1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27 #include <linux/mnt_idmapping.h>
30 * If a non-root user executes a setuid-root binary in
31 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
32 * However if fE is also set, then the intent is for only
33 * the file capabilities to be applied, and the setuid-root
34 * bit is left on either to change the uid (plausible) or
35 * to get full privilege on a kernel without file capabilities
36 * support. So in that case we do not raise capabilities.
38 * Warn if that happens, once per boot.
40 static void warn_setuid_and_fcaps_mixed(const char *fname)
44 printk(KERN_INFO "warning: `%s' has both setuid-root and"
45 " effective capabilities. Therefore not raising all"
46 " capabilities.\n", fname);
52 * cap_capable - Determine whether a task has a particular effective capability
53 * @cred: The credentials to use
54 * @targ_ns: The user namespace in which we need the capability
55 * @cap: The capability to check for
56 * @opts: Bitmask of options defined in include/linux/security.h
58 * Determine whether the nominated task has the specified capability amongst
59 * its effective set, returning 0 if it does, -ve if it does not.
61 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
62 * and has_capability() functions. That is, it has the reverse semantics:
63 * cap_has_capability() returns 0 when a task has a capability, but the
64 * kernel's capable() and has_capability() returns 1 for this case.
66 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
67 int cap, unsigned int opts)
69 struct user_namespace *ns = targ_ns;
71 /* See if cred has the capability in the target user namespace
72 * by examining the target user namespace and all of the target
73 * user namespace's parents.
76 /* Do we have the necessary capabilities? */
77 if (ns == cred->user_ns)
78 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
81 * If we're already at a lower level than we're looking for,
82 * we're done searching.
84 if (ns->level <= cred->user_ns->level)
88 * The owner of the user namespace in the parent of the
89 * user namespace has all caps.
91 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
95 * If you have a capability in a parent user ns, then you have
96 * it over all children user namespaces as well.
101 /* We never get here */
105 * cap_settime - Determine whether the current process may set the system clock
106 * @ts: The time to set
107 * @tz: The timezone to set
109 * Determine whether the current process may set the system clock and timezone
110 * information, returning 0 if permission granted, -ve if denied.
112 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
114 if (!capable(CAP_SYS_TIME))
120 * cap_ptrace_access_check - Determine whether the current process may access
122 * @child: The process to be accessed
123 * @mode: The mode of attachment.
125 * If we are in the same or an ancestor user_ns and have all the target
126 * task's capabilities, then ptrace access is allowed.
127 * If we have the ptrace capability to the target user_ns, then ptrace
131 * Determine whether a process may access another, returning 0 if permission
132 * granted, -ve if denied.
134 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
137 const struct cred *cred, *child_cred;
138 const kernel_cap_t *caller_caps;
141 cred = current_cred();
142 child_cred = __task_cred(child);
143 if (mode & PTRACE_MODE_FSCREDS)
144 caller_caps = &cred->cap_effective;
146 caller_caps = &cred->cap_permitted;
147 if (cred->user_ns == child_cred->user_ns &&
148 cap_issubset(child_cred->cap_permitted, *caller_caps))
150 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
159 * cap_ptrace_traceme - Determine whether another process may trace the current
160 * @parent: The task proposed to be the tracer
162 * If parent is in the same or an ancestor user_ns and has all current's
163 * capabilities, then ptrace access is allowed.
164 * If parent has the ptrace capability to current's user_ns, then ptrace
168 * Determine whether the nominated task is permitted to trace the current
169 * process, returning 0 if permission is granted, -ve if denied.
171 int cap_ptrace_traceme(struct task_struct *parent)
174 const struct cred *cred, *child_cred;
177 cred = __task_cred(parent);
178 child_cred = current_cred();
179 if (cred->user_ns == child_cred->user_ns &&
180 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
182 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
191 * cap_capget - Retrieve a task's capability sets
192 * @target: The task from which to retrieve the capability sets
193 * @effective: The place to record the effective set
194 * @inheritable: The place to record the inheritable set
195 * @permitted: The place to record the permitted set
197 * This function retrieves the capabilities of the nominated task and returns
198 * them to the caller.
200 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
201 kernel_cap_t *inheritable, kernel_cap_t *permitted)
203 const struct cred *cred;
205 /* Derived from kernel/capability.c:sys_capget. */
207 cred = __task_cred(target);
208 *effective = cred->cap_effective;
209 *inheritable = cred->cap_inheritable;
210 *permitted = cred->cap_permitted;
216 * Determine whether the inheritable capabilities are limited to the old
217 * permitted set. Returns 1 if they are limited, 0 if they are not.
