const struct cred *mgr)
782 {
783         return call_int_hook(binder_set_context_mgr, 0, mgr);
784 }
785
786 int security_binder_transaction(const struct cred *from,
787                                 const struct cred *to)
788 {
789         return call_int_hook(binder_transaction, 0, from, to);
790 }
791
792 int security_binder_transfer_binder(const struct cred *from,
793                                     const struct cred *to)
794 {
795         return call_int_hook(binder_transfer_binder, 0, from, to);
796 }
797
798 int security_binder_transfer_file(const struct cred *from,
799                                   const struct cred *to, struct file *file)
800 {
801         return call_int_hook(binder_transfer_file, 0, from, to, file);
802 }
803
804 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
805 {
806         return call_int_hook(ptrace_access_check, 0, child, mode);
807 }
808
809 int security_ptrace_traceme(struct task_struct *parent)
810 {
811         return call_int_hook(ptrace_traceme, 0, parent);
812 }
813
814 int security_capget(struct task_struct *target,
815                      kernel_cap_t *effective,
816                      kernel_cap_t *inheritable,
817                      kernel_cap_t *permitted)
818 {
819         return call_int_hook(capget, 0, target,
820                                 effective, inheritable, permitted);
821 }
822
823 int security_capset(struct cred *new, const struct cred *old,
824                     const kernel_cap_t *effective,
825                     const kernel_cap_t *inheritable,
826                     const kernel_cap_t *permitted)
827 {
828         return call_int_hook(capset, 0, new, old,
829                                 effective, inheritable, permitted);
830 }
831
832 int security_capable(const struct cred *cred,
833                      struct user_namespace *ns,
834                      int cap,
835                      unsigned int opts)
836 {
837         return call_int_hook(capable, 0, cred, ns, cap, opts);
838 }
839
840 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
841 {
842         return call_int_hook(quotactl, 0, cmds, type, id, sb);
843 }
844
845 int security_quota_on(struct dentry *dentry)
846 {
847         return call_int_hook(quota_on, 0, dentry);
848 }
849
850 int security_syslog(int type)
851 {
852         return call_int_hook(syslog, 0, type);
853 }
854
855 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
856 {
857         return call_int_hook(settime, 0, ts, tz);
858 }
859
860 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
861 {
862         struct security_hook_list *hp;
863         int cap_sys_admin = 1;
864         int rc;
865
866         /*
867          * The module will respond with a positive value if
868          * it thinks the __vm_enough_memory() call should be
869          * made with the cap_sys_admin set. If all of the modules
870          * agree that it should be set it will. If any module
871          * thinks it should not be set it won't.
872          */
873         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
874                 rc = hp->hook.vm_enough_memory(mm, pages);
875                 if (rc <= 0) {
876                         cap_sys_admin = 0;
877                         break;
878                 }
879         }
880         return __vm_enough_memory(mm, pages, cap_sys_admin);
881 }
882
883 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
884 {
885         return call_int_hook(bprm_creds_for_exec, 0, bprm);
886 }
887
888 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
889 {
890         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
891 }
892
893 int security_bprm_check(struct linux_binprm *bprm)
894 {
895         int ret;
896
897         ret = call_int_hook(bprm_check_security, 0, bprm);
898         if (ret)
899                 return ret;
900         return ima_bprm_check(bprm);
901 }
902
903 void security_bprm_committing_creds(struct linux_binprm *bprm)
904 {
905         call_void_hook(bprm_committing_creds, bprm);
906 }
907
908 void security_bprm_committed_creds(struct linux_binprm *bprm)
909 {
910         call_void_hook(bprm_committed_creds, bprm);
911 }
912
913 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
914 {
915         return call_int_hook(fs_context_dup, 0, fc, src_fc);
916 }
917
918 int security_fs_context_parse_param(struct fs_context *fc,
919                                     struct fs_parameter *param)
920 {
921         struct security_hook_list *hp;
922         int trc;
923         int rc = -ENOPARAM;
924
925         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
926                              list) {
927                 trc = hp->hook.fs_context_parse_param(fc, param);
928                 if (trc == 0)
929                         rc = 0;
930                 else if (trc != -ENOPARAM)
931                         return trc;
932         }
933         return rc;
934 }
935
936 int security_sb_alloc(struct super_block *sb)
937 {
938         int rc = lsm_superblock_alloc(sb);
939
940         if (unlikely(rc))
941                 return rc;
942         rc = call_int_hook(sb_alloc_security, 0, sb);
943         if (unlikely(rc))
944                 security_sb_free(sb);
945         return rc;
946 }
947
948 void security_sb_delete(struct super_block *sb)
949 {
950         call_void_hook(sb_delete, sb);
951 }
952
953 void security_sb_free(struct super_block *sb)
954 {
955         call_void_hook(sb_free_security, sb);
956         kfree(sb->s_security);
957         sb->s_security = NULL;
958 }
959
960 void security_free_mnt_opts(void **mnt_opts)
961 {
962         if (!*mnt_opts)
963                 return;
964         call_void_hook(sb_free_mnt_opts, *mnt_opts);
965         *mnt_opts = NULL;
966 }
967 EXPORT_SYMBOL(security_free_mnt_opts);
968
969 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
970 {
971         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
972 }
973 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
974
975 int security_sb_mnt_opts_compat(struct super_block *sb,
976                                 void *mnt_opts)
977 {
978         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
979 }
980 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
981
982 int security_sb_remount(struct super_block *sb,
983                         void *mnt_opts)
984 {
985         return call_int_hook(sb_remount, 0, sb, mnt_opts);
986 }
987 EXPORT_SYMBOL(security_sb_remount);
988
989 int security_sb_kern_mount(struct super_block *sb)
990 {
991         return call_int_hook(sb_kern_mount, 0, sb);
992 }
993
994 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
995 {
996         return call_int_hook(sb_show_options, 0, m, sb);
997 }
998
999 int security_sb_statfs(struct dentry *dentry)
1000 {
1001         return call_int_hook(sb_statfs, 0, dentry);
1002 }
1003
1004 int security_sb_mount(const char *dev_name, const struct path *path,
1005                        const char *type, unsigned long flags, void *data)
1006 {
1007         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1008 }
1009
1010 int security_sb_umount(struct vfsmount *mnt, int flags)
1011 {
1012         return call_int_hook(sb_umount, 0, mnt, flags);
1013 }
1014
1015 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1016 {
1017         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1018 }
1019
1020 int security_sb_set_mnt_opts(struct super_block *sb,
1021                                 void *mnt_opts,
1022                                 unsigned long kern_flags,
1023                                 unsigned long *set_kern_flags)
1024 {
1025         return call_int_hook(sb_set_mnt_opts,
1026                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
1027                                 mnt_opts, kern_flags, set_kern_flags);
1028 }
1029 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1030
1031 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1032                                 struct super_block *newsb,
1033                                 unsigned long kern_flags,
1034                                 unsigned long *set_kern_flags)
1035 {
1036         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1037                                 kern_flags, set_kern_flags);
1038 }
1039 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1040
1041 int security_move_mount(const struct path *from_path, const struct path *to_path)
1042 {
1043         return call_int_hook(move_mount, 0, from_path, to_path);
1044 }
1045
1046 int security_path_notify(const struct path *path, u64 mask,
1047                                 unsigned int obj_type)
1048 {
1049         return call_int_hook(path_notify, 0, path, mask, obj_type);
1050 }
1051
1052 int security_inode_alloc(struct inode *inode)
1053 {
1054         int rc = lsm_inode_alloc(inode);
1055
1056         if (unlikely(rc))
1057                 return rc;
1058         rc = call_int_hook(inode_alloc_security, 0, inode);
1059         if (unlikely(rc))
1060                 security_inode_free(inode);
1061         return rc;
1062 }
1063
1064 static void inode_free_by_rcu(struct rcu_head *head)
1065 {
1066         /*
1067          * The rcu head is at the start of the inode blob
1068          */
1069         kmem_cache_free(lsm_inode_cache, head);
1070 }
1071
1072 void security_inode_free(struct inode *inode)
1073 {
1074         integrity_inode_free(inode);
1075         call_void_hook(inode_free_security, inode);
1076         /*
1077          * The inode may still be referenced in a path walk and
1078          * a call to security_inode_permission() can be made
1079          * after inode_free_security() is called. Ideally, the VFS
1080          * wouldn't do this, but fixing that is a much harder
1081          * job. For now, simply free the i_security via RCU, and
1082          * leave the current inode->i_security pointer intact.
