Merge tag 'hte/for-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra...
[platform/kernel/linux-starfive.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64         [LOCKDOWN_KCORE] = "/proc/kcore access",
65         [LOCKDOWN_KPROBES] = "use of kprobes",
66         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68         [LOCKDOWN_PERF] = "unsafe use of perf",
69         [LOCKDOWN_TRACEFS] = "use of tracefs",
70         [LOCKDOWN_XMON_RW] = "xmon read and write access",
71         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
72         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
73 };
74
75 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
77
78 static struct kmem_cache *lsm_file_cache;
79 static struct kmem_cache *lsm_inode_cache;
80
81 char *lsm_names;
82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
83
84 /* Boot-time LSM user choice */
85 static __initdata const char *chosen_lsm_order;
86 static __initdata const char *chosen_major_lsm;
87
88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
89
90 /* Ordered list of LSMs to initialize. */
91 static __initdata struct lsm_info **ordered_lsms;
92 static __initdata struct lsm_info *exclusive;
93
94 static __initdata bool debug;
95 #define init_debug(...)                                         \
96         do {                                                    \
97                 if (debug)                                      \
98                         pr_info(__VA_ARGS__);                   \
99         } while (0)
100
101 static bool __init is_enabled(struct lsm_info *lsm)
102 {
103         if (!lsm->enabled)
104                 return false;
105
106         return *lsm->enabled;
107 }
108
109 /* Mark an LSM's enabled flag. */
110 static int lsm_enabled_true __initdata = 1;
111 static int lsm_enabled_false __initdata = 0;
112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
113 {
114         /*
115          * When an LSM hasn't configured an enable variable, we can use
116          * a hard-coded location for storing the default enabled state.
117          */
118         if (!lsm->enabled) {
119                 if (enabled)
120                         lsm->enabled = &lsm_enabled_true;
121                 else
122                         lsm->enabled = &lsm_enabled_false;
123         } else if (lsm->enabled == &lsm_enabled_true) {
124                 if (!enabled)
125                         lsm->enabled = &lsm_enabled_false;
126         } else if (lsm->enabled == &lsm_enabled_false) {
127                 if (enabled)
128                         lsm->enabled = &lsm_enabled_true;
129         } else {
130                 *lsm->enabled = enabled;
131         }
132 }
133
134 /* Is an LSM already listed in the ordered LSMs list? */
135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
136 {
137         struct lsm_info **check;
138
139         for (check = ordered_lsms; *check; check++)
140                 if (*check == lsm)
141                         return true;
142
143         return false;
144 }
145
146 /* Append an LSM to the list of ordered LSMs to initialize. */
147 static int last_lsm __initdata;
148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
149 {
150         /* Ignore duplicate selections. */
151         if (exists_ordered_lsm(lsm))
152                 return;
153
154         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
155                 return;
156
157         /* Enable this LSM, if it is not already set. */
158         if (!lsm->enabled)
159                 lsm->enabled = &lsm_enabled_true;
160         ordered_lsms[last_lsm++] = lsm;
161
162         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
163                    is_enabled(lsm) ? "en" : "dis");
164 }
165
166 /* Is an LSM allowed to be initialized? */
167 static bool __init lsm_allowed(struct lsm_info *lsm)
168 {
169         /* Skip if the LSM is disabled. */
170         if (!is_enabled(lsm))
171                 return false;
172
173         /* Not allowed if another exclusive LSM already initialized. */
174         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
175                 init_debug("exclusive disabled: %s\n", lsm->name);
176                 return false;
177         }
178
179         return true;
180 }
181
182 static void __init lsm_set_blob_size(int *need, int *lbs)
183 {
184         int offset;
185
186         if (*need > 0) {
187                 offset = *lbs;
188                 *lbs += *need;
189                 *need = offset;
190         }
191 }
192
193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
194 {
195         if (!needed)
196                 return;
197
198         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
199         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
200         /*
201          * The inode blob gets an rcu_head in addition to
202          * what the modules might need.
203          */
204         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
205                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
206         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
207         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
208         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
209         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
210         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216         int enabled = lsm_allowed(lsm);
217
218         /* Record enablement (to handle any following exclusive LSMs). */
219         set_enabled(lsm, enabled);
220
221         /* If enabled, do pre-initialization work. */
222         if (enabled) {
223                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224                         exclusive = lsm;
225                         init_debug("exclusive chosen: %s\n", lsm->name);
226                 }
227
228                 lsm_set_blob_sizes(lsm->blobs);
229         }
230 }
231
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235         if (is_enabled(lsm)) {
236                 int ret;
237
238                 init_debug("initializing %s\n", lsm->name);
239                 ret = lsm->init();
240                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241         }
242 }
243
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247         struct lsm_info *lsm;
248         char *sep, *name, *next;
249
250         /* LSM_ORDER_FIRST is always first. */
251         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252                 if (lsm->order == LSM_ORDER_FIRST)
253                         append_ordered_lsm(lsm, "first");
254         }
255
256         /* Process "security=", if given. */
257         if (chosen_major_lsm) {
258                 struct lsm_info *major;
259
260                 /*
261                  * To match the original "security=" behavior, this
262                  * explicitly does NOT fallback to another Legacy Major
263                  * if the selected one was separately disabled: disable
264                  * all non-matching Legacy Major LSMs.
265                  */
266                 for (major = __start_lsm_info; major < __end_lsm_info;
267                      major++) {
268                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269                             strcmp(major->name, chosen_major_lsm) != 0) {
270                                 set_enabled(major, false);
271                                 init_debug("security=%s disabled: %s\n",
272                                            chosen_major_lsm, major->name);
273                         }
274                 }
275         }
276
277         sep = kstrdup(order, GFP_KERNEL);
278         next = sep;
279         /* Walk the list, looking for matching LSMs. */
280         while ((name = strsep(&next, ",")) != NULL) {
281                 bool found = false;
282
283                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284                         if (lsm->order == LSM_ORDER_MUTABLE &&
285                             strcmp(lsm->name, name) == 0) {
286                                 append_ordered_lsm(lsm, origin);
287                                 found = true;
288                         }
289                 }
290
291                 if (!found)
292                         init_debug("%s ignored: %s\n", origin, name);
293         }
294
295         /* Process "security=", if given. */
296         if (chosen_major_lsm) {
297                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298                         if (exists_ordered_lsm(lsm))
299                                 continue;
300                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
301                                 append_ordered_lsm(lsm, "security=");
302                 }
303         }
304
305         /* Disable all LSMs not in the ordered list. */
306         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307                 if (exists_ordered_lsm(lsm))
308                         continue;
309                 set_enabled(lsm, false);
310                 init_debug("%s disabled: %s\n", origin, lsm->name);
311         }
312
313         kfree(sep);
314 }
315
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318
319 static int lsm_append(const char *new, char **result);
320
321 static void __init ordered_lsm_init(void)
322 {
323         struct lsm_info **lsm;
324
325         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326                                 GFP_KERNEL);
327
328         if (chosen_lsm_order) {
329                 if (chosen_major_lsm) {
330                         pr_info("security= is ignored because it is superseded by lsm=\n");
331                         chosen_major_lsm = NULL;
332                 }
333                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
334         } else
335                 ordered_lsm_parse(builtin_lsm_order, "builtin");
336
337         for (lsm = ordered_lsms; *lsm; lsm++)
338                 prepare_lsm(*lsm);
339
340         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
341         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
342         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
343         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
344         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
345         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
347
348         /*
349          * Create any kmem_caches needed for blobs
350          */
351         if (blob_sizes.lbs_file)
352                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
353                                                    blob_sizes.lbs_file, 0,
354                                                    SLAB_PANIC, NULL);
355         if (blob_sizes.lbs_inode)
356                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
357                                                     blob_sizes.lbs_inode, 0,
358                                                     SLAB_PANIC, NULL);
359
360         lsm_early_cred((struct cred *) current->cred);
361         lsm_early_task(current);
362         for (lsm = ordered_lsms; *lsm; lsm++)
363                 initialize_lsm(*lsm);
364
365         kfree(ordered_lsms);
366 }
367
368 int __init early_security_init(void)
369 {
370         struct lsm_info *lsm;
371
372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
373         INIT_HLIST_HEAD(&security_hook_heads.NAME);
374 #include "linux/lsm_hook_defs.h"
375 #undef LSM_HOOK
376
377         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
378                 if (!lsm->enabled)
379                         lsm->enabled = &lsm_enabled_true;
380                 prepare_lsm(lsm);
381                 initialize_lsm(lsm);
382         }
383
384         return 0;
385 }
386
387 /**
388  * security_init - initializes the security framework
389  *
390  * This should be called early in the kernel initialization sequence.
