Merge tag 'linux-kselftest-fixes-5.10-rc3' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
62         [LOCKDOWN_KCORE] = "/proc/kcore access",
63         [LOCKDOWN_KPROBES] = "use of kprobes",
64         [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65         [LOCKDOWN_PERF] = "unsafe use of perf",
66         [LOCKDOWN_TRACEFS] = "use of tracefs",
67         [LOCKDOWN_XMON_RW] = "xmon read and write access",
68         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
69 };
70
71 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
72 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
73
74 static struct kmem_cache *lsm_file_cache;
75 static struct kmem_cache *lsm_inode_cache;
76
77 char *lsm_names;
78 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
79
80 /* Boot-time LSM user choice */
81 static __initdata const char *chosen_lsm_order;
82 static __initdata const char *chosen_major_lsm;
83
84 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
85
86 /* Ordered list of LSMs to initialize. */
87 static __initdata struct lsm_info **ordered_lsms;
88 static __initdata struct lsm_info *exclusive;
89
90 static __initdata bool debug;
91 #define init_debug(...)                                         \
92         do {                                                    \
93                 if (debug)                                      \
94                         pr_info(__VA_ARGS__);                   \
95         } while (0)
96
97 static bool __init is_enabled(struct lsm_info *lsm)
98 {
99         if (!lsm->enabled)
100                 return false;
101
102         return *lsm->enabled;
103 }
104
105 /* Mark an LSM's enabled flag. */
106 static int lsm_enabled_true __initdata = 1;
107 static int lsm_enabled_false __initdata = 0;
108 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
109 {
110         /*
111          * When an LSM hasn't configured an enable variable, we can use
112          * a hard-coded location for storing the default enabled state.
113          */
114         if (!lsm->enabled) {
115                 if (enabled)
116                         lsm->enabled = &lsm_enabled_true;
117                 else
118                         lsm->enabled = &lsm_enabled_false;
119         } else if (lsm->enabled == &lsm_enabled_true) {
120                 if (!enabled)
121                         lsm->enabled = &lsm_enabled_false;
122         } else if (lsm->enabled == &lsm_enabled_false) {
123                 if (enabled)
124                         lsm->enabled = &lsm_enabled_true;
125         } else {
126                 *lsm->enabled = enabled;
127         }
128 }
129
130 /* Is an LSM already listed in the ordered LSMs list? */
131 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
132 {
133         struct lsm_info **check;
134
135         for (check = ordered_lsms; *check; check++)
136                 if (*check == lsm)
137                         return true;
138
139         return false;
140 }
141
142 /* Append an LSM to the list of ordered LSMs to initialize. */
143 static int last_lsm __initdata;
144 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
145 {
146         /* Ignore duplicate selections. */
147         if (exists_ordered_lsm(lsm))
148                 return;
149
150         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
151                 return;
152
153         /* Enable this LSM, if it is not already set. */
154         if (!lsm->enabled)
155                 lsm->enabled = &lsm_enabled_true;
156         ordered_lsms[last_lsm++] = lsm;
157
158         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
159                    is_enabled(lsm) ? "en" : "dis");
160 }
161
162 /* Is an LSM allowed to be initialized? */
163 static bool __init lsm_allowed(struct lsm_info *lsm)
164 {
165         /* Skip if the LSM is disabled. */
166         if (!is_enabled(lsm))
167                 return false;
168
169         /* Not allowed if another exclusive LSM already initialized. */
170         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
171                 init_debug("exclusive disabled: %s\n", lsm->name);
172                 return false;
173         }
174
175         return true;
176 }
177
178 static void __init lsm_set_blob_size(int *need, int *lbs)
179 {
180         int offset;
181
182         if (*need > 0) {
183                 offset = *lbs;
184                 *lbs += *need;
185                 *need = offset;
186         }
187 }
188
189 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
190 {
191         if (!needed)
192                 return;
193
194         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
195         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
196         /*
197          * The inode blob gets an rcu_head in addition to
198          * what the modules might need.
199          */
200         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
201                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
202         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
203         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
204         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
205         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
206 }
207
208 /* Prepare LSM for initialization. */
209 static void __init prepare_lsm(struct lsm_info *lsm)
210 {
211         int enabled = lsm_allowed(lsm);
212
213         /* Record enablement (to handle any following exclusive LSMs). */
214         set_enabled(lsm, enabled);
215
216         /* If enabled, do pre-initialization work. */
217         if (enabled) {
218                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
219                         exclusive = lsm;
220                         init_debug("exclusive chosen: %s\n", lsm->name);
221                 }
222
223                 lsm_set_blob_sizes(lsm->blobs);
224         }
225 }
226
227 /* Initialize a given LSM, if it is enabled. */
228 static void __init initialize_lsm(struct lsm_info *lsm)
229 {
230         if (is_enabled(lsm)) {
231                 int ret;
232
233                 init_debug("initializing %s\n", lsm->name);
234                 ret = lsm->init();
235                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
236         }
237 }
238
239 /* Populate ordered LSMs list from comma-separated LSM name list. */
240 static void __init ordered_lsm_parse(const char *order, const char *origin)
241 {
242         struct lsm_info *lsm;
243         char *sep, *name, *next;
244
245         /* LSM_ORDER_FIRST is always first. */
246         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
247                 if (lsm->order == LSM_ORDER_FIRST)
248                         append_ordered_lsm(lsm, "first");
249         }
250
251         /* Process "security=", if given. */
252         if (chosen_major_lsm) {
253                 struct lsm_info *major;
254
255                 /*
256                  * To match the original "security=" behavior, this
257                  * explicitly does NOT fallback to another Legacy Major
258                  * if the selected one was separately disabled: disable
259                  * all non-matching Legacy Major LSMs.
260                  */
261                 for (major = __start_lsm_info; major < __end_lsm_info;
262                      major++) {
263                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
264                             strcmp(major->name, chosen_major_lsm) != 0) {
265                                 set_enabled(major, false);
266                                 init_debug("security=%s disabled: %s\n",
267                                            chosen_major_lsm, major->name);
268                         }
269                 }
270         }
271
272         sep = kstrdup(order, GFP_KERNEL);
273         next = sep;
274         /* Walk the list, looking for matching LSMs. */
275         while ((name = strsep(&next, ",")) != NULL) {
276                 bool found = false;
277
278                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
279                         if (lsm->order == LSM_ORDER_MUTABLE &&
280                             strcmp(lsm->name, name) == 0) {
281                                 append_ordered_lsm(lsm, origin);
282                                 found = true;
283                         }
284                 }
285
286                 if (!found)
287                         init_debug("%s ignored: %s\n", origin, name);
288         }
289
290         /* Process "security=", if given. */
291         if (chosen_major_lsm) {
292                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
293                         if (exists_ordered_lsm(lsm))
294                                 continue;
295                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
296                                 append_ordered_lsm(lsm, "security=");
297                 }
298         }
299
300         /* Disable all LSMs not in the ordered list. */
301         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302                 if (exists_ordered_lsm(lsm))
303                         continue;
304                 set_enabled(lsm, false);
305                 init_debug("%s disabled: %s\n", origin, lsm->name);
306         }
307
308         kfree(sep);
309 }
310
311 static void __init lsm_early_cred(struct cred *cred);
312 static void __init lsm_early_task(struct task_struct *task);
313
314 static int lsm_append(const char *new, char **result);
315
316 static void __init ordered_lsm_init(void)
317 {
318         struct lsm_info **lsm;
319
320         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
321                                 GFP_KERNEL);
322
323         if (chosen_lsm_order) {
324                 if (chosen_major_lsm) {
325                         pr_info("security= is ignored because it is superseded by lsm=\n");
326                         chosen_major_lsm = NULL;
327                 }
328                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
329         } else
330                 ordered_lsm_parse(builtin_lsm_order, "builtin");
331
332         for (lsm = ordered_lsms; *lsm; lsm++)
333                 prepare_lsm(*lsm);
334
335         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
336         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
337         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
338         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
339         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
340         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
341
342         /*
343          * Create any kmem_caches needed for blobs
344          */
345         if (blob_sizes.lbs_file)
346                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
347                                                    blob_sizes.lbs_file, 0,
348                                                    SLAB_PANIC, NULL);
349         if (blob_sizes.lbs_inode)
350                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
351                                                     blob_sizes.lbs_inode, 0,
352                                                     SLAB_PANIC, NULL);
353
354         lsm_early_cred((struct cred *) current->cred);
355         lsm_early_task(current);
356         for (lsm = ordered_lsms; *lsm; lsm++)
357                 initialize_lsm(*lsm);
358
359         kfree(ordered_lsms);
360 }
361
362 int __init early_security_init(void)
363 {
364         int i;
365         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
366         struct lsm_info *lsm;
367
368         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
369              i++)
370                 INIT_HLIST_HEAD(&list[i]);
371
372         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
373                 if (!lsm->enabled)
374                         lsm->enabled = &lsm_enabled_true;
375                 prepare_lsm(lsm);
376                 initialize_lsm(lsm);
377         }
378
379         return 0;
380 }
381
382 /**
383  * security_init - initializes the security framework
384  *
385  * This should be called early in the kernel initialization sequence.
