3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
29 #define KEYRING_SEARCH_MAX_DEPTH 6
32 * We keep all named keyrings in a hash to speed looking them up.
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
40 #define KEYRING_PTR_SUBTYPE 0x2UL
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
51 static inline void *keyring_key_to_ptr(struct key *key)
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
61 static inline unsigned keyring_hash(const char *desc)
66 bucket += (unsigned char)*desc;
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
76 static int keyring_instantiate(struct key *keyring,
77 struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 char __user *buffer, size_t buflen);
84 struct key_type key_type_keyring = {
87 .instantiate = keyring_instantiate,
89 .revoke = keyring_revoke,
90 .destroy = keyring_destroy,
91 .describe = keyring_describe,
94 EXPORT_SYMBOL(key_type_keyring);
97 * Semaphore to serialise link/link calls to prevent two link calls in parallel
98 * introducing a cycle.
100 static DECLARE_RWSEM(keyring_serialise_link_sem);
103 * Publish the name of a keyring so that it can be found by name (if it has
106 static void keyring_publish_name(struct key *keyring)
110 if (keyring->description) {
111 bucket = keyring_hash(keyring->description);
113 write_lock(&keyring_name_lock);
115 if (!keyring_name_hash[bucket].next)
116 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
118 list_add_tail(&keyring->type_data.link,
119 &keyring_name_hash[bucket]);
121 write_unlock(&keyring_name_lock);
126 * Initialise a keyring.
128 * Returns 0 on success, -EINVAL if given any data.
130 static int keyring_instantiate(struct key *keyring,
131 struct key_preparsed_payload *prep)
136 if (prep->datalen == 0) {
137 assoc_array_init(&keyring->keys);
138 /* make the keyring available by name if it has one */
139 keyring_publish_name(keyring);
147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
148 * fold the carry back too, but that requires inline asm.
150 static u64 mult_64x32_and_fold(u64 x, u32 y)
152 u64 hi = (u64)(u32)(x >> 32) * y;
153 u64 lo = (u64)(u32)(x) * y;
154 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 * Hash a key type and description.
160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
162 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
163 const unsigned long level_mask = ASSOC_ARRAY_LEVEL_STEP_MASK;
164 const char *description = index_key->description;
165 unsigned long hash, type;
168 int n, desc_len = index_key->desc_len;
170 type = (unsigned long)index_key->type;
172 acc = mult_64x32_and_fold(type, desc_len + 13);
173 acc = mult_64x32_and_fold(acc, 9207);
181 memcpy(&piece, description, n);
184 acc = mult_64x32_and_fold(acc, piece);
185 acc = mult_64x32_and_fold(acc, 9207);
188 /* Fold the hash down to 32 bits if need be. */
190 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
193 /* Squidge all the keyrings into a separate part of the tree to
194 * ordinary keys by making sure the lowest level segment in the hash is
195 * zero for keyrings and non-zero otherwise.
197 if (index_key->type != &key_type_keyring && (hash & level_mask) == 0)
198 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
199 if (index_key->type == &key_type_keyring && (hash & level_mask) != 0)
200 return (hash + (hash << level_shift)) & ~level_mask;
205 * Build the next index key chunk.
207 * On 32-bit systems the index key is laid out as:
210 * hash desclen typeptr desc[]
215 * hash desclen typeptr desc[]
217 * We return it one word-sized chunk at a time.
219 static unsigned long keyring_get_key_chunk(const void *data, int level)
221 const struct keyring_index_key *index_key = data;
222 unsigned long chunk = 0;
224 int desc_len = index_key->desc_len, n = sizeof(chunk);
226 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
229 return hash_key_type_and_desc(index_key);
231 return ((unsigned long)index_key->type << 8) | desc_len;
234 return (u8)((unsigned long)index_key->type >>
235 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
239 offset += sizeof(chunk) - 1;
240 offset += (level - 3) * sizeof(chunk);
241 if (offset >= desc_len)
249 chunk |= ((u8*)index_key->description)[--offset];
250 } while (--desc_len > 0);
254 chunk |= (u8)((unsigned long)index_key->type >>
255 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
261 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
263 const struct key *key = keyring_ptr_to_key(object);
264 return keyring_get_key_chunk(&key->index_key, level);
267 static bool keyring_compare_object(const void *object, const void *data)
269 const struct keyring_index_key *index_key = data;
270 const struct key *key = keyring_ptr_to_key(object);
272 return key->index_key.type == index_key->type &&
273 key->index_key.desc_len == index_key->desc_len &&
274 memcmp(key->index_key.description, index_key->description,
275 index_key->desc_len) == 0;
279 * Compare the index keys of a pair of objects and determine the bit position
280 * at which they differ - if they differ.
