Merge tag 'nfs-for-6.4-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-rpi.git] / rust / alloc / boxed.rs
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! A pointer type for heap allocation.
4 //!
5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
7 //! drop their contents when they go out of scope. Boxes also ensure that they
8 //! never allocate more than `isize::MAX` bytes.
9 //!
10 //! # Examples
11 //!
12 //! Move a value from the stack to the heap by creating a [`Box`]:
13 //!
14 //! ```
15 //! let val: u8 = 5;
16 //! let boxed: Box<u8> = Box::new(val);
17 //! ```
18 //!
19 //! Move a value from a [`Box`] back to the stack by [dereferencing]:
20 //!
21 //! ```
22 //! let boxed: Box<u8> = Box::new(5);
23 //! let val: u8 = *boxed;
24 //! ```
25 //!
26 //! Creating a recursive data structure:
27 //!
28 //! ```
29 //! #[derive(Debug)]
30 //! enum List<T> {
31 //!     Cons(T, Box<List<T>>),
32 //!     Nil,
33 //! }
34 //!
35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
36 //! println!("{list:?}");
37 //! ```
38 //!
39 //! This will print `Cons(1, Cons(2, Nil))`.
40 //!
41 //! Recursive structures must be boxed, because if the definition of `Cons`
42 //! looked like this:
43 //!
44 //! ```compile_fail,E0072
45 //! # enum List<T> {
46 //! Cons(T, List<T>),
47 //! # }
48 //! ```
49 //!
50 //! It wouldn't work. This is because the size of a `List` depends on how many
51 //! elements are in the list, and so we don't know how much memory to allocate
52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
53 //! big `Cons` needs to be.
54 //!
55 //! # Memory layout
56 //!
57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
58 //! its allocation. It is valid to convert both ways between a [`Box`] and a
59 //! raw pointer allocated with the [`Global`] allocator, given that the
60 //! [`Layout`] used with the allocator is correct for the type. More precisely,
61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator
62 //! with `Layout::for_value(&*value)` may be converted into a box using
63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
65 //! [`Global`] allocator with [`Layout::for_value(&*value)`].
66 //!
67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
68 //! and writes and sufficiently aligned. In particular, casting any aligned
69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a
70 //! pointer pointing into previously allocated memory that since got freed is
71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
72 //! be used is to use [`ptr::NonNull::dangling`].
73 //!
74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
75 //! as a single pointer and is also ABI-compatible with C pointers
76 //! (i.e. the C type `T*`). This means that if you have extern "C"
77 //! Rust functions that will be called from C, you can define those
78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding
79 //! type on the C side. As an example, consider this C header which
80 //! declares functions that create and destroy some kind of `Foo`
81 //! value:
82 //!
83 //! ```c
84 //! /* C header */
85 //!
86 //! /* Returns ownership to the caller */
87 //! struct Foo* foo_new(void);
88 //!
89 //! /* Takes ownership from the caller; no-op when invoked with null */
90 //! void foo_delete(struct Foo*);
91 //! ```
92 //!
93 //! These two functions might be implemented in Rust as follows. Here, the
94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
95 //! the ownership constraints. Note also that the nullable argument to
96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
97 //! cannot be null.
98 //!
99 //! ```
100 //! #[repr(C)]
101 //! pub struct Foo;
102 //!
103 //! #[no_mangle]
104 //! pub extern "C" fn foo_new() -> Box<Foo> {
105 //!     Box::new(Foo)
106 //! }
107 //!
108 //! #[no_mangle]
109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
110 //! ```
111 //!
112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
114 //! and expect things to work. `Box<T>` values will always be fully aligned,
115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
116 //! free the value with the global allocator. In general, the best practice
117 //! is to only use `Box<T>` for pointers that originated from the global
118 //! allocator.
119 //!
120 //! **Important.** At least at present, you should avoid using
121 //! `Box<T>` types for functions that are defined in C but invoked
122 //! from Rust. In those cases, you should directly mirror the C types
123 //! as closely as possible. Using types like `Box<T>` where the C
124 //! definition is just using `T*` can lead to undefined behavior, as
125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
126 //!
