Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28
29 #define MAX_LSM_EVM_XATTR       2
30
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33         CONFIG_DEFAULT_SECURITY;
34
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37         .name   = "default",
38 };
39
40 static inline int __init verify(struct security_operations *ops)
41 {
42         /* verify the security_operations structure exists */
43         if (!ops)
44                 return -EINVAL;
45         security_fixup_ops(ops);
46         return 0;
47 }
48
49 static void __init do_security_initcalls(void)
50 {
51         initcall_t *call;
52         call = __security_initcall_start;
53         while (call < __security_initcall_end) {
54                 (*call) ();
55                 call++;
56         }
57 }
58
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66         printk(KERN_INFO "Security Framework initialized\n");
67
68         security_fixup_ops(&default_security_ops);
69         security_ops = &default_security_ops;
70         do_security_initcalls();
71
72         return 0;
73 }
74
75 void reset_security_ops(void)
76 {
77         security_ops = &default_security_ops;
78 }
79
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84         return 1;
85 }
86 __setup("security=", choose_lsm);
87
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *      -The passed LSM is the one chosen by user at boot time,
98  *      -or the passed LSM is configured as the default and the user did not
99  *       choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104         return !strcmp(ops->name, chosen_lsm);
105 }
106
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121         if (verify(ops)) {
122                 printk(KERN_DEBUG "%s could not verify "
123                        "security_operations structure.\n", __func__);
124                 return -EINVAL;
125         }
126
127         if (security_ops != &default_security_ops)
128                 return -EAGAIN;
129
130         security_ops = ops;
131
132         return 0;
133 }
134
135 /* Security operations */
136
137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138 {
139         return security_ops->ptrace_access_check(child, mode);
140 }
141
142 int security_ptrace_traceme(struct task_struct *parent)
143 {
144         return security_ops->ptrace_traceme(parent);
145 }
146
147 int security_capget(struct task_struct *target,
148                      kernel_cap_t *effective,
149                      kernel_cap_t *inheritable,
150                      kernel_cap_t *permitted)
151 {
152         return security_ops->capget(target, effective, inheritable, permitted);
153 }
154
155 int security_capset(struct cred *new, const struct cred *old,
156                     const kernel_cap_t *effective,
157                     const kernel_cap_t *inheritable,
158                     const kernel_cap_t *permitted)
159 {
160         return security_ops->capset(new, old,
161                                     effective, inheritable, permitted);
162 }
163
164 int security_capable(const struct cred *cred, struct user_namespace *ns,
165                      int cap)
166 {
167         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
168 }
169
170 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
171                              int cap)
172 {
173         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
174 }
175
176 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177 {
178         return security_ops->quotactl(cmds, type, id, sb);
179 }
180
181 int security_quota_on(struct dentry *dentry)
182 {
183         return security_ops->quota_on(dentry);
184 }
185
186 int security_syslog(int type)
187 {
188         return security_ops->syslog(type);
189 }
190
191 int security_settime(const struct timespec *ts, const struct timezone *tz)
192 {
193         return security_ops->settime(ts, tz);
194 }
195
196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197 {
198         return security_ops->vm_enough_memory(mm, pages);
199 }
200
201 int security_bprm_set_creds(struct linux_binprm *bprm)
202 {
203         return security_ops->bprm_set_creds(bprm);
204 }
205
206 int security_bprm_check(struct linux_binprm *bprm)
207 {
208         int ret;
209
210         ret = security_ops->bprm_check_security(bprm);
211         if (ret)
212                 return ret;
213         return ima_bprm_check(bprm);
214 }
215
216 void security_bprm_committing_creds(struct linux_binprm *bprm)
217 {
218         security_ops->bprm_committing_creds(bprm);
219 }
220
221 void security_bprm_committed_creds(struct linux_binprm *bprm)
222 {
223         security_ops->bprm_committed_creds(bprm);
224 }
225
226 int security_bprm_secureexec(struct linux_binprm *bprm)
227 {
228         return security_ops->bprm_secureexec(bprm);
229 }
230
231 int security_sb_alloc(struct super_block *sb)
232 {