282 static int keyring_diff_objects(const void *_a, const void *_b)
284 const struct key *key_a = keyring_ptr_to_key(_a);
285 const struct key *key_b = keyring_ptr_to_key(_b);
286 const struct keyring_index_key *a = &key_a->index_key;
287 const struct keyring_index_key *b = &key_b->index_key;
288 unsigned long seg_a, seg_b;
292 seg_a = hash_key_type_and_desc(a);
293 seg_b = hash_key_type_and_desc(b);
294 if ((seg_a ^ seg_b) != 0)
297 /* The number of bits contributed by the hash is controlled by a
298 * constant in the assoc_array headers. Everything else thereafter we
299 * can deal with as being machine word-size dependent.
301 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
304 if ((seg_a ^ seg_b) != 0)
307 /* The next bit may not work on big endian */
309 seg_a = (unsigned long)a->type;
310 seg_b = (unsigned long)b->type;
311 if ((seg_a ^ seg_b) != 0)
314 level += sizeof(unsigned long);
315 if (a->desc_len == 0)
319 if (((unsigned long)a->description | (unsigned long)b->description) &
320 (sizeof(unsigned long) - 1)) {
322 seg_a = *(unsigned long *)(a->description + i);
323 seg_b = *(unsigned long *)(b->description + i);
324 if ((seg_a ^ seg_b) != 0)
326 i += sizeof(unsigned long);
327 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
330 for (; i < a->desc_len; i++) {
331 seg_a = *(unsigned char *)(a->description + i);
332 seg_b = *(unsigned char *)(b->description + i);
333 if ((seg_a ^ seg_b) != 0)
343 i = level * 8 + __ffs(seg_a ^ seg_b);
348 * Free an object after stripping the keyring flag off of the pointer.
350 static void keyring_free_object(void *object)
352 key_put(keyring_ptr_to_key(object));
356 * Operations for keyring management by the index-tree routines.
358 static const struct assoc_array_ops keyring_assoc_array_ops = {
359 .get_key_chunk = keyring_get_key_chunk,
360 .get_object_key_chunk = keyring_get_object_key_chunk,
361 .compare_object = keyring_compare_object,
362 .diff_objects = keyring_diff_objects,
363 .free_object = keyring_free_object,
367 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
368 * and dispose of its data.
370 * The garbage collector detects the final key_put(), removes the keyring from
371 * the serial number tree and then does RCU synchronisation before coming here,
372 * so we shouldn't need to worry about code poking around here with the RCU
373 * readlock held by this time.
375 static void keyring_destroy(struct key *keyring)
377 if (keyring->description) {
378 write_lock(&keyring_name_lock);
380 if (keyring->type_data.link.next != NULL &&
381 !list_empty(&keyring->type_data.link))
382 list_del(&keyring->type_data.link);
384 write_unlock(&keyring_name_lock);
387 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
391 * Describe a keyring for /proc.
393 static void keyring_describe(const struct key *keyring, struct seq_file *m)
395 if (keyring->description)
396 seq_puts(m, keyring->description);
398 seq_puts(m, "[anon]");
400 if (key_is_instantiated(keyring)) {
401 if (keyring->keys.nr_leaves_on_tree != 0)
402 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
404 seq_puts(m, ": empty");
408 struct keyring_read_iterator_context {
411 key_serial_t __user *buffer;
414 static int keyring_read_iterator(const void *object, void *data)
416 struct keyring_read_iterator_context *ctx = data;
417 const struct key *key = keyring_ptr_to_key(object);
420 kenter("{%s,%d},,{%zu/%zu}",
421 key->type->name, key->serial, ctx->count, ctx->qty);
423 if (ctx->count >= ctx->qty)
426 ret = put_user(key->serial, ctx->buffer);
430 ctx->count += sizeof(key->serial);
435 * Read a list of key IDs from the keyring's contents in binary form
437 * The keyring's semaphore is read-locked by the caller. This prevents someone
438 * from modifying it under us - which could cause us to read key IDs multiple
441 static long keyring_read(const struct key *keyring,
442 char __user *buffer, size_t buflen)
444 struct keyring_read_iterator_context ctx;
445 unsigned long nr_keys;
448 kenter("{%d},,%zu", key_serial(keyring), buflen);
450 if (buflen & (sizeof(key_serial_t) - 1))
453 nr_keys = keyring->keys.nr_leaves_on_tree;
457 /* Calculate how much data we could return */
458 ctx.qty = nr_keys * sizeof(key_serial_t);
460 if (!buffer || !buflen)
463 if (buflen > ctx.qty)
466 /* Copy the IDs of the subscribed keys into the buffer */
467 ctx.buffer = (key_serial_t __user *)buffer;
469 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
471 kleave(" = %d [iterate]", ret);
475 kleave(" = %zu [ok]", ctx.count);
480 * Allocate a keyring and link into the destination keyring.