391  */
392 int __init security_init(void)
393 {
394         struct lsm_info *lsm;
395
396         pr_info("Security Framework initializing\n");
397
398         /*
399          * Append the names of the early LSM modules now that kmalloc() is
400          * available
401          */
402         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
403                 if (lsm->enabled)
404                         lsm_append(lsm->name, &lsm_names);
405         }
406
407         /* Load LSMs in specified order. */
408         ordered_lsm_init();
409
410         return 0;
411 }
412
413 /* Save user chosen LSM */
414 static int __init choose_major_lsm(char *str)
415 {
416         chosen_major_lsm = str;
417         return 1;
418 }
419 __setup("security=", choose_major_lsm);
420
421 /* Explicitly choose LSM initialization order. */
422 static int __init choose_lsm_order(char *str)
423 {
424         chosen_lsm_order = str;
425         return 1;
426 }
427 __setup("lsm=", choose_lsm_order);
428
429 /* Enable LSM order debugging. */
430 static int __init enable_debug(char *str)
431 {
432         debug = true;
433         return 1;
434 }
435 __setup("lsm.debug", enable_debug);
436
437 static bool match_last_lsm(const char *list, const char *lsm)
438 {
439         const char *last;
440
441         if (WARN_ON(!list || !lsm))
442                 return false;
443         last = strrchr(list, ',');
444         if (last)
445                 /* Pass the comma, strcmp() will check for '\0' */
446                 last++;
447         else
448                 last = list;
449         return !strcmp(last, lsm);
450 }
451
452 static int lsm_append(const char *new, char **result)
453 {
454         char *cp;
455
456         if (*result == NULL) {
457                 *result = kstrdup(new, GFP_KERNEL);
458                 if (*result == NULL)
459                         return -ENOMEM;
460         } else {
461                 /* Check if it is the last registered name */
462                 if (match_last_lsm(*result, new))
463                         return 0;
464                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
465                 if (cp == NULL)
466                         return -ENOMEM;
467                 kfree(*result);
468                 *result = cp;
469         }
470         return 0;
471 }
472
473 /**
474  * security_add_hooks - Add a modules hooks to the hook lists.
475  * @hooks: the hooks to add
476  * @count: the number of hooks to add
477  * @lsm: the name of the security module
478  *
479  * Each LSM has to register its hooks with the infrastructure.
480  */
481 void __init security_add_hooks(struct security_hook_list *hooks, int count,
482                                 const char *lsm)
483 {
484         int i;
485
486         for (i = 0; i < count; i++) {
487                 hooks[i].lsm = lsm;
488                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
489         }
490
491         /*
492          * Don't try to append during early_security_init(), we'll come back
493          * and fix this up afterwards.
494          */
495         if (slab_is_available()) {
496                 if (lsm_append(lsm, &lsm_names) < 0)
497                         panic("%s - Cannot get early memory.\n", __func__);
498         }
499 }
500
501 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
502 {
503         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
504                                             event, data);
505 }
506 EXPORT_SYMBOL(call_blocking_lsm_notifier);
507
508 int register_blocking_lsm_notifier(struct notifier_block *nb)
509 {
510         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
511                                                 nb);
512 }
513 EXPORT_SYMBOL(register_blocking_lsm_notifier);
514
515 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
516 {
517         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
518                                                   nb);
519 }
520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
521
522 /**
523  * lsm_cred_alloc - allocate a composite cred blob
524  * @cred: the cred that needs a blob
525  * @gfp: allocation type
526  *
527  * Allocate the cred blob for all the modules
528  *
529  * Returns 0, or -ENOMEM if memory can't be allocated.
530  */
531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
532 {
533         if (blob_sizes.lbs_cred == 0) {
534                 cred->security = NULL;
535                 return 0;
536         }
537
538         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
539         if (cred->security == NULL)
540                 return -ENOMEM;
541         return 0;
542 }
543
544 /**
545  * lsm_early_cred - during initialization allocate a composite cred blob
546  * @cred: the cred that needs a blob
547  *
548  * Allocate the cred blob for all the modules
549  */
550 static void __init lsm_early_cred(struct cred *cred)
551 {
552         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
553
554         if (rc)
555                 panic("%s: Early cred alloc failed.\n", __func__);
556 }
557
558 /**
559  * lsm_file_alloc - allocate a composite file blob
560  * @file: the file that needs a blob
561  *
562  * Allocate the file blob for all the modules
563  *
564  * Returns 0, or -ENOMEM if memory can't be allocated.
565  */
566 static int lsm_file_alloc(struct file *file)
567 {
568         if (!lsm_file_cache) {
569                 file->f_security = NULL;
570                 return 0;
571         }
572
573         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
574         if (file->f_security == NULL)
575                 return -ENOMEM;
576         return 0;
577 }
578
579 /**
580  * lsm_inode_alloc - allocate a composite inode blob
581  * @inode: the inode that needs a blob
582  *
583  * Allocate the inode blob for all the modules
584  *
585  * Returns 0, or -ENOMEM if memory can't be allocated.
586  */
587 int lsm_inode_alloc(struct inode *inode)
588 {
589         if (!lsm_inode_cache) {
590                 inode->i_security = NULL;
591                 return 0;
592         }
593
594         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
595         if (inode->i_security == NULL)
596                 return -ENOMEM;
597         return 0;
598 }
599
600 /**
601  * lsm_task_alloc - allocate a composite task blob
602  * @task: the task that needs a blob
603  *
604  * Allocate the task blob for all the modules
605  *
606  * Returns 0, or -ENOMEM if memory can't be allocated.
607  */
608 static int lsm_task_alloc(struct task_struct *task)
609 {
610         if (blob_sizes.lbs_task == 0) {
611                 task->security = NULL;
612                 return 0;
613         }
614
615         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
616         if (task->security == NULL)
617                 return -ENOMEM;
618         return 0;
619 }
620
621 /**
622  * lsm_ipc_alloc - allocate a composite ipc blob
623  * @kip: the ipc that needs a blob
624  *
625  * Allocate the ipc blob for all the modules
626  *
627  * Returns 0, or -ENOMEM if memory can't be allocated.
628  */
629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
630 {
631         if (blob_sizes.lbs_ipc == 0) {
632                 kip->security = NULL;
633                 return 0;
634         }
635
636         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
637         if (kip->security == NULL)
638                 return -ENOMEM;
639         return 0;
640 }
641
642 /**
643  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
644  * @mp: the msg_msg that needs a blob
645  *
646  * Allocate the ipc blob for all the modules
647  *
648  * Returns 0, or -ENOMEM if memory can't be allocated.
649  */
650 static int lsm_msg_msg_alloc(struct msg_msg *mp)
651 {
652         if (blob_sizes.lbs_msg_msg == 0) {
653                 mp->security = NULL;
654                 return 0;
655         }
656
657         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
658         if (mp->security == NULL)
659                 return -ENOMEM;
660         return 0;
661 }
662
663 /**
664  * lsm_early_task - during initialization allocate a composite task blob
665  * @task: the task that needs a blob
666  *
667  * Allocate the task blob for all the modules
668  */
669 static void __init lsm_early_task(struct task_struct *task)
670 {
671         int rc = lsm_task_alloc(task);
672
673         if (rc)
674                 panic("%s: Early task alloc failed.\n", __func__);
675 }
676
677 /**
678  * lsm_superblock_alloc - allocate a composite superblock blob
679  * @sb: the superblock that needs a blob
680  *
681  * Allocate the superblock blob for all the modules
682  *
683  * Returns 0, or -ENOMEM if memory can't be allocated.
684  */
685 static int lsm_superblock_alloc(struct super_block *sb)
686 {
687         if (blob_sizes.lbs_superblock == 0) {
688                 sb->s_security = NULL;
689                 return 0;
690         }
691
692         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
693         if (sb->s_security == NULL)
694                 return -ENOMEM;
695         return 0;
696 }
697
698 /*
699  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
700  * can be accessed with:
701  *
702  *      LSM_RET_DEFAULT(<hook_name>)
703  *
704  * The macros below define static constants for the default value of each
705  * LSM hook.
706  */
707 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
710         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
712         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
713
714 #include <linux/lsm_hook_defs.h>
715 #undef LSM_HOOK
716
717 /*
718  * Hook list operation macros.
719  *
720  * call_void_hook:
721  *      This is a hook that does not return a value.