219 static inline int cap_inh_is_capped(void)
221 /* they are so limited unless the current task has the CAP_SETPCAP
224 if (cap_capable(current_cred(), current_cred()->user_ns,
225 CAP_SETPCAP, CAP_OPT_NONE) == 0)
231 * cap_capset - Validate and apply proposed changes to current's capabilities
232 * @new: The proposed new credentials; alterations should be made here
233 * @old: The current task's current credentials
234 * @effective: A pointer to the proposed new effective capabilities set
235 * @inheritable: A pointer to the proposed new inheritable capabilities set
236 * @permitted: A pointer to the proposed new permitted capabilities set
238 * This function validates and applies a proposed mass change to the current
239 * process's capability sets. The changes are made to the proposed new
240 * credentials, and assuming no error, will be committed by the caller of LSM.
242 int cap_capset(struct cred *new,
243 const struct cred *old,
244 const kernel_cap_t *effective,
245 const kernel_cap_t *inheritable,
246 const kernel_cap_t *permitted)
248 if (cap_inh_is_capped() &&
249 !cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_permitted)))
252 /* incapable of using this inheritable set */
255 if (!cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
258 /* no new pI capabilities outside bounding set */
261 /* verify restrictions on target's new Permitted set */
262 if (!cap_issubset(*permitted, old->cap_permitted))
265 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
266 if (!cap_issubset(*effective, *permitted))
269 new->cap_effective = *effective;
270 new->cap_inheritable = *inheritable;
271 new->cap_permitted = *permitted;
274 * Mask off ambient bits that are no longer both permitted and
277 new->cap_ambient = cap_intersect(new->cap_ambient,
278 cap_intersect(*permitted,
280 if (WARN_ON(!cap_ambient_invariant_ok(new)))
286 * cap_inode_need_killpriv - Determine if inode change affects privileges
287 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
289 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
290 * affects the security markings on that inode, and if it is, should
291 * inode_killpriv() be invoked or the change rejected.
293 * Return: 1 if security.capability has a value, meaning inode_killpriv()
294 * is required, 0 otherwise, meaning inode_killpriv() is not required.
296 int cap_inode_need_killpriv(struct dentry *dentry)
298 struct inode *inode = d_backing_inode(dentry);
301 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
306 * cap_inode_killpriv - Erase the security markings on an inode
308 * @mnt_userns: user namespace of the mount the inode was found from
309 * @dentry: The inode/dentry to alter
311 * Erase the privilege-enhancing security markings on an inode.
313 * If the inode has been found through an idmapped mount the user namespace of
314 * the vfsmount must be passed through @mnt_userns. This function will then
315 * take care to map the inode according to @mnt_userns before checking
316 * permissions. On non-idmapped mounts or if permission checking is to be
317 * performed on the raw inode simply passs init_user_ns.
319 * Return: 0 if successful, -ve on error.
321 int cap_inode_killpriv(struct user_namespace *mnt_userns, struct dentry *dentry)
325 error = __vfs_removexattr(mnt_userns, dentry, XATTR_NAME_CAPS);
326 if (error == -EOPNOTSUPP)
331 static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
333 struct user_namespace *ns;
336 if (!vfsuid_valid(rootvfsuid))
339 kroot = vfsuid_into_kuid(rootvfsuid);
340 for (ns = current_user_ns();; ns = ns->parent) {
341 if (from_kuid(ns, kroot) == 0)
343 if (ns == &init_user_ns)
350 static __u32 sansflags(__u32 m)
352 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
355 static bool is_v2header(int size, const struct vfs_cap_data *cap)
357 if (size != XATTR_CAPS_SZ_2)
359 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
362 static bool is_v3header(int size, const struct vfs_cap_data *cap)
364 if (size != XATTR_CAPS_SZ_3)
366 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
370 * getsecurity: We are called for security.* before any attempt to read the
371 * xattr from the inode itself.