233         return security_ops->sb_alloc_security(sb);
234 }
235
236 void security_sb_free(struct super_block *sb)
237 {
238         security_ops->sb_free_security(sb);
239 }
240
241 int security_sb_copy_data(char *orig, char *copy)
242 {
243         return security_ops->sb_copy_data(orig, copy);
244 }
245 EXPORT_SYMBOL(security_sb_copy_data);
246
247 int security_sb_remount(struct super_block *sb, void *data)
248 {
249         return security_ops->sb_remount(sb, data);
250 }
251
252 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
253 {
254         return security_ops->sb_kern_mount(sb, flags, data);
255 }
256
257 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
258 {
259         return security_ops->sb_show_options(m, sb);
260 }
261
262 int security_sb_statfs(struct dentry *dentry)
263 {
264         return security_ops->sb_statfs(dentry);
265 }
266
267 int security_sb_mount(char *dev_name, struct path *path,
268                        char *type, unsigned long flags, void *data)
269 {
270         return security_ops->sb_mount(dev_name, path, type, flags, data);
271 }
272
273 int security_sb_umount(struct vfsmount *mnt, int flags)
274 {
275         return security_ops->sb_umount(mnt, flags);
276 }
277
278 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
279 {
280         return security_ops->sb_pivotroot(old_path, new_path);
281 }
282
283 int security_sb_set_mnt_opts(struct super_block *sb,
284                                 struct security_mnt_opts *opts)
285 {
286         return security_ops->sb_set_mnt_opts(sb, opts);
287 }
288 EXPORT_SYMBOL(security_sb_set_mnt_opts);
289
290 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
291                                 struct super_block *newsb)
292 {
293         security_ops->sb_clone_mnt_opts(oldsb, newsb);
294 }
295 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
296
297 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
298 {
299         return security_ops->sb_parse_opts_str(options, opts);
300 }
301 EXPORT_SYMBOL(security_sb_parse_opts_str);
302
303 int security_inode_alloc(struct inode *inode)
304 {
305         inode->i_security = NULL;
306         return security_ops->inode_alloc_security(inode);
307 }
308
309 void security_inode_free(struct inode *inode)
310 {
311         integrity_inode_free(inode);
312         security_ops->inode_free_security(inode);
313 }
314
315 int security_inode_init_security(struct inode *inode, struct inode *dir,
316                                  const struct qstr *qstr,
317                                  const initxattrs initxattrs, void *fs_data)
318 {
319         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
320         struct xattr *lsm_xattr, *evm_xattr, *xattr;
321         int ret;
322
323         if (unlikely(IS_PRIVATE(inode)))
324                 return 0;
325
326         memset(new_xattrs, 0, sizeof new_xattrs);
327         if (!initxattrs)
328                 return security_ops->inode_init_security(inode, dir, qstr,
329                                                          NULL, NULL, NULL);
330         lsm_xattr = new_xattrs;
331         ret = security_ops->inode_init_security(inode, dir, qstr,
332                                                 &lsm_xattr->name,
333                                                 &lsm_xattr->value,
334                                                 &lsm_xattr->value_len);
335         if (ret)
336                 goto out;
337
338         evm_xattr = lsm_xattr + 1;
339         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
340         if (ret)
341                 goto out;
342         ret = initxattrs(inode, new_xattrs, fs_data);
343 out:
344         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
345                 kfree(xattr->name);
346                 kfree(xattr->value);
347         }
348         return (ret == -EOPNOTSUPP) ? 0 : ret;
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351
352 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
353                                      const struct qstr *qstr, char **name,
354                                      void **value, size_t *len)
355 {
356         if (unlikely(IS_PRIVATE(inode)))
357                 return -EOPNOTSUPP;
358         return security_ops->inode_init_security(inode, dir, qstr, name, value,
359                                                  len);
360 }
361 EXPORT_SYMBOL(security_old_inode_init_security);
362
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
365                         unsigned int dev)
366 {
367         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368                 return 0;
369         return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
374 {
375         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376                 return 0;
377         return security_ops->path_mkdir(dir, dentry, mode);