1083          * The inode will be freed after the RCU grace period too.
1084          */
1085         if (inode->i_security)
1086                 call_rcu((struct rcu_head *)inode->i_security,
1087                                 inode_free_by_rcu);
1088 }
1089
1090 int security_dentry_init_security(struct dentry *dentry, int mode,
1091                                   const struct qstr *name,
1092                                   const char **xattr_name, void **ctx,
1093                                   u32 *ctxlen)
1094 {
1095         struct security_hook_list *hp;
1096         int rc;
1097
1098         /*
1099          * Only one module will provide a security context.
1100          */
1101         hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1102                 rc = hp->hook.dentry_init_security(dentry, mode, name,
1103                                                    xattr_name, ctx, ctxlen);
1104                 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1105                         return rc;
1106         }
1107         return LSM_RET_DEFAULT(dentry_init_security);
1108 }
1109 EXPORT_SYMBOL(security_dentry_init_security);
1110
1111 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1112                                     struct qstr *name,
1113                                     const struct cred *old, struct cred *new)
1114 {
1115         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1116                                 name, old, new);
1117 }
1118 EXPORT_SYMBOL(security_dentry_create_files_as);
1119
1120 int security_inode_init_security(struct inode *inode, struct inode *dir,
1121                                  const struct qstr *qstr,
1122                                  const initxattrs initxattrs, void *fs_data)
1123 {
1124         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1125         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1126         int ret;
1127
1128         if (unlikely(IS_PRIVATE(inode)))
1129                 return 0;
1130
1131         if (!initxattrs)
1132                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1133                                      dir, qstr, NULL, NULL, NULL);
1134         memset(new_xattrs, 0, sizeof(new_xattrs));
1135         lsm_xattr = new_xattrs;
1136         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1137                                                 &lsm_xattr->name,
1138                                                 &lsm_xattr->value,
1139                                                 &lsm_xattr->value_len);
1140         if (ret)
1141                 goto out;
1142
1143         evm_xattr = lsm_xattr + 1;
1144         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1145         if (ret)
1146                 goto out;
1147         ret = initxattrs(inode, new_xattrs, fs_data);
1148 out:
1149         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1150                 kfree(xattr->value);
1151         return (ret == -EOPNOTSUPP) ? 0 : ret;
1152 }
1153 EXPORT_SYMBOL(security_inode_init_security);
1154
1155 int security_inode_init_security_anon(struct inode *inode,
1156                                       const struct qstr *name,
1157                                       const struct inode *context_inode)
1158 {
1159         return call_int_hook(inode_init_security_anon, 0, inode, name,
1160                              context_inode);
1161 }
1162
1163 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1164                                      const struct qstr *qstr, const char **name,
1165                                      void **value, size_t *len)
1166 {
1167         if (unlikely(IS_PRIVATE(inode)))
1168                 return -EOPNOTSUPP;
1169         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1170                              qstr, name, value, len);
1171 }
1172 EXPORT_SYMBOL(security_old_inode_init_security);
1173
1174 #ifdef CONFIG_SECURITY_PATH
1175 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1176                         unsigned int dev)
1177 {
1178         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179                 return 0;
1180         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1181 }
1182 EXPORT_SYMBOL(security_path_mknod);
1183
1184 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1185 {
1186         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1187                 return 0;
1188         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1189 }
1190 EXPORT_SYMBOL(security_path_mkdir);
1191
1192 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1193 {
1194         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1195                 return 0;
1196         return call_int_hook(path_rmdir, 0, dir, dentry);
1197 }
1198
1199 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1200 {
1201         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1202                 return 0;
1203         return call_int_hook(path_unlink, 0, dir, dentry);
1204 }
1205 EXPORT_SYMBOL(security_path_unlink);
1206
1207 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1208                           const char *old_name)
1209 {
1210         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1211                 return 0;
1212         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1213 }
1214
1215 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1216                        struct dentry *new_dentry)
1217 {
1218         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1219                 return 0;
1220         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1221 }
1222
1223 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1224                          const struct path *new_dir, struct dentry *new_dentry,
1225                          unsigned int flags)
1226 {
1227         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1228                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1229                 return 0;
1230
1231         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1232                                 new_dentry, flags);
1233 }
1234 EXPORT_SYMBOL(security_path_rename);
1235
1236 int security_path_truncate(const struct path *path)
1237 {
1238         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239                 return 0;
1240         return call_int_hook(path_truncate, 0, path);
1241 }
1242
1243 int security_path_chmod(const struct path *path, umode_t mode)
1244 {
1245         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1246                 return 0;
1247         return call_int_hook(path_chmod, 0, path, mode);
1248 }
1249
1250 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1251 {
1252         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253                 return 0;
1254         return call_int_hook(path_chown, 0, path, uid, gid);
1255 }
1256
1257 int security_path_chroot(const struct path *path)
1258 {
1259         return call_int_hook(path_chroot, 0, path);
1260 }
1261 #endif
1262
1263 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1264 {
1265         if (unlikely(IS_PRIVATE(dir)))
1266                 return 0;
1267         return call_int_hook(inode_create, 0, dir, dentry, mode);
1268 }
1269 EXPORT_SYMBOL_GPL(security_inode_create);
1270
1271 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1272                          struct dentry *new_dentry)
1273 {
1274         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1275                 return 0;
1276         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1277 }
1278
1279 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1280 {
1281         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282                 return 0;
1283         return call_int_hook(inode_unlink, 0, dir, dentry);
1284 }
1285
1286 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1287                             const char *old_name)
1288 {
1289         if (unlikely(IS_PRIVATE(dir)))
1290                 return 0;
1291         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1292 }
1293
1294 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1295 {