386  */
387 int __init security_init(void)
388 {
389         struct lsm_info *lsm;
390
391         pr_info("Security Framework initializing\n");
392
393         /*
394          * Append the names of the early LSM modules now that kmalloc() is
395          * available
396          */
397         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
398                 if (lsm->enabled)
399                         lsm_append(lsm->name, &lsm_names);
400         }
401
402         /* Load LSMs in specified order. */
403         ordered_lsm_init();
404
405         return 0;
406 }
407
408 /* Save user chosen LSM */
409 static int __init choose_major_lsm(char *str)
410 {
411         chosen_major_lsm = str;
412         return 1;
413 }
414 __setup("security=", choose_major_lsm);
415
416 /* Explicitly choose LSM initialization order. */
417 static int __init choose_lsm_order(char *str)
418 {
419         chosen_lsm_order = str;
420         return 1;
421 }
422 __setup("lsm=", choose_lsm_order);
423
424 /* Enable LSM order debugging. */
425 static int __init enable_debug(char *str)
426 {
427         debug = true;
428         return 1;
429 }
430 __setup("lsm.debug", enable_debug);
431
432 static bool match_last_lsm(const char *list, const char *lsm)
433 {
434         const char *last;
435
436         if (WARN_ON(!list || !lsm))
437                 return false;
438         last = strrchr(list, ',');
439         if (last)
440                 /* Pass the comma, strcmp() will check for '\0' */
441                 last++;
442         else
443                 last = list;
444         return !strcmp(last, lsm);
445 }
446
447 static int lsm_append(const char *new, char **result)
448 {
449         char *cp;
450
451         if (*result == NULL) {
452                 *result = kstrdup(new, GFP_KERNEL);
453                 if (*result == NULL)
454                         return -ENOMEM;
455         } else {
456                 /* Check if it is the last registered name */
457                 if (match_last_lsm(*result, new))
458                         return 0;
459                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
460                 if (cp == NULL)
461                         return -ENOMEM;
462                 kfree(*result);
463                 *result = cp;
464         }
465         return 0;
466 }
467
468 /**
469  * security_add_hooks - Add a modules hooks to the hook lists.
470  * @hooks: the hooks to add
471  * @count: the number of hooks to add
472  * @lsm: the name of the security module
473  *
474  * Each LSM has to register its hooks with the infrastructure.
475  */
476 void __init security_add_hooks(struct security_hook_list *hooks, int count,
477                                 char *lsm)
478 {
479         int i;
480
481         for (i = 0; i < count; i++) {
482                 hooks[i].lsm = lsm;
483                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
484         }
485
486         /*
487          * Don't try to append during early_security_init(), we'll come back
488          * and fix this up afterwards.
489          */
490         if (slab_is_available()) {
491                 if (lsm_append(lsm, &lsm_names) < 0)
492                         panic("%s - Cannot get early memory.\n", __func__);
493         }
494 }
495
496 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
497 {
498         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
499                                             event, data);
500 }
501 EXPORT_SYMBOL(call_blocking_lsm_notifier);
502
503 int register_blocking_lsm_notifier(struct notifier_block *nb)
504 {
505         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
506                                                 nb);
507 }
508 EXPORT_SYMBOL(register_blocking_lsm_notifier);
509
510 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
513                                                   nb);
514 }
515 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
516
517 /**
518  * lsm_cred_alloc - allocate a composite cred blob
519  * @cred: the cred that needs a blob
520  * @gfp: allocation type
521  *
522  * Allocate the cred blob for all the modules
523  *
524  * Returns 0, or -ENOMEM if memory can't be allocated.
525  */
526 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
527 {
528         if (blob_sizes.lbs_cred == 0) {
529                 cred->security = NULL;
530                 return 0;
531         }
532
533         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
534         if (cred->security == NULL)
535                 return -ENOMEM;
536         return 0;
537 }
538
539 /**
540  * lsm_early_cred - during initialization allocate a composite cred blob
541  * @cred: the cred that needs a blob
542  *
543  * Allocate the cred blob for all the modules
544  */
545 static void __init lsm_early_cred(struct cred *cred)
546 {
547         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
548
549         if (rc)
550                 panic("%s: Early cred alloc failed.\n", __func__);
551 }
552
553 /**
554  * lsm_file_alloc - allocate a composite file blob
555  * @file: the file that needs a blob
556  *
557  * Allocate the file blob for all the modules
558  *
559  * Returns 0, or -ENOMEM if memory can't be allocated.
560  */
561 static int lsm_file_alloc(struct file *file)
562 {
563         if (!lsm_file_cache) {
564                 file->f_security = NULL;
565                 return 0;
566         }
567
568         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
569         if (file->f_security == NULL)
570                 return -ENOMEM;
571         return 0;
572 }
573
574 /**
575  * lsm_inode_alloc - allocate a composite inode blob
576  * @inode: the inode that needs a blob
577  *
578  * Allocate the inode blob for all the modules
579  *
580  * Returns 0, or -ENOMEM if memory can't be allocated.
581  */
582 int lsm_inode_alloc(struct inode *inode)
583 {
584         if (!lsm_inode_cache) {
585                 inode->i_security = NULL;
586                 return 0;
587         }
588
589         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
590         if (inode->i_security == NULL)
591                 return -ENOMEM;
592         return 0;
593 }
594
595 /**
596  * lsm_task_alloc - allocate a composite task blob
597  * @task: the task that needs a blob
598  *
599  * Allocate the task blob for all the modules
600  *
601  * Returns 0, or -ENOMEM if memory can't be allocated.
602  */
603 static int lsm_task_alloc(struct task_struct *task)
604 {
605         if (blob_sizes.lbs_task == 0) {
606                 task->security = NULL;
607                 return 0;
608         }
609
610         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
611         if (task->security == NULL)
612                 return -ENOMEM;
613         return 0;
614 }
615
616 /**
617  * lsm_ipc_alloc - allocate a composite ipc blob
618  * @kip: the ipc that needs a blob
619  *
620  * Allocate the ipc blob for all the modules
621  *
622  * Returns 0, or -ENOMEM if memory can't be allocated.
623  */
624 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
625 {
626         if (blob_sizes.lbs_ipc == 0) {
627                 kip->security = NULL;
628                 return 0;
629         }
630
631         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
632         if (kip->security == NULL)
633                 return -ENOMEM;
634         return 0;
635 }
636
637 /**
638  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
639  * @mp: the msg_msg that needs a blob
640  *
641  * Allocate the ipc blob for all the modules
642  *
643  * Returns 0, or -ENOMEM if memory can't be allocated.
644  */
645 static int lsm_msg_msg_alloc(struct msg_msg *mp)
646 {
647         if (blob_sizes.lbs_msg_msg == 0) {
648                 mp->security = NULL;
649                 return 0;
650         }
651
652         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
653         if (mp->security == NULL)
654                 return -ENOMEM;
655         return 0;
656 }
657
658 /**
659  * lsm_early_task - during initialization allocate a composite task blob
660  * @task: the task that needs a blob
661  *
662  * Allocate the task blob for all the modules
663  */
664 static void __init lsm_early_task(struct task_struct *task)
665 {
666         int rc = lsm_task_alloc(task);
667
668         if (rc)
669                 panic("%s: Early task alloc failed.\n", __func__);
670 }
671
672 /*
673  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
674  * can be accessed with:
675  *
676  *      LSM_RET_DEFAULT(<hook_name>)
677  *
678  * The macros below define static constants for the default value of each
679  * LSM hook.