378 }
379 EXPORT_SYMBOL(security_path_mkdir);
380
381 int security_path_rmdir(struct path *dir, struct dentry *dentry)
382 {
383         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384                 return 0;
385         return security_ops->path_rmdir(dir, dentry);
386 }
387
388 int security_path_unlink(struct path *dir, struct dentry *dentry)
389 {
390         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391                 return 0;
392         return security_ops->path_unlink(dir, dentry);
393 }
394 EXPORT_SYMBOL(security_path_unlink);
395
396 int security_path_symlink(struct path *dir, struct dentry *dentry,
397                           const char *old_name)
398 {
399         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400                 return 0;
401         return security_ops->path_symlink(dir, dentry, old_name);
402 }
403
404 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
405                        struct dentry *new_dentry)
406 {
407         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
408                 return 0;
409         return security_ops->path_link(old_dentry, new_dir, new_dentry);
410 }
411
412 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
413                          struct path *new_dir, struct dentry *new_dentry)
414 {
415         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
416                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
417                 return 0;
418         return security_ops->path_rename(old_dir, old_dentry, new_dir,
419                                          new_dentry);
420 }
421 EXPORT_SYMBOL(security_path_rename);
422
423 int security_path_truncate(struct path *path)
424 {
425         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426                 return 0;
427         return security_ops->path_truncate(path);
428 }
429
430 int security_path_chmod(struct path *path, umode_t mode)
431 {
432         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
433                 return 0;
434         return security_ops->path_chmod(path, mode);
435 }
436
437 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
438 {
439         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
440                 return 0;
441         return security_ops->path_chown(path, uid, gid);
442 }
443
444 int security_path_chroot(struct path *path)
445 {
446         return security_ops->path_chroot(path);
447 }
448 #endif
449
450 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
451 {
452         if (unlikely(IS_PRIVATE(dir)))
453                 return 0;
454         return security_ops->inode_create(dir, dentry, mode);
455 }
456 EXPORT_SYMBOL_GPL(security_inode_create);
457
458 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
459                          struct dentry *new_dentry)
460 {
461         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
462                 return 0;
463         return security_ops->inode_link(old_dentry, dir, new_dentry);
464 }
465
466 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
467 {
468         if (unlikely(IS_PRIVATE(dentry->d_inode)))
469                 return 0;
470         return security_ops->inode_unlink(dir, dentry);
471 }
472
473 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
474                             const char *old_name)
475 {
476         if (unlikely(IS_PRIVATE(dir)))
477                 return 0;
478         return security_ops->inode_symlink(dir, dentry, old_name);
479 }
480
481 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
482 {
483         if (unlikely(IS_PRIVATE(dir)))
484                 return 0;
485         return security_ops->inode_mkdir(dir, dentry, mode);
486 }
487 EXPORT_SYMBOL_GPL(security_inode_mkdir);
488
489 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
490 {
491         if (unlikely(IS_PRIVATE(dentry->d_inode)))
492                 return 0;
493         return security_ops->inode_rmdir(dir, dentry);
494 }
495
496 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
497 {
498         if (unlikely(IS_PRIVATE(dir)))
499                 return 0;
500         return security_ops->inode_mknod(dir, dentry, mode, dev);
501 }
502
503 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
504                            struct inode *new_dir, struct dentry *new_dentry)
505 {
506         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
507             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
508                 return 0;
509         return security_ops->inode_rename(old_dir, old_dentry,
510                                            new_dir, new_dentry);
511 }
512
513 int security_inode_readlink(struct dentry *dentry)
514 {
515         if (unlikely(IS_PRIVATE(dentry->d_inode)))
516                 return 0;
517         return security_ops->inode_readlink(dentry);
518 }
519