482 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
483 const struct cred *cred, key_perm_t perm,
484 unsigned long flags, struct key *dest)
489 keyring = key_alloc(&key_type_keyring, description,
490 uid, gid, cred, perm, flags);
491 if (!IS_ERR(keyring)) {
492 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
495 keyring = ERR_PTR(ret);
501 EXPORT_SYMBOL(keyring_alloc);
504 * Iteration function to consider each key found.
506 static int keyring_search_iterator(const void *object, void *iterator_data)
508 struct keyring_search_context *ctx = iterator_data;
509 const struct key *key = keyring_ptr_to_key(object);
510 unsigned long kflags = key->flags;
512 kenter("{%d}", key->serial);
514 /* ignore keys not of this type */
515 if (key->type != ctx->index_key.type) {
516 kleave(" = 0 [!type]");
520 /* skip invalidated, revoked and expired keys */
521 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
522 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
523 (1 << KEY_FLAG_REVOKED))) {
524 ctx->result = ERR_PTR(-EKEYREVOKED);
525 kleave(" = %d [invrev]", ctx->skipped_ret);
529 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
530 ctx->result = ERR_PTR(-EKEYEXPIRED);
531 kleave(" = %d [expire]", ctx->skipped_ret);
536 /* keys that don't match */
537 if (!ctx->match(key, ctx->match_data)) {
538 kleave(" = 0 [!match]");
542 /* key must have search permissions */
543 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
544 key_task_permission(make_key_ref(key, ctx->possessed),
545 ctx->cred, KEY_SEARCH) < 0) {
546 ctx->result = ERR_PTR(-EACCES);
547 kleave(" = %d [!perm]", ctx->skipped_ret);
551 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
552 /* we set a different error code if we pass a negative key */
553 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
555 ctx->result = ERR_PTR(key->type_data.reject_error);
556 kleave(" = %d [neg]", ctx->skipped_ret);
562 ctx->result = make_key_ref(key, ctx->possessed);
563 kleave(" = 1 [found]");
567 return ctx->skipped_ret;
571 * Search inside a keyring for a key. We can search by walking to it
572 * directly based on its index-key or we can iterate over the entire
573 * tree looking for it, based on the match function.
575 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
577 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
578 KEYRING_SEARCH_LOOKUP_DIRECT) {
581 object = assoc_array_find(&keyring->keys,
582 &keyring_assoc_array_ops,
584 return object ? ctx->iterator(object, ctx) : 0;
586 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
590 * Search a tree of keyrings that point to other keyrings up to the maximum
593 static bool search_nested_keyrings(struct key *keyring,
594 struct keyring_search_context *ctx)
598 struct assoc_array_node *node;
600 } stack[KEYRING_SEARCH_MAX_DEPTH];
602 struct assoc_array_shortcut *shortcut;
603 struct assoc_array_node *node;
604 struct assoc_array_ptr *ptr;
608 kenter("{%d},{%s,%s}",
610 ctx->index_key.type->name,
611 ctx->index_key.description);
613 if (ctx->index_key.description)
614 ctx->index_key.desc_len = strlen(ctx->index_key.description);
616 /* Check to see if this top-level keyring is what we are looking for
617 * and whether it is valid or not.