1296         if (unlikely(IS_PRIVATE(dir)))
1297                 return 0;
1298         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1299 }
1300 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1301
1302 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1303 {
1304         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1305                 return 0;
1306         return call_int_hook(inode_rmdir, 0, dir, dentry);
1307 }
1308
1309 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1310 {
1311         if (unlikely(IS_PRIVATE(dir)))
1312                 return 0;
1313         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1314 }
1315
1316 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1317                            struct inode *new_dir, struct dentry *new_dentry,
1318                            unsigned int flags)
1319 {
1320         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1321             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1322                 return 0;
1323
1324         if (flags & RENAME_EXCHANGE) {
1325                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1326                                                      old_dir, old_dentry);
1327                 if (err)
1328                         return err;
1329         }
1330
1331         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1332                                            new_dir, new_dentry);
1333 }
1334
1335 int security_inode_readlink(struct dentry *dentry)
1336 {
1337         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1338                 return 0;
1339         return call_int_hook(inode_readlink, 0, dentry);
1340 }
1341
1342 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1343                                bool rcu)
1344 {
1345         if (unlikely(IS_PRIVATE(inode)))
1346                 return 0;
1347         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1348 }
1349
1350 int security_inode_permission(struct inode *inode, int mask)
1351 {
1352         if (unlikely(IS_PRIVATE(inode)))
1353                 return 0;
1354         return call_int_hook(inode_permission, 0, inode, mask);
1355 }
1356
1357 int security_inode_setattr(struct user_namespace *mnt_userns,
1358                            struct dentry *dentry, struct iattr *attr)
1359 {
1360         int ret;
1361
1362         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1363                 return 0;
1364         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1365         if (ret)
1366                 return ret;
1367         return evm_inode_setattr(mnt_userns, dentry, attr);
1368 }
1369 EXPORT_SYMBOL_GPL(security_inode_setattr);
1370
1371 int security_inode_getattr(const struct path *path)
1372 {
1373         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1374                 return 0;
1375         return call_int_hook(inode_getattr, 0, path);
1376 }
1377
1378 int security_inode_setxattr(struct user_namespace *mnt_userns,
1379                             struct dentry *dentry, const char *name,
1380                             const void *value, size_t size, int flags)
1381 {
1382         int ret;
1383
1384         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385                 return 0;
1386         /*
1387          * SELinux and Smack integrate the cap call,
1388          * so assume that all LSMs supplying this call do so.
1389          */
1390         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1391                             size, flags);
1392
1393         if (ret == 1)
1394                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1395         if (ret)
1396                 return ret;
1397         ret = ima_inode_setxattr(dentry, name, value, size);
1398         if (ret)
1399                 return ret;
1400         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1401 }
1402
1403 int security_inode_set_acl(struct user_namespace *mnt_userns,
1404                            struct dentry *dentry, const char *acl_name,
1405                            struct posix_acl *kacl)
1406 {
1407         int ret;
1408
1409         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410                 return 0;
1411         ret = call_int_hook(inode_set_acl, 0, mnt_userns, dentry, acl_name,
1412                             kacl);
1413         if (ret)
1414                 return ret;
1415         ret = ima_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1416         if (ret)
1417                 return ret;
1418         return evm_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1419 }
1420
1421 int security_inode_get_acl(struct user_namespace *mnt_userns,
1422                            struct dentry *dentry, const char *acl_name)
1423 {
1424         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425                 return 0;
1426         return call_int_hook(inode_get_acl, 0, mnt_userns, dentry, acl_name);
1427 }
1428
1429 int security_inode_remove_acl(struct user_namespace *mnt_userns,
1430                               struct dentry *dentry, const char *acl_name)
1431 {
1432         int ret;
1433
1434         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435                 return 0;
1436         ret = call_int_hook(inode_remove_acl, 0, mnt_userns, dentry, acl_name);
1437         if (ret)
1438                 return ret;
1439         ret = ima_inode_remove_acl(mnt_userns, dentry, acl_name);
1440         if (ret)
1441                 return ret;
1442         return evm_inode_remove_acl(mnt_userns, dentry, acl_name);
1443 }
1444
1445 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1446                                   const void *value, size_t size, int flags)
1447 {
1448         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1449                 return;
1450         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1451         evm_inode_post_setxattr(dentry, name, value, size);
1452 }
1453
1454 int security_inode_getxattr(struct dentry *dentry, const char *name)
1455 {
1456         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1457                 return 0;
1458         return call_int_hook(inode_getxattr, 0, dentry, name);
1459 }
1460
1461 int security_inode_listxattr(struct dentry *dentry)
1462 {
1463         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1464                 return 0;
1465         return call_int_hook(inode_listxattr, 0, dentry);
1466 }
1467
1468 int security_inode_removexattr(struct user_namespace *mnt_userns,
1469                                struct dentry *dentry, const char *name)
1470 {
1471         int ret;
1472
1473         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1474                 return 0;
1475         /*
1476          * SELinux and Smack integrate the cap call,
1477          * so assume that all LSMs supplying this call do so.
1478          */
1479         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1480         if (ret == 1)
1481                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1482         if (ret)
1483                 return ret;
1484         ret = ima_inode_removexattr(dentry, name);
1485         if (ret)
1486                 return ret;
1487         return evm_inode_removexattr(mnt_userns, dentry, name);
1488 }
1489
1490 int security_inode_need_killpriv(struct dentry *dentry)
1491 {
1492         return call_int_hook(inode_need_killpriv, 0, dentry);
1493 }
1494
1495 int security_inode_killpriv(struct user_namespace *mnt_userns,
1496                             struct dentry *dentry)
1497 {
1498         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1499 }
1500
1501 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1502                                struct inode *inode, const char *name,
1503                                void **buffer, bool alloc)
1504 {
1505         struct security_hook_list *hp;
1506         int rc;
1507
1508         if (unlikely(IS_PRIVATE(inode)))
1509                 return LSM_RET_DEFAULT(inode_getsecurity);
1510         /*
1511          * Only one module will provide an attribute with a given name.