520 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
521 {
522         if (unlikely(IS_PRIVATE(dentry->d_inode)))
523                 return 0;
524         return security_ops->inode_follow_link(dentry, nd);
525 }
526
527 int security_inode_permission(struct inode *inode, int mask)
528 {
529         if (unlikely(IS_PRIVATE(inode)))
530                 return 0;
531         return security_ops->inode_permission(inode, mask);
532 }
533
534 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536         int ret;
537
538         if (unlikely(IS_PRIVATE(dentry->d_inode)))
539                 return 0;
540         ret = security_ops->inode_setattr(dentry, attr);
541         if (ret)
542                 return ret;
543         return evm_inode_setattr(dentry, attr);
544 }
545 EXPORT_SYMBOL_GPL(security_inode_setattr);
546
547 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
548 {
549         if (unlikely(IS_PRIVATE(dentry->d_inode)))
550                 return 0;
551         return security_ops->inode_getattr(mnt, dentry);
552 }
553
554 int security_inode_setxattr(struct dentry *dentry, const char *name,
555                             const void *value, size_t size, int flags)
556 {
557         int ret;
558
559         if (unlikely(IS_PRIVATE(dentry->d_inode)))
560                 return 0;
561         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
562         if (ret)
563                 return ret;
564         return evm_inode_setxattr(dentry, name, value, size);
565 }
566
567 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
568                                   const void *value, size_t size, int flags)
569 {
570         if (unlikely(IS_PRIVATE(dentry->d_inode)))
571                 return;
572         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
573         evm_inode_post_setxattr(dentry, name, value, size);
574 }
575
576 int security_inode_getxattr(struct dentry *dentry, const char *name)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return 0;
580         return security_ops->inode_getxattr(dentry, name);
581 }
582
583 int security_inode_listxattr(struct dentry *dentry)
584 {
585         if (unlikely(IS_PRIVATE(dentry->d_inode)))
586                 return 0;
587         return security_ops->inode_listxattr(dentry);
588 }
589
590 int security_inode_removexattr(struct dentry *dentry, const char *name)
591 {
592         int ret;
593
594         if (unlikely(IS_PRIVATE(dentry->d_inode)))
595                 return 0;
596         ret = security_ops->inode_removexattr(dentry, name);
597         if (ret)
598                 return ret;
599         return evm_inode_removexattr(dentry, name);
600 }
601
602 int security_inode_need_killpriv(struct dentry *dentry)
603 {
604         return security_ops->inode_need_killpriv(dentry);
605 }
606
607 int security_inode_killpriv(struct dentry *dentry)
608 {
609         return security_ops->inode_killpriv(dentry);
610 }
611
612 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
613 {
614         if (unlikely(IS_PRIVATE(inode)))
615                 return -EOPNOTSUPP;
616         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
617 }
618
619 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
620 {
621         if (unlikely(IS_PRIVATE(inode)))
622                 return -EOPNOTSUPP;
623         return security_ops->inode_setsecurity(inode, name, value, size, flags);
624 }
625
626 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
627 {
628         if (unlikely(IS_PRIVATE(inode)))
629                 return 0;
630         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
631 }
632
633 void security_inode_getsecid(const struct inode *inode, u32 *secid)
634 {
635         security_ops->inode_getsecid(inode, secid);
636 }
637
638 int security_file_permission(struct file *file, int mask)
639 {
640         int ret;
641
642         ret = security_ops->file_permission(file, mask);
643         if (ret)
644                 return ret;
645
646         return fsnotify_perm(file, mask);
647 }
648
649 int security_file_alloc(struct file *file)
650 {
651         return security_ops->file_alloc_security(file);
652 }
653
654 void security_file_free(struct file *file)
655 {
656         security_ops->file_free_security(file);
657 }
658
659 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
660 {
661         return security_ops->file_ioctl(file, cmd, arg);
662 }
663
664 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
665 {
666         /*
667          * Does we have PROT_READ and does the application expect
668          * it to imply PROT_EXEC?  If not, nothing to talk about...
669          */
670         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
671                 return prot;
672         if (!(current->personality & READ_IMPLIES_EXEC))
673                 return prot;
674         /*
675          * if that's an anonymous mapping, let it.
