1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/err.h>
19 struct kmem_cache *key_jar;
20 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
21 DEFINE_SPINLOCK(key_serial_lock);
23 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
24 DEFINE_SPINLOCK(key_user_lock);
26 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
27 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
28 unsigned int key_quota_maxkeys = 200; /* general key count quota */
29 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
31 static LIST_HEAD(key_types_list);
32 static DECLARE_RWSEM(key_types_sem);
34 /* We serialise key instantiation and link */
35 DEFINE_MUTEX(key_construction_mutex);
38 void __key_check(const struct key *key)
40 printk("__key_check: key %p {%08x} should be {%08x}\n",
41 key, key->magic, KEY_DEBUG_MAGIC);
47 * Get the key quota record for a user, allocating a new record if one doesn't
50 struct key_user *key_user_lookup(kuid_t uid)
52 struct key_user *candidate = NULL, *user;
53 struct rb_node *parent, **p;
57 p = &key_user_tree.rb_node;
58 spin_lock(&key_user_lock);
60 /* search the tree for a user record with a matching UID */
63 user = rb_entry(parent, struct key_user, node);
65 if (uid_lt(uid, user->uid))
67 else if (uid_gt(uid, user->uid))
73 /* if we get here, we failed to find a match in the tree */
75 /* allocate a candidate user record if we don't already have
77 spin_unlock(&key_user_lock);
80 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
81 if (unlikely(!candidate))
84 /* the allocation may have scheduled, so we need to repeat the
85 * search lest someone else added the record whilst we were
90 /* if we get here, then the user record still hadn't appeared on the
91 * second pass - so we use the candidate record */
92 refcount_set(&candidate->usage, 1);
93 atomic_set(&candidate->nkeys, 0);
94 atomic_set(&candidate->nikeys, 0);
96 candidate->qnkeys = 0;
97 candidate->qnbytes = 0;
98 spin_lock_init(&candidate->lock);
99 mutex_init(&candidate->cons_lock);
101 rb_link_node(&candidate->node, parent, p);
102 rb_insert_color(&candidate->node, &key_user_tree);
103 spin_unlock(&key_user_lock);
107 /* okay - we found a user record for this UID */
109 refcount_inc(&user->usage);
110 spin_unlock(&key_user_lock);
117 * Dispose of a user structure
119 void key_user_put(struct key_user *user)
121 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
122 rb_erase(&user->node, &key_user_tree);
123 spin_unlock(&key_user_lock);
130 * Allocate a serial number for a key. These are assigned randomly to avoid
131 * security issues through covert channel problems.
133 static inline void key_alloc_serial(struct key *key)
135 struct rb_node *parent, **p;
138 /* propose a random serial number and look for a hole for it in the
139 * serial number tree */
141 get_random_bytes(&key->serial, sizeof(key->serial));
143 key->serial >>= 1; /* negative numbers are not permitted */
144 } while (key->serial < 3);
146 spin_lock(&key_serial_lock);
150 p = &key_serial_tree.rb_node;
154 xkey = rb_entry(parent, struct key, serial_node);
156 if (key->serial < xkey->serial)
158 else if (key->serial > xkey->serial)
164 /* we've found a suitable hole - arrange for this key to occupy it */
165 rb_link_node(&key->serial_node, parent, p);
166 rb_insert_color(&key->serial_node, &key_serial_tree);
168 spin_unlock(&key_serial_lock);
171 /* we found a key with the proposed serial number - walk the tree from
172 * that point looking for the next unused serial number */
176 if (key->serial < 3) {
178 goto attempt_insertion;
181 parent = rb_next(parent);
183 goto attempt_insertion;
185 xkey = rb_entry(parent, struct key, serial_node);
186 if (key->serial < xkey->serial)
187 goto attempt_insertion;
192 * key_alloc - Allocate a key of the specified type.
193 * @type: The type of key to allocate.
194 * @desc: The key description to allow the key to be searched out.
195 * @uid: The owner of the new key.
196 * @gid: The group ID for the new key's group permissions.
197 * @cred: The credentials specifying UID namespace.
198 * @perm: The permissions mask of the new key.
199 * @flags: Flags specifying quota properties.
200 * @restrict_link: Optional link restriction for new keyrings.
202 * Allocate a key of the specified type with the attributes given. The key is
203 * returned in an uninstantiated state and the caller needs to instantiate the
204 * key before returning.
206 * The restrict_link structure (if not NULL) will be freed when the
207 * keyring is destroyed, so it must be dynamically allocated.