373 * This gives us a chance to read the on-disk value and convert it. If we
374 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
376 * Note we are not called by vfs_getxattr_alloc(), but that is only called
377 * by the integrity subsystem, which really wants the unconverted values -
380 int cap_inode_getsecurity(struct user_namespace *mnt_userns,
381 struct inode *inode, const char *name, void **buffer,
388 uid_t root, mappedroot;
390 struct vfs_cap_data *cap;
391 struct vfs_ns_cap_data *nscap = NULL;
392 struct dentry *dentry;
393 struct user_namespace *fs_ns;
395 if (strcmp(name, "capability") != 0)
398 dentry = d_find_any_alias(inode);
401 size = vfs_getxattr_alloc(mnt_userns, dentry, XATTR_NAME_CAPS, &tmpbuf,
402 sizeof(struct vfs_ns_cap_data), GFP_NOFS);
404 /* gcc11 complains if we don't check for !tmpbuf */
405 if (size < 0 || !tmpbuf)
408 fs_ns = inode->i_sb->s_user_ns;
409 cap = (struct vfs_cap_data *) tmpbuf;
410 if (is_v2header(size, cap)) {
412 } else if (is_v3header(size, cap)) {
413 nscap = (struct vfs_ns_cap_data *) tmpbuf;
414 root = le32_to_cpu(nscap->rootid);
420 kroot = make_kuid(fs_ns, root);
422 /* If this is an idmapped mount shift the kuid. */
423 vfsroot = make_vfsuid(mnt_userns, fs_ns, kroot);
425 /* If the root kuid maps to a valid uid in current ns, then return
426 * this as a nscap. */
427 mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
428 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 size = sizeof(struct vfs_ns_cap_data);
432 /* v2 -> v3 conversion */
433 nscap = kzalloc(size, GFP_ATOMIC);
438 nsmagic = VFS_CAP_REVISION_3;
439 magic = le32_to_cpu(cap->magic_etc);
440 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
441 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
442 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
443 nscap->magic_etc = cpu_to_le32(nsmagic);
445 /* use allocated v3 buffer */
448 nscap->rootid = cpu_to_le32(mappedroot);
454 if (!rootid_owns_currentns(vfsroot)) {
459 /* This comes from a parent namespace. Return as a v2 capability */
460 size = sizeof(struct vfs_cap_data);
463 /* v3 -> v2 conversion */
464 cap = kzalloc(size, GFP_ATOMIC);
469 magic = VFS_CAP_REVISION_2;
470 nsmagic = le32_to_cpu(nscap->magic_etc);
471 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
472 magic |= VFS_CAP_FLAGS_EFFECTIVE;
473 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
474 cap->magic_etc = cpu_to_le32(magic);
476 /* use unconverted v2 */
487 * rootid_from_xattr - translate root uid of vfs caps
489 * @value: vfs caps value which may be modified by this function
490 * @size: size of @ivalue
491 * @task_ns: user namespace of the caller
493 static vfsuid_t rootid_from_xattr(const void *value, size_t size,
494 struct user_namespace *task_ns)
496 const struct vfs_ns_cap_data *nscap = value;
499 if (size == XATTR_CAPS_SZ_3)
500 rootid = le32_to_cpu(nscap->rootid);
502 return VFSUIDT_INIT(make_kuid(task_ns, rootid));
505 static bool validheader(size_t size, const struct vfs_cap_data *cap)
507 return is_v2header(size, cap) || is_v3header(size, cap);
511 * cap_convert_nscap - check vfs caps
513 * @mnt_userns: user namespace of the mount the inode was found from
514 * @dentry: used to retrieve inode to check permissions on
515 * @ivalue: vfs caps value which may be modified by this function
516 * @size: size of @ivalue
518 * User requested a write of security.capability. If needed, update the
519 * xattr to change from v2 to v3, or to fixup the v3 rootid.
521 * If the inode has been found through an idmapped mount the user namespace of
522 * the vfsmount must be passed through @mnt_userns. This function will then
523 * take care to map the inode according to @mnt_userns before checking
524 * permissions. On non-idmapped mounts or if permission checking is to be
525 * performed on the raw inode simply passs init_user_ns.
527 * Return: On success, return the new size; on error, return < 0.