1512          */
1513         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1514                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1515                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1516                         return rc;
1517         }
1518         return LSM_RET_DEFAULT(inode_getsecurity);
1519 }
1520
1521 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1522 {
1523         struct security_hook_list *hp;
1524         int rc;
1525
1526         if (unlikely(IS_PRIVATE(inode)))
1527                 return LSM_RET_DEFAULT(inode_setsecurity);
1528         /*
1529          * Only one module will provide an attribute with a given name.
1530          */
1531         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1532                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1533                                                                 flags);
1534                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1535                         return rc;
1536         }
1537         return LSM_RET_DEFAULT(inode_setsecurity);
1538 }
1539
1540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1541 {
1542         if (unlikely(IS_PRIVATE(inode)))
1543                 return 0;
1544         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1545 }
1546 EXPORT_SYMBOL(security_inode_listsecurity);
1547
1548 void security_inode_getsecid(struct inode *inode, u32 *secid)
1549 {
1550         call_void_hook(inode_getsecid, inode, secid);
1551 }
1552
1553 int security_inode_copy_up(struct dentry *src, struct cred **new)
1554 {
1555         return call_int_hook(inode_copy_up, 0, src, new);
1556 }
1557 EXPORT_SYMBOL(security_inode_copy_up);
1558
1559 int security_inode_copy_up_xattr(const char *name)
1560 {
1561         struct security_hook_list *hp;
1562         int rc;
1563
1564         /*
1565          * The implementation can return 0 (accept the xattr), 1 (discard the
1566          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1567          * any other error code incase of an error.
1568          */
1569         hlist_for_each_entry(hp,
1570                 &security_hook_heads.inode_copy_up_xattr, list) {
1571                 rc = hp->hook.inode_copy_up_xattr(name);
1572                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1573                         return rc;
1574         }
1575
1576         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1577 }
1578 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1579
1580 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1581                                   struct kernfs_node *kn)
1582 {
1583         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1584 }
1585
1586 int security_file_permission(struct file *file, int mask)
1587 {
1588         int ret;
1589
1590         ret = call_int_hook(file_permission, 0, file, mask);
1591         if (ret)
1592                 return ret;
1593
1594         return fsnotify_perm(file, mask);
1595 }
1596
1597 int security_file_alloc(struct file *file)
1598 {
1599         int rc = lsm_file_alloc(file);
1600
1601         if (rc)
1602                 return rc;
1603         rc = call_int_hook(file_alloc_security, 0, file);
1604         if (unlikely(rc))
1605                 security_file_free(file);
1606         return rc;
1607 }
1608
1609 void security_file_free(struct file *file)
1610 {
1611         void *blob;
1612
1613         call_void_hook(file_free_security, file);
1614
1615         blob = file->f_security;
1616         if (blob) {
1617                 file->f_security = NULL;
1618                 kmem_cache_free(lsm_file_cache, blob);
1619         }
1620 }
1621
1622 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1623 {
1624         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1625 }
1626 EXPORT_SYMBOL_GPL(security_file_ioctl);
1627
1628 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1629 {
1630         /*
1631          * Does we have PROT_READ and does the application expect
1632          * it to imply PROT_EXEC?  If not, nothing to talk about...
1633          */
1634         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1635                 return prot;
1636         if (!(current->personality & READ_IMPLIES_EXEC))
1637                 return prot;
1638         /*
1639          * if that's an anonymous mapping, let it.
1640          */
1641         if (!file)
1642                 return prot | PROT_EXEC;
1643         /*
1644          * ditto if it's not on noexec mount, except that on !MMU we need
1645          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1646          */
1647         if (!path_noexec(&file->f_path)) {
1648 #ifndef CONFIG_MMU
1649                 if (file->f_op->mmap_capabilities) {
1650                         unsigned caps = file->f_op->mmap_capabilities(file);
1651                         if (!(caps & NOMMU_MAP_EXEC))
1652                                 return prot;
1653                 }
1654 #endif
1655                 return prot | PROT_EXEC;
1656         }
1657         /* anything on noexec mount won't get PROT_EXEC */
1658         return prot;
1659 }
1660
1661 int security_mmap_file(struct file *file, unsigned long prot,
1662                         unsigned long flags)
1663 {
1664         int ret;
1665         ret = call_int_hook(mmap_file, 0, file, prot,
1666                                         mmap_prot(file, prot), flags);
1667         if (ret)
1668                 return ret;
1669         return ima_file_mmap(file, prot);
1670 }
1671
1672 int security_mmap_addr(unsigned long addr)
1673 {
1674         return call_int_hook(mmap_addr, 0, addr);
1675 }
1676
1677 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1678                             unsigned long prot)
1679 {
1680         int ret;
1681
1682         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1683         if (ret)
1684                 return ret;
1685         return ima_file_mprotect(vma, prot);
1686 }
1687
1688 int security_file_lock(struct file *file, unsigned int cmd)
1689 {
1690         return call_int_hook(file_lock, 0, file, cmd);
1691 }
1692
1693 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1694 {
1695         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1696 }
1697
1698 void security_file_set_fowner(struct file *file)
1699 {
1700         call_void_hook(file_set_fowner, file);
1701 }
1702
1703 int security_file_send_sigiotask(struct task_struct *tsk,
1704                                   struct fown_struct *fown, int sig)
1705 {
1706         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1707 }
1708
1709 int security_file_receive(struct file *file)
1710 {
1711         return call_int_hook(file_receive, 0, file);
1712 }
1713
1714 int security_file_open(struct file *file)
1715 {
1716         int ret;
1717
1718         ret = call_int_hook(file_open, 0, file);
1719         if (ret)
1720                 return ret;
1721
1722         return fsnotify_perm(file, MAY_OPEN);
1723 }
1724
1725 int security_file_truncate(struct file *file)
1726 {
1727         return call_int_hook(file_truncate, 0, file);
1728 }
1729
1730 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1731 {
1732         int rc = lsm_task_alloc(task);
1733
1734         if (rc)
1735                 return rc;
1736         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1737         if (unlikely(rc))
1738                 security_task_free(task);
1739         return rc;
1740 }
1741
1742 void security_task_free(struct task_struct *task)
1743 {
1744         call_void_hook(task_free, task);
1745
1746         kfree(task->security);
1747         task->security = NULL;
1748 }
1749
1750 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1751 {
1752         int rc = lsm_cred_alloc(cred, gfp);
1753
1754         if (rc)
1755                 return rc;
1756
1757         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1758         if (unlikely(rc))
1759                 security_cred_free(cred);
1760         return rc;
1761 }
1762
1763 void security_cred_free(struct cred *cred)
1764 {
1765         /*
1766          * There is a failure case in prepare_creds() that
1767          * may result in a call here with ->security being NULL.