680  */
681 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
682 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
683 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
684         static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
685 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
686         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
687
688 #include <linux/lsm_hook_defs.h>
689 #undef LSM_HOOK
690
691 /*
692  * Hook list operation macros.
693  *
694  * call_void_hook:
695  *      This is a hook that does not return a value.
696  *
697  * call_int_hook:
698  *      This is a hook that returns a value.
699  */
700
701 #define call_void_hook(FUNC, ...)                               \
702         do {                                                    \
703                 struct security_hook_list *P;                   \
704                                                                 \
705                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
706                         P->hook.FUNC(__VA_ARGS__);              \
707         } while (0)
708
709 #define call_int_hook(FUNC, IRC, ...) ({                        \
710         int RC = IRC;                                           \
711         do {                                                    \
712                 struct security_hook_list *P;                   \
713                                                                 \
714                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
715                         RC = P->hook.FUNC(__VA_ARGS__);         \
716                         if (RC != 0)                            \
717                                 break;                          \
718                 }                                               \
719         } while (0);                                            \
720         RC;                                                     \
721 })
722
723 /* Security operations */
724
725 int security_binder_set_context_mgr(struct task_struct *mgr)
726 {
727         return call_int_hook(binder_set_context_mgr, 0, mgr);
728 }
729
730 int security_binder_transaction(struct task_struct *from,
731                                 struct task_struct *to)
732 {
733         return call_int_hook(binder_transaction, 0, from, to);
734 }
735
736 int security_binder_transfer_binder(struct task_struct *from,
737                                     struct task_struct *to)
738 {
739         return call_int_hook(binder_transfer_binder, 0, from, to);
740 }
741
742 int security_binder_transfer_file(struct task_struct *from,
743                                   struct task_struct *to, struct file *file)
744 {
745         return call_int_hook(binder_transfer_file, 0, from, to, file);
746 }
747
748 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
749 {
750         return call_int_hook(ptrace_access_check, 0, child, mode);
751 }
752
753 int security_ptrace_traceme(struct task_struct *parent)
754 {
755         return call_int_hook(ptrace_traceme, 0, parent);
756 }
757
758 int security_capget(struct task_struct *target,
759                      kernel_cap_t *effective,
760                      kernel_cap_t *inheritable,
761                      kernel_cap_t *permitted)
762 {
763         return call_int_hook(capget, 0, target,
764                                 effective, inheritable, permitted);
765 }
766
767 int security_capset(struct cred *new, const struct cred *old,
768                     const kernel_cap_t *effective,
769                     const kernel_cap_t *inheritable,
770                     const kernel_cap_t *permitted)
771 {
772         return call_int_hook(capset, 0, new, old,
773                                 effective, inheritable, permitted);
774 }
775
776 int security_capable(const struct cred *cred,
777                      struct user_namespace *ns,
778                      int cap,
779                      unsigned int opts)
780 {
781         return call_int_hook(capable, 0, cred, ns, cap, opts);
782 }
783
784 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
785 {
786         return call_int_hook(quotactl, 0, cmds, type, id, sb);
787 }
788
789 int security_quota_on(struct dentry *dentry)
790 {
791         return call_int_hook(quota_on, 0, dentry);
792 }
793
794 int security_syslog(int type)
795 {
796         return call_int_hook(syslog, 0, type);
797 }
798
799 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
800 {
801         return call_int_hook(settime, 0, ts, tz);
802 }
803
804 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
805 {
806         struct security_hook_list *hp;
807         int cap_sys_admin = 1;
808         int rc;
809
810         /*
811          * The module will respond with a positive value if
812          * it thinks the __vm_enough_memory() call should be
813          * made with the cap_sys_admin set. If all of the modules
814          * agree that it should be set it will. If any module
815          * thinks it should not be set it won't.
816          */
817         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
818                 rc = hp->hook.vm_enough_memory(mm, pages);
819                 if (rc <= 0) {
820                         cap_sys_admin = 0;
821                         break;
822                 }
823         }
824         return __vm_enough_memory(mm, pages, cap_sys_admin);
825 }
826
827 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
828 {
829         return call_int_hook(bprm_creds_for_exec, 0, bprm);
830 }
831
832 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
833 {
834         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
835 }
836
837 int security_bprm_check(struct linux_binprm *bprm)
838 {
839         int ret;
840
841         ret = call_int_hook(bprm_check_security, 0, bprm);
842         if (ret)
843                 return ret;
844         return ima_bprm_check(bprm);
845 }
846
847 void security_bprm_committing_creds(struct linux_binprm *bprm)
848 {
849         call_void_hook(bprm_committing_creds, bprm);
850 }
851
852 void security_bprm_committed_creds(struct linux_binprm *bprm)
853 {
854         call_void_hook(bprm_committed_creds, bprm);
855 }
856
857 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
858 {
859         return call_int_hook(fs_context_dup, 0, fc, src_fc);
860 }
861
862 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
863 {
864         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
865 }
866
867 int security_sb_alloc(struct super_block *sb)
868 {
869         return call_int_hook(sb_alloc_security, 0, sb);
870 }
871
872 void security_sb_free(struct super_block *sb)
873 {
874         call_void_hook(sb_free_security, sb);
875 }
876
877 void security_free_mnt_opts(void **mnt_opts)
878 {
879         if (!*mnt_opts)
880                 return;
881         call_void_hook(sb_free_mnt_opts, *mnt_opts);
882         *mnt_opts = NULL;
883 }
884 EXPORT_SYMBOL(security_free_mnt_opts);
885
886 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
887 {
888         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
889 }
890 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
891
892 int security_sb_remount(struct super_block *sb,
893                         void *mnt_opts)
894 {
895         return call_int_hook(sb_remount, 0, sb, mnt_opts);
896 }
897 EXPORT_SYMBOL(security_sb_remount);
898
899 int security_sb_kern_mount(struct super_block *sb)
900 {
901         return call_int_hook(sb_kern_mount, 0, sb);
902 }
903
904 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
905 {
906         return call_int_hook(sb_show_options, 0, m, sb);
907 }
908
909 int security_sb_statfs(struct dentry *dentry)
910 {
911         return call_int_hook(sb_statfs, 0, dentry);
912 }
913
914 int security_sb_mount(const char *dev_name, const struct path *path,
915                        const char *type, unsigned long flags, void *data)
916 {
917         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
918 }
919
920 int security_sb_umount(struct vfsmount *mnt, int flags)
921 {
922         return call_int_hook(sb_umount, 0, mnt, flags);
923 }
924
925 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
926 {
927         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
928 }
929
930 int security_sb_set_mnt_opts(struct super_block *sb,
931                                 void *mnt_opts,
932                                 unsigned long kern_flags,
933                                 unsigned long *set_kern_flags)
934 {
935         return call_int_hook(sb_set_mnt_opts,
936                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
937                                 mnt_opts, kern_flags, set_kern_flags);
938 }
939 EXPORT_SYMBOL(security_sb_set_mnt_opts);
940
941 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
942                                 struct super_block *newsb,
943                                 unsigned long kern_flags,
944                                 unsigned long *set_kern_flags)
945 {
946         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
947                                 kern_flags, set_kern_flags);
948 }
949 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
950
951 int security_add_mnt_opt(const char *option, const char *val, int len,
952                          void **mnt_opts)
953 {
954         return call_int_hook(sb_add_mnt_opt, -EINVAL,
955                                         option, val, len, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_add_mnt_opt);
958
959 int security_move_mount(const struct path *from_path, const struct path *to_path)
960 {
961         return call_int_hook(move_mount, 0, from_path, to_path);
962 }
963
964 int security_path_notify(const struct path *path, u64 mask,
965                                 unsigned int obj_type)
966 {
967         return call_int_hook(path_notify, 0, path, mask, obj_type);
968 }
969
970 int security_inode_alloc(struct inode *inode)
971 {
972         int rc = lsm_inode_alloc(inode);
973
974         if (unlikely(rc))
975                 return rc;
976         rc = call_int_hook(inode_alloc_security, 0, inode);
977         if (unlikely(rc))
978                 security_inode_free(inode);
979         return rc;
980 }
981
982 static void inode_free_by_rcu(struct rcu_head *head)
983 {
984         /*
985          * The rcu head is at the start of the inode blob
986          */
987         kmem_cache_free(lsm_inode_cache, head);
988 }
989
990 void security_inode_free(struct inode *inode)
991 {
992         integrity_inode_free(inode);
993         call_void_hook(inode_free_security, inode);
994         /*
995          * The inode may still be referenced in a path walk and
996          * a call to security_inode_permission() can be made
997          * after inode_free_security() is called. Ideally, the VFS
998          * wouldn't do this, but fixing that is a much harder
999          * job. For now, simply free the i_security via RCU, and
1000          * leave the current inode->i_security pointer intact.