619 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
620 keyring_compare_object(keyring, &ctx->index_key)) {
621 ctx->skipped_ret = 2;
622 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
623 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
633 ctx->skipped_ret = 0;
634 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
635 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
637 /* Start processing a new keyring */
639 kdebug("descend to %d", keyring->serial);
640 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
641 (1 << KEY_FLAG_REVOKED)))
642 goto not_this_keyring;
644 /* Search through the keys in this keyring before its searching its
647 if (search_keyring(keyring, ctx))
650 /* Then manually iterate through the keyrings nested in this one.
652 * Start from the root node of the index tree. Because of the way the
653 * hash function has been set up, keyrings cluster on the leftmost
654 * branch of the root node (root slot 0) or in the root node itself.
655 * Non-keyrings avoid the leftmost branch of the root entirely (root
658 ptr = ACCESS_ONCE(keyring->keys.root);
660 goto not_this_keyring;
662 if (assoc_array_ptr_is_shortcut(ptr)) {
663 /* If the root is a shortcut, either the keyring only contains
664 * keyring pointers (everything clusters behind root slot 0) or
665 * doesn't contain any keyring pointers.
667 shortcut = assoc_array_ptr_to_shortcut(ptr);
668 smp_read_barrier_depends();
669 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
670 goto not_this_keyring;
672 ptr = ACCESS_ONCE(shortcut->next_node);
673 node = assoc_array_ptr_to_node(ptr);
677 node = assoc_array_ptr_to_node(ptr);
678 smp_read_barrier_depends();
680 ptr = node->slots[0];
681 if (!assoc_array_ptr_is_meta(ptr))
685 /* Descend to a more distal node in this keyring's content tree and go
689 if (assoc_array_ptr_is_shortcut(ptr)) {
690 shortcut = assoc_array_ptr_to_shortcut(ptr);
691 smp_read_barrier_depends();
692 ptr = ACCESS_ONCE(shortcut->next_node);
693 BUG_ON(!assoc_array_ptr_is_node(ptr));
694 node = assoc_array_ptr_to_node(ptr);
698 kdebug("begin_node");
699 smp_read_barrier_depends();
702 /* Go through the slots in a node */
703 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
704 ptr = ACCESS_ONCE(node->slots[slot]);
706 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
707 goto descend_to_node;
709 if (!keyring_ptr_is_keyring(ptr))
712 key = keyring_ptr_to_key(ptr);
714 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
715 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
716 ctx->result = ERR_PTR(-ELOOP);
719 goto not_this_keyring;
722 /* Search a nested keyring */
723 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
724 key_task_permission(make_key_ref(key, ctx->possessed),
725 ctx->cred, KEY_SEARCH) < 0)
728 /* stack the current position */
729 stack[sp].keyring = keyring;
730 stack[sp].node = node;
731 stack[sp].slot = slot;
734 /* begin again with the new keyring */
736 goto descend_to_keyring;
739 /* We've dealt with all the slots in the current node, so now we need
740 * to ascend to the parent and continue processing there.
742 ptr = ACCESS_ONCE(node->back_pointer);
743 slot = node->parent_slot;
745 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
746 shortcut = assoc_array_ptr_to_shortcut(ptr);
747 smp_read_barrier_depends();
748 ptr = ACCESS_ONCE(shortcut->back_pointer);
749 slot = shortcut->parent_slot;
752 goto not_this_keyring;
753 node = assoc_array_ptr_to_node(ptr);
754 smp_read_barrier_depends();
757 /* If we've ascended to the root (zero backpointer), we must have just
758 * finished processing the leftmost branch rather than the root slots -
759 * so there can't be any more keyrings for us to find.
761 if (node->back_pointer) {
762 kdebug("ascend %d", slot);
766 /* The keyring we're looking at was disqualified or didn't contain a
770 kdebug("not_this_keyring %d", sp);
776 /* Resume the processing of a keyring higher up in the tree */
778 keyring = stack[sp].keyring;
779 node = stack[sp].node;
780 slot = stack[sp].slot + 1;
781 kdebug("ascend to %d [%d]", keyring->serial, slot);
784 /* We found a viable match */
786 key = key_ref_to_ptr(ctx->result);
788 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
789 key->last_used_at = ctx->now.tv_sec;
790 keyring->last_used_at = ctx->now.tv_sec;
792 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
799 * keyring_search_aux - Search a keyring tree for a key matching some criteria
800 * @keyring_ref: A pointer to the keyring with possession indicator.
801 * @ctx: The keyring search context.
803 * Search the supplied keyring tree for a key that matches the criteria given.