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
217 * Returns a pointer to the new key if successful and an error code otherwise.
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags,
227 struct key_restriction *restrict_link)
229 struct key_user *user = NULL;
231 size_t desclen, quotalen;
234 key = ERR_PTR(-EINVAL);
238 if (type->vet_description) {
239 ret = type->vet_description(desc);
246 desclen = strlen(desc);
247 quotalen = desclen + 1 + type->def_datalen;
249 /* get hold of the key tracking for this user */
250 user = key_user_lookup(uid);
254 /* check that the user's quota permits allocation of another key and
256 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
257 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
258 key_quota_root_maxkeys : key_quota_maxkeys;
259 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
260 key_quota_root_maxbytes : key_quota_maxbytes;
262 spin_lock(&user->lock);
263 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
264 if (user->qnkeys + 1 > maxkeys ||
265 user->qnbytes + quotalen > maxbytes ||
266 user->qnbytes + quotalen < user->qnbytes)
271 user->qnbytes += quotalen;
272 spin_unlock(&user->lock);
275 /* allocate and initialise the key and its description */
276 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 key->index_key.desc_len = desclen;
281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 if (!key->index_key.description)
284 key->index_key.type = type;
285 key_set_index_key(&key->index_key);
287 refcount_set(&key->usage, 1);
288 init_rwsem(&key->sem);
289 lockdep_set_class(&key->sem, &type->lock_class);
291 key->quotalen = quotalen;
292 key->datalen = type->def_datalen;
296 key->restrict_link = restrict_link;
297 key->last_used_at = ktime_get_real_seconds();
299 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
300 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
301 if (flags & KEY_ALLOC_BUILT_IN)
302 key->flags |= 1 << KEY_FLAG_BUILTIN;
303 if (flags & KEY_ALLOC_UID_KEYRING)
304 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 key->magic = KEY_DEBUG_MAGIC;
310 /* let the security module know about the key */
311 ret = security_key_alloc(key, cred, flags);
315 /* publish the key by giving it a serial number */
316 refcount_inc(&key->domain_tag->usage);
317 atomic_inc(&user->nkeys);
318 key_alloc_serial(key);
324 kfree(key->description);
325 kmem_cache_free(key_jar, key);
326 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
327 spin_lock(&user->lock);
329 user->qnbytes -= quotalen;
330 spin_unlock(&user->lock);
337 kmem_cache_free(key_jar, key);
339 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
340 spin_lock(&user->lock);
342 user->qnbytes -= quotalen;
343 spin_unlock(&user->lock);
347 key = ERR_PTR(-ENOMEM);
351 spin_unlock(&user->lock);
353 key = ERR_PTR(-EDQUOT);
356 EXPORT_SYMBOL(key_alloc);
359 * key_payload_reserve - Adjust data quota reservation for the key's payload
360 * @key: The key to make the reservation for.
361 * @datalen: The amount of data payload the caller now wants.
363 * Adjust the amount of the owning user's key data quota that a key reserves.
364 * If the amount is increased, then -EDQUOT may be returned if there isn't
365 * enough free quota available.
367 * If successful, 0 is returned.
369 int key_payload_reserve(struct key *key, size_t datalen)
371 int delta = (int)datalen - key->datalen;
376 /* contemplate the quota adjustment */
377 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
379 key_quota_root_maxbytes : key_quota_maxbytes;
381 spin_lock(&key->user->lock);
384 (key->user->qnbytes + delta >= maxbytes ||
385 key->user->qnbytes + delta < key->user->qnbytes)) {
389 key->user->qnbytes += delta;
390 key->quotalen += delta;
392 spin_unlock(&key->user->lock);
395 /* change the recorded data length if that didn't generate an error */
397 key->datalen = datalen;
401 EXPORT_SYMBOL(key_payload_reserve);
404 * Change the key state to being instantiated.
406 static void mark_key_instantiated(struct key *key, int reject_error)
408 /* Commit the payload before setting the state; barrier versus
411 smp_store_release(&key->state,
412 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416 * Instantiate a key and link it into the target keyring atomically. Must be
417 * called with the target keyring's semaphore writelocked. The target key's
418 * semaphore need not be locked as instantiation is serialised by
419 * key_construction_mutex.