529 int cap_convert_nscap(struct user_namespace *mnt_userns, struct dentry *dentry,
530 const void **ivalue, size_t size)
532 struct vfs_ns_cap_data *nscap;
534 const struct vfs_cap_data *cap = *ivalue;
535 __u32 magic, nsmagic;
536 struct inode *inode = d_backing_inode(dentry);
537 struct user_namespace *task_ns = current_user_ns(),
538 *fs_ns = inode->i_sb->s_user_ns;
545 if (!validheader(size, cap))
547 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
549 if (size == XATTR_CAPS_SZ_2 && (mnt_userns == fs_ns))
550 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
551 /* user is privileged, just write the v2 */
554 vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
555 if (!vfsuid_valid(vfsrootid))
558 rootid = from_vfsuid(mnt_userns, fs_ns, vfsrootid);
559 if (!uid_valid(rootid))
562 nsrootid = from_kuid(fs_ns, rootid);
566 newsize = sizeof(struct vfs_ns_cap_data);
567 nscap = kmalloc(newsize, GFP_ATOMIC);
570 nscap->rootid = cpu_to_le32(nsrootid);
571 nsmagic = VFS_CAP_REVISION_3;
572 magic = le32_to_cpu(cap->magic_etc);
573 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
574 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
575 nscap->magic_etc = cpu_to_le32(nsmagic);
576 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
583 * Calculate the new process capability sets from the capability sets attached
586 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
587 struct linux_binprm *bprm,
591 struct cred *new = bprm->cred;
595 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
598 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
601 CAP_FOR_EACH_U32(i) {
602 __u32 permitted = caps->permitted.cap[i];
603 __u32 inheritable = caps->inheritable.cap[i];
606 * pP' = (X & fP) | (pI & fI)
607 * The addition of pA' is handled later.
609 new->cap_permitted.cap[i] =
610 (new->cap_bset.cap[i] & permitted) |
611 (new->cap_inheritable.cap[i] & inheritable);
613 if (permitted & ~new->cap_permitted.cap[i])
614 /* insufficient to execute correctly */
619 * For legacy apps, with no internal support for recognizing they
620 * do not have enough capabilities, we return an error if they are
621 * missing some "forced" (aka file-permitted) capabilities.
623 return *effective ? ret : 0;
627 * get_vfs_caps_from_disk - retrieve vfs caps from disk
629 * @mnt_userns: user namespace of the mount the inode was found from
630 * @dentry: dentry from which @inode is retrieved
631 * @cpu_caps: vfs capabilities
633 * Extract the on-exec-apply capability sets for an executable file.
635 * If the inode has been found through an idmapped mount the user namespace of
636 * the vfsmount must be passed through @mnt_userns. This function will then
637 * take care to map the inode according to @mnt_userns before checking
638 * permissions. On non-idmapped mounts or if permission checking is to be
639 * performed on the raw inode simply passs init_user_ns.
641 int get_vfs_caps_from_disk(struct user_namespace *mnt_userns,
642 const struct dentry *dentry,
643 struct cpu_vfs_cap_data *cpu_caps)
645 struct inode *inode = d_backing_inode(dentry);
649 struct vfs_ns_cap_data data, *nscaps = &data;
650 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
653 struct user_namespace *fs_ns;
655 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
660 fs_ns = inode->i_sb->s_user_ns;
661 size = __vfs_getxattr((struct dentry *)dentry, inode,
662 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
663 if (size == -ENODATA || size == -EOPNOTSUPP)
664 /* no data, that's ok */
670 if (size < sizeof(magic_etc))
673 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
675 rootkuid = make_kuid(fs_ns, 0);
676 switch (magic_etc & VFS_CAP_REVISION_MASK) {
677 case VFS_CAP_REVISION_1:
678 if (size != XATTR_CAPS_SZ_1)
680 tocopy = VFS_CAP_U32_1;
682 case VFS_CAP_REVISION_2:
683 if (size != XATTR_CAPS_SZ_2)
685 tocopy = VFS_CAP_U32_2;
687 case VFS_CAP_REVISION_3:
688 if (size != XATTR_CAPS_SZ_3)
690 tocopy = VFS_CAP_U32_3;
691 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
698 rootvfsuid = make_vfsuid(mnt_userns, fs_ns, rootkuid);
699 if (!vfsuid_valid(rootvfsuid))
702 /* Limit the caps to the mounter of the filesystem
703 * or the more limited uid specified in the xattr.
705 if (!rootid_owns_currentns(rootvfsuid))
708 CAP_FOR_EACH_U32(i) {
711 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
712 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
715 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
716 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
718 cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
724 * Attempt to get the on-exec apply capability sets for an executable file from
725 * its xattrs and, if present, apply them to the proposed credentials being
726 * constructed by execve().