804 * The root keyring and any linked keyrings must grant Search permission to the
805 * caller to be searchable and keys can only be found if they too grant Search
806 * to the caller. The possession flag on the root keyring pointer controls use
807 * of the possessor bits in permissions checking of the entire tree. In
808 * addition, the LSM gets to forbid keyring searches and key matches.
810 * The search is performed as a breadth-then-depth search up to the prescribed
811 * limit (KEYRING_SEARCH_MAX_DEPTH).
813 * Keys are matched to the type provided and are then filtered by the match
814 * function, which is given the description to use in any way it sees fit. The
815 * match function may use any attributes of a key that it wishes to to
816 * determine the match. Normally the match function from the key type would be
819 * RCU can be used to prevent the keyring key lists from disappearing without
820 * the need to take lots of locks.
822 * Returns a pointer to the found key and increments the key usage count if
823 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
824 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
825 * specified keyring wasn't a keyring.
827 * In the case of a successful return, the possession attribute from
828 * @keyring_ref is propagated to the returned key reference.
830 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
831 struct keyring_search_context *ctx)
836 ctx->iterator = keyring_search_iterator;
837 ctx->possessed = is_key_possessed(keyring_ref);
838 ctx->result = ERR_PTR(-EAGAIN);
840 keyring = key_ref_to_ptr(keyring_ref);
843 if (keyring->type != &key_type_keyring)
844 return ERR_PTR(-ENOTDIR);
846 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
847 err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
853 ctx->now = current_kernel_time();
854 if (search_nested_keyrings(keyring, ctx))
855 __key_get(key_ref_to_ptr(ctx->result));
861 * keyring_search - Search the supplied keyring tree for a matching key
862 * @keyring: The root of the keyring tree to be searched.
863 * @type: The type of keyring we want to find.
864 * @description: The name of the keyring we want to find.
866 * As keyring_search_aux() above, but using the current task's credentials and
867 * type's default matching function and preferred search method.
869 key_ref_t keyring_search(key_ref_t keyring,
870 struct key_type *type,
871 const char *description)
873 struct keyring_search_context ctx = {
874 .index_key.type = type,
875 .index_key.description = description,
876 .cred = current_cred(),
877 .match = type->match,
878 .match_data = description,
879 .flags = (type->def_lookup_type |
880 KEYRING_SEARCH_DO_STATE_CHECK),
884 return ERR_PTR(-ENOKEY);
886 return keyring_search_aux(keyring, &ctx);
888 EXPORT_SYMBOL(keyring_search);
891 * Search the given keyring for a key that might be updated.
893 * The caller must guarantee that the keyring is a keyring and that the
894 * permission is granted to modify the keyring as no check is made here. The
895 * caller must also hold a lock on the keyring semaphore.
897 * Returns a pointer to the found key with usage count incremented if
898 * successful and returns NULL if not found. Revoked and invalidated keys are
901 * If successful, the possession indicator is propagated from the keyring ref
902 * to the returned key reference.
904 key_ref_t find_key_to_update(key_ref_t keyring_ref,
905 const struct keyring_index_key *index_key)
907 struct key *keyring, *key;
910 keyring = key_ref_to_ptr(keyring_ref);
912 kenter("{%d},{%s,%s}",
913 keyring->serial, index_key->type->name, index_key->description);
915 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
925 key = keyring_ptr_to_key(object);
926 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
927 (1 << KEY_FLAG_REVOKED))) {
928 kleave(" = NULL [x]");
932 kleave(" = {%d}", key->serial);
933 return make_key_ref(key, is_key_possessed(keyring_ref));
937 * Find a keyring with the specified name.
939 * All named keyrings in the current user namespace are searched, provided they
940 * grant Search permission directly to the caller (unless this check is
941 * skipped). Keyrings whose usage points have reached zero or who have been
942 * revoked are skipped.
944 * Returns a pointer to the keyring with the keyring's refcount having being
945 * incremented on success. -ENOKEY is returned if a key could not be found.