421 static int __key_instantiate_and_link(struct key *key,
422 struct key_preparsed_payload *prep,
425 struct assoc_array_edit **_edit)
435 mutex_lock(&key_construction_mutex);
437 /* can't instantiate twice */
438 if (key->state == KEY_IS_UNINSTANTIATED) {
439 /* instantiate the key */
440 ret = key->type->instantiate(key, prep);
443 /* mark the key as being instantiated */
444 atomic_inc(&key->user->nikeys);
445 mark_key_instantiated(key, 0);
447 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
450 /* and link it into the destination keyring */
452 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
453 set_bit(KEY_FLAG_KEEP, &key->flags);
455 __key_link(key, _edit);
458 /* disable the authorisation key */
460 key_invalidate(authkey);
462 if (prep->expiry != TIME64_MAX) {
463 key->expiry = prep->expiry;
464 key_schedule_gc(prep->expiry + key_gc_delay);
469 mutex_unlock(&key_construction_mutex);
471 /* wake up anyone waiting for a key to be constructed */
473 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
479 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
480 * @key: The key to instantiate.
481 * @data: The data to use to instantiate the keyring.
482 * @datalen: The length of @data.
483 * @keyring: Keyring to create a link in on success (or NULL).
484 * @authkey: The authorisation token permitting instantiation.
486 * Instantiate a key that's in the uninstantiated state using the provided data
487 * and, if successful, link it in to the destination keyring if one is
490 * If successful, 0 is returned, the authorisation token is revoked and anyone
491 * waiting for the key is woken up. If the key was already instantiated,
492 * -EBUSY will be returned.
494 int key_instantiate_and_link(struct key *key,
500 struct key_preparsed_payload prep;
501 struct assoc_array_edit *edit = NULL;
504 memset(&prep, 0, sizeof(prep));
506 prep.datalen = datalen;
507 prep.quotalen = key->type->def_datalen;
508 prep.expiry = TIME64_MAX;
509 if (key->type->preparse) {
510 ret = key->type->preparse(&prep);
516 ret = __key_link_lock(keyring, &key->index_key);
520 ret = __key_link_begin(keyring, &key->index_key, &edit);
524 if (keyring->restrict_link && keyring->restrict_link->check) {
525 struct key_restriction *keyres = keyring->restrict_link;
527 ret = keyres->check(keyring, key->type, &prep.payload,
534 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
538 __key_link_end(keyring, &key->index_key, edit);
541 if (key->type->preparse)
542 key->type->free_preparse(&prep);
546 EXPORT_SYMBOL(key_instantiate_and_link);
549 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
550 * @key: The key to instantiate.
551 * @timeout: The timeout on the negative key.
552 * @error: The error to return when the key is hit.
553 * @keyring: Keyring to create a link in on success (or NULL).
554 * @authkey: The authorisation token permitting instantiation.
556 * Negatively instantiate a key that's in the uninstantiated state and, if
557 * successful, set its timeout and stored error and link it in to the
558 * destination keyring if one is supplied. The key and any links to the key
559 * will be automatically garbage collected after the timeout expires.
561 * Negative keys are used to rate limit repeated request_key() calls by causing
562 * them to return the stored error code (typically ENOKEY) until the negative
565 * If successful, 0 is returned, the authorisation token is revoked and anyone
566 * waiting for the key is woken up. If the key was already instantiated,
567 * -EBUSY will be returned.
569 int key_reject_and_link(struct key *key,
575 struct assoc_array_edit *edit = NULL;
576 int ret, awaken, link_ret = 0;
585 if (keyring->restrict_link)
588 link_ret = __key_link_lock(keyring, &key->index_key);
590 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
592 __key_link_end(keyring, &key->index_key, edit);
596 mutex_lock(&key_construction_mutex);
598 /* can't instantiate twice */
599 if (key->state == KEY_IS_UNINSTANTIATED) {
600 /* mark the key as being negatively instantiated */
601 atomic_inc(&key->user->nikeys);
602 mark_key_instantiated(key, -error);
603 key->expiry = ktime_get_real_seconds() + timeout;
604 key_schedule_gc(key->expiry + key_gc_delay);
606 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
611 /* and link it into the destination keyring */
612 if (keyring && link_ret == 0)
613 __key_link(key, &edit);
615 /* disable the authorisation key */
617 key_invalidate(authkey);
620 mutex_unlock(&key_construction_mutex);
622 if (keyring && link_ret == 0)
623 __key_link_end(keyring, &key->index_key, edit);
625 /* wake up anyone waiting for a key to be constructed */
627 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
629 return ret == 0 ? link_ret : ret;
631 EXPORT_SYMBOL(key_reject_and_link);
634 * key_put - Discard a reference to a key.