676          */
677         if (!file)
678                 return prot | PROT_EXEC;
679         /*
680          * ditto if it's not on noexec mount, except that on !MMU we need
681          * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
682          */
683         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
684 #ifndef CONFIG_MMU
685                 unsigned long caps = 0;
686                 struct address_space *mapping = file->f_mapping;
687                 if (mapping && mapping->backing_dev_info)
688                         caps = mapping->backing_dev_info->capabilities;
689                 if (!(caps & BDI_CAP_EXEC_MAP))
690                         return prot;
691 #endif
692                 return prot | PROT_EXEC;
693         }
694         /* anything on noexec mount won't get PROT_EXEC */
695         return prot;
696 }
697
698 int security_mmap_file(struct file *file, unsigned long prot,
699                         unsigned long flags)
700 {
701         int ret;
702         ret = security_ops->mmap_file(file, prot,
703                                         mmap_prot(file, prot), flags);
704         if (ret)
705                 return ret;
706         return ima_file_mmap(file, prot);
707 }
708
709 int security_mmap_addr(unsigned long addr)
710 {
711         return security_ops->mmap_addr(addr);
712 }
713
714 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
715                             unsigned long prot)
716 {
717         return security_ops->file_mprotect(vma, reqprot, prot);
718 }
719
720 int security_file_lock(struct file *file, unsigned int cmd)
721 {
722         return security_ops->file_lock(file, cmd);
723 }
724
725 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
726 {
727         return security_ops->file_fcntl(file, cmd, arg);
728 }
729
730 int security_file_set_fowner(struct file *file)
731 {
732         return security_ops->file_set_fowner(file);
733 }
734
735 int security_file_send_sigiotask(struct task_struct *tsk,
736                                   struct fown_struct *fown, int sig)
737 {
738         return security_ops->file_send_sigiotask(tsk, fown, sig);
739 }
740
741 int security_file_receive(struct file *file)
742 {
743         return security_ops->file_receive(file);
744 }
745
746 int security_file_open(struct file *file, const struct cred *cred)
747 {
748         int ret;
749
750         ret = security_ops->file_open(file, cred);
751         if (ret)
752                 return ret;
753
754         return fsnotify_perm(file, MAY_OPEN);
755 }
756
757 int security_task_create(unsigned long clone_flags)
758 {
759         return security_ops->task_create(clone_flags);
760 }
761
762 void security_task_free(struct task_struct *task)
763 {
764         security_ops->task_free(task);
765 }
766
767 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
768 {
769         return security_ops->cred_alloc_blank(cred, gfp);
770 }
771
772 void security_cred_free(struct cred *cred)
773 {
774         security_ops->cred_free(cred);
775 }
776
777 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
778 {
779         return security_ops->cred_prepare(new, old, gfp);
780 }
781
782 void security_transfer_creds(struct cred *new, const struct cred *old)
783 {
784         security_ops->cred_transfer(new, old);
785 }
786
787 int security_kernel_act_as(struct cred *new, u32 secid)
788 {
789         return security_ops->kernel_act_as(new, secid);
790 }
791
792 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
793 {
794         return security_ops->kernel_create_files_as(new, inode);
795 }
796
797 int security_kernel_module_request(char *kmod_name)
798 {
799         return security_ops->kernel_module_request(kmod_name);
800 }
801
802 int security_task_fix_setuid(struct cred *new, const struct cred *old,
803                              int flags)
804 {
805         return security_ops->task_fix_setuid(new, old, flags);
806 }
807
808 int security_task_setpgid(struct task_struct *p, pid_t pgid)
809 {
810         return security_ops->task_setpgid(p, pgid);
811 }
812
813 int security_task_getpgid(struct task_struct *p)
814 {
815         return security_ops->task_getpgid(p);
816 }
817
818 int security_task_getsid(struct task_struct *p)
819 {
820         return security_ops->task_getsid(p);
821 }
822
823 void security_task_getsecid(struct task_struct *p, u32 *secid)
824 {
825         security_ops->task_getsecid(p, secid);
826 }
827 EXPORT_SYMBOL(security_task_getsecid);
828
829 int security_task_setnice(struct task_struct *p, int nice)
830 {
831         return security_ops->task_setnice(p, nice);
832 }
833
834 int security_task_setioprio(struct task_struct *p, int ioprio)
835 {
836         return security_ops->task_setioprio(p, ioprio);
837 }
838
839 int security_task_getioprio(struct task_struct *p)
840 {
841         return security_ops->task_getioprio(p);
842 }
843
844 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
845                 struct rlimit *new_rlim)
846 {
847         return security_ops->task_setrlimit(p, resource, new_rlim);
848 }