947 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
953 return ERR_PTR(-EINVAL);
955 bucket = keyring_hash(name);
957 read_lock(&keyring_name_lock);
959 if (keyring_name_hash[bucket].next) {
960 /* search this hash bucket for a keyring with a matching name
961 * that's readable and that hasn't been revoked */
962 list_for_each_entry(keyring,
963 &keyring_name_hash[bucket],
966 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
969 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
972 if (strcmp(keyring->description, name) != 0)
975 if (!skip_perm_check &&
976 key_permission(make_key_ref(keyring, 0),
980 /* we've got a match but we might end up racing with
981 * key_cleanup() if the keyring is currently 'dead'
982 * (ie. it has a zero usage count) */
983 if (!atomic_inc_not_zero(&keyring->usage))
985 keyring->last_used_at = current_kernel_time().tv_sec;
990 keyring = ERR_PTR(-ENOKEY);
992 read_unlock(&keyring_name_lock);
996 static int keyring_detect_cycle_iterator(const void *object,
999 struct keyring_search_context *ctx = iterator_data;
1000 const struct key *key = keyring_ptr_to_key(object);
1002 kenter("{%d}", key->serial);
1004 BUG_ON(key != ctx->match_data);
1005 ctx->result = ERR_PTR(-EDEADLK);
1010 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1011 * tree A at the topmost level (ie: as a direct child of A).
1013 * Since we are adding B to A at the top level, checking for cycles should just
1014 * be a matter of seeing if node A is somewhere in tree B.
1016 static int keyring_detect_cycle(struct key *A, struct key *B)
1018 struct keyring_search_context ctx = {
1019 .index_key = A->index_key,
1021 .iterator = keyring_detect_cycle_iterator,
1022 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT |
1023 KEYRING_SEARCH_NO_STATE_CHECK |
1024 KEYRING_SEARCH_NO_UPDATE_TIME |
1025 KEYRING_SEARCH_NO_CHECK_PERM |
1026 KEYRING_SEARCH_DETECT_TOO_DEEP),
1030 search_nested_keyrings(B, &ctx);
1032 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1036 * Preallocate memory so that a key can be linked into to a keyring.
1038 int __key_link_begin(struct key *keyring,
1039 const struct keyring_index_key *index_key,
1040 struct assoc_array_edit **_edit)
1041 __acquires(&keyring->sem)
1042 __acquires(&keyring_serialise_link_sem)
1044 struct assoc_array_edit *edit;
1048 keyring->serial, index_key->type->name, index_key->description);
1050 BUG_ON(index_key->desc_len == 0);
1052 if (keyring->type != &key_type_keyring)
1055 down_write(&keyring->sem);
1058 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1061 /* serialise link/link calls to prevent parallel calls causing a cycle
1062 * when linking two keyring in opposite orders */
1063 if (index_key->type == &key_type_keyring)
1064 down_write(&keyring_serialise_link_sem);
1066 /* Create an edit script that will insert/replace the key in the
1069 edit = assoc_array_insert(&keyring->keys,
1070 &keyring_assoc_array_ops,
1074 ret = PTR_ERR(edit);
1078 /* If we're not replacing a link in-place then we're going to need some
1081 if (!edit->dead_leaf) {
1082 ret = key_payload_reserve(keyring,
1083 keyring->datalen + KEYQUOTA_LINK_BYTES);
1093 assoc_array_cancel_edit(edit);
1095 if (index_key->type == &key_type_keyring)
1096 up_write(&keyring_serialise_link_sem);
1098 up_write(&keyring->sem);
1099 kleave(" = %d", ret);
1104 * Check already instantiated keys aren't going to be a problem.
1106 * The caller must have called __key_link_begin(). Don't need to call this for
1107 * keys that were created since __key_link_begin() was called.
1109 int __key_link_check_live_key(struct key *keyring, struct key *key)
1111 if (key->type == &key_type_keyring)
1112 /* check that we aren't going to create a cycle by linking one
1113 * keyring to another */
1114 return keyring_detect_cycle(keyring, key);
1119 * Link a key into to a keyring.
1121 * Must be called with __key_link_begin() having being called. Discards any
1122 * already extant link to matching key if there is one, so that each keyring
1123 * holds at most one link to any given key of a particular type+description
1126 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1129 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1130 assoc_array_apply_edit(*_edit);
1135 * Finish linking a key into to a keyring.
1137 * Must be called with __key_link_begin() having being called.