722  *
723  * call_int_hook:
724  *      This is a hook that returns a value.
725  */
726
727 #define call_void_hook(FUNC, ...)                               \
728         do {                                                    \
729                 struct security_hook_list *P;                   \
730                                                                 \
731                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
732                         P->hook.FUNC(__VA_ARGS__);              \
733         } while (0)
734
735 #define call_int_hook(FUNC, IRC, ...) ({                        \
736         int RC = IRC;                                           \
737         do {                                                    \
738                 struct security_hook_list *P;                   \
739                                                                 \
740                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
741                         RC = P->hook.FUNC(__VA_ARGS__);         \
742                         if (RC != 0)                            \
743                                 break;                          \
744                 }                                               \
745         } while (0);                                            \
746         RC;                                                     \
747 })
748
749 /* Security operations */
750
751 int security_binder_set_context_mgr(const struct cred *mgr)
752 {
753         return call_int_hook(binder_set_context_mgr, 0, mgr);
754 }
755
756 int security_binder_transaction(const struct cred *from,
757                                 const struct cred *to)
758 {
759         return call_int_hook(binder_transaction, 0, from, to);
760 }
761
762 int security_binder_transfer_binder(const struct cred *from,
763                                     const struct cred *to)
764 {
765         return call_int_hook(binder_transfer_binder, 0, from, to);
766 }
767
768 int security_binder_transfer_file(const struct cred *from,
769                                   const struct cred *to, struct file *file)
770 {
771         return call_int_hook(binder_transfer_file, 0, from, to, file);
772 }
773
774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
775 {
776         return call_int_hook(ptrace_access_check, 0, child, mode);
777 }
778
779 int security_ptrace_traceme(struct task_struct *parent)
780 {
781         return call_int_hook(ptrace_traceme, 0, parent);
782 }
783
784 int security_capget(struct task_struct *target,
785                      kernel_cap_t *effective,
786                      kernel_cap_t *inheritable,
787                      kernel_cap_t *permitted)
788 {
789         return call_int_hook(capget, 0, target,
790                                 effective, inheritable, permitted);
791 }
792
793 int security_capset(struct cred *new, const struct cred *old,
794                     const kernel_cap_t *effective,
795                     const kernel_cap_t *inheritable,
796                     const kernel_cap_t *permitted)
797 {
798         return call_int_hook(capset, 0, new, old,
799                                 effective, inheritable, permitted);
800 }
801
802 int security_capable(const struct cred *cred,
803                      struct user_namespace *ns,
804                      int cap,
805                      unsigned int opts)
806 {
807         return call_int_hook(capable, 0, cred, ns, cap, opts);
808 }
809
810 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
811 {
812         return call_int_hook(quotactl, 0, cmds, type, id, sb);
813 }
814
815 int security_quota_on(struct dentry *dentry)
816 {
817         return call_int_hook(quota_on, 0, dentry);
818 }
819
820 int security_syslog(int type)
821 {
822         return call_int_hook(syslog, 0, type);
823 }
824
825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
826 {
827         return call_int_hook(settime, 0, ts, tz);
828 }
829
830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
831 {
832         struct security_hook_list *hp;
833         int cap_sys_admin = 1;
834         int rc;
835
836         /*
837          * The module will respond with a positive value if
838          * it thinks the __vm_enough_memory() call should be
839          * made with the cap_sys_admin set. If all of the modules
840          * agree that it should be set it will. If any module
841          * thinks it should not be set it won't.
842          */
843         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
844                 rc = hp->hook.vm_enough_memory(mm, pages);
845                 if (rc <= 0) {
846                         cap_sys_admin = 0;
847                         break;
848                 }
849         }
850         return __vm_enough_memory(mm, pages, cap_sys_admin);
851 }
852
853 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
854 {
855         return call_int_hook(bprm_creds_for_exec, 0, bprm);
856 }
857
858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
859 {
860         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
861 }
862
863 int security_bprm_check(struct linux_binprm *bprm)
864 {
865         int ret;
866
867         ret = call_int_hook(bprm_check_security, 0, bprm);
868         if (ret)
869                 return ret;
870         return ima_bprm_check(bprm);
871 }
872
873 void security_bprm_committing_creds(struct linux_binprm *bprm)
874 {
875         call_void_hook(bprm_committing_creds, bprm);
876 }
877
878 void security_bprm_committed_creds(struct linux_binprm *bprm)
879 {
880         call_void_hook(bprm_committed_creds, bprm);
881 }
882
883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
884 {
885         return call_int_hook(fs_context_dup, 0, fc, src_fc);
886 }
887
888 int security_fs_context_parse_param(struct fs_context *fc,
889                                     struct fs_parameter *param)
890 {
891         struct security_hook_list *hp;
892         int trc;
893         int rc = -ENOPARAM;
894
895         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
896                              list) {
897                 trc = hp->hook.fs_context_parse_param(fc, param);
898                 if (trc == 0)
899                         rc = 0;
900                 else if (trc != -ENOPARAM)
901                         return trc;
902         }
903         return rc;
904 }
905
906 int security_sb_alloc(struct super_block *sb)
907 {
908         int rc = lsm_superblock_alloc(sb);
909
910         if (unlikely(rc))
911                 return rc;
912         rc = call_int_hook(sb_alloc_security, 0, sb);
913         if (unlikely(rc))
914                 security_sb_free(sb);
915         return rc;
916 }
917
918 void security_sb_delete(struct super_block *sb)
919 {
920         call_void_hook(sb_delete, sb);
921 }
922
923 void security_sb_free(struct super_block *sb)
924 {
925         call_void_hook(sb_free_security, sb);
926         kfree(sb->s_security);
927         sb->s_security = NULL;
928 }
929
930 void security_free_mnt_opts(void **mnt_opts)
931 {
932         if (!*mnt_opts)
933                 return;
934         call_void_hook(sb_free_mnt_opts, *mnt_opts);
935         *mnt_opts = NULL;
936 }
937 EXPORT_SYMBOL(security_free_mnt_opts);
938
939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
940 {
941         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
944
945 int security_sb_mnt_opts_compat(struct super_block *sb,
946                                 void *mnt_opts)
947 {
948         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
949 }
950 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
951
952 int security_sb_remount(struct super_block *sb,
953                         void *mnt_opts)
954 {
955         return call_int_hook(sb_remount, 0, sb, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_sb_remount);
958
959 int security_sb_kern_mount(struct super_block *sb)
960 {
961         return call_int_hook(sb_kern_mount, 0, sb);
962 }
963
964 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
965 {
966         return call_int_hook(sb_show_options, 0, m, sb);
967 }
968
969 int security_sb_statfs(struct dentry *dentry)
970 {
971         return call_int_hook(sb_statfs, 0, dentry);
972 }
973
974 int security_sb_mount(const char *dev_name, const struct path *path,
975                        const char *type, unsigned long flags, void *data)
976 {
977         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
978 }
979
980 int security_sb_umount(struct vfsmount *mnt, int flags)
981 {
982         return call_int_hook(sb_umount, 0, mnt, flags);
983 }
984
985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
986 {
987         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
988 }
989
990 int security_sb_set_mnt_opts(struct super_block *sb,
991                                 void *mnt_opts,
992                                 unsigned long kern_flags,
993                                 unsigned long *set_kern_flags)
994 {
995         return call_int_hook(sb_set_mnt_opts,
996                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
997                                 mnt_opts, kern_flags, set_kern_flags);
998 }
999 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1000
1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1002                                 struct super_block *newsb,
1003                                 unsigned long kern_flags,
1004                                 unsigned long *set_kern_flags)
1005 {
1006         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1007                                 kern_flags, set_kern_flags);
1008 }
1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1010
1011 int security_move_mount(const struct path *from_path, const struct path *to_path)
1012 {
1013         return call_int_hook(move_mount, 0, from_path, to_path);
1014 }
1015
1016 int security_path_notify(const struct path *path, u64 mask,
1017                                 unsigned int obj_type)
1018 {
1019         return call_int_hook(path_notify, 0, path, mask, obj_type);
1020 }
1021
1022 int security_inode_alloc(struct inode *inode)
1023 {
1024         int rc = lsm_inode_alloc(inode);
1025
1026         if (unlikely(rc))
1027                 return rc;
1028         rc = call_int_hook(inode_alloc_security, 0, inode);
1029         if (unlikely(rc))
1030                 security_inode_free(inode);
1031         return rc;
1032 }
1033
1034 static void inode_free_by_rcu(struct rcu_head *head)
1035 {
1036         /*
1037          * The rcu head is at the start of the inode blob
1038          */
1039         kmem_cache_free(lsm_inode_cache, head);
1040 }
1041
1042 void security_inode_free(struct inode *inode)
1043 {
1044         integrity_inode_free(inode);
1045         call_void_hook(inode_free_security, inode);
1046         /*
1047          * The inode may still be referenced in a path walk and
1048          * a call to security_inode_permission() can be made
1049          * after inode_free_security() is called. Ideally, the VFS
1050          * wouldn't do this, but fixing that is a much harder
1051          * job. For now, simply free the i_security via RCU, and
1052          * leave the current inode->i_security pointer intact.