1768          */
1769         if (unlikely(cred->security == NULL))
1770                 return;
1771
1772         call_void_hook(cred_free, cred);
1773
1774         kfree(cred->security);
1775         cred->security = NULL;
1776 }
1777
1778 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1779 {
1780         int rc = lsm_cred_alloc(new, gfp);
1781
1782         if (rc)
1783                 return rc;
1784
1785         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1786         if (unlikely(rc))
1787                 security_cred_free(new);
1788         return rc;
1789 }
1790
1791 void security_transfer_creds(struct cred *new, const struct cred *old)
1792 {
1793         call_void_hook(cred_transfer, new, old);
1794 }
1795
1796 void security_cred_getsecid(const struct cred *c, u32 *secid)
1797 {
1798         *secid = 0;
1799         call_void_hook(cred_getsecid, c, secid);
1800 }
1801 EXPORT_SYMBOL(security_cred_getsecid);
1802
1803 int security_kernel_act_as(struct cred *new, u32 secid)
1804 {
1805         return call_int_hook(kernel_act_as, 0, new, secid);
1806 }
1807
1808 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1809 {
1810         return call_int_hook(kernel_create_files_as, 0, new, inode);
1811 }
1812
1813 int security_kernel_module_request(char *kmod_name)
1814 {
1815         int ret;
1816
1817         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1818         if (ret)
1819                 return ret;
1820         return integrity_kernel_module_request(kmod_name);
1821 }
1822
1823 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1824                               bool contents)
1825 {
1826         int ret;
1827
1828         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1829         if (ret)
1830                 return ret;
1831         return ima_read_file(file, id, contents);
1832 }
1833 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1834
1835 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1836                                    enum kernel_read_file_id id)
1837 {
1838         int ret;
1839
1840         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1841         if (ret)
1842                 return ret;
1843         return ima_post_read_file(file, buf, size, id);
1844 }
1845 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1846
1847 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1848 {
1849         int ret;
1850
1851         ret = call_int_hook(kernel_load_data, 0, id, contents);
1852         if (ret)
1853                 return ret;
1854         return ima_load_data(id, contents);
1855 }
1856 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1857
1858 int security_kernel_post_load_data(char *buf, loff_t size,
1859                                    enum kernel_load_data_id id,
1860                                    char *description)
1861 {
1862         int ret;
1863
1864         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1865                             description);
1866         if (ret)
1867                 return ret;
1868         return ima_post_load_data(buf, size, id, description);
1869 }
1870 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1871
1872 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1873                              int flags)
1874 {
1875         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1876 }
1877
1878 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1879                                  int flags)
1880 {
1881         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1882 }
1883
1884 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1885 {
1886         return call_int_hook(task_fix_setgroups, 0, new, old);
1887 }
1888
1889 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1890 {
1891         return call_int_hook(task_setpgid, 0, p, pgid);
1892 }
1893
1894 int security_task_getpgid(struct task_struct *p)
1895 {
1896         return call_int_hook(task_getpgid, 0, p);
1897 }
1898
1899 int security_task_getsid(struct task_struct *p)
1900 {
1901         return call_int_hook(task_getsid, 0, p);
1902 }
1903
1904 void security_current_getsecid_subj(u32 *secid)
1905 {
1906         *secid = 0;
1907         call_void_hook(current_getsecid_subj, secid);
1908 }
1909 EXPORT_SYMBOL(security_current_getsecid_subj);
1910
1911 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1912 {
1913         *secid = 0;
1914         call_void_hook(task_getsecid_obj, p, secid);
1915 }
1916 EXPORT_SYMBOL(security_task_getsecid_obj);
1917
1918 int security_task_setnice(struct task_struct *p, int nice)
1919 {
1920         return call_int_hook(task_setnice, 0, p, nice);
1921 }
1922
1923 int security_task_setioprio(struct task_struct *p, int ioprio)
1924 {
1925         return call_int_hook(task_setioprio, 0, p, ioprio);
1926 }
1927
1928 int security_task_getioprio(struct task_struct *p)
1929 {
1930         return call_int_hook(task_getioprio, 0, p);
1931 }
1932
1933 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1934                           unsigned int flags)
1935 {
1936         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1937 }
1938
1939 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1940                 struct rlimit *new_rlim)
1941 {
1942         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1943 }
1944
1945 int security_task_setscheduler(struct task_struct *p)
1946 {
1947         return call_int_hook(task_setscheduler, 0, p);
1948 }
1949
1950 int security_task_getscheduler(struct task_struct *p)
1951 {
1952         return call_int_hook(task_getscheduler, 0, p);
1953 }
1954
1955 int security_task_movememory(struct task_struct *p)
1956 {
1957         return call_int_hook(task_movememory, 0, p);
1958 }
1959
1960 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1961                         int sig, const struct cred *cred)
1962 {
1963         return call_int_hook(task_kill, 0, p, info, sig, cred);
1964 }
1965
1966 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1967                          unsigned long arg4, unsigned long arg5)
1968 {
1969         int thisrc;
1970         int rc = LSM_RET_DEFAULT(task_prctl);
1971         struct security_hook_list *hp;
1972
1973         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1974                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1975                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1976                         rc = thisrc;
1977                         if (thisrc != 0)
1978                                 break;
1979                 }
1980         }
1981         return rc;
1982 }
1983
1984 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1985 {
1986         call_void_hook(task_to_inode, p, inode);
1987 }
1988
1989 int security_create_user_ns(const struct cred *cred)
1990 {
1991         return call_int_hook(userns_create, 0, cred);
1992 }
1993
1994 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1995 {
1996         return call_int_hook(ipc_permission, 0, ipcp, flag);
1997 }
1998
1999 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2000 {
2001         *secid = 0;
2002         call_void_hook(ipc_getsecid, ipcp, secid);
2003 }
2004
2005 int security_msg_msg_alloc(struct msg_msg *msg)
2006 {
2007         int rc = lsm_msg_msg_alloc(msg);
2008
2009         if (unlikely(rc))
2010                 return rc;
2011         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
2012         if (unlikely(rc))
2013                 security_msg_msg_free(msg);
2014         return rc;
2015 }
2016
2017 void security_msg_msg_free(struct msg_msg *msg)
2018 {
2019         call_void_hook(msg_msg_free_security, msg);
2020         kfree(msg->security);