728 static int get_file_caps(struct linux_binprm *bprm, struct file *file,
729 bool *effective, bool *has_fcap)
732 struct cpu_vfs_cap_data vcaps;
734 cap_clear(bprm->cred->cap_permitted);
736 if (!file_caps_enabled)
739 if (!mnt_may_suid(file->f_path.mnt))
743 * This check is redundant with mnt_may_suid() but is kept to make
744 * explicit that capability bits are limited to s_user_ns and its
747 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
750 rc = get_vfs_caps_from_disk(file_mnt_user_ns(file),
751 file->f_path.dentry, &vcaps);
754 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
756 else if (rc == -ENODATA)
761 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
765 cap_clear(bprm->cred->cap_permitted);
770 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
772 static inline bool __is_real(kuid_t uid, struct cred *cred)
773 { return uid_eq(cred->uid, uid); }
775 static inline bool __is_eff(kuid_t uid, struct cred *cred)
776 { return uid_eq(cred->euid, uid); }
778 static inline bool __is_suid(kuid_t uid, struct cred *cred)
779 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
782 * handle_privileged_root - Handle case of privileged root
783 * @bprm: The execution parameters, including the proposed creds
784 * @has_fcap: Are any file capabilities set?
785 * @effective: Do we have effective root privilege?
786 * @root_uid: This namespace' root UID WRT initial USER namespace
788 * Handle the case where root is privileged and hasn't been neutered by
789 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
790 * set UID root and nothing is changed. If we are root, cap_permitted is
791 * updated. If we have become set UID root, the effective bit is set.
793 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
794 bool *effective, kuid_t root_uid)
796 const struct cred *old = current_cred();
797 struct cred *new = bprm->cred;
799 if (!root_privileged())
802 * If the legacy file capability is set, then don't set privs
803 * for a setuid root binary run by a non-root user. Do set it
804 * for a root user just to cause least surprise to an admin.
806 if (has_fcap && __is_suid(root_uid, new)) {
807 warn_setuid_and_fcaps_mixed(bprm->filename);
811 * To support inheritance of root-permissions and suid-root
812 * executables under compatibility mode, we override the
813 * capability sets for the file.
815 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
816 /* pP' = (cap_bset & ~0) | (pI & ~0) */
817 new->cap_permitted = cap_combine(old->cap_bset,
818 old->cap_inheritable);
821 * If only the real uid is 0, we do not set the effective bit.
823 if (__is_eff(root_uid, new))
827 #define __cap_gained(field, target, source) \
828 !cap_issubset(target->cap_##field, source->cap_##field)
829 #define __cap_grew(target, source, cred) \
830 !cap_issubset(cred->cap_##target, cred->cap_##source)
831 #define __cap_full(field, cred) \
832 cap_issubset(CAP_FULL_SET, cred->cap_##field)
834 static inline bool __is_setuid(struct cred *new, const struct cred *old)
835 { return !uid_eq(new->euid, old->uid); }
837 static inline bool __is_setgid(struct cred *new, const struct cred *old)
838 { return !gid_eq(new->egid, old->gid); }
841 * 1) Audit candidate if current->cap_effective is set
843 * We do not bother to audit if 3 things are true:
844 * 1) cap_effective has all caps
845 * 2) we became root *OR* are were already root
846 * 3) root is supposed to have all caps (SECURE_NOROOT)
847 * Since this is just a normal root execing a process.
849 * Number 1 above might fail if you don't have a full bset, but I think
850 * that is interesting information to audit.
852 * A number of other conditions require logging:
853 * 2) something prevented setuid root getting all caps
854 * 3) non-setuid root gets fcaps
855 * 4) non-setuid root gets ambient
857 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
858 kuid_t root, bool has_fcap)
862 if ((__cap_grew(effective, ambient, new) &&
863 !(__cap_full(effective, new) &&
864 (__is_eff(root, new) || __is_real(root, new)) &&
865 root_privileged())) ||
866 (root_privileged() &&
867 __is_suid(root, new) &&
868 !__cap_full(effective, new)) ||
869 (!__is_setuid(new, old) &&
871 __cap_gained(permitted, new, old)) ||
872 __cap_gained(ambient, new, old))))
880 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
881 * @bprm: The execution parameters, including the proposed creds
882 * @file: The file to pull the credentials from
884 * Set up the proposed credentials for a new execution context being
885 * constructed by execve(). The proposed creds in @bprm->cred is altered,
886 * which won't take effect immediately.
888 * Return: 0 if successful, -ve on error.
890 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
892 /* Process setpcap binaries and capabilities for uid 0 */
893 const struct cred *old = current_cred();
894 struct cred *new = bprm->cred;
895 bool effective = false, has_fcap = false, is_setid;
899 if (WARN_ON(!cap_ambient_invariant_ok(old)))
902 ret = get_file_caps(bprm, file, &effective, &has_fcap);
906 root_uid = make_kuid(new->user_ns, 0);
908 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
910 /* if we have fs caps, clear dangerous personality flags */
911 if (__cap_gained(permitted, new, old))
912 bprm->per_clear |= PER_CLEAR_ON_SETID;
914 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
915 * credentials unless they have the appropriate permit.