1053          * The inode will be freed after the RCU grace period too.
1054          */
1055         if (inode->i_security)
1056                 call_rcu((struct rcu_head *)inode->i_security,
1057                                 inode_free_by_rcu);
1058 }
1059
1060 int security_dentry_init_security(struct dentry *dentry, int mode,
1061                                   const struct qstr *name,
1062                                   const char **xattr_name, void **ctx,
1063                                   u32 *ctxlen)
1064 {
1065         struct security_hook_list *hp;
1066         int rc;
1067
1068         /*
1069          * Only one module will provide a security context.
1070          */
1071         hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1072                 rc = hp->hook.dentry_init_security(dentry, mode, name,
1073                                                    xattr_name, ctx, ctxlen);
1074                 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1075                         return rc;
1076         }
1077         return LSM_RET_DEFAULT(dentry_init_security);
1078 }
1079 EXPORT_SYMBOL(security_dentry_init_security);
1080
1081 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1082                                     struct qstr *name,
1083                                     const struct cred *old, struct cred *new)
1084 {
1085         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1086                                 name, old, new);
1087 }
1088 EXPORT_SYMBOL(security_dentry_create_files_as);
1089
1090 int security_inode_init_security(struct inode *inode, struct inode *dir,
1091                                  const struct qstr *qstr,
1092                                  const initxattrs initxattrs, void *fs_data)
1093 {
1094         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1095         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1096         int ret;
1097
1098         if (unlikely(IS_PRIVATE(inode)))
1099                 return 0;
1100
1101         if (!initxattrs)
1102                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1103                                      dir, qstr, NULL, NULL, NULL);
1104         memset(new_xattrs, 0, sizeof(new_xattrs));
1105         lsm_xattr = new_xattrs;
1106         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1107                                                 &lsm_xattr->name,
1108                                                 &lsm_xattr->value,
1109                                                 &lsm_xattr->value_len);
1110         if (ret)
1111                 goto out;
1112
1113         evm_xattr = lsm_xattr + 1;
1114         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1115         if (ret)
1116                 goto out;
1117         ret = initxattrs(inode, new_xattrs, fs_data);
1118 out:
1119         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1120                 kfree(xattr->value);
1121         return (ret == -EOPNOTSUPP) ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL(security_inode_init_security);
1124
1125 int security_inode_init_security_anon(struct inode *inode,
1126                                       const struct qstr *name,
1127                                       const struct inode *context_inode)
1128 {
1129         return call_int_hook(inode_init_security_anon, 0, inode, name,
1130                              context_inode);
1131 }
1132
1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1134                                      const struct qstr *qstr, const char **name,
1135                                      void **value, size_t *len)
1136 {
1137         if (unlikely(IS_PRIVATE(inode)))
1138                 return -EOPNOTSUPP;
1139         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1140                              qstr, name, value, len);
1141 }
1142 EXPORT_SYMBOL(security_old_inode_init_security);
1143
1144 #ifdef CONFIG_SECURITY_PATH
1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1146                         unsigned int dev)
1147 {
1148         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1149                 return 0;
1150         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1151 }
1152 EXPORT_SYMBOL(security_path_mknod);
1153
1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1155 {
1156         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1157                 return 0;
1158         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1159 }
1160 EXPORT_SYMBOL(security_path_mkdir);
1161
1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1163 {
1164         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1165                 return 0;
1166         return call_int_hook(path_rmdir, 0, dir, dentry);
1167 }
1168
1169 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1170 {
1171         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1172                 return 0;
1173         return call_int_hook(path_unlink, 0, dir, dentry);
1174 }
1175 EXPORT_SYMBOL(security_path_unlink);
1176
1177 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1178                           const char *old_name)
1179 {
1180         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1181                 return 0;
1182         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1183 }
1184
1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1186                        struct dentry *new_dentry)
1187 {
1188         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1189                 return 0;
1190         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1191 }
1192
1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1194                          const struct path *new_dir, struct dentry *new_dentry,
1195                          unsigned int flags)
1196 {
1197         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1198                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1199                 return 0;
1200
1201         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1202                                 new_dentry, flags);
1203 }
1204 EXPORT_SYMBOL(security_path_rename);
1205
1206 int security_path_truncate(const struct path *path)
1207 {
1208         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1209                 return 0;
1210         return call_int_hook(path_truncate, 0, path);
1211 }
1212
1213 int security_path_chmod(const struct path *path, umode_t mode)
1214 {
1215         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1216                 return 0;
1217         return call_int_hook(path_chmod, 0, path, mode);
1218 }
1219
1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1221 {
1222         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1223                 return 0;
1224         return call_int_hook(path_chown, 0, path, uid, gid);
1225 }
1226
1227 int security_path_chroot(const struct path *path)
1228 {
1229         return call_int_hook(path_chroot, 0, path);
1230 }
1231 #endif
1232
1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1234 {
1235         if (unlikely(IS_PRIVATE(dir)))
1236                 return 0;
1237         return call_int_hook(inode_create, 0, dir, dentry, mode);
1238 }
1239 EXPORT_SYMBOL_GPL(security_inode_create);
1240
1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1242                          struct dentry *new_dentry)
1243 {
1244         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1245                 return 0;
1246         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1247 }
1248
1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1250 {
1251         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252                 return 0;
1253         return call_int_hook(inode_unlink, 0, dir, dentry);
1254 }
1255
1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1257                             const char *old_name)
1258 {
1259         if (unlikely(IS_PRIVATE(dir)))
1260                 return 0;
1261         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1262 }
1263
1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1265 {
1266         if (unlikely(IS_PRIVATE(dir)))
1267                 return 0;
1268         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1269 }
1270 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1271
1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1273 {
1274         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1275                 return 0;
1276         return call_int_hook(inode_rmdir, 0, dir, dentry);
1277 }
1278
1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1280 {
1281         if (unlikely(IS_PRIVATE(dir)))
1282                 return 0;
1283         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1284 }
1285
1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1287                            struct inode *new_dir, struct dentry *new_dentry,
1288                            unsigned int flags)
1289 {
1290         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1291             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1292                 return 0;
1293
1294         if (flags & RENAME_EXCHANGE) {
1295                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1296                                                      old_dir, old_dentry);
1297                 if (err)
1298                         return err;
1299         }
1300
1301         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1302                                            new_dir, new_dentry);
1303 }
1304
1305 int security_inode_readlink(struct dentry *dentry)
1306 {
1307         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1308                 return 0;
1309         return call_int_hook(inode_readlink, 0, dentry);
1310 }
1311
1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1313                                bool rcu)
1314 {
1315         if (unlikely(IS_PRIVATE(inode)))
1316                 return 0;
1317         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1318 }
1319
1320 int security_inode_permission(struct inode *inode, int mask)
1321 {
1322         if (unlikely(IS_PRIVATE(inode)))
1323                 return 0;
1324         return call_int_hook(inode_permission, 0, inode, mask);
1325 }
1326
1327 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1328 {
1329         int ret;
1330
1331         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1332                 return 0;
1333         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1334         if (ret)
1335                 return ret;
1336         return evm_inode_setattr(dentry, attr);
1337 }
1338 EXPORT_SYMBOL_GPL(security_inode_setattr);
1339
1340 int security_inode_getattr(const struct path *path)
1341 {
1342         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1343                 return 0;
1344         return call_int_hook(inode_getattr, 0, path);
1345 }
1346
1347 int security_inode_setxattr(struct user_namespace *mnt_userns,
1348                             struct dentry *dentry, const char *name,
1349                             const void *value, size_t size, int flags)
1350 {
1351         int ret;
1352
1353         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1354                 return 0;
1355         /*
1356          * SELinux and Smack integrate the cap call,
1357          * so assume that all LSMs supplying this call do so.