2021         msg->security = NULL;
2022 }
2023
2024 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
2025 {
2026         int rc = lsm_ipc_alloc(msq);
2027
2028         if (unlikely(rc))
2029                 return rc;
2030         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
2031         if (unlikely(rc))
2032                 security_msg_queue_free(msq);
2033         return rc;
2034 }
2035
2036 void security_msg_queue_free(struct kern_ipc_perm *msq)
2037 {
2038         call_void_hook(msg_queue_free_security, msq);
2039         kfree(msq->security);
2040         msq->security = NULL;
2041 }
2042
2043 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2044 {
2045         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2046 }
2047
2048 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2049 {
2050         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2051 }
2052
2053 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2054                                struct msg_msg *msg, int msqflg)
2055 {
2056         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2057 }
2058
2059 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2060                                struct task_struct *target, long type, int mode)
2061 {
2062         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2063 }
2064
2065 int security_shm_alloc(struct kern_ipc_perm *shp)
2066 {
2067         int rc = lsm_ipc_alloc(shp);
2068
2069         if (unlikely(rc))
2070                 return rc;
2071         rc = call_int_hook(shm_alloc_security, 0, shp);
2072         if (unlikely(rc))
2073                 security_shm_free(shp);
2074         return rc;
2075 }
2076
2077 void security_shm_free(struct kern_ipc_perm *shp)
2078 {
2079         call_void_hook(shm_free_security, shp);
2080         kfree(shp->security);
2081         shp->security = NULL;
2082 }
2083
2084 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2085 {
2086         return call_int_hook(shm_associate, 0, shp, shmflg);
2087 }
2088
2089 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2090 {
2091         return call_int_hook(shm_shmctl, 0, shp, cmd);
2092 }
2093
2094 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2095 {
2096         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2097 }
2098
2099 int security_sem_alloc(struct kern_ipc_perm *sma)
2100 {
2101         int rc = lsm_ipc_alloc(sma);
2102
2103         if (unlikely(rc))
2104                 return rc;
2105         rc = call_int_hook(sem_alloc_security, 0, sma);
2106         if (unlikely(rc))
2107                 security_sem_free(sma);
2108         return rc;
2109 }
2110
2111 void security_sem_free(struct kern_ipc_perm *sma)
2112 {
2113         call_void_hook(sem_free_security, sma);
2114         kfree(sma->security);
2115         sma->security = NULL;
2116 }
2117
2118 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2119 {
2120         return call_int_hook(sem_associate, 0, sma, semflg);
2121 }
2122
2123 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2124 {
2125         return call_int_hook(sem_semctl, 0, sma, cmd);
2126 }
2127
2128 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2129                         unsigned nsops, int alter)
2130 {
2131         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2132 }
2133
2134 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2135 {
2136         if (unlikely(inode && IS_PRIVATE(inode)))
2137                 return;
2138         call_void_hook(d_instantiate, dentry, inode);
2139 }
2140 EXPORT_SYMBOL(security_d_instantiate);
2141
2142 int security_getprocattr(struct task_struct *p, const char *lsm,
2143                          const char *name, char **value)
2144 {
2145         struct security_hook_list *hp;
2146
2147         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2148                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2149                         continue;
2150                 return hp->hook.getprocattr(p, name, value);
2151         }
2152         return LSM_RET_DEFAULT(getprocattr);
2153 }
2154
2155 int security_setprocattr(const char *lsm, const char *name, void *value,
2156                          size_t size)
2157 {
2158         struct security_hook_list *hp;
2159
2160         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2161                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2162                         continue;
2163                 return hp->hook.setprocattr(name, value, size);
2164         }
2165         return LSM_RET_DEFAULT(setprocattr);
2166 }
2167
2168 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2169 {
2170         return call_int_hook(netlink_send, 0, sk, skb);
2171 }
2172
2173 int security_ismaclabel(const char *name)
2174 {
2175         return call_int_hook(ismaclabel, 0, name);
2176 }
2177 EXPORT_SYMBOL(security_ismaclabel);
2178
2179 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2180 {
2181         struct security_hook_list *hp;
2182         int rc;
2183
2184         /*
2185          * Currently, only one LSM can implement secid_to_secctx (i.e this
2186          * LSM hook is not "stackable").
2187          */
2188         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2189                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2190                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2191                         return rc;
2192         }
2193
2194         return LSM_RET_DEFAULT(secid_to_secctx);
2195 }
2196 EXPORT_SYMBOL(security_secid_to_secctx);
2197
2198 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2199 {
2200         *secid = 0;
2201         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2202 }
2203 EXPORT_SYMBOL(security_secctx_to_secid);
2204
2205 void security_release_secctx(char *secdata, u32 seclen)
2206 {
2207         call_void_hook(release_secctx, secdata, seclen);
2208 }
2209 EXPORT_SYMBOL(security_release_secctx);
2210
2211 void security_inode_invalidate_secctx(struct inode *inode)
2212 {
2213         call_void_hook(inode_invalidate_secctx, inode);
2214 }
2215 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2216
2217 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2218 {
2219         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2220 }
2221 EXPORT_SYMBOL(security_inode_notifysecctx);
2222
2223 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2224 {
2225         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2226 }
2227 EXPORT_SYMBOL(security_inode_setsecctx);
2228
2229 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2230 {
2231         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2232 }
2233 EXPORT_SYMBOL(security_inode_getsecctx);
2234
2235 #ifdef CONFIG_WATCH_QUEUE
2236 int security_post_notification(const struct cred *w_cred,
2237                                const struct cred *cred,
2238                                struct watch_notification *n)
2239 {
2240         return call_int_hook(post_notification, 0, w_cred, cred, n);
2241 }
2242 #endif /* CONFIG_WATCH_QUEUE */
2243
2244 #ifdef CONFIG_KEY_NOTIFICATIONS
2245 int security_watch_key(struct key *key)
2246 {
2247         return call_int_hook(watch_key, 0, key);
2248 }
2249 #endif
2250
2251 #ifdef CONFIG_SECURITY_NETWORK
2252
2253 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2254 {
2255         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2256 }
2257 EXPORT_SYMBOL(security_unix_stream_connect);
2258
2259 int security_unix_may_send(struct socket *sock,  struct socket *other)
2260 {
2261         return call_int_hook(unix_may_send, 0, sock, other);
2262 }
2263 EXPORT_SYMBOL(security_unix_may_send);
2264