1001          * The inode will be freed after the RCU grace period too.
1002          */
1003         if (inode->i_security)
1004                 call_rcu((struct rcu_head *)inode->i_security,
1005                                 inode_free_by_rcu);
1006 }
1007
1008 int security_dentry_init_security(struct dentry *dentry, int mode,
1009                                         const struct qstr *name, void **ctx,
1010                                         u32 *ctxlen)
1011 {
1012         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1013                                 name, ctx, ctxlen);
1014 }
1015 EXPORT_SYMBOL(security_dentry_init_security);
1016
1017 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1018                                     struct qstr *name,
1019                                     const struct cred *old, struct cred *new)
1020 {
1021         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1022                                 name, old, new);
1023 }
1024 EXPORT_SYMBOL(security_dentry_create_files_as);
1025
1026 int security_inode_init_security(struct inode *inode, struct inode *dir,
1027                                  const struct qstr *qstr,
1028                                  const initxattrs initxattrs, void *fs_data)
1029 {
1030         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1031         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1032         int ret;
1033
1034         if (unlikely(IS_PRIVATE(inode)))
1035                 return 0;
1036
1037         if (!initxattrs)
1038                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1039                                      dir, qstr, NULL, NULL, NULL);
1040         memset(new_xattrs, 0, sizeof(new_xattrs));
1041         lsm_xattr = new_xattrs;
1042         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1043                                                 &lsm_xattr->name,
1044                                                 &lsm_xattr->value,
1045                                                 &lsm_xattr->value_len);
1046         if (ret)
1047                 goto out;
1048
1049         evm_xattr = lsm_xattr + 1;
1050         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1051         if (ret)
1052                 goto out;
1053         ret = initxattrs(inode, new_xattrs, fs_data);
1054 out:
1055         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1056                 kfree(xattr->value);
1057         return (ret == -EOPNOTSUPP) ? 0 : ret;
1058 }
1059 EXPORT_SYMBOL(security_inode_init_security);
1060
1061 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1062                                      const struct qstr *qstr, const char **name,
1063                                      void **value, size_t *len)
1064 {
1065         if (unlikely(IS_PRIVATE(inode)))
1066                 return -EOPNOTSUPP;
1067         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1068                              qstr, name, value, len);
1069 }
1070 EXPORT_SYMBOL(security_old_inode_init_security);
1071
1072 #ifdef CONFIG_SECURITY_PATH
1073 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1074                         unsigned int dev)
1075 {
1076         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1077                 return 0;
1078         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1079 }
1080 EXPORT_SYMBOL(security_path_mknod);
1081
1082 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1083 {
1084         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1085                 return 0;
1086         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1087 }
1088 EXPORT_SYMBOL(security_path_mkdir);
1089
1090 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1091 {
1092         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093                 return 0;
1094         return call_int_hook(path_rmdir, 0, dir, dentry);
1095 }
1096
1097 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1098 {
1099         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1100                 return 0;
1101         return call_int_hook(path_unlink, 0, dir, dentry);
1102 }
1103 EXPORT_SYMBOL(security_path_unlink);
1104
1105 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1106                           const char *old_name)
1107 {
1108         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109                 return 0;
1110         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1111 }
1112
1113 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1114                        struct dentry *new_dentry)
1115 {
1116         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1117                 return 0;
1118         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1119 }
1120
1121 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1122                          const struct path *new_dir, struct dentry *new_dentry,
1123                          unsigned int flags)
1124 {
1125         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127                 return 0;
1128
1129         if (flags & RENAME_EXCHANGE) {
1130                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1131                                         old_dir, old_dentry);
1132                 if (err)
1133                         return err;
1134         }
1135
1136         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1137                                 new_dentry);
1138 }
1139 EXPORT_SYMBOL(security_path_rename);
1140
1141 int security_path_truncate(const struct path *path)
1142 {
1143         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1144                 return 0;
1145         return call_int_hook(path_truncate, 0, path);
1146 }
1147
1148 int security_path_chmod(const struct path *path, umode_t mode)
1149 {
1150         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1151                 return 0;
1152         return call_int_hook(path_chmod, 0, path, mode);
1153 }
1154
1155 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1156 {
1157         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1158                 return 0;
1159         return call_int_hook(path_chown, 0, path, uid, gid);
1160 }
1161
1162 int security_path_chroot(const struct path *path)
1163 {
1164         return call_int_hook(path_chroot, 0, path);
1165 }
1166 #endif
1167
1168 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1169 {
1170         if (unlikely(IS_PRIVATE(dir)))
1171                 return 0;
1172         return call_int_hook(inode_create, 0, dir, dentry, mode);
1173 }
1174 EXPORT_SYMBOL_GPL(security_inode_create);
1175
1176 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1177                          struct dentry *new_dentry)
1178 {
1179         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1180                 return 0;
1181         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1182 }
1183
1184 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1185 {
1186         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1187                 return 0;
1188         return call_int_hook(inode_unlink, 0, dir, dentry);
1189 }
1190
1191 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1192                             const char *old_name)
1193 {
1194         if (unlikely(IS_PRIVATE(dir)))
1195                 return 0;
1196         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1197 }
1198
1199 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1200 {
1201         if (unlikely(IS_PRIVATE(dir)))
1202                 return 0;
1203         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1204 }
1205 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1206
1207 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1208 {
1209         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210                 return 0;
1211         return call_int_hook(inode_rmdir, 0, dir, dentry);
1212 }
1213
1214 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1215 {
1216         if (unlikely(IS_PRIVATE(dir)))
1217                 return 0;
1218         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1219 }
1220
1221 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1222                            struct inode *new_dir, struct dentry *new_dentry,
1223                            unsigned int flags)
1224 {
1225         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1226             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1227                 return 0;
1228
1229         if (flags & RENAME_EXCHANGE) {
1230                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1231                                                      old_dir, old_dentry);
1232                 if (err)
1233                         return err;
1234         }
1235
1236         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1237                                            new_dir, new_dentry);
1238 }
1239
1240 int security_inode_readlink(struct dentry *dentry)
1241 {
1242         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1243                 return 0;
1244         return call_int_hook(inode_readlink, 0, dentry);
1245 }
1246
1247 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1248                                bool rcu)
1249 {
1250         if (unlikely(IS_PRIVATE(inode)))
1251                 return 0;
1252         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1253 }
1254
1255 int security_inode_permission(struct inode *inode, int mask)
1256 {
1257         if (unlikely(IS_PRIVATE(inode)))
1258                 return 0;
1259         return call_int_hook(inode_permission, 0, inode, mask);
1260 }
1261
1262 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1263 {
1264         int ret;
1265
1266         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1267                 return 0;
1268         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1269         if (ret)
1270                 return ret;
1271         return evm_inode_setattr(dentry, attr);
1272 }
1273 EXPORT_SYMBOL_GPL(security_inode_setattr);
1274
1275 int security_inode_getattr(const struct path *path)
1276 {
1277         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1278                 return 0;
1279         return call_int_hook(inode_getattr, 0, path);
1280 }
1281
1282 int security_inode_setxattr(struct dentry *dentry, const char *name,
1283                             const void *value, size_t size, int flags)
1284 {
1285         int ret;
1286
1287         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1288                 return 0;
1289         /*
1290          * SELinux and Smack integrate the cap call,
1291          * so assume that all LSMs supplying this call do so.