1358          */
1359         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1360                             size, flags);
1361
1362         if (ret == 1)
1363                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1364         if (ret)
1365                 return ret;
1366         ret = ima_inode_setxattr(dentry, name, value, size);
1367         if (ret)
1368                 return ret;
1369         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1370 }
1371
1372 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1373                                   const void *value, size_t size, int flags)
1374 {
1375         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1376                 return;
1377         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1378         evm_inode_post_setxattr(dentry, name, value, size);
1379 }
1380
1381 int security_inode_getxattr(struct dentry *dentry, const char *name)
1382 {
1383         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1384                 return 0;
1385         return call_int_hook(inode_getxattr, 0, dentry, name);
1386 }
1387
1388 int security_inode_listxattr(struct dentry *dentry)
1389 {
1390         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1391                 return 0;
1392         return call_int_hook(inode_listxattr, 0, dentry);
1393 }
1394
1395 int security_inode_removexattr(struct user_namespace *mnt_userns,
1396                                struct dentry *dentry, const char *name)
1397 {
1398         int ret;
1399
1400         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1401                 return 0;
1402         /*
1403          * SELinux and Smack integrate the cap call,
1404          * so assume that all LSMs supplying this call do so.
1405          */
1406         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1407         if (ret == 1)
1408                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1409         if (ret)
1410                 return ret;
1411         ret = ima_inode_removexattr(dentry, name);
1412         if (ret)
1413                 return ret;
1414         return evm_inode_removexattr(mnt_userns, dentry, name);
1415 }
1416
1417 int security_inode_need_killpriv(struct dentry *dentry)
1418 {
1419         return call_int_hook(inode_need_killpriv, 0, dentry);
1420 }
1421
1422 int security_inode_killpriv(struct user_namespace *mnt_userns,
1423                             struct dentry *dentry)
1424 {
1425         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1426 }
1427
1428 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1429                                struct inode *inode, const char *name,
1430                                void **buffer, bool alloc)
1431 {
1432         struct security_hook_list *hp;
1433         int rc;
1434
1435         if (unlikely(IS_PRIVATE(inode)))
1436                 return LSM_RET_DEFAULT(inode_getsecurity);
1437         /*
1438          * Only one module will provide an attribute with a given name.
1439          */
1440         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1441                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1442                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1443                         return rc;
1444         }
1445         return LSM_RET_DEFAULT(inode_getsecurity);
1446 }
1447
1448 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1449 {
1450         struct security_hook_list *hp;
1451         int rc;
1452
1453         if (unlikely(IS_PRIVATE(inode)))
1454                 return LSM_RET_DEFAULT(inode_setsecurity);
1455         /*
1456          * Only one module will provide an attribute with a given name.
1457          */
1458         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1459                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1460                                                                 flags);
1461                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1462                         return rc;
1463         }
1464         return LSM_RET_DEFAULT(inode_setsecurity);
1465 }
1466
1467 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1468 {
1469         if (unlikely(IS_PRIVATE(inode)))
1470                 return 0;
1471         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1472 }
1473 EXPORT_SYMBOL(security_inode_listsecurity);
1474
1475 void security_inode_getsecid(struct inode *inode, u32 *secid)
1476 {
1477         call_void_hook(inode_getsecid, inode, secid);
1478 }
1479
1480 int security_inode_copy_up(struct dentry *src, struct cred **new)
1481 {
1482         return call_int_hook(inode_copy_up, 0, src, new);
1483 }
1484 EXPORT_SYMBOL(security_inode_copy_up);
1485
1486 int security_inode_copy_up_xattr(const char *name)
1487 {
1488         struct security_hook_list *hp;
1489         int rc;
1490
1491         /*
1492          * The implementation can return 0 (accept the xattr), 1 (discard the
1493          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1494          * any other error code incase of an error.
1495          */
1496         hlist_for_each_entry(hp,
1497                 &security_hook_heads.inode_copy_up_xattr, list) {
1498                 rc = hp->hook.inode_copy_up_xattr(name);
1499                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1500                         return rc;
1501         }
1502
1503         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1504 }
1505 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1506
1507 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1508                                   struct kernfs_node *kn)
1509 {
1510         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1511 }
1512
1513 int security_file_permission(struct file *file, int mask)
1514 {
1515         int ret;
1516
1517         ret = call_int_hook(file_permission, 0, file, mask);
1518         if (ret)
1519                 return ret;
1520
1521         return fsnotify_perm(file, mask);
1522 }
1523
1524 int security_file_alloc(struct file *file)
1525 {
1526         int rc = lsm_file_alloc(file);
1527
1528         if (rc)
1529                 return rc;
1530         rc = call_int_hook(file_alloc_security, 0, file);
1531         if (unlikely(rc))
1532                 security_file_free(file);
1533         return rc;
1534 }
1535
1536 void security_file_free(struct file *file)
1537 {
1538         void *blob;
1539
1540         call_void_hook(file_free_security, file);
1541
1542         blob = file->f_security;
1543         if (blob) {
1544                 file->f_security = NULL;
1545                 kmem_cache_free(lsm_file_cache, blob);
1546         }
1547 }
1548
1549 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1550 {
1551         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1552 }
1553 EXPORT_SYMBOL_GPL(security_file_ioctl);
1554
1555 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1556 {
1557         /*
1558          * Does we have PROT_READ and does the application expect
1559          * it to imply PROT_EXEC?  If not, nothing to talk about...
1560          */
1561         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1562                 return prot;
1563         if (!(current->personality & READ_IMPLIES_EXEC))
1564                 return prot;
1565         /*
1566          * if that's an anonymous mapping, let it.
1567          */
1568         if (!file)
1569                 return prot | PROT_EXEC;
1570         /*
1571          * ditto if it's not on noexec mount, except that on !MMU we need
1572          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1573          */
1574         if (!path_noexec(&file->f_path)) {
1575 #ifndef CONFIG_MMU
1576                 if (file->f_op->mmap_capabilities) {
1577                         unsigned caps = file->f_op->mmap_capabilities(file);
1578                         if (!(caps & NOMMU_MAP_EXEC))
1579                                 return prot;
1580                 }
1581 #endif
1582                 return prot | PROT_EXEC;
1583         }
1584         /* anything on noexec mount won't get PROT_EXEC */
1585         return prot;
1586 }
1587
1588 int security_mmap_file(struct file *file, unsigned long prot,
1589                         unsigned long flags)
1590 {
1591         int ret;
1592         ret = call_int_hook(mmap_file, 0, file, prot,
1593                                         mmap_prot(file, prot), flags);
1594         if (ret)
1595                 return ret;
1596         return ima_file_mmap(file, prot);
1597 }
1598
1599 int security_mmap_addr(unsigned long addr)
1600 {
1601         return call_int_hook(mmap_addr, 0, addr);
1602 }
1603
1604 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1605                             unsigned long prot)
1606 {
1607         int ret;
1608
1609         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1610         if (ret)
1611                 return ret;
1612         return ima_file_mprotect(vma, prot);
1613 }
1614
1615 int security_file_lock(struct file *file, unsigned int cmd)
1616 {
1617         return call_int_hook(file_lock, 0, file, cmd);
1618 }
1619
1620 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1621 {
1622         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1623 }
1624
1625 void security_file_set_fowner(struct file *file)
1626 {
1627         call_void_hook(file_set_fowner, file);
1628 }
1629
1630 int security_file_send_sigiotask(struct task_struct *tsk,
1631                                   struct fown_struct *fown, int sig)
1632 {
1633         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1634 }
1635
1636 int security_file_receive(struct file *file)
1637 {
1638         return call_int_hook(file_receive, 0, file);
1639 }
1640
1641 int security_file_open(struct file *file)
1642 {
1643         int ret;
1644
1645         ret = call_int_hook(file_open, 0, file);
1646         if (ret)
1647                 return ret;
1648
1649         return fsnotify_perm(file, MAY_OPEN);
1650 }
1651
1652 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1653 {
1654         int rc = lsm_task_alloc(task);
1655
1656         if (rc)
1657                 return rc;
1658         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1659         if (unlikely(rc))
1660                 security_task_free(task);
1661         return rc;
1662 }
1663
1664 void security_task_free(struct task_struct *task)
1665 {
1666         call_void_hook(task_free, task);
1667
1668         kfree(task->security);
1669         task->security = NULL;
1670 }
1671
1672 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1673 {
1674         int rc = lsm_cred_alloc(cred, gfp);
1675
1676         if (rc)
1677                 return rc;
1678
1679         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1680         if (unlikely(rc))
1681                 security_cred_free(cred);
1682         return rc;
1683 }
1684
1685 void security_cred_free(struct cred *cred)
1686 {
1687         /*
1688          * There is a failure case in prepare_creds() that
1689          * may result in a call here with ->security being NULL.