127 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
128 //! [dereferencing]: core::ops::Deref
129 //! [`Box::<T>::from_raw(value)`]: Box::from_raw
130 //! [`Global`]: crate::alloc::Global
131 //! [`Layout`]: crate::alloc::Layout
132 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
133 //! [valid]: ptr#safety
134
135 #![stable(feature = "rust1", since = "1.0.0")]
136
137 use core::any::Any;
138 use core::async_iter::AsyncIterator;
139 use core::borrow;
140 use core::cmp::Ordering;
141 use core::convert::{From, TryFrom};
142 use core::fmt;
143 use core::future::Future;
144 use core::hash::{Hash, Hasher};
145 #[cfg(not(no_global_oom_handling))]
146 use core::iter::FromIterator;
147 use core::iter::{FusedIterator, Iterator};
148 use core::marker::{Destruct, Unpin, Unsize};
149 use core::mem;
150 use core::ops::{
151     CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
152 };
153 use core::pin::Pin;
154 use core::ptr::{self, Unique};
155 use core::task::{Context, Poll};
156
157 #[cfg(not(no_global_oom_handling))]
158 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
159 use crate::alloc::{AllocError, Allocator, Global, Layout};
160 #[cfg(not(no_global_oom_handling))]
161 use crate::borrow::Cow;
162 use crate::raw_vec::RawVec;
163 #[cfg(not(no_global_oom_handling))]
164 use crate::str::from_boxed_utf8_unchecked;
165 #[cfg(not(no_global_oom_handling))]
166 use crate::vec::Vec;
167
168 #[cfg(not(no_thin))]
169 #[unstable(feature = "thin_box", issue = "92791")]
170 pub use thin::ThinBox;
171
172 #[cfg(not(no_thin))]
173 mod thin;
174
175 /// A pointer type for heap allocation.
176 ///
177 /// See the [module-level documentation](../../std/boxed/index.html) for more.
178 #[lang = "owned_box"]
179 #[fundamental]
180 #[stable(feature = "rust1", since = "1.0.0")]
181 // The declaration of the `Box` struct must be kept in sync with the
182 // `alloc::alloc::box_free` function or ICEs will happen. See the comment
183 // on `box_free` for more details.
184 pub struct Box<
185     T: ?Sized,
186     #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
187 >(Unique<T>, A);
188
189 impl<T> Box<T> {
190     /// Allocates memory on the heap and then places `x` into it.
191     ///
192     /// This doesn't actually allocate if `T` is zero-sized.
193     ///
194     /// # Examples
195     ///
196     /// ```
197     /// let five = Box::new(5);
198     /// ```
199     #[cfg(not(no_global_oom_handling))]
200     #[inline(always)]
201     #[stable(feature = "rust1", since = "1.0.0")]
202     #[must_use]
203     pub fn new(x: T) -> Self {
204         box x
205     }
206
207     /// Constructs a new box with uninitialized contents.
208     ///
209     /// # Examples
210     ///
211     /// ```
212     /// #![feature(new_uninit)]
213     ///
214     /// let mut five = Box::<u32>::new_uninit();
215     ///
216     /// let five = unsafe {
217     ///     // Deferred initialization:
218     ///     five.as_mut_ptr().write(5);
219     ///
220     ///     five.assume_init()
221     /// };
222     ///
223     /// assert_eq!(*five, 5)
224     /// ```
225     #[cfg(not(no_global_oom_handling))]
226     #[unstable(feature = "new_uninit", issue = "63291")]
227     #[must_use]
228     #[inline]
229     pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
230         Self::new_uninit_in(Global)
231     }
232
233     /// Constructs a new `Box` with uninitialized contents, with the memory
234     /// being filled with `0` bytes.
235     ///
236     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
237     /// of this method.
238     ///
239     /// # Examples
240     ///
241     /// ```
242     /// #![feature(new_uninit)]
243     ///
244     /// let zero = Box::<u32>::new_zeroed();
245     /// let zero = unsafe { zero.assume_init() };
246     ///
247     /// assert_eq!(*zero, 0)
248     /// ```
249     ///
250     /// [zeroed]: mem::MaybeUninit::zeroed
251     #[cfg(not(no_global_oom_handling))]
252     #[inline]
253     #[unstable(feature = "new_uninit", issue = "63291")]
254     #[must_use]
255     pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
256         Self::new_zeroed_in(Global)
257     }
258
259     /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
260     /// `x` will be pinned in memory and unable to be moved.
261     #[cfg(not(no_global_oom_handling))]
262     #[stable(feature = "pin", since = "1.33.0")]
263     #[must_use]
264     #[inline(always)]
265     pub fn pin(x: T) -> Pin<Box<T>> {
266         (box x).into()
267     }
268
269     /// Allocates memory on the heap then places `x` into it,
270     /// returning an error if the allocation fails
271     ///
272     /// This doesn't actually allocate if `T` is zero-sized.