635 * @key: The key to discard a reference from.
637 * Discard a reference to a key, and when all the references are gone, we
638 * schedule the cleanup task to come and pull it out of the tree in process
639 * context at some later time.
641 void key_put(struct key *key)
646 if (refcount_dec_and_test(&key->usage))
647 schedule_work(&key_gc_work);
650 EXPORT_SYMBOL(key_put);
653 * Find a key by its serial number.
655 struct key *key_lookup(key_serial_t id)
660 spin_lock(&key_serial_lock);
662 /* search the tree for the specified key */
663 n = key_serial_tree.rb_node;
665 key = rb_entry(n, struct key, serial_node);
667 if (id < key->serial)
669 else if (id > key->serial)
676 key = ERR_PTR(-ENOKEY);
680 /* A key is allowed to be looked up only if someone still owns a
681 * reference to it - otherwise it's awaiting the gc.
683 if (!refcount_inc_not_zero(&key->usage))
687 spin_unlock(&key_serial_lock);
692 * Find and lock the specified key type against removal.
694 * We return with the sem read-locked if successful. If the type wasn't
695 * available -ENOKEY is returned instead.
697 struct key_type *key_type_lookup(const char *type)
699 struct key_type *ktype;
701 down_read(&key_types_sem);
703 /* look up the key type to see if it's one of the registered kernel
705 list_for_each_entry(ktype, &key_types_list, link) {
706 if (strcmp(ktype->name, type) == 0)
707 goto found_kernel_type;
710 up_read(&key_types_sem);
711 ktype = ERR_PTR(-ENOKEY);
717 void key_set_timeout(struct key *key, unsigned timeout)
721 /* make the changes with the locks held to prevent races */
722 down_write(&key->sem);
725 expiry = ktime_get_real_seconds() + timeout;
727 key->expiry = expiry;
728 key_schedule_gc(key->expiry + key_gc_delay);
732 EXPORT_SYMBOL_GPL(key_set_timeout);
735 * Unlock a key type locked by key_type_lookup().
737 void key_type_put(struct key_type *ktype)
739 up_read(&key_types_sem);
743 * Attempt to update an existing key.
745 * The key is given to us with an incremented refcount that we need to discard
746 * if we get an error.
748 static inline key_ref_t __key_update(key_ref_t key_ref,
749 struct key_preparsed_payload *prep)
751 struct key *key = key_ref_to_ptr(key_ref);
754 /* need write permission on the key to update it */
755 ret = key_permission(key_ref, KEY_NEED_WRITE);
760 if (!key->type->update)
763 down_write(&key->sem);
765 ret = key->type->update(key, prep);
767 /* Updating a negative key positively instantiates it */
768 mark_key_instantiated(key, 0);
779 key_ref = ERR_PTR(ret);
784 * key_create_or_update - Update or create and instantiate a key.
785 * @keyring_ref: A pointer to the destination keyring with possession flag.
786 * @type: The type of key.
787 * @description: The searchable description for the key.
788 * @payload: The data to use to instantiate or update the key.
789 * @plen: The length of @payload.
790 * @perm: The permissions mask for a new key.
791 * @flags: The quota flags for a new key.
793 * Search the destination keyring for a key of the same description and if one
794 * is found, update it, otherwise create and instantiate a new one and create a
795 * link to it from that keyring.
797 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
800 * Returns a pointer to the new key if successful, -ENODEV if the key type
801 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
802 * caller isn't permitted to modify the keyring or the LSM did not permit
803 * creation of the key.
805 * On success, the possession flag from the keyring ref will be tacked on to
806 * the key ref before it is returned.