849
850 int security_task_setscheduler(struct task_struct *p)
851 {
852         return security_ops->task_setscheduler(p);
853 }
854
855 int security_task_getscheduler(struct task_struct *p)
856 {
857         return security_ops->task_getscheduler(p);
858 }
859
860 int security_task_movememory(struct task_struct *p)
861 {
862         return security_ops->task_movememory(p);
863 }
864
865 int security_task_kill(struct task_struct *p, struct siginfo *info,
866                         int sig, u32 secid)
867 {
868         return security_ops->task_kill(p, info, sig, secid);
869 }
870
871 int security_task_wait(struct task_struct *p)
872 {
873         return security_ops->task_wait(p);
874 }
875
876 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
877                          unsigned long arg4, unsigned long arg5)
878 {
879         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
880 }
881
882 void security_task_to_inode(struct task_struct *p, struct inode *inode)
883 {
884         security_ops->task_to_inode(p, inode);
885 }
886
887 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
888 {
889         return security_ops->ipc_permission(ipcp, flag);
890 }
891
892 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
893 {
894         security_ops->ipc_getsecid(ipcp, secid);
895 }
896
897 int security_msg_msg_alloc(struct msg_msg *msg)
898 {
899         return security_ops->msg_msg_alloc_security(msg);
900 }
901
902 void security_msg_msg_free(struct msg_msg *msg)
903 {
904         security_ops->msg_msg_free_security(msg);
905 }
906
907 int security_msg_queue_alloc(struct msg_queue *msq)
908 {
909         return security_ops->msg_queue_alloc_security(msq);
910 }
911
912 void security_msg_queue_free(struct msg_queue *msq)
913 {
914         security_ops->msg_queue_free_security(msq);
915 }
916
917 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
918 {
919         return security_ops->msg_queue_associate(msq, msqflg);
920 }
921
922 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
923 {
924         return security_ops->msg_queue_msgctl(msq, cmd);
925 }
926
927 int security_msg_queue_msgsnd(struct msg_queue *msq,
928                                struct msg_msg *msg, int msqflg)
929 {
930         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
931 }
932
933 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
934                                struct task_struct *target, long type, int mode)
935 {
936         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
937 }
938
939 int security_shm_alloc(struct shmid_kernel *shp)
940 {
941         return security_ops->shm_alloc_security(shp);
942 }
943
944 void security_shm_free(struct shmid_kernel *shp)
945 {
946         security_ops->shm_free_security(shp);
947 }
948
949 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
950 {
951         return security_ops->shm_associate(shp, shmflg);
952 }
953
954 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
955 {
956         return security_ops->shm_shmctl(shp, cmd);
957 }
958
959 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
960 {
961         return security_ops->shm_shmat(shp, shmaddr, shmflg);
962 }
963
964 int security_sem_alloc(struct sem_array *sma)
965 {
966         return security_ops->sem_alloc_security(sma);
967 }
968
969 void security_sem_free(struct sem_array *sma)
970 {
971         security_ops->sem_free_security(sma);
972 }
973
974 int security_sem_associate(struct sem_array *sma, int semflg)
975 {
976         return security_ops->sem_associate(sma, semflg);
977 }
978
979 int security_sem_semctl(struct sem_array *sma, int cmd)
980 {
981         return security_ops->sem_semctl(sma, cmd);
982 }
983
984 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
985                         unsigned nsops, int alter)
986 {
987         return security_ops->sem_semop(sma, sops, nsops, alter);
988 }
989
990 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
991 {
992         if (unlikely(inode && IS_PRIVATE(inode)))
993                 return;
994         security_ops->d_instantiate(dentry, inode);
995 }
996 EXPORT_SYMBOL(security_d_instantiate);
997
998 int security_getprocattr(struct task_struct *p, char *name, char **value)
999 {
1000         return security_ops->getprocattr(p, name, value);
1001 }
1002
1003 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004 {
1005         return security_ops->setprocattr(p, name, value, size);
1006 }
1007
1008 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009 {
1010         return security_ops->netlink_send(sk, skb);
1011 }
1012
1013 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014 {
1015         return security_ops->secid_to_secctx(secid, secdata, seclen);
1016 }
1017 EXPORT_SYMBOL(security_secid_to_secctx);
1018
1019 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020 {
1021         return security_ops->secctx_to_secid(secdata, seclen, secid);
1022 }
1023 EXPORT_SYMBOL(security_secctx_to_secid);
1024
1025 void security_release_secctx(char *secdata, u32 seclen)
1026 {