273     ///
274     /// # Examples
275     ///
276     /// ```
277     /// #![feature(allocator_api)]
278     ///
279     /// let five = Box::try_new(5)?;
280     /// # Ok::<(), std::alloc::AllocError>(())
281     /// ```
282     #[unstable(feature = "allocator_api", issue = "32838")]
283     #[inline]
284     pub fn try_new(x: T) -> Result<Self, AllocError> {
285         Self::try_new_in(x, Global)
286     }
287
288     /// Constructs a new box with uninitialized contents on the heap,
289     /// returning an error if the allocation fails
290     ///
291     /// # Examples
292     ///
293     /// ```
294     /// #![feature(allocator_api, new_uninit)]
295     ///
296     /// let mut five = Box::<u32>::try_new_uninit()?;
297     ///
298     /// let five = unsafe {
299     ///     // Deferred initialization:
300     ///     five.as_mut_ptr().write(5);
301     ///
302     ///     five.assume_init()
303     /// };
304     ///
305     /// assert_eq!(*five, 5);
306     /// # Ok::<(), std::alloc::AllocError>(())
307     /// ```
308     #[unstable(feature = "allocator_api", issue = "32838")]
309     // #[unstable(feature = "new_uninit", issue = "63291")]
310     #[inline]
311     pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
312         Box::try_new_uninit_in(Global)
313     }
314
315     /// Constructs a new `Box` with uninitialized contents, with the memory
316     /// being filled with `0` bytes on the heap
317     ///
318     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
319     /// of this method.
320     ///
321     /// # Examples
322     ///
323     /// ```
324     /// #![feature(allocator_api, new_uninit)]
325     ///
326     /// let zero = Box::<u32>::try_new_zeroed()?;
327     /// let zero = unsafe { zero.assume_init() };
328     ///
329     /// assert_eq!(*zero, 0);
330     /// # Ok::<(), std::alloc::AllocError>(())
331     /// ```
332     ///
333     /// [zeroed]: mem::MaybeUninit::zeroed
334     #[unstable(feature = "allocator_api", issue = "32838")]
335     // #[unstable(feature = "new_uninit", issue = "63291")]
336     #[inline]
337     pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
338         Box::try_new_zeroed_in(Global)
339     }
340 }
341
342 impl<T, A: Allocator> Box<T, A> {
343     /// Allocates memory in the given allocator then places `x` into it.
344     ///
345     /// This doesn't actually allocate if `T` is zero-sized.
346     ///
347     /// # Examples
348     ///
349     /// ```
350     /// #![feature(allocator_api)]
351     ///
352     /// use std::alloc::System;
353     ///
354     /// let five = Box::new_in(5, System);
355     /// ```
356     #[cfg(not(no_global_oom_handling))]
357     #[unstable(feature = "allocator_api", issue = "32838")]
358     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
359     #[must_use]
360     #[inline]
361     pub const fn new_in(x: T, alloc: A) -> Self
362     where
363         A: ~const Allocator + ~const Destruct,
364     {
365         let mut boxed = Self::new_uninit_in(alloc);
366         unsafe {
367             boxed.as_mut_ptr().write(x);
368             boxed.assume_init()
369         }
370     }
371
372     /// Allocates memory in the given allocator then places `x` into it,
373     /// returning an error if the allocation fails
374     ///
375     /// This doesn't actually allocate if `T` is zero-sized.
376     ///
377     /// # Examples
378     ///
379     /// ```
380     /// #![feature(allocator_api)]
381     ///
382     /// use std::alloc::System;
383     ///
384     /// let five = Box::try_new_in(5, System)?;
385     /// # Ok::<(), std::alloc::AllocError>(())
386     /// ```
387     #[unstable(feature = "allocator_api", issue = "32838")]
388     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
389     #[inline]
390     pub const fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
391     where
392         T: ~const Destruct,
393         A: ~const Allocator + ~const Destruct,
394     {
395         let mut boxed = Self::try_new_uninit_in(alloc)?;
396         unsafe {
397             boxed.as_mut_ptr().write(x);
398             Ok(boxed.assume_init())
399         }
400     }
401
402     /// Constructs a new box with uninitialized contents in the provided allocator.
403     ///
404     /// # Examples
405     ///
406     /// ```
407     /// #![feature(allocator_api, new_uninit)]
408     ///
409     /// use std::alloc::System;
410     ///
411     /// let mut five = Box::<u32, _>::new_uninit_in(System);
412     ///
413     /// let five = unsafe {
414     ///     // Deferred initialization:
415     ///     five.as_mut_ptr().write(5);
416     ///
417     ///     five.assume_