2265 int security_socket_create(int family, int type, int protocol, int kern)
2266 {
2267         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2268 }
2269
2270 int security_socket_post_create(struct socket *sock, int family,
2271                                 int type, int protocol, int kern)
2272 {
2273         return call_int_hook(socket_post_create, 0, sock, family, type,
2274                                                 protocol, kern);
2275 }
2276
2277 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2278 {
2279         return call_int_hook(socket_socketpair, 0, socka, sockb);
2280 }
2281 EXPORT_SYMBOL(security_socket_socketpair);
2282
2283 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2284 {
2285         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2286 }
2287
2288 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2289 {
2290         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2291 }
2292
2293 int security_socket_listen(struct socket *sock, int backlog)
2294 {
2295         return call_int_hook(socket_listen, 0, sock, backlog);
2296 }
2297
2298 int security_socket_accept(struct socket *sock, struct socket *newsock)
2299 {
2300         return call_int_hook(socket_accept, 0, sock, newsock);
2301 }
2302
2303 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2304 {
2305         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2306 }
2307
2308 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2309                             int size, int flags)
2310 {
2311         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2312 }
2313
2314 int security_socket_getsockname(struct socket *sock)
2315 {
2316         return call_int_hook(socket_getsockname, 0, sock);
2317 }
2318
2319 int security_socket_getpeername(struct socket *sock)
2320 {
2321         return call_int_hook(socket_getpeername, 0, sock);
2322 }
2323
2324 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2325 {
2326         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2327 }
2328
2329 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2330 {
2331         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2332 }
2333
2334 int security_socket_shutdown(struct socket *sock, int how)
2335 {
2336         return call_int_hook(socket_shutdown, 0, sock, how);
2337 }
2338
2339 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2340 {
2341         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2342 }
2343 EXPORT_SYMBOL(security_sock_rcv_skb);
2344
2345 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2346                                       sockptr_t optlen, unsigned int len)
2347 {
2348         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2349                              optval, optlen, len);
2350 }
2351
2352 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2353 {
2354         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2355                              skb, secid);
2356 }
2357 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2358
2359 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2360 {
2361         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2362 }
2363
2364 void security_sk_free(struct sock *sk)
2365 {
2366         call_void_hook(sk_free_security, sk);
2367 }
2368
2369 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2370 {
2371         call_void_hook(sk_clone_security, sk, newsk);
2372 }
2373 EXPORT_SYMBOL(security_sk_clone);
2374
2375 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2376 {
2377         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2378 }
2379 EXPORT_SYMBOL(security_sk_classify_flow);
2380
2381 void security_req_classify_flow(const struct request_sock *req,
2382                                 struct flowi_common *flic)
2383 {
2384         call_void_hook(req_classify_flow, req, flic);
2385 }
2386 EXPORT_SYMBOL(security_req_classify_flow);
2387
2388 void security_sock_graft(struct sock *sk, struct socket *parent)
2389 {
2390         call_void_hook(sock_graft, sk, parent);
2391 }
2392 EXPORT_SYMBOL(security_sock_graft);
2393
2394 int security_inet_conn_request(const struct sock *sk,
2395                         struct sk_buff *skb, struct request_sock *req)
2396 {
2397         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2398 }
2399 EXPORT_SYMBOL(security_inet_conn_request);
2400
2401 void security_inet_csk_clone(struct sock *newsk,
2402                         const struct request_sock *req)
2403 {
2404         call_void_hook(inet_csk_clone, newsk, req);
2405 }
2406
2407 void security_inet_conn_established(struct sock *sk,
2408                         struct sk_buff *skb)
2409 {
2410         call_void_hook(inet_conn_established, sk, skb);
2411 }
2412 EXPORT_SYMBOL(security_inet_conn_established);
2413
2414 int security_secmark_relabel_packet(u32 secid)
2415 {
2416         return call_int_hook(secmark_relabel_packet, 0, secid);
2417 }
2418 EXPORT_SYMBOL(security_secmark_relabel_packet);
2419
2420 void security_secmark_refcount_inc(void)
2421 {
2422         call_void_hook(secmark_refcount_inc);
2423 }
2424 EXPORT_SYMBOL(security_secmark_refcount_inc);
2425
2426 void security_secmark_refcount_dec(void)
2427 {
2428         call_void_hook(secmark_refcount_dec);
2429 }
2430 EXPORT_SYMBOL(security_secmark_refcount_dec);
2431
2432 int security_tun_dev_alloc_security(void **security)
2433 {
2434         return call_int_hook(tun_dev_alloc_security, 0, security);
2435 }
2436 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2437
2438 void security_tun_dev_free_security(void *security)
2439 {
2440         call_void_hook(tun_dev_free_security, security);
2441 }
2442 EXPORT_SYMBOL(security_tun_dev_free_security);
2443
2444 int security_tun_dev_create(void)
2445 {
2446         return call_int_hook(tun_dev_create, 0);
2447 }
2448 EXPORT_SYMBOL(security_tun_dev_create);
2449
2450 int security_tun_dev_attach_queue(void *security)
2451 {
2452         return call_int_hook(tun_dev_attach_queue, 0, security);
2453 }
2454 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2455
2456 int security_tun_dev_attach(struct sock *sk, void *security)
2457 {
2458         return call_int_hook(tun_dev_attach, 0, sk, security);
2459 }
2460 EXPORT_SYMBOL(security_tun_dev_attach);
2461
2462 int security_tun_dev_open(void *security)
2463 {
2464         return call_int_hook(tun_dev_open, 0, security);
2465 }
2466 EXPORT_SYMBOL(security_tun_dev_open);
2467
2468 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2469 {
2470         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2471 }
2472 EXPORT_SYMBOL(security_sctp_assoc_request);
2473
2474 int security_sctp_bind_connect(struct sock *sk, int optname,
2475                                struct sockaddr *address, int addrlen)
2476 {
2477         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2478                              address, addrlen);
2479 }
2480 EXPORT_SYMBOL(security_sctp_bind_connect);
2481
2482 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2483                             struct sock *newsk)
2484 {
2485         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2486 }
2487 EXPORT_SYMBOL(security_sctp_sk_clone);
2488
2489 int security_sctp_assoc_established(struct sctp_association *asoc,
2490                                     struct sk_buff *skb)
2491 {
2492         return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2493 }
2494 EXPORT_SYMBOL(security_sctp_assoc_established);
2495
2496 #endif  /* CONFIG_SECURITY_NETWORK */
2497
2498 #ifdef CONFIG_SECURITY_INFINIBAND
2499
2500 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2501 {
2502         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2503 }
2504 EXPORT_SYMBOL(security_ib_pkey_access);