917 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
919 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
921 if ((is_setid || __cap_gained(permitted, new, old)) &&
922 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
923 !ptracer_capable(current, new->user_ns))) {
924 /* downgrade; they get no more than they had, and maybe less */
925 if (!ns_capable(new->user_ns, CAP_SETUID) ||
926 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
927 new->euid = new->uid;
928 new->egid = new->gid;
930 new->cap_permitted = cap_intersect(new->cap_permitted,
934 new->suid = new->fsuid = new->euid;
935 new->sgid = new->fsgid = new->egid;
937 /* File caps or setid cancels ambient. */
938 if (has_fcap || is_setid)
939 cap_clear(new->cap_ambient);
942 * Now that we've computed pA', update pP' to give:
943 * pP' = (X & fP) | (pI & fI) | pA'
945 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
948 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
949 * this is the same as pE' = (fE ? pP' : 0) | pA'.
952 new->cap_effective = new->cap_permitted;
954 new->cap_effective = new->cap_ambient;
956 if (WARN_ON(!cap_ambient_invariant_ok(new)))
959 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
960 ret = audit_log_bprm_fcaps(bprm, new, old);
965 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
967 if (WARN_ON(!cap_ambient_invariant_ok(new)))
970 /* Check for privilege-elevated exec. */
972 (!__is_real(root_uid, new) &&
974 __cap_grew(permitted, ambient, new))))
975 bprm->secureexec = 1;
981 * cap_inode_setxattr - Determine whether an xattr may be altered
982 * @dentry: The inode/dentry being altered
983 * @name: The name of the xattr to be changed
984 * @value: The value that the xattr will be changed to
985 * @size: The size of value
986 * @flags: The replacement flag
988 * Determine whether an xattr may be altered or set on an inode, returning 0 if
989 * permission is granted, -ve if denied.
991 * This is used to make sure security xattrs don't get updated or set by those
992 * who aren't privileged to do so.
994 int cap_inode_setxattr(struct dentry *dentry, const char *name,
995 const void *value, size_t size, int flags)
997 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
999 /* Ignore non-security xattrs */
1000 if (strncmp(name, XATTR_SECURITY_PREFIX,
1001 XATTR_SECURITY_PREFIX_LEN) != 0)
1005 * For XATTR_NAME_CAPS the check will be done in
1006 * cap_convert_nscap(), called by setxattr()
1008 if (strcmp(name, XATTR_NAME_CAPS) == 0)
1011 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1017 * cap_inode_removexattr - Determine whether an xattr may be removed
1019 * @mnt_userns: User namespace of the mount the inode was found from
1020 * @dentry: The inode/dentry being altered
1021 * @name: The name of the xattr to be changed
1023 * Determine whether an xattr may be removed from an inode, returning 0 if
1024 * permission is granted, -ve if denied.
1026 * If the inode has been found through an idmapped mount the user namespace of
1027 * the vfsmount must be passed through @mnt_userns. This function will then
1028 * take care to map the inode according to @mnt_userns before checking
1029 * permissions. On non-idmapped mounts or if permission checking is to be
1030 * performed on the raw inode simply passs init_user_ns.
1032 * This is used to make sure security xattrs don't get removed by those who
1033 * aren't privileged to remove them.
1035 int cap_inode_removexattr(struct user_namespace *mnt_userns,
1036 struct dentry *dentry, const char *name)
1038 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1040 /* Ignore non-security xattrs */
1041 if (strncmp(name, XATTR_SECURITY_PREFIX,
1042 XATTR_SECURITY_PREFIX_LEN) != 0)
1045 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1046 /* security.capability gets namespaced */
1047 struct inode *inode = d_backing_inode(dentry);
1050 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
1055 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1061 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1062 * a process after a call to setuid, setreuid, or setresuid.
1064 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1065 * {r,e,s}uid != 0, the permitted and effective capabilities are
1068 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1069 * capabilities of the process are cleared.
1071 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1072 * capabilities are set to the permitted capabilities.
1074 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1079 * cevans - New behaviour, Oct '99
1080 * A process may, via prctl(), elect to keep its capabilities when it
1081 * calls setuid() and switches away from uid==0. Both permitted and
1082 * effective sets will be retained.
1083 * Without this change, it was impossible for a daemon to drop only some
1084 * of its privilege. The call to setuid(!=0) would drop all privileges!