1292          */
1293         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1294                                 flags);
1295
1296         if (ret == 1)
1297                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1298         if (ret)
1299                 return ret;
1300         ret = ima_inode_setxattr(dentry, name, value, size);
1301         if (ret)
1302                 return ret;
1303         return evm_inode_setxattr(dentry, name, value, size);
1304 }
1305
1306 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1307                                   const void *value, size_t size, int flags)
1308 {
1309         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1310                 return;
1311         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1312         evm_inode_post_setxattr(dentry, name, value, size);
1313 }
1314
1315 int security_inode_getxattr(struct dentry *dentry, const char *name)
1316 {
1317         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1318                 return 0;
1319         return call_int_hook(inode_getxattr, 0, dentry, name);
1320 }
1321
1322 int security_inode_listxattr(struct dentry *dentry)
1323 {
1324         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1325                 return 0;
1326         return call_int_hook(inode_listxattr, 0, dentry);
1327 }
1328
1329 int security_inode_removexattr(struct dentry *dentry, const char *name)
1330 {
1331         int ret;
1332
1333         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334                 return 0;
1335         /*
1336          * SELinux and Smack integrate the cap call,
1337          * so assume that all LSMs supplying this call do so.
1338          */
1339         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1340         if (ret == 1)
1341                 ret = cap_inode_removexattr(dentry, name);
1342         if (ret)
1343                 return ret;
1344         ret = ima_inode_removexattr(dentry, name);
1345         if (ret)
1346                 return ret;
1347         return evm_inode_removexattr(dentry, name);
1348 }
1349
1350 int security_inode_need_killpriv(struct dentry *dentry)
1351 {
1352         return call_int_hook(inode_need_killpriv, 0, dentry);
1353 }
1354
1355 int security_inode_killpriv(struct dentry *dentry)
1356 {
1357         return call_int_hook(inode_killpriv, 0, dentry);
1358 }
1359
1360 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1361 {
1362         struct security_hook_list *hp;
1363         int rc;
1364
1365         if (unlikely(IS_PRIVATE(inode)))
1366                 return LSM_RET_DEFAULT(inode_getsecurity);
1367         /*
1368          * Only one module will provide an attribute with a given name.
1369          */
1370         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1371                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1372                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1373                         return rc;
1374         }
1375         return LSM_RET_DEFAULT(inode_getsecurity);
1376 }
1377
1378 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1379 {
1380         struct security_hook_list *hp;
1381         int rc;
1382
1383         if (unlikely(IS_PRIVATE(inode)))
1384                 return LSM_RET_DEFAULT(inode_setsecurity);
1385         /*
1386          * Only one module will provide an attribute with a given name.
1387          */
1388         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1389                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1390                                                                 flags);
1391                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1392                         return rc;
1393         }
1394         return LSM_RET_DEFAULT(inode_setsecurity);
1395 }
1396
1397 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1398 {
1399         if (unlikely(IS_PRIVATE(inode)))
1400                 return 0;
1401         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1402 }
1403 EXPORT_SYMBOL(security_inode_listsecurity);
1404
1405 void security_inode_getsecid(struct inode *inode, u32 *secid)
1406 {
1407         call_void_hook(inode_getsecid, inode, secid);
1408 }
1409
1410 int security_inode_copy_up(struct dentry *src, struct cred **new)
1411 {
1412         return call_int_hook(inode_copy_up, 0, src, new);
1413 }
1414 EXPORT_SYMBOL(security_inode_copy_up);
1415
1416 int security_inode_copy_up_xattr(const char *name)
1417 {
1418         struct security_hook_list *hp;
1419         int rc;
1420
1421         /*
1422          * The implementation can return 0 (accept the xattr), 1 (discard the
1423          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1424          * any other error code incase of an error.
1425          */
1426         hlist_for_each_entry(hp,
1427                 &security_hook_heads.inode_copy_up_xattr, list) {
1428                 rc = hp->hook.inode_copy_up_xattr(name);
1429                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1430                         return rc;
1431         }
1432
1433         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1434 }
1435 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1436
1437 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1438                                   struct kernfs_node *kn)
1439 {
1440         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1441 }
1442
1443 int security_file_permission(struct file *file, int mask)
1444 {
1445         int ret;
1446
1447         ret = call_int_hook(file_permission, 0, file, mask);
1448         if (ret)
1449                 return ret;
1450
1451         return fsnotify_perm(file, mask);
1452 }
1453
1454 int security_file_alloc(struct file *file)
1455 {
1456         int rc = lsm_file_alloc(file);
1457
1458         if (rc)
1459                 return rc;
1460         rc = call_int_hook(file_alloc_security, 0, file);
1461         if (unlikely(rc))
1462                 security_file_free(file);
1463         return rc;
1464 }
1465
1466 void security_file_free(struct file *file)
1467 {
1468         void *blob;
1469
1470         call_void_hook(file_free_security, file);
1471
1472         blob = file->f_security;
1473         if (blob) {
1474                 file->f_security = NULL;
1475                 kmem_cache_free(lsm_file_cache, blob);
1476         }
1477 }
1478
1479 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1480 {
1481         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1482 }
1483 EXPORT_SYMBOL_GPL(security_file_ioctl);
1484
1485 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1486 {
1487         /*
1488          * Does we have PROT_READ and does the application expect
1489          * it to imply PROT_EXEC?  If not, nothing to talk about...
1490          */
1491         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1492                 return prot;
1493         if (!(current->personality & READ_IMPLIES_EXEC))
1494                 return prot;
1495         /*
1496          * if that's an anonymous mapping, let it.
1497          */
1498         if (!file)
1499                 return prot | PROT_EXEC;
1500         /*
1501          * ditto if it's not on noexec mount, except that on !MMU we need
1502          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1503          */
1504         if (!path_noexec(&file->f_path)) {
1505 #ifndef CONFIG_MMU
1506                 if (file->f_op->mmap_capabilities) {
1507                         unsigned caps = file->f_op->mmap_capabilities(file);
1508                         if (!(caps & NOMMU_MAP_EXEC))
1509                                 return prot;
1510                 }
1511 #endif
1512                 return prot | PROT_EXEC;
1513         }
1514         /* anything on noexec mount won't get PROT_EXEC */
1515         return prot;
1516 }
1517
1518 int security_mmap_file(struct file *file, unsigned long prot,
1519                         unsigned long flags)
1520 {
1521         int ret;
1522         ret = call_int_hook(mmap_file, 0, file, prot,
1523                                         mmap_prot(file, prot), flags);
1524         if (ret)
1525                 return ret;
1526         return ima_file_mmap(file, prot);
1527 }
1528
1529 int security_mmap_addr(unsigned long addr)
1530 {
1531         return call_int_hook(mmap_addr, 0, addr);
1532 }
1533
1534 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1535                             unsigned long prot)
1536 {
1537         int ret;
1538
1539         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1540         if (ret)
1541                 return ret;
1542         return ima_file_mprotect(vma, prot);
1543 }
1544
1545 int security_file_lock(struct file *file, unsigned int cmd)
1546 {
1547         return call_int_hook(file_lock, 0, file, cmd);
1548 }
1549
1550 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1551 {
1552         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1553 }
1554
1555 void security_file_set_fowner(struct file *file)
1556 {
1557         call_void_hook(file_set_fowner, file);
1558 }
1559
1560 int security_file_send_sigiotask(struct task_struct *tsk,
1561                                   struct fown_struct *fown, int sig)
1562 {
1563         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1564 }
1565
1566 int security_file_receive(struct file *file)
1567 {
1568         return call_int_hook(file_receive, 0, file);
1569 }
1570
1571 int security_file_open(struct file *file)
1572 {
1573         int ret;
1574
1575         ret = call_int_hook(file_open, 0, file);
1576         if (ret)
1577                 return ret;
1578
1579         return fsnotify_perm(file, MAY_OPEN);
1580 }
1581
1582 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1583 {
1584         int rc = lsm_task_alloc(task);
1585
1586         if (rc)
1587                 return rc;
1588         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1589         if (unlikely(rc))
1590                 security_task_free(task);
1591         return rc;
1592 }
1593
1594 void security_task_free(struct task_struct *task)
1595 {
1596         call_void_hook(task_free, task);
1597
1598         kfree(task->security);
1599         task->security = NULL;
1600 }
1601
1602 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1603 {
1604         int rc = lsm_cred_alloc(cred, gfp);
1605
1606         if (rc)
1607                 return rc;
1608
1609         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1610         if (unlikely(rc))
1611                 security_cred_free(cred);
1612         return rc;
1613 }
1614
1615 void security_cred_free(struct cred *cred)
1616 {
1617         /*
1618          * There is a failure case in prepare_creds() that
1619          * may result in a call here with ->security being NULL.