1690          */
1691         if (unlikely(cred->security == NULL))
1692                 return;
1693
1694         call_void_hook(cred_free, cred);
1695
1696         kfree(cred->security);
1697         cred->security = NULL;
1698 }
1699
1700 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1701 {
1702         int rc = lsm_cred_alloc(new, gfp);
1703
1704         if (rc)
1705                 return rc;
1706
1707         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1708         if (unlikely(rc))
1709                 security_cred_free(new);
1710         return rc;
1711 }
1712
1713 void security_transfer_creds(struct cred *new, const struct cred *old)
1714 {
1715         call_void_hook(cred_transfer, new, old);
1716 }
1717
1718 void security_cred_getsecid(const struct cred *c, u32 *secid)
1719 {
1720         *secid = 0;
1721         call_void_hook(cred_getsecid, c, secid);
1722 }
1723 EXPORT_SYMBOL(security_cred_getsecid);
1724
1725 int security_kernel_act_as(struct cred *new, u32 secid)
1726 {
1727         return call_int_hook(kernel_act_as, 0, new, secid);
1728 }
1729
1730 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1731 {
1732         return call_int_hook(kernel_create_files_as, 0, new, inode);
1733 }
1734
1735 int security_kernel_module_request(char *kmod_name)
1736 {
1737         int ret;
1738
1739         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1740         if (ret)
1741                 return ret;
1742         return integrity_kernel_module_request(kmod_name);
1743 }
1744
1745 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1746                               bool contents)
1747 {
1748         int ret;
1749
1750         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1751         if (ret)
1752                 return ret;
1753         return ima_read_file(file, id, contents);
1754 }
1755 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1756
1757 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1758                                    enum kernel_read_file_id id)
1759 {
1760         int ret;
1761
1762         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1763         if (ret)
1764                 return ret;
1765         return ima_post_read_file(file, buf, size, id);
1766 }
1767 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1768
1769 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1770 {
1771         int ret;
1772
1773         ret = call_int_hook(kernel_load_data, 0, id, contents);
1774         if (ret)
1775                 return ret;
1776         return ima_load_data(id, contents);
1777 }
1778 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1779
1780 int security_kernel_post_load_data(char *buf, loff_t size,
1781                                    enum kernel_load_data_id id,
1782                                    char *description)
1783 {
1784         int ret;
1785
1786         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1787                             description);
1788         if (ret)
1789                 return ret;
1790         return ima_post_load_data(buf, size, id, description);
1791 }
1792 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1793
1794 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1795                              int flags)
1796 {
1797         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1798 }
1799
1800 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1801                                  int flags)
1802 {
1803         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1804 }
1805
1806 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1807 {
1808         return call_int_hook(task_setpgid, 0, p, pgid);
1809 }
1810
1811 int security_task_getpgid(struct task_struct *p)
1812 {
1813         return call_int_hook(task_getpgid, 0, p);
1814 }
1815
1816 int security_task_getsid(struct task_struct *p)
1817 {
1818         return call_int_hook(task_getsid, 0, p);
1819 }
1820
1821 void security_current_getsecid_subj(u32 *secid)
1822 {
1823         *secid = 0;
1824         call_void_hook(current_getsecid_subj, secid);
1825 }
1826 EXPORT_SYMBOL(security_current_getsecid_subj);
1827
1828 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1829 {
1830         *secid = 0;
1831         call_void_hook(task_getsecid_obj, p, secid);
1832 }
1833 EXPORT_SYMBOL(security_task_getsecid_obj);
1834
1835 int security_task_setnice(struct task_struct *p, int nice)
1836 {
1837         return call_int_hook(task_setnice, 0, p, nice);
1838 }
1839
1840 int security_task_setioprio(struct task_struct *p, int ioprio)
1841 {
1842         return call_int_hook(task_setioprio, 0, p, ioprio);
1843 }
1844
1845 int security_task_getioprio(struct task_struct *p)
1846 {
1847         return call_int_hook(task_getioprio, 0, p);
1848 }
1849
1850 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1851                           unsigned int flags)
1852 {
1853         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1854 }
1855
1856 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1857                 struct rlimit *new_rlim)
1858 {
1859         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1860 }
1861
1862 int security_task_setscheduler(struct task_struct *p)
1863 {
1864         return call_int_hook(task_setscheduler, 0, p);
1865 }
1866
1867 int security_task_getscheduler(struct task_struct *p)
1868 {
1869         return call_int_hook(task_getscheduler, 0, p);
1870 }
1871
1872 int security_task_movememory(struct task_struct *p)
1873 {
1874         return call_int_hook(task_movememory, 0, p);
1875 }
1876
1877 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1878                         int sig, const struct cred *cred)
1879 {
1880         return call_int_hook(task_kill, 0, p, info, sig, cred);
1881 }
1882
1883 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1884                          unsigned long arg4, unsigned long arg5)
1885 {
1886         int thisrc;
1887         int rc = LSM_RET_DEFAULT(task_prctl);
1888         struct security_hook_list *hp;
1889
1890         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1891                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1892                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1893                         rc = thisrc;
1894                         if (thisrc != 0)
1895                                 break;
1896                 }
1897         }
1898         return rc;
1899 }
1900
1901 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1902 {
1903         call_void_hook(task_to_inode, p, inode);
1904 }
1905
1906 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1907 {
1908         return call_int_hook(ipc_permission, 0, ipcp, flag);
1909 }
1910
1911 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1912 {
1913         *secid = 0;
1914         call_void_hook(ipc_getsecid, ipcp, secid);
1915 }
1916
1917 int security_msg_msg_alloc(struct msg_msg *msg)
1918 {
1919         int rc = lsm_msg_msg_alloc(msg);
1920
1921         if (unlikely(rc))
1922                 return rc;
1923         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1924         if (unlikely(rc))
1925                 security_msg_msg_free(msg);
1926         return rc;
1927 }
1928
1929 void security_msg_msg_free(struct msg_msg *msg)
1930 {
1931         call_void_hook(msg_msg_free_security, msg);
1932         kfree(msg->security);
1933         msg->security = NULL;
1934 }
1935
1936 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1937 {
1938         int rc = lsm_ipc_alloc(msq);
1939
1940         if (unlikely(rc))
1941                 return rc;
1942         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1943         if (unlikely(rc))
1944                 security_msg_queue_free(msq);
1945         return rc;
1946 }
1947
1948 void security_msg_queue_free(struct kern_ipc_perm *msq)
1949 {
1950         call_void_hook(msg_queue_free_security, msq);
1951         kfree(msq->security);
1952         msq->security = NULL;
1953 }
1954
1955 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1956 {
1957         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1958 }
1959
1960 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1961 {
1962         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1963 }
1964
1965 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1966                                struct msg_msg *msg, int msqflg)
1967 {
1968         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1969 }
1970
1971 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1972                                struct task_struct *target, long type, int mode)
1973 {
1974         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1975 }
1976
1977 int security_shm_alloc(struct kern_ipc_perm *shp)
1978 {
1979         int rc = lsm_ipc_alloc(shp);
1980
1981         if (unlikely(rc))
1982                 return rc;
1983         rc = call_int_hook(shm_alloc_security, 0, shp);
1984         if (unlikely(rc))
1985                 security_shm_free(shp);
1986         return rc;
1987 }
1988
1989 void security_shm_free(struct kern_ipc_perm *shp)
1990 {
1991         call_void_hook(shm_free_security, shp);
1992         kfree(shp->security);
1993         shp->security = NULL;
1994 }
1995
1996 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1997 {
1998         return call_int_hook(shm_associate, 0, shp, shmflg);
1999 }
2000
2001 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2002 {
2003         return call_int_hook(shm_shmctl, 0, shp, cmd);
2004 }
2005
2006 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2007 {
2008         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2009 }
2010
2011 int security_sem_alloc(struct kern_ipc_perm *sma)
2012 {
2013         int rc = lsm_ipc_alloc(sma);
2014
2015         if (unlikely(rc))
2016                 return rc;
2017         rc = call_int_hook(sem_alloc_security, 0, sma);
2018         if (unlikely(rc))
2019                 security_sem_free(sma);
2020         return rc;
2021 }
2022
2023 void security_sem_free(struct kern_ipc_perm *sma)
2024 {
2025         call_void_hook(sem_free_security, sma);
2026         kfree(sma->security);
2027         sma->security = NULL;
2028 }
2029
2030 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2031 {
2032         return call_int_hook(sem_associate, 0, sma, semflg);
2033 }
2034
2035 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2036 {
2037         return call_int_hook(sem_semctl, 0, sma, cmd);
2038 }
2039
2040 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2041                         unsigned nsops, int alter)
2042 {
2043         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2044 }
2045
2046 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2047 {
2048         if (unlikely(inode && IS_PRIVATE(inode)))
2049                 return;
2050         call_void_hook(d_instantiate, dentry, inode);
2051 }
2052 EXPORT_SYMBOL(security_d_instantiate);
2053
2054 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2055                                 char **value)
2056 {
2057         struct security_hook_list *hp;
2058
2059         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2060                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2061                         continue;
2062                 return hp->hook.getprocattr(p, name, value);
2063         }
2064         return LSM_RET_DEFAULT(getprocattr);
2065 }
2066
2067 int security_setprocattr(const char *lsm, const char *name, void *value,
2068                          size_t size)
2069 {
2070         struct security_hook_list *hp;
2071
2072         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2073                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2074                         continue;
2075                 return hp->hook.setprocattr(name, value, size);
2076         }
2077         return LSM_RET_DEFAULT(setprocattr);
2078 }
2079
2080 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2081 {
2082         return call_int_hook(netlink_send, 0, sk, skb);
2083 }
2084
2085 int security_ismaclabel(const char *name)
2086 {
2087         return call_int_hook(ismaclabel, 0, name);
2088 }
2089 EXPORT_SYMBOL(security_ismaclabel);
2090
2091 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2092 {
2093         struct security_hook_list *hp;
2094         int rc;
2095
2096         /*
2097          * Currently, only one LSM can implement secid_to_secctx (i.e this
2098          * LSM hook is not "stackable").