1085 * Keeping uid 0 is not an option because uid 0 owns too many vital
1087 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1089 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1091 kuid_t root_uid = make_kuid(old->user_ns, 0);
1093 if ((uid_eq(old->uid, root_uid) ||
1094 uid_eq(old->euid, root_uid) ||
1095 uid_eq(old->suid, root_uid)) &&
1096 (!uid_eq(new->uid, root_uid) &&
1097 !uid_eq(new->euid, root_uid) &&
1098 !uid_eq(new->suid, root_uid))) {
1099 if (!issecure(SECURE_KEEP_CAPS)) {
1100 cap_clear(new->cap_permitted);
1101 cap_clear(new->cap_effective);
1105 * Pre-ambient programs expect setresuid to nonroot followed
1106 * by exec to drop capabilities. We should make sure that
1107 * this remains the case.
1109 cap_clear(new->cap_ambient);
1111 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1112 cap_clear(new->cap_effective);
1113 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1114 new->cap_effective = new->cap_permitted;
1118 * cap_task_fix_setuid - Fix up the results of setuid() call
1119 * @new: The proposed credentials
1120 * @old: The current task's current credentials
1121 * @flags: Indications of what has changed
1123 * Fix up the results of setuid() call before the credential changes are
1126 * Return: 0 to grant the changes, -ve to deny them.
1128 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1134 /* juggle the capabilities to follow [RES]UID changes unless
1135 * otherwise suppressed */
1136 if (!issecure(SECURE_NO_SETUID_FIXUP))
1137 cap_emulate_setxuid(new, old);
1141 /* juggle the capabilties to follow FSUID changes, unless
1142 * otherwise suppressed
1144 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1145 * if not, we might be a bit too harsh here.
1147 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1148 kuid_t root_uid = make_kuid(old->user_ns, 0);
1149 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1150 new->cap_effective =
1151 cap_drop_fs_set(new->cap_effective);
1153 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1154 new->cap_effective =
1155 cap_raise_fs_set(new->cap_effective,
1156 new->cap_permitted);
1168 * Rationale: code calling task_setscheduler, task_setioprio, and
1169 * task_setnice, assumes that
1170 * . if capable(cap_sys_nice), then those actions should be allowed
1171 * . if not capable(cap_sys_nice), but acting on your own processes,
1172 * then those actions should be allowed
1173 * This is insufficient now since you can call code without suid, but
1174 * yet with increased caps.
1175 * So we check for increased caps on the target process.
1177 static int cap_safe_nice(struct task_struct *p)
1179 int is_subset, ret = 0;
1182 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1183 current_cred()->cap_permitted);
1184 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1192 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1193 * @p: The task to affect
1195 * Detemine if the requested scheduler policy change is permitted for the
1198 * Return: 0 if permission is granted, -ve if denied.
1200 int cap_task_setscheduler(struct task_struct *p)
1202 return cap_safe_nice(p);
1206 * cap_task_setioprio - Detemine if I/O priority change is permitted
1207 * @p: The task to affect
1208 * @ioprio: The I/O priority to set
1210 * Detemine if the requested I/O priority change is permitted for the specified
1213 * Return: 0 if permission is granted, -ve if denied.
1215 int cap_task_setioprio(struct task_struct *p, int ioprio)
1217 return cap_safe_nice(p);
1221 * cap_task_setnice - Detemine if task priority change is permitted
1222 * @p: The task to affect
1223 * @nice: The nice value to set
1225 * Detemine if the requested task priority change is permitted for the
1228 * Return: 0 if permission is granted, -ve if denied.
1230 int cap_task_setnice(struct task_struct *p, int nice)
1232 return cap_safe_nice(p);
1236 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1237 * the current task's bounding set. Returns 0 on success, -ve on error.
1239 static int cap_prctl_drop(unsigned long cap)
1243 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1245 if (!cap_valid(cap))
1248 new = prepare_creds();
1251 cap_lower(new->cap_bset, cap);
1252 return commit_creds(new);
1256 * cap_task_prctl - Implement process control functions for this security module
1257 * @option: The process control function requested
1258 * @arg2: The argument data for this function
1259 * @arg3: The argument data for this function
1260 * @arg4: The argument data for this function
1261 * @arg5: The argument data for this function
1263 * Allow process control functions (sys_prctl()) to alter capabilities; may
1264 * also deny access to other functions not otherwise implemented here.
1266 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1267 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1268 * modules will consider performing the function.