1027         security_ops->release_secctx(secdata, seclen);
1028 }
1029 EXPORT_SYMBOL(security_release_secctx);
1030
1031 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032 {
1033         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_notifysecctx);
1036
1037 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038 {
1039         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040 }
1041 EXPORT_SYMBOL(security_inode_setsecctx);
1042
1043 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044 {
1045         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046 }
1047 EXPORT_SYMBOL(security_inode_getsecctx);
1048
1049 #ifdef CONFIG_SECURITY_NETWORK
1050
1051 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052 {
1053         return security_ops->unix_stream_connect(sock, other, newsk);
1054 }
1055 EXPORT_SYMBOL(security_unix_stream_connect);
1056
1057 int security_unix_may_send(struct socket *sock,  struct socket *other)
1058 {
1059         return security_ops->unix_may_send(sock, other);
1060 }
1061 EXPORT_SYMBOL(security_unix_may_send);
1062
1063 int security_socket_create(int family, int type, int protocol, int kern)
1064 {
1065         return security_ops->socket_create(family, type, protocol, kern);
1066 }
1067
1068 int security_socket_post_create(struct socket *sock, int family,
1069                                 int type, int protocol, int kern)
1070 {
1071         return security_ops->socket_post_create(sock, family, type,
1072                                                 protocol, kern);
1073 }
1074
1075 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076 {
1077         return security_ops->socket_bind(sock, address, addrlen);
1078 }
1079
1080 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081 {
1082         return security_ops->socket_connect(sock, address, addrlen);
1083 }
1084
1085 int security_socket_listen(struct socket *sock, int backlog)
1086 {
1087         return security_ops->socket_listen(sock, backlog);
1088 }
1089
1090 int security_socket_accept(struct socket *sock, struct socket *newsock)
1091 {
1092         return security_ops->socket_accept(sock, newsock);
1093 }
1094
1095 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096 {
1097         return security_ops->socket_sendmsg(sock, msg, size);
1098 }
1099
1100 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101                             int size, int flags)
1102 {
1103         return security_ops->socket_recvmsg(sock, msg, size, flags);
1104 }
1105
1106 int security_socket_getsockname(struct socket *sock)
1107 {
1108         return security_ops->socket_getsockname(sock);
1109 }
1110
1111 int security_socket_getpeername(struct socket *sock)
1112 {
1113         return security_ops->socket_getpeername(sock);
1114 }
1115
1116 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117 {
1118         return security_ops->socket_getsockopt(sock, level, optname);
1119 }
1120
1121 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122 {
1123         return security_ops->socket_setsockopt(sock, level, optname);
1124 }
1125
1126 int security_socket_shutdown(struct socket *sock, int how)
1127 {
1128         return security_ops->socket_shutdown(sock, how);
1129 }
1130
1131 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132 {
1133         return security_ops->socket_sock_rcv_skb(sk, skb);
1134 }
1135 EXPORT_SYMBOL(security_sock_rcv_skb);
1136
1137 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138                                       int __user *optlen, unsigned len)
1139 {
1140         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1141 }
1142
1143 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144 {
1145         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1146 }
1147 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148
1149 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150 {
1151         return security_ops->sk_alloc_security(sk, family, priority);
1152 }
1153
1154 void security_sk_free(struct sock *sk)
1155 {
1156         security_ops->sk_free_security(sk);
1157 }
1158
1159 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160 {
1161         security_ops->sk_clone_security(sk, newsk);
1162 }
1163 EXPORT_SYMBOL(security_sk_clone);
1164
1165 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166 {
1167         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168 }
1169 EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172 {
1173         security_ops->req_classify_flow(req, fl);
1174 }
1175 EXPORT_SYMBOL(security_req_classify_flow);
1176
1177 void security_sock_graft(struct sock *sk, struct socket *parent)
1178 {
1179         security_ops->sock_graft(sk, parent);
1180 }
1181 EXPORT_SYMBOL(security_sock_graft);
1182
1183 int security_inet_conn_request(struct sock *sk,
1184                         struct sk_buff *skb, struct request_sock *req)
1185 {
1186         return security_ops->inet_conn_request(sk, skb, req);
1187 }
1188 EXPORT_SYMBOL(security_inet_conn_request);
1189
1190 void security_inet_csk_clone(struct sock *newsk,