1139 void __key_link_end(struct key *keyring,
1140 const struct keyring_index_key *index_key,
1141 struct assoc_array_edit *edit)
1142 __releases(&keyring->sem)
1143 __releases(&keyring_serialise_link_sem)
1145 BUG_ON(index_key->type == NULL);
1146 kenter("%d,%s,", keyring->serial, index_key->type->name);
1148 if (index_key->type == &key_type_keyring)
1149 up_write(&keyring_serialise_link_sem);
1151 if (edit && !edit->dead_leaf) {
1152 key_payload_reserve(keyring,
1153 keyring->datalen - KEYQUOTA_LINK_BYTES);
1154 assoc_array_cancel_edit(edit);
1156 up_write(&keyring->sem);
1160 * key_link - Link a key to a keyring
1161 * @keyring: The keyring to make the link in.
1162 * @key: The key to link to.
1164 * Make a link in a keyring to a key, such that the keyring holds a reference
1165 * on that key and the key can potentially be found by searching that keyring.
1167 * This function will write-lock the keyring's semaphore and will consume some
1168 * of the user's key data quota to hold the link.
1170 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1171 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1172 * full, -EDQUOT if there is insufficient key data quota remaining to add
1173 * another link or -ENOMEM if there's insufficient memory.
1175 * It is assumed that the caller has checked that it is permitted for a link to
1176 * be made (the keyring should have Write permission and the key Link
1179 int key_link(struct key *keyring, struct key *key)
1181 struct assoc_array_edit *edit;
1184 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1189 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1190 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1193 ret = __key_link_begin(keyring, &key->index_key, &edit);
1195 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1196 ret = __key_link_check_live_key(keyring, key);
1198 __key_link(key, &edit);
1199 __key_link_end(keyring, &key->index_key, edit);
1202 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1205 EXPORT_SYMBOL(key_link);
1208 * key_unlink - Unlink the first link to a key from a keyring.
1209 * @keyring: The keyring to remove the link from.
1210 * @key: The key the link is to.
1212 * Remove a link from a keyring to a key.
1214 * This function will write-lock the keyring's semaphore.
1216 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1217 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1220 * It is assumed that the caller has checked that it is permitted for a link to
1221 * be removed (the keyring should have Write permission; no permissions are
1222 * required on the key).
1224 int key_unlink(struct key *keyring, struct key *key)
1226 struct assoc_array_edit *edit;
1232 if (keyring->type != &key_type_keyring)
1235 down_write(&keyring->sem);
1237 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1240 ret = PTR_ERR(edit);
1247 assoc_array_apply_edit(edit);
1248 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1252 up_write(&keyring->sem);
1255 EXPORT_SYMBOL(key_unlink);
1258 * keyring_clear - Clear a keyring
1259 * @keyring: The keyring to clear.
1261 * Clear the contents of the specified keyring.
1263 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1265 int keyring_clear(struct key *keyring)
1267 struct assoc_array_edit *edit;
1270 if (keyring->type != &key_type_keyring)
1273 down_write(&keyring->sem);
1275 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1277 ret = PTR_ERR(edit);
1280 assoc_array_apply_edit(edit);
1281 key_payload_reserve(keyring, 0);
1285 up_write(&keyring->sem);
1288 EXPORT_SYMBOL(keyring_clear);
1291 * Dispose of the links from a revoked keyring.
1293 * This is called with the key sem write-locked.
1295 static void keyring_revoke(struct key *keyring)
1297 struct assoc_array_edit *edit;
1299 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1300 if (!IS_ERR(edit)) {
1302 assoc_array_apply_edit(edit);
1303 key_payload_reserve(keyring, 0);
1307 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1309 struct key *key = keyring_ptr_to_key(object);
1310 time_t *limit = iterator_data;
1312 if (key_is_dead(key, *limit))
1318 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1320 const struct key *key = keyring_ptr_to_key(object);
1321 time_t *limit = iterator_data;
1324 return key_is_dead(key, *limit);
1328 * Garbage collect pointers from a keyring.
1330 * Not called with any locks held. The keyring's key struct will not be
1331 * deallocated under us as only our caller may deallocate it.
1333 void keyring_gc(struct key *keyring, time_t limit)
1337 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1339 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1340 (1 << KEY_FLAG_REVOKED)))
1343 /* scan the keyring looking for dead keys */
1345 result = assoc_array_iterate(&keyring->keys,
1346 keyring_gc_check_iterator, &limit);
1356 down_write(&keyring->sem);
1357 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1358 keyring_gc_select_iterator, &limit);
1359 up_write(&keyring->sem);