2099          */
2100         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2101                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2102                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2103                         return rc;
2104         }
2105
2106         return LSM_RET_DEFAULT(secid_to_secctx);
2107 }
2108 EXPORT_SYMBOL(security_secid_to_secctx);
2109
2110 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2111 {
2112         *secid = 0;
2113         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2114 }
2115 EXPORT_SYMBOL(security_secctx_to_secid);
2116
2117 void security_release_secctx(char *secdata, u32 seclen)
2118 {
2119         call_void_hook(release_secctx, secdata, seclen);
2120 }
2121 EXPORT_SYMBOL(security_release_secctx);
2122
2123 void security_inode_invalidate_secctx(struct inode *inode)
2124 {
2125         call_void_hook(inode_invalidate_secctx, inode);
2126 }
2127 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2128
2129 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2130 {
2131         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2132 }
2133 EXPORT_SYMBOL(security_inode_notifysecctx);
2134
2135 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2136 {
2137         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2138 }
2139 EXPORT_SYMBOL(security_inode_setsecctx);
2140
2141 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2142 {
2143         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2144 }
2145 EXPORT_SYMBOL(security_inode_getsecctx);
2146
2147 #ifdef CONFIG_WATCH_QUEUE
2148 int security_post_notification(const struct cred *w_cred,
2149                                const struct cred *cred,
2150                                struct watch_notification *n)
2151 {
2152         return call_int_hook(post_notification, 0, w_cred, cred, n);
2153 }
2154 #endif /* CONFIG_WATCH_QUEUE */
2155
2156 #ifdef CONFIG_KEY_NOTIFICATIONS
2157 int security_watch_key(struct key *key)
2158 {
2159         return call_int_hook(watch_key, 0, key);
2160 }
2161 #endif
2162
2163 #ifdef CONFIG_SECURITY_NETWORK
2164
2165 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2166 {
2167         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2168 }
2169 EXPORT_SYMBOL(security_unix_stream_connect);
2170
2171 int security_unix_may_send(struct socket *sock,  struct socket *other)
2172 {
2173         return call_int_hook(unix_may_send, 0, sock, other);
2174 }
2175 EXPORT_SYMBOL(security_unix_may_send);
2176
2177 int security_socket_create(int family, int type, int protocol, int kern)
2178 {
2179         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2180 }
2181
2182 int security_socket_post_create(struct socket *sock, int family,
2183                                 int type, int protocol, int kern)
2184 {
2185         return call_int_hook(socket_post_create, 0, sock, family, type,
2186                                                 protocol, kern);
2187 }
2188
2189 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2190 {
2191         return call_int_hook(socket_socketpair, 0, socka, sockb);
2192 }
2193 EXPORT_SYMBOL(security_socket_socketpair);
2194
2195 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2196 {
2197         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2198 }
2199
2200 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2201 {
2202         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2203 }
2204
2205 int security_socket_listen(struct socket *sock, int backlog)
2206 {
2207         return call_int_hook(socket_listen, 0, sock, backlog);
2208 }
2209
2210 int security_socket_accept(struct socket *sock, struct socket *newsock)
2211 {
2212         return call_int_hook(socket_accept, 0, sock, newsock);
2213 }
2214
2215 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2216 {
2217         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2218 }
2219
2220 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2221                             int size, int flags)
2222 {
2223         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2224 }
2225
2226 int security_socket_getsockname(struct socket *sock)
2227 {
2228         return call_int_hook(socket_getsockname, 0, sock);
2229 }
2230
2231 int security_socket_getpeername(struct socket *sock)
2232 {
2233         return call_int_hook(socket_getpeername, 0, sock);
2234 }
2235
2236 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2237 {
2238         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2239 }
2240
2241 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2242 {
2243         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2244 }
2245
2246 int security_socket_shutdown(struct socket *sock, int how)
2247 {
2248         return call_int_hook(socket_shutdown, 0, sock, how);
2249 }
2250
2251 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2252 {
2253         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2254 }
2255 EXPORT_SYMBOL(security_sock_rcv_skb);
2256
2257 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2258                                       int __user *optlen, unsigned len)
2259 {
2260         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2261                                 optval, optlen, len);
2262 }
2263
2264 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2265 {
2266         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2267                              skb, secid);
2268 }
2269 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2270
2271 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2272 {
2273         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2274 }
2275
2276 void security_sk_free(struct sock *sk)
2277 {
2278         call_void_hook(sk_free_security, sk);
2279 }
2280
2281 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2282 {
2283         call_void_hook(sk_clone_security, sk, newsk);
2284 }
2285 EXPORT_SYMBOL(security_sk_clone);
2286
2287 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2288 {
2289         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2290 }
2291 EXPORT_SYMBOL(security_sk_classify_flow);
2292
2293 void security_req_classify_flow(const struct request_sock *req,
2294                                 struct flowi_common *flic)
2295 {
2296         call_void_hook(req_classify_flow, req, flic);
2297 }
2298 EXPORT_SYMBOL(security_req_classify_flow);
2299
2300 void security_sock_graft(struct sock *sk, struct socket *parent)
2301 {
2302         call_void_hook(sock_graft, sk, parent);
2303 }
2304 EXPORT_SYMBOL(security_sock_graft);
2305
2306 int security_inet_conn_request(const struct sock *sk,
2307                         struct sk_buff *skb, struct request_sock *req)
2308 {
2309         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2310 }
2311 EXPORT_SYMBOL(security_inet_conn_request);
2312
2313 void security_inet_csk_clone(struct sock *newsk,
2314                         const struct request_sock *req)
2315 {
2316         call_void_hook(inet_csk_clone, newsk, req);
2317 }
2318
2319 void security_inet_conn_established(struct sock *sk,
2320                         struct sk_buff *skb)
2321 {
2322         call_void_hook(inet_conn_established, sk, skb);
2323 }
2324 EXPORT_SYMBOL(security_inet_conn_established);
2325
2326 int security_secmark_relabel_packet(u32 secid)
2327 {
2328         return call_int_hook(secmark_relabel_packet, 0, secid);
2329 }
2330 EXPORT_SYMBOL(security_secmark_relabel_packet);
2331
2332 void security_secmark_refcount_inc(void)
2333 {
2334         call_void_hook(secmark_refcount_inc);
2335 }
2336 EXPORT_SYMBOL(security_secmark_refcount_inc);
2337
2338 void security_secmark_refcount_dec(void)
2339 {
2340         call_void_hook(secmark_refcount_dec);
2341 }
2342 EXPORT_SYMBOL(security_secmark_refcount_dec);
2343
2344 int security_tun_dev_alloc_security(void **security)
2345 {
2346         return call_int_hook(tun_dev_alloc_security, 0, security);
2347 }
2348 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2349
2350 void security_tun_dev_free_security(void *security)
2351 {
2352         call_void_hook(tun_dev_free_security, security);
2353 }
2354 EXPORT_SYMBOL(security_tun_dev_free_security);
2355
2356 int security_tun_dev_create(void)
2357 {
2358         return call_int_hook(tun_dev_create, 0);
2359 }
2360 EXPORT_SYMBOL(security_tun_dev_create);
2361
2362 int security_tun_dev_attach_queue(void *security)
2363 {
2364         return call_int_hook(tun_dev_attach_queue, 0, security);
2365 }
2366 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2367
2368 int security_tun_dev_attach(struct sock *sk, void *security)
2369 {
2370         return call_int_hook(tun_dev_attach, 0, sk, security);
2371 }
2372 EXPORT_SYMBOL(security_tun_dev_attach);
2373
2374 int security_tun_dev_open(void *security)
2375 {
2376         return call_int_hook(tun_dev_open, 0, security);
2377 }