1620          */
1621         if (unlikely(cred->security == NULL))
1622                 return;
1623
1624         call_void_hook(cred_free, cred);
1625
1626         kfree(cred->security);
1627         cred->security = NULL;
1628 }
1629
1630 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1631 {
1632         int rc = lsm_cred_alloc(new, gfp);
1633
1634         if (rc)
1635                 return rc;
1636
1637         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1638         if (unlikely(rc))
1639                 security_cred_free(new);
1640         return rc;
1641 }
1642
1643 void security_transfer_creds(struct cred *new, const struct cred *old)
1644 {
1645         call_void_hook(cred_transfer, new, old);
1646 }
1647
1648 void security_cred_getsecid(const struct cred *c, u32 *secid)
1649 {
1650         *secid = 0;
1651         call_void_hook(cred_getsecid, c, secid);
1652 }
1653 EXPORT_SYMBOL(security_cred_getsecid);
1654
1655 int security_kernel_act_as(struct cred *new, u32 secid)
1656 {
1657         return call_int_hook(kernel_act_as, 0, new, secid);
1658 }
1659
1660 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1661 {
1662         return call_int_hook(kernel_create_files_as, 0, new, inode);
1663 }
1664
1665 int security_kernel_module_request(char *kmod_name)
1666 {
1667         int ret;
1668
1669         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1670         if (ret)
1671                 return ret;
1672         return integrity_kernel_module_request(kmod_name);
1673 }
1674
1675 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1676                               bool contents)
1677 {
1678         int ret;
1679
1680         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1681         if (ret)
1682                 return ret;
1683         return ima_read_file(file, id, contents);
1684 }
1685 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1686
1687 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1688                                    enum kernel_read_file_id id)
1689 {
1690         int ret;
1691
1692         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1693         if (ret)
1694                 return ret;
1695         return ima_post_read_file(file, buf, size, id);
1696 }
1697 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1698
1699 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1700 {
1701         int ret;
1702
1703         ret = call_int_hook(kernel_load_data, 0, id, contents);
1704         if (ret)
1705                 return ret;
1706         return ima_load_data(id, contents);
1707 }
1708 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1709
1710 int security_kernel_post_load_data(char *buf, loff_t size,
1711                                    enum kernel_load_data_id id,
1712                                    char *description)
1713 {
1714         int ret;
1715
1716         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1717                             description);
1718         if (ret)
1719                 return ret;
1720         return ima_post_load_data(buf, size, id, description);
1721 }
1722 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1723
1724 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1725                              int flags)
1726 {
1727         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1728 }
1729
1730 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1731                                  int flags)
1732 {
1733         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1734 }
1735
1736 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1737 {
1738         return call_int_hook(task_setpgid, 0, p, pgid);
1739 }
1740
1741 int security_task_getpgid(struct task_struct *p)
1742 {
1743         return call_int_hook(task_getpgid, 0, p);
1744 }
1745
1746 int security_task_getsid(struct task_struct *p)
1747 {
1748         return call_int_hook(task_getsid, 0, p);
1749 }
1750
1751 void security_task_getsecid(struct task_struct *p, u32 *secid)
1752 {
1753         *secid = 0;
1754         call_void_hook(task_getsecid, p, secid);
1755 }
1756 EXPORT_SYMBOL(security_task_getsecid);
1757
1758 int security_task_setnice(struct task_struct *p, int nice)
1759 {
1760         return call_int_hook(task_setnice, 0, p, nice);
1761 }
1762
1763 int security_task_setioprio(struct task_struct *p, int ioprio)
1764 {
1765         return call_int_hook(task_setioprio, 0, p, ioprio);
1766 }
1767
1768 int security_task_getioprio(struct task_struct *p)
1769 {
1770         return call_int_hook(task_getioprio, 0, p);
1771 }
1772
1773 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1774                           unsigned int flags)
1775 {
1776         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1777 }
1778
1779 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1780                 struct rlimit *new_rlim)
1781 {
1782         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1783 }
1784
1785 int security_task_setscheduler(struct task_struct *p)
1786 {
1787         return call_int_hook(task_setscheduler, 0, p);
1788 }
1789
1790 int security_task_getscheduler(struct task_struct *p)
1791 {
1792         return call_int_hook(task_getscheduler, 0, p);
1793 }
1794
1795 int security_task_movememory(struct task_struct *p)
1796 {
1797         return call_int_hook(task_movememory, 0, p);
1798 }
1799
1800 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1801                         int sig, const struct cred *cred)
1802 {
1803         return call_int_hook(task_kill, 0, p, info, sig, cred);
1804 }
1805
1806 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1807                          unsigned long arg4, unsigned long arg5)
1808 {
1809         int thisrc;
1810         int rc = LSM_RET_DEFAULT(task_prctl);
1811         struct security_hook_list *hp;
1812
1813         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1814                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1815                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1816                         rc = thisrc;
1817                         if (thisrc != 0)
1818                                 break;
1819                 }
1820         }
1821         return rc;
1822 }
1823
1824 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1825 {
1826         call_void_hook(task_to_inode, p, inode);
1827 }
1828
1829 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1830 {
1831         return call_int_hook(ipc_permission, 0, ipcp, flag);
1832 }
1833
1834 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1835 {
1836         *secid = 0;
1837         call_void_hook(ipc_getsecid, ipcp, secid);
1838 }
1839
1840 int security_msg_msg_alloc(struct msg_msg *msg)
1841 {
1842         int rc = lsm_msg_msg_alloc(msg);
1843
1844         if (unlikely(rc))
1845                 return rc;
1846         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1847         if (unlikely(rc))
1848                 security_msg_msg_free(msg);
1849         return rc;
1850 }
1851
1852 void security_msg_msg_free(struct msg_msg *msg)
1853 {
1854         call_void_hook(msg_msg_free_security, msg);
1855         kfree(msg->security);
1856         msg->security = NULL;
1857 }
1858
1859 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1860 {
1861         int rc = lsm_ipc_alloc(msq);
1862
1863         if (unlikely(rc))
1864                 return rc;
1865         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1866         if (unlikely(rc))
1867                 security_msg_queue_free(msq);
1868         return rc;
1869 }
1870
1871 void security_msg_queue_free(struct kern_ipc_perm *msq)
1872 {
1873         call_void_hook(msg_queue_free_security, msq);
1874         kfree(msq->security);
1875         msq->security = NULL;
1876 }
1877
1878 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1879 {
1880         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1881 }
1882
1883 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1884 {
1885         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1886 }
1887
1888 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1889                                struct msg_msg *msg, int msqflg)
1890 {
1891         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1892 }
1893
1894 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1895                                struct task_struct *target, long type, int mode)
1896 {
1897         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1898 }
1899
1900 int security_shm_alloc(struct kern_ipc_perm *shp)
1901 {
1902         int rc = lsm_ipc_alloc(shp);
1903
1904         if (unlikely(rc))
1905                 return rc;
1906         rc = call_int_hook(shm_alloc_security, 0, shp);
1907         if (unlikely(rc))
1908                 security_shm_free(shp);
1909         return rc;
1910 }
1911
1912 void security_shm_free(struct kern_ipc_perm *shp)
1913 {
1914         call_void_hook(shm_free_security, shp);
1915         kfree(shp->security);
1916         shp->security = NULL;
1917 }
1918
1919 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1920 {
1921         return call_int_hook(shm_associate, 0, shp, shmflg);
1922 }
1923
1924 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1925 {
1926         return call_int_hook(shm_shmctl, 0, shp, cmd);
1927 }
1928
1929 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1930 {
1931         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1932 }
1933
1934 int security_sem_alloc(struct kern_ipc_perm *sma)
1935 {
1936         int rc = lsm_ipc_alloc(sma);
1937
1938         if (unlikely(rc))
1939                 return rc;
1940         rc = call_int_hook(sem_alloc_security, 0, sma);
1941         if (unlikely(rc))
1942                 security_sem_free(sma);
1943         return rc;
1944 }
1945
1946 void security_sem_free(struct kern_ipc_perm *sma)
1947 {
1948         call_void_hook(sem_free_security, sma);
1949         kfree(sma->security);
1950         sma->security = NULL;
1951 }
1952
1953 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1954 {
1955         return call_int_hook(sem_associate, 0, sma, semflg);
1956 }
1957
1958 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1959 {
1960         return call_int_hook(sem_semctl, 0, sma, cmd);
1961 }
1962
1963 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1964                         unsigned nsops, int alter)
1965 {
1966         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1967 }
1968
1969 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1970 {
1971         if (unlikely(inode && IS_PRIVATE(inode)))
1972                 return;
1973         call_void_hook(d_instantiate, dentry, inode);
1974 }
1975 EXPORT_SYMBOL(security_d_instantiate);
1976
1977 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1978                                 char **value)
1979 {
1980         struct security_hook_list *hp;
1981
1982         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1983                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1984                         continue;
1985                 return hp->hook.getprocattr(p, name, value);
1986         }
1987         return LSM_RET_DEFAULT(getprocattr);
1988 }
1989
1990 int security_setprocattr(const char *lsm, const char *name, void *value,
1991                          size_t size)
1992 {
1993         struct security_hook_list *hp;
1994
1995         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1996                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1997                         continue;
1998                 return hp->hook.setprocattr(name, value, size);
1999         }
2000         return LSM_RET_DEFAULT(setprocattr);
2001 }
2002
2003 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2004 {
2005         return call_int_hook(netlink_send, 0, sk, skb);
2006 }
2007
2008 int security_ismaclabel(const char *name)
2009 {
2010         return call_int_hook(ismaclabel, 0, name);
2011 }
2012 EXPORT_SYMBOL(security_ismaclabel);
2013
2014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2015 {
2016         struct security_hook_list *hp;
2017         int rc;
2018
2019         /*
2020          * Currently, only one LSM can implement secid_to_secctx (i.e this
2021          * LSM hook is not "stackable").