1191                         const struct request_sock *req)
1192 {
1193         security_ops->inet_csk_clone(newsk, req);
1194 }
1195
1196 void security_inet_conn_established(struct sock *sk,
1197                         struct sk_buff *skb)
1198 {
1199         security_ops->inet_conn_established(sk, skb);
1200 }
1201
1202 int security_secmark_relabel_packet(u32 secid)
1203 {
1204         return security_ops->secmark_relabel_packet(secid);
1205 }
1206 EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208 void security_secmark_refcount_inc(void)
1209 {
1210         security_ops->secmark_refcount_inc();
1211 }
1212 EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214 void security_secmark_refcount_dec(void)
1215 {
1216         security_ops->secmark_refcount_dec();
1217 }
1218 EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
1220 int security_tun_dev_create(void)
1221 {
1222         return security_ops->tun_dev_create();
1223 }
1224 EXPORT_SYMBOL(security_tun_dev_create);
1225
1226 void security_tun_dev_post_create(struct sock *sk)
1227 {
1228         return security_ops->tun_dev_post_create(sk);
1229 }
1230 EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232 int security_tun_dev_attach(struct sock *sk)
1233 {
1234         return security_ops->tun_dev_attach(sk);
1235 }
1236 EXPORT_SYMBOL(security_tun_dev_attach);
1237
1238 #endif  /* CONFIG_SECURITY_NETWORK */
1239
1240 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1243 {
1244         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245 }
1246 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249                               struct xfrm_sec_ctx **new_ctxp)
1250 {
1251         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252 }
1253
1254 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255 {
1256         security_ops->xfrm_policy_free_security(ctx);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261 {
1262         return security_ops->xfrm_policy_delete_security(ctx);
1263 }
1264
1265 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1266 {
1267         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268 }
1269 EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272                                       struct xfrm_sec_ctx *polsec, u32 secid)
1273 {
1274         if (!polsec)
1275                 return 0;
1276         /*
1277          * We want the context to be taken from secid which is usually
1278          * from the sock.
1279          */
1280         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281 }
1282
1283 int security_xfrm_state_delete(struct xfrm_state *x)
1284 {
1285         return security_ops->xfrm_state_delete_security(x);
1286 }
1287 EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289 void security_xfrm_state_free(struct xfrm_state *x)
1290 {
1291         security_ops->xfrm_state_free_security(x);
1292 }
1293
1294 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295 {
1296         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297 }
1298
1299 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300                                        struct xfrm_policy *xp,
1301                                        const struct flowi *fl)
1302 {
1303         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304 }
1305
1306 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307 {
1308         return security_ops->xfrm_decode_session(skb, secid, 1);
1309 }
1310
1311 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312 {
1313         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314
1315         BUG_ON(rc);
1316 }
1317 EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321 #ifdef CONFIG_KEYS
1322
1323 int security_key_alloc(struct key *key, const struct cred *cred,
1324                        unsigned long flags)
1325 {
1326         return security_ops->key_alloc(key, cred, flags);
1327 }
1328
1329 void security_key_free(struct key *key)
1330 {
1331         security_ops->key_free(key);
1332 }
1333
1334 int security_key_permission(key_ref_t key_ref,
1335                             const struct cred *cred, key_perm_t perm)
1336 {
1337         return security_ops->key_permission(key_ref, cred, perm);
1338 }
1339
1340 int security_key_getsecurity(struct key *key, char **_buffer)
1341 {
1342         return security_ops->key_getsecurity(key, _buffer);
1343 }
1344
1345 #endif  /* CONFIG_KEYS */
1346
1347 #ifdef CONFIG_AUDIT
1348
1349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350 {
1351         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352 }
1353
1354 int security_audit_rule_known(struct audit_krule *krule)
1355 {
1356         return security_ops->audit_rule_known(krule);
1357 }
1358
1359 void security_audit_rule_free(void *lsmrule)
1360 {
1361         security_ops->audit_rule_free(lsmrule);
1362 }
1363
1364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365                               struct audit_context *actx)
1366 {
1367         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368 }
1369
1370 #endif /* CONFIG_AUDIT */