808 key_ref_t key_create_or_update(key_ref_t keyring_ref,
810 const char *description,
816 struct keyring_index_key index_key = {
817 .description = description,
819 struct key_preparsed_payload prep;
820 struct assoc_array_edit *edit = NULL;
821 const struct cred *cred = current_cred();
822 struct key *keyring, *key = NULL;
825 struct key_restriction *restrict_link = NULL;
827 /* look up the key type to see if it's one of the registered kernel
829 index_key.type = key_type_lookup(type);
830 if (IS_ERR(index_key.type)) {
831 key_ref = ERR_PTR(-ENODEV);
835 key_ref = ERR_PTR(-EINVAL);
836 if (!index_key.type->instantiate ||
837 (!index_key.description && !index_key.type->preparse))
840 keyring = key_ref_to_ptr(keyring_ref);
844 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
845 restrict_link = keyring->restrict_link;
847 key_ref = ERR_PTR(-ENOTDIR);
848 if (keyring->type != &key_type_keyring)
851 memset(&prep, 0, sizeof(prep));
854 prep.quotalen = index_key.type->def_datalen;
855 prep.expiry = TIME64_MAX;
856 if (index_key.type->preparse) {
857 ret = index_key.type->preparse(&prep);
859 key_ref = ERR_PTR(ret);
860 goto error_free_prep;
862 if (!index_key.description)
863 index_key.description = prep.description;
864 key_ref = ERR_PTR(-EINVAL);
865 if (!index_key.description)
866 goto error_free_prep;
868 index_key.desc_len = strlen(index_key.description);
869 key_set_index_key(&index_key);
871 ret = __key_link_lock(keyring, &index_key);
873 key_ref = ERR_PTR(ret);
874 goto error_free_prep;
877 ret = __key_link_begin(keyring, &index_key, &edit);
879 key_ref = ERR_PTR(ret);
883 if (restrict_link && restrict_link->check) {
884 ret = restrict_link->check(keyring, index_key.type,
885 &prep.payload, restrict_link->key);
887 key_ref = ERR_PTR(ret);
892 /* if we're going to allocate a new key, we're going to have
893 * to modify the keyring */
894 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
896 key_ref = ERR_PTR(ret);
900 /* if it's possible to update this type of key, search for an existing
901 * key of the same type and description in the destination keyring and
902 * update that instead if possible
904 if (index_key.type->update) {
905 key_ref = find_key_to_update(keyring_ref, &index_key);
907 goto found_matching_key;
910 /* if the client doesn't provide, decide on the permissions we want */
911 if (perm == KEY_PERM_UNDEF) {
912 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
913 perm |= KEY_USR_VIEW;
915 if (index_key.type->read)
916 perm |= KEY_POS_READ;
918 if (index_key.type == &key_type_keyring ||
919 index_key.type->update)
920 perm |= KEY_POS_WRITE;
923 /* allocate a new key */
924 key = key_alloc(index_key.type, index_key.description,
925 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
927 key_ref = ERR_CAST(key);
931 /* instantiate it and link it into the target keyring */
932 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
935 key_ref = ERR_PTR(ret);
939 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
942 __key_link_end(keyring, &index_key, edit);
944 if (index_key.type->preparse)
945 index_key.type->free_preparse(&prep);
947 key_type_put(index_key.type);
952 /* we found a matching key, so we're going to try to update it
953 * - we can drop the locks first as we have the key pinned
955 __key_link_end(keyring, &index_key, edit);
957 key = key_ref_to_ptr(key_ref);
958 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
959 ret = wait_for_key_construction(key, true);
961 key_ref_put(key_ref);
962 key_ref = ERR_PTR(ret);
963 goto error_free_prep;
967 key_ref = __key_update(key_ref, &prep);
968 goto error_free_prep;
970 EXPORT_SYMBOL(key_create_or_update);
973 * key_update - Update a key's contents.
974 * @key_ref: The pointer (plus possession flag) to the key.
975 * @payload: The data to be used to update the key.
976 * @plen: The length of @payload.
978 * Attempt to update the contents of a key with the given payload data. The
979 * caller must be granted Write permission on the key. Negative keys can be
980 * instantiated by this method.
982 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
983 * type does not support updating. The key type may return other errors.
985 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
987 struct key_preparsed_payload prep;
988 struct key *key = key_ref_to_ptr(key_ref);
993 /* the key must be writable */
994 ret = key_permission(key_ref, KEY_NEED_WRITE);
998 /* attempt to update it if supported */
999 if (!key->type->update)
1002 memset(&prep, 0, sizeof(prep));
1003 prep.data = payload;
1004 prep.datalen = plen;
1005 prep.quotalen = key->type->def_datalen;
1006 prep.expiry = TIME64_MAX;
1007 if (key->type->preparse) {
1008 ret = key->type->preparse(&prep);
1013 down_write(&key->sem);
1015 ret = key->type->update(key, &prep);
1017 /* Updating a negative key positively instantiates it */
1018 mark_key_instantiated(key, 0);
1020 up_write(&key->sem);
1023 if (key->type->preparse)
1024 key->type->free_preparse(&prep);
1027 EXPORT_SYMBOL(key_update);
1030 * key_revoke - Revoke a key.
1031 * @key: The key to be revoked.