2022          */
2023         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2024                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2025                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2026                         return rc;
2027         }
2028
2029         return LSM_RET_DEFAULT(secid_to_secctx);
2030 }
2031 EXPORT_SYMBOL(security_secid_to_secctx);
2032
2033 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2034 {
2035         *secid = 0;
2036         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2037 }
2038 EXPORT_SYMBOL(security_secctx_to_secid);
2039
2040 void security_release_secctx(char *secdata, u32 seclen)
2041 {
2042         call_void_hook(release_secctx, secdata, seclen);
2043 }
2044 EXPORT_SYMBOL(security_release_secctx);
2045
2046 void security_inode_invalidate_secctx(struct inode *inode)
2047 {
2048         call_void_hook(inode_invalidate_secctx, inode);
2049 }
2050 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2051
2052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2053 {
2054         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2055 }
2056 EXPORT_SYMBOL(security_inode_notifysecctx);
2057
2058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2059 {
2060         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2061 }
2062 EXPORT_SYMBOL(security_inode_setsecctx);
2063
2064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2065 {
2066         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2067 }
2068 EXPORT_SYMBOL(security_inode_getsecctx);
2069
2070 #ifdef CONFIG_WATCH_QUEUE
2071 int security_post_notification(const struct cred *w_cred,
2072                                const struct cred *cred,
2073                                struct watch_notification *n)
2074 {
2075         return call_int_hook(post_notification, 0, w_cred, cred, n);
2076 }
2077 #endif /* CONFIG_WATCH_QUEUE */
2078
2079 #ifdef CONFIG_KEY_NOTIFICATIONS
2080 int security_watch_key(struct key *key)
2081 {
2082         return call_int_hook(watch_key, 0, key);
2083 }
2084 #endif
2085
2086 #ifdef CONFIG_SECURITY_NETWORK
2087
2088 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2089 {
2090         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2091 }
2092 EXPORT_SYMBOL(security_unix_stream_connect);
2093
2094 int security_unix_may_send(struct socket *sock,  struct socket *other)
2095 {
2096         return call_int_hook(unix_may_send, 0, sock, other);
2097 }
2098 EXPORT_SYMBOL(security_unix_may_send);
2099
2100 int security_socket_create(int family, int type, int protocol, int kern)
2101 {
2102         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2103 }
2104
2105 int security_socket_post_create(struct socket *sock, int family,
2106                                 int type, int protocol, int kern)
2107 {
2108         return call_int_hook(socket_post_create, 0, sock, family, type,
2109                                                 protocol, kern);
2110 }
2111
2112 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2113 {
2114         return call_int_hook(socket_socketpair, 0, socka, sockb);
2115 }
2116 EXPORT_SYMBOL(security_socket_socketpair);
2117
2118 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2119 {
2120         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2121 }
2122
2123 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2124 {
2125         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2126 }
2127
2128 int security_socket_listen(struct socket *sock, int backlog)
2129 {
2130         return call_int_hook(socket_listen, 0, sock, backlog);
2131 }
2132
2133 int security_socket_accept(struct socket *sock, struct socket *newsock)
2134 {
2135         return call_int_hook(socket_accept, 0, sock, newsock);
2136 }
2137
2138 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2139 {
2140         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2141 }
2142
2143 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2144                             int size, int flags)
2145 {
2146         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2147 }
2148
2149 int security_socket_getsockname(struct socket *sock)
2150 {
2151         return call_int_hook(socket_getsockname, 0, sock);
2152 }
2153
2154 int security_socket_getpeername(struct socket *sock)
2155 {
2156         return call_int_hook(socket_getpeername, 0, sock);
2157 }
2158
2159 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2160 {
2161         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2162 }
2163
2164 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2165 {
2166         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2167 }
2168
2169 int security_socket_shutdown(struct socket *sock, int how)
2170 {
2171         return call_int_hook(socket_shutdown, 0, sock, how);
2172 }
2173
2174 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2175 {
2176         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2177 }
2178 EXPORT_SYMBOL(security_sock_rcv_skb);
2179
2180 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2181                                       int __user *optlen, unsigned len)
2182 {
2183         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2184                                 optval, optlen, len);
2185 }
2186
2187 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2188 {
2189         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2190                              skb, secid);
2191 }
2192 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2193
2194 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2195 {
2196         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2197 }
2198
2199 void security_sk_free(struct sock *sk)
2200 {
2201         call_void_hook(sk_free_security, sk);
2202 }
2203
2204 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2205 {
2206         call_void_hook(sk_clone_security, sk, newsk);
2207 }
2208 EXPORT_SYMBOL(security_sk_clone);
2209
2210 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2211 {
2212         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2213 }
2214 EXPORT_SYMBOL(security_sk_classify_flow);
2215
2216 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2217 {
2218         call_void_hook(req_classify_flow, req, fl);
2219 }
2220 EXPORT_SYMBOL(security_req_classify_flow);
2221
2222 void security_sock_graft(struct sock *sk, struct socket *parent)
2223 {
2224         call_void_hook(sock_graft, sk, parent);
2225 }
2226 EXPORT_SYMBOL(security_sock_graft);
2227
2228 int security_inet_conn_request(struct sock *sk,
2229                         struct sk_buff *skb, struct request_sock *req)
2230 {
2231         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2232 }
2233 EXPORT_SYMBOL(security_inet_conn_request);
2234
2235 void security_inet_csk_clone(struct sock *newsk,
2236                         const struct request_sock *req)
2237 {
2238         call_void_hook(inet_csk_clone, newsk, req);
2239 }
2240
2241 void security_inet_conn_established(struct sock *sk,
2242                         struct sk_buff *skb)
2243 {
2244         call_void_hook(inet_conn_established, sk, skb);
2245 }
2246 EXPORT_SYMBOL(security_inet_conn_established);
2247
2248 int security_secmark_relabel_packet(u32 secid)
2249 {
2250         return call_int_hook(secmark_relabel_packet, 0, secid);
2251 }
2252 EXPORT_SYMBOL(security_secmark_relabel_packet);
2253
2254 void security_secmark_refcount_inc(void)
2255 {
2256         call_void_hook(secmark_refcount_inc);
2257 }
2258 EXPORT_SYMBOL(security_secmark_refcount_inc);
2259
2260 void security_secmark_refcount_dec(void)
2261 {
2262         call_void_hook(secmark_refcount_dec);
2263 }
2264 EXPORT_SYMBOL(security_secmark_refcount_dec);
2265
2266 int security_tun_dev_alloc_security(void **security)
2267 {
2268         return call_int_hook(tun_dev_alloc_security, 0, security);
2269 }
2270 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2271
2272 void security_tun_dev_free_security(void *security)
2273 {
2274         call_void_hook(tun_dev_free_security, security);
2275 }
2276 EXPORT_SYMBOL(security_tun_dev_free_security);
2277
2278 int security_tun_dev_create(void)
2279 {
2280         return call_int_hook(tun_dev_create, 0);
2281 }
2282 EXPORT_SYMBOL(security_tun_dev_create);
2283
2284 int security_tun_dev_attach_queue(void *security)
2285 {
2286         return call_int_hook(tun_dev_attach_queue, 0, security);
2287 }
2288 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2289
2290 int security_tun_dev_attach(struct sock *sk, void *security)
2291 {