2378 EXPORT_SYMBOL(security_tun_dev_open);
2379
2380 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2381 {
2382         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2383 }
2384 EXPORT_SYMBOL(security_sctp_assoc_request);
2385
2386 int security_sctp_bind_connect(struct sock *sk, int optname,
2387                                struct sockaddr *address, int addrlen)
2388 {
2389         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2390                              address, addrlen);
2391 }
2392 EXPORT_SYMBOL(security_sctp_bind_connect);
2393
2394 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2395                             struct sock *newsk)
2396 {
2397         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2398 }
2399 EXPORT_SYMBOL(security_sctp_sk_clone);
2400
2401 int security_sctp_assoc_established(struct sctp_association *asoc,
2402                                     struct sk_buff *skb)
2403 {
2404         return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2405 }
2406 EXPORT_SYMBOL(security_sctp_assoc_established);
2407
2408 #endif  /* CONFIG_SECURITY_NETWORK */
2409
2410 #ifdef CONFIG_SECURITY_INFINIBAND
2411
2412 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2413 {
2414         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2415 }
2416 EXPORT_SYMBOL(security_ib_pkey_access);
2417
2418 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2419 {
2420         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2421 }
2422 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2423
2424 int security_ib_alloc_security(void **sec)
2425 {
2426         return call_int_hook(ib_alloc_security, 0, sec);
2427 }
2428 EXPORT_SYMBOL(security_ib_alloc_security);
2429
2430 void security_ib_free_security(void *sec)
2431 {
2432         call_void_hook(ib_free_security, sec);
2433 }
2434 EXPORT_SYMBOL(security_ib_free_security);
2435 #endif  /* CONFIG_SECURITY_INFINIBAND */
2436
2437 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2438
2439 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2440                                struct xfrm_user_sec_ctx *sec_ctx,
2441                                gfp_t gfp)
2442 {
2443         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2444 }
2445 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2446
2447 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2448                               struct xfrm_sec_ctx **new_ctxp)
2449 {
2450         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2451 }
2452
2453 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2454 {
2455         call_void_hook(xfrm_policy_free_security, ctx);
2456 }
2457 EXPORT_SYMBOL(security_xfrm_policy_free);
2458
2459 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2460 {
2461         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2462 }
2463
2464 int security_xfrm_state_alloc(struct xfrm_state *x,
2465                               struct xfrm_user_sec_ctx *sec_ctx)
2466 {
2467         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2468 }
2469 EXPORT_SYMBOL(security_xfrm_state_alloc);
2470
2471 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2472                                       struct xfrm_sec_ctx *polsec, u32 secid)
2473 {
2474         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2475 }
2476
2477 int security_xfrm_state_delete(struct xfrm_state *x)
2478 {
2479         return call_int_hook(xfrm_state_delete_security, 0, x);
2480 }
2481 EXPORT_SYMBOL(security_xfrm_state_delete);
2482
2483 void security_xfrm_state_free(struct xfrm_state *x)
2484 {
2485         call_void_hook(xfrm_state_free_security, x);
2486 }
2487
2488 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2489 {
2490         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2491 }
2492
2493 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2494                                        struct xfrm_policy *xp,
2495                                        const struct flowi_common *flic)
2496 {
2497         struct security_hook_list *hp;
2498         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2499
2500         /*
2501          * Since this function is expected to return 0 or 1, the judgment
2502          * becomes difficult if multiple LSMs supply this call. Fortunately,
2503          * we can use the first LSM's judgment because currently only SELinux
2504          * supplies this call.
2505          *
2506          * For speed optimization, we explicitly break the loop rather than
2507          * using the macro
2508          */
2509         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2510                                 list) {
2511                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2512                 break;
2513         }
2514         return rc;
2515 }
2516
2517 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2518 {
2519         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2520 }
2521
2522 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2523 {
2524         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2525                                 0);
2526
2527         BUG_ON(rc);
2528 }
2529 EXPORT_SYMBOL(security_skb_classify_flow);
2530
2531 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2532
2533 #ifdef CONFIG_KEYS
2534
2535 int security_key_alloc(struct key *key, const struct cred *cred,
2536                        unsigned long flags)
2537 {
2538         return call_int_hook(key_alloc, 0, key, cred, flags);
2539 }
2540
2541 void security_key_free(struct key *key)
2542 {
2543         call_void_hook(key_free, key);
2544 }
2545
2546 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2547                             enum key_need_perm need_perm)
2548 {
2549         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2550 }
2551
2552 int security_key_getsecurity(struct key *key, char **_buffer)
2553 {
2554         *_buffer = NULL;
2555         return call_int_hook(key_getsecurity, 0, key, _buffer);
2556 }
2557
2558 #endif  /* CONFIG_KEYS */
2559
2560 #ifdef CONFIG_AUDIT
2561
2562 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2563 {
2564         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2565 }
2566
2567 int security_audit_rule_known(struct audit_krule *krule)
2568 {
2569         return call_int_hook(audit_rule_known, 0, krule);
2570 }
2571
2572 void security_audit_rule_free(void *lsmrule)
2573 {
2574         call_void_hook(audit_rule_free, lsmrule);
2575 }
2576
2577 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2578 {
2579         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2580 }
2581 #endif /* CONFIG_AUDIT */
2582
2583 #ifdef CONFIG_BPF_SYSCALL
2584 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2585 {
2586         return call_int_hook(bpf, 0, cmd, attr, size);
2587 }
2588 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2589 {
2590         return call_int_hook(bpf_map, 0, map, fmode);
2591 }
2592 int security_bpf_prog(struct bpf_prog *prog)
2593 {
2594         return call_int_hook(bpf_prog, 0, prog);
2595 }
2596 int security_bpf_map_alloc(struct bpf_map *map)
2597 {
2598         return call_int_hook(bpf_map_alloc_security, 0, map);
2599 }
2600 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2601 {
2602         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2603 }
2604 void security_bpf_map_free(struct bpf_map *map)
2605 {
2606         call_void_hook(bpf_map_free_security, map);
2607 }
2608 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2609 {
2610         call_void_hook(bpf_prog_free_security, aux);
2611 }
2612 #endif /* CONFIG_BPF_SYSCALL */
2613
2614 int security_locked_down(enum lockdown_reason what)
2615 {
2616         return call_int_hook(locked_down, 0, what);
2617 }
2618 EXPORT_SYMBOL(security_locked_down);
2619
2620 #ifdef CONFIG_PERF_EVENTS
2621 int security_perf_event_open(struct perf_event_attr *attr, int type)
2622 {
2623         return call_int_hook(perf_event_open, 0, attr, type);
2624 }
2625
2626 int security_perf_event_alloc(struct perf_event *event)
2627 {
2628         return call_int_hook(perf_event_alloc, 0, event);
2629 }
2630
2631 void security_perf_event_free(struct perf_event *event)
2632 {
2633         call_void_hook(perf_event_free, event);
2634 }
2635
2636 int security_perf_event_read(struct perf_event *event)
2637 {
2638         return call_int_hook(perf_event_read, 0, event);
2639 }
2640
2641 int security_perf_event_write(struct perf_event *event)
2642 {
2643         return call_int_hook(perf_event_write, 0, event);
2644 }
2645 #endif /* CONFIG_PERF_EVENTS */
2646
2647 #ifdef CONFIG_IO_URING
2648 int security_uring_override_creds(const struct cred *new)
2649 {
2650         return call_int_hook(uring_override_creds, 0, new);
2651 }
2652
2653 int security_uring_sqpoll(void)
2654 {
2655         return call_int_hook(uring_sqpoll, 0);
2656 }
2657 #endif /* CONFIG_IO_URING */