2505
2506 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2507 {
2508         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2509 }
2510 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2511
2512 int security_ib_alloc_security(void **sec)
2513 {
2514         return call_int_hook(ib_alloc_security, 0, sec);
2515 }
2516 EXPORT_SYMBOL(security_ib_alloc_security);
2517
2518 void security_ib_free_security(void *sec)
2519 {
2520         call_void_hook(ib_free_security, sec);
2521 }
2522 EXPORT_SYMBOL(security_ib_free_security);
2523 #endif  /* CONFIG_SECURITY_INFINIBAND */
2524
2525 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2526
2527 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2528                                struct xfrm_user_sec_ctx *sec_ctx,
2529                                gfp_t gfp)
2530 {
2531         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2532 }
2533 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2534
2535 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2536                               struct xfrm_sec_ctx **new_ctxp)
2537 {
2538         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2539 }
2540
2541 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2542 {
2543         call_void_hook(xfrm_policy_free_security, ctx);
2544 }
2545 EXPORT_SYMBOL(security_xfrm_policy_free);
2546
2547 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2548 {
2549         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2550 }
2551
2552 int security_xfrm_state_alloc(struct xfrm_state *x,
2553                               struct xfrm_user_sec_ctx *sec_ctx)
2554 {
2555         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2556 }
2557 EXPORT_SYMBOL(security_xfrm_state_alloc);
2558
2559 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2560                                       struct xfrm_sec_ctx *polsec, u32 secid)
2561 {
2562         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2563 }
2564
2565 int security_xfrm_state_delete(struct xfrm_state *x)
2566 {
2567         return call_int_hook(xfrm_state_delete_security, 0, x);
2568 }
2569 EXPORT_SYMBOL(security_xfrm_state_delete);
2570
2571 void security_xfrm_state_free(struct xfrm_state *x)
2572 {
2573         call_void_hook(xfrm_state_free_security, x);
2574 }
2575
2576 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2577 {
2578         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2579 }
2580
2581 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2582                                        struct xfrm_policy *xp,
2583                                        const struct flowi_common *flic)
2584 {
2585         struct security_hook_list *hp;
2586         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2587
2588         /*
2589          * Since this function is expected to return 0 or 1, the judgment
2590          * becomes difficult if multiple LSMs supply this call. Fortunately,
2591          * we can use the first LSM's judgment because currently only SELinux
2592          * supplies this call.
2593          *
2594          * For speed optimization, we explicitly break the loop rather than
2595          * using the macro
2596          */
2597         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2598                                 list) {
2599                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2600                 break;
2601         }
2602         return rc;
2603 }
2604
2605 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2606 {
2607         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2608 }
2609
2610 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2611 {
2612         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2613                                 0);
2614
2615         BUG_ON(rc);
2616 }
2617 EXPORT_SYMBOL(security_skb_classify_flow);
2618
2619 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2620
2621 #ifdef CONFIG_KEYS
2622
2623 int security_key_alloc(struct key *key, const struct cred *cred,
2624                        unsigned long flags)
2625 {
2626         return call_int_hook(key_alloc, 0, key, cred, flags);
2627 }
2628
2629 void security_key_free(struct key *key)
2630 {
2631         call_void_hook(key_free, key);
2632 }
2633
2634 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2635                             enum key_need_perm need_perm)
2636 {
2637         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2638 }
2639
2640 int security_key_getsecurity(struct key *key, char **_buffer)
2641 {
2642         *_buffer = NULL;
2643         return call_int_hook(key_getsecurity, 0, key, _buffer);
2644 }
2645
2646 #endif  /* CONFIG_KEYS */
2647
2648 #ifdef CONFIG_AUDIT
2649
2650 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2651 {
2652         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2653 }
2654
2655 int security_audit_rule_known(struct audit_krule *krule)
2656 {
2657         return call_int_hook(audit_rule_known, 0, krule);
2658 }
2659
2660 void security_audit_rule_free(void *lsmrule)
2661 {
2662         call_void_hook(audit_rule_free, lsmrule);
2663 }
2664
2665 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2666 {
2667         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2668 }
2669 #endif /* CONFIG_AUDIT */
2670
2671 #ifdef CONFIG_BPF_SYSCALL
2672 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2673 {
2674         return call_int_hook(bpf, 0, cmd, attr, size);
2675 }
2676 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2677 {
2678         return call_int_hook(bpf_map, 0, map, fmode);
2679 }
2680 int security_bpf_prog(struct bpf_prog *prog)
2681 {
2682         return call_int_hook(bpf_prog, 0, prog);
2683 }
2684 int security_bpf_map_alloc(struct bpf_map *map)
2685 {
2686         return call_int_hook(bpf_map_alloc_security, 0, map);
2687 }
2688 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2689 {
2690         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2691 }
2692 void security_bpf_map_free(struct bpf_map *map)
2693 {
2694         call_void_hook(bpf_map_free_security, map);
2695 }
2696 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2697 {
2698         call_void_hook(bpf_prog_free_security, aux);
2699 }
2700 #endif /* CONFIG_BPF_SYSCALL */
2701
2702 int security_locked_down(enum lockdown_reason what)
2703 {
2704         return call_int_hook(locked_down, 0, what);
2705 }
2706 EXPORT_SYMBOL(security_locked_down);
2707
2708 #ifdef CONFIG_PERF_EVENTS
2709 int security_perf_event_open(struct perf_event_attr *attr, int type)
2710 {
2711         return call_int_hook(perf_event_open, 0, attr, type);
2712 }
2713
2714 int security_perf_event_alloc(struct perf_event *event)
2715 {
2716         return call_int_hook(perf_event_alloc, 0, event);
2717 }
2718
2719 void security_perf_event_free(struct perf_event *event)
2720 {
2721         call_void_hook(perf_event_free, event);
2722 }
2723
2724 int security_perf_event_read(struct perf_event *event)
2725 {
2726         return call_int_hook(perf_event_read, 0, event);
2727 }
2728
2729 int security_perf_event_write(struct perf_event *event)
2730 {
2731         return call_int_hook(perf_event_write, 0, event);
2732 }
2733 #endif /* CONFIG_PERF_EVENTS */
2734
2735 #ifdef CONFIG_IO_URING
2736 int security_uring_override_creds(const struct cred *new)
2737 {
2738         return call_int_hook(uring_override_creds, 0, new);
2739 }
2740
2741 int security_uring_sqpoll(void)
2742 {
2743         return call_int_hook(uring_sqpoll, 0);
2744 }
2745 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2746 {
2747         return call_int_hook(uring_cmd, 0, ioucmd);
2748 }
2749 #endif /* CONFIG_IO_URING */