1033 * Mark a key as being revoked and ask the type to free up its resources. The
1034 * revocation timeout is set and the key and all its links will be
1035 * automatically garbage collected after key_gc_delay amount of time if they
1036 * are not manually dealt with first.
1038 void key_revoke(struct key *key)
1044 /* make sure no one's trying to change or use the key when we mark it
1045 * - we tell lockdep that we might nest because we might be revoking an
1046 * authorisation key whilst holding the sem on a key we've just
1049 down_write_nested(&key->sem, 1);
1050 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1052 key->type->revoke(key);
1054 /* set the death time to no more than the expiry time */
1055 time = ktime_get_real_seconds();
1056 if (key->revoked_at == 0 || key->revoked_at > time) {
1057 key->revoked_at = time;
1058 key_schedule_gc(key->revoked_at + key_gc_delay);
1061 up_write(&key->sem);
1063 EXPORT_SYMBOL(key_revoke);
1066 * key_invalidate - Invalidate a key.
1067 * @key: The key to be invalidated.
1069 * Mark a key as being invalidated and have it cleaned up immediately. The key
1070 * is ignored by all searches and other operations from this point.
1072 void key_invalidate(struct key *key)
1074 kenter("%d", key_serial(key));
1078 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1079 down_write_nested(&key->sem, 1);
1080 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1081 key_schedule_gc_links();
1082 up_write(&key->sem);
1085 EXPORT_SYMBOL(key_invalidate);
1088 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1089 * @key: The key to be instantiated
1090 * @prep: The preparsed data to load.
1092 * Instantiate a key from preparsed data. We assume we can just copy the data
1093 * in directly and clear the old pointers.
1095 * This can be pointed to directly by the key type instantiate op pointer.
1097 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1101 pr_devel("==>%s()\n", __func__);
1103 ret = key_payload_reserve(key, prep->quotalen);
1105 rcu_assign_keypointer(key, prep->payload.data[0]);
1106 key->payload.data[1] = prep->payload.data[1];
1107 key->payload.data[2] = prep->payload.data[2];
1108 key->payload.data[3] = prep->payload.data[3];
1109 prep->payload.data[0] = NULL;
1110 prep->payload.data[1] = NULL;
1111 prep->payload.data[2] = NULL;
1112 prep->payload.data[3] = NULL;
1114 pr_devel("<==%s() = %d\n", __func__, ret);
1117 EXPORT_SYMBOL(generic_key_instantiate);
1120 * register_key_type - Register a type of key.
1121 * @ktype: The new key type.
1123 * Register a new key type.
1125 * Returns 0 on success or -EEXIST if a type of this name already exists.
1127 int register_key_type(struct key_type *ktype)
1132 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1135 down_write(&key_types_sem);
1137 /* disallow key types with the same name */
1138 list_for_each_entry(p, &key_types_list, link) {
1139 if (strcmp(p->name, ktype->name) == 0)
1143 /* store the type */
1144 list_add(&ktype->link, &key_types_list);
1146 pr_notice("Key type %s registered\n", ktype->name);
1150 up_write(&key_types_sem);
1153 EXPORT_SYMBOL(register_key_type);
1156 * unregister_key_type - Unregister a type of key.
1157 * @ktype: The key type.
1159 * Unregister a key type and mark all the extant keys of this type as dead.
1160 * Those keys of this type are then destroyed to get rid of their payloads and
1161 * they and their links will be garbage collected as soon as possible.
1163 void unregister_key_type(struct key_type *ktype)
1165 down_write(&key_types_sem);
1166 list_del_init(&ktype->link);
1167 downgrade_write(&key_types_sem);
1168 key_gc_keytype(ktype);
1169 pr_notice("Key type %s unregistered\n", ktype->name);
1170 up_read(&key_types_sem);
1172 EXPORT_SYMBOL(unregister_key_type);
1175 * Initialise the key management state.
1177 void __init key_init(void)
1179 /* allocate a slab in which we can store keys */
1180 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1181 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1183 /* add the special key types */
1184 list_add_tail(&key_type_keyring.link, &key_types_list);
1185 list_add_tail(&key_type_dead.link, &key_types_list);
1186 list_add_tail(&key_type_user.link, &key_types_list);
1187 list_add_tail(&key_type_logon.link, &key_types_list);
1189 /* record the root user tracking */
1190 rb_link_node(&root_key_user.node,
1192 &key_user_tree.rb_node);
1194 rb_insert_color(&root_key_user.node,