1270 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1271 unsigned long arg4, unsigned long arg5)
1273 const struct cred *old = current_cred();
1277 case PR_CAPBSET_READ:
1278 if (!cap_valid(arg2))
1280 return !!cap_raised(old->cap_bset, arg2);
1282 case PR_CAPBSET_DROP:
1283 return cap_prctl_drop(arg2);
1286 * The next four prctl's remain to assist with transitioning a
1287 * system from legacy UID=0 based privilege (when filesystem
1288 * capabilities are not in use) to a system using filesystem
1289 * capabilities only - as the POSIX.1e draft intended.
1293 * PR_SET_SECUREBITS =
1294 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1295 * | issecure_mask(SECURE_NOROOT)
1296 * | issecure_mask(SECURE_NOROOT_LOCKED)
1297 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1298 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1300 * will ensure that the current process and all of its
1301 * children will be locked into a pure
1302 * capability-based-privilege environment.
1304 case PR_SET_SECUREBITS:
1305 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1306 & (old->securebits ^ arg2)) /*[1]*/
1307 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1308 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1309 || (cap_capable(current_cred(),
1310 current_cred()->user_ns,
1312 CAP_OPT_NONE) != 0) /*[4]*/
1314 * [1] no changing of bits that are locked
1315 * [2] no unlocking of locks
1316 * [3] no setting of unsupported bits
1317 * [4] doing anything requires privilege (go read about
1318 * the "sendmail capabilities bug")
1321 /* cannot change a locked bit */
1324 new = prepare_creds();
1327 new->securebits = arg2;
1328 return commit_creds(new);
1330 case PR_GET_SECUREBITS:
1331 return old->securebits;
1333 case PR_GET_KEEPCAPS:
1334 return !!issecure(SECURE_KEEP_CAPS);
1336 case PR_SET_KEEPCAPS:
1337 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1339 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1342 new = prepare_creds();
1346 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1348 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1349 return commit_creds(new);
1351 case PR_CAP_AMBIENT:
1352 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1353 if (arg3 | arg4 | arg5)
1356 new = prepare_creds();
1359 cap_clear(new->cap_ambient);
1360 return commit_creds(new);
1363 if (((!cap_valid(arg3)) | arg4 | arg5))
1366 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1367 return !!cap_raised(current_cred()->cap_ambient, arg3);
1368 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1369 arg2 != PR_CAP_AMBIENT_LOWER) {
1372 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1373 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1374 !cap_raised(current_cred()->cap_inheritable,
1376 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1379 new = prepare_creds();
1382 if (arg2 == PR_CAP_AMBIENT_RAISE)
1383 cap_raise(new->cap_ambient, arg3);
1385 cap_lower(new->cap_ambient, arg3);
1386 return commit_creds(new);
1390 /* No functionality available - continue with default */
1396 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1397 * @mm: The VM space in which the new mapping is to be made
1398 * @pages: The size of the mapping
1400 * Determine whether the allocation of a new virtual mapping by the current
1401 * task is permitted.
1403 * Return: 1 if permission is granted, 0 if not.
1405 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1407 int cap_sys_admin = 0;
1409 if (cap_capable(current_cred(), &init_user_ns,
1410 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1413 return cap_sys_admin;
1417 * cap_mmap_addr - check if able to map given addr
1418 * @addr: address attempting to be mapped
1420 * If the process is attempting to map memory below dac_mmap_min_addr they need
1421 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1422 * capability security module.
1424 * Return: 0 if this mapping should be allowed or -EPERM if not.
1426 int cap_mmap_addr(unsigned long addr)
1430 if (addr < dac_mmap_min_addr) {
1431 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1433 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1435 current->flags |= PF_SUPERPRIV;
1440 int cap_mmap_file(struct file *file, unsigned long reqprot,
1441 unsigned long prot, unsigned long flags)
1446 #ifdef CONFIG_SECURITY
1448 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1449 LSM_HOOK_INIT(capable, cap_capable),
1450 LSM_HOOK_INIT(settime, cap_settime),
1451 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1452 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1453 LSM_HOOK_INIT(capget, cap_capget),
1454 LSM_HOOK_INIT(capset, cap_capset),
1455 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1456 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1457 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1458 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1459 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1460 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1461 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1462 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1463 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1464 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1465 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1466 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1469 static int __init capability_init(void)
1471 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1476 DEFINE_LSM(capability) = {
1477 .name = "capability",
1478 .order = LSM_ORDER_FIRST,
1479 .init = capability_init,
1482 #endif /* CONFIG_SECURITY */