2292         return call_int_hook(tun_dev_attach, 0, sk, security);
2293 }
2294 EXPORT_SYMBOL(security_tun_dev_attach);
2295
2296 int security_tun_dev_open(void *security)
2297 {
2298         return call_int_hook(tun_dev_open, 0, security);
2299 }
2300 EXPORT_SYMBOL(security_tun_dev_open);
2301
2302 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2303 {
2304         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2305 }
2306 EXPORT_SYMBOL(security_sctp_assoc_request);
2307
2308 int security_sctp_bind_connect(struct sock *sk, int optname,
2309                                struct sockaddr *address, int addrlen)
2310 {
2311         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2312                              address, addrlen);
2313 }
2314 EXPORT_SYMBOL(security_sctp_bind_connect);
2315
2316 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2317                             struct sock *newsk)
2318 {
2319         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2320 }
2321 EXPORT_SYMBOL(security_sctp_sk_clone);
2322
2323 #endif  /* CONFIG_SECURITY_NETWORK */
2324
2325 #ifdef CONFIG_SECURITY_INFINIBAND
2326
2327 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2328 {
2329         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2330 }
2331 EXPORT_SYMBOL(security_ib_pkey_access);
2332
2333 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2334 {
2335         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2336 }
2337 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2338
2339 int security_ib_alloc_security(void **sec)
2340 {
2341         return call_int_hook(ib_alloc_security, 0, sec);
2342 }
2343 EXPORT_SYMBOL(security_ib_alloc_security);
2344
2345 void security_ib_free_security(void *sec)
2346 {
2347         call_void_hook(ib_free_security, sec);
2348 }
2349 EXPORT_SYMBOL(security_ib_free_security);
2350 #endif  /* CONFIG_SECURITY_INFINIBAND */
2351
2352 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2353
2354 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2355                                struct xfrm_user_sec_ctx *sec_ctx,
2356                                gfp_t gfp)
2357 {
2358         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2359 }
2360 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2361
2362 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2363                               struct xfrm_sec_ctx **new_ctxp)
2364 {
2365         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2366 }
2367
2368 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2369 {
2370         call_void_hook(xfrm_policy_free_security, ctx);
2371 }
2372 EXPORT_SYMBOL(security_xfrm_policy_free);
2373
2374 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2375 {
2376         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2377 }
2378
2379 int security_xfrm_state_alloc(struct xfrm_state *x,
2380                               struct xfrm_user_sec_ctx *sec_ctx)
2381 {
2382         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2383 }
2384 EXPORT_SYMBOL(security_xfrm_state_alloc);
2385
2386 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2387                                       struct xfrm_sec_ctx *polsec, u32 secid)
2388 {
2389         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2390 }
2391
2392 int security_xfrm_state_delete(struct xfrm_state *x)
2393 {
2394         return call_int_hook(xfrm_state_delete_security, 0, x);
2395 }
2396 EXPORT_SYMBOL(security_xfrm_state_delete);
2397
2398 void security_xfrm_state_free(struct xfrm_state *x)
2399 {
2400         call_void_hook(xfrm_state_free_security, x);
2401 }
2402
2403 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2404 {
2405         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2406 }
2407
2408 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2409                                        struct xfrm_policy *xp,
2410                                        const struct flowi *fl)
2411 {
2412         struct security_hook_list *hp;
2413         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2414
2415         /*
2416          * Since this function is expected to return 0 or 1, the judgment
2417          * becomes difficult if multiple LSMs supply this call. Fortunately,
2418          * we can use the first LSM's judgment because currently only SELinux
2419          * supplies this call.
2420          *
2421          * For speed optimization, we explicitly break the loop rather than
2422          * using the macro
2423          */
2424         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2425                                 list) {
2426                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2427                 break;
2428         }
2429         return rc;
2430 }
2431
2432 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2433 {
2434         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2435 }
2436
2437 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2438 {
2439         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2440                                 0);
2441
2442         BUG_ON(rc);
2443 }
2444 EXPORT_SYMBOL(security_skb_classify_flow);
2445
2446 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2447
2448 #ifdef CONFIG_KEYS
2449
2450 int security_key_alloc(struct key *key, const struct cred *cred,
2451                        unsigned long flags)
2452 {
2453         return call_int_hook(key_alloc, 0, key, cred, flags);
2454 }
2455
2456 void security_key_free(struct key *key)
2457 {
2458         call_void_hook(key_free, key);
2459 }
2460
2461 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2462                             enum key_need_perm need_perm)
2463 {
2464         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2465 }
2466
2467 int security_key_getsecurity(struct key *key, char **_buffer)
2468 {
2469         *_buffer = NULL;
2470         return call_int_hook(key_getsecurity, 0, key, _buffer);
2471 }
2472
2473 #endif  /* CONFIG_KEYS */
2474
2475 #ifdef CONFIG_AUDIT
2476
2477 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2478 {
2479         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2480 }
2481
2482 int security_audit_rule_known(struct audit_krule *krule)
2483 {
2484         return call_int_hook(audit_rule_known, 0, krule);
2485 }
2486
2487 void security_audit_rule_free(void *lsmrule)
2488 {
2489         call_void_hook(audit_rule_free, lsmrule);
2490 }
2491
2492 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2493 {
2494         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2495 }
2496 #endif /* CONFIG_AUDIT */
2497
2498 #ifdef CONFIG_BPF_SYSCALL
2499 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2500 {
2501         return call_int_hook(bpf, 0, cmd, attr, size);
2502 }
2503 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2504 {
2505         return call_int_hook(bpf_map, 0, map, fmode);
2506 }
2507 int security_bpf_prog(struct bpf_prog *prog)
2508 {
2509         return call_int_hook(bpf_prog, 0, prog);
2510 }
2511 int security_bpf_map_alloc(struct bpf_map *map)
2512 {
2513         return call_int_hook(bpf_map_alloc_security, 0, map);
2514 }
2515 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2516 {
2517         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2518 }
2519 void security_bpf_map_free(struct bpf_map *map)
2520 {
2521         call_void_hook(bpf_map_free_security, map);
2522 }
2523 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2524 {
2525         call_void_hook(bpf_prog_free_security, aux);
2526 }
2527 #endif /* CONFIG_BPF_SYSCALL */
2528
2529 int security_locked_down(enum lockdown_reason what)
2530 {
2531         return call_int_hook(locked_down, 0, what);
2532 }
2533 EXPORT_SYMBOL(security_locked_down);
2534
2535 #ifdef CONFIG_PERF_EVENTS
2536 int security_perf_event_open(struct perf_event_attr *attr, int type)
2537 {
2538         return call_int_hook(perf_event_open, 0, attr, type);
2539 }
2540
2541 int security_perf_event_alloc(struct perf_event *event)
2542 {
2543         return call_int_hook(perf_event_alloc, 0, event);
2544 }
2545
2546 void security_perf_event_free(struct perf_event *event)
2547 {
2548         call_void_hook(perf_event_free, event);
2549 }
2550
2551 int security_perf_event_read(struct perf_event *event)
2552 {
2553         return call_int_hook(perf_event_read, 0, event);
2554 }
2555
2556 int security_perf_event_write(struct perf_event *event)
2557 {
2558         return call_int_hook(perf_event_write, 0, event);
2559 }
2560 #endif /* CONFIG_PERF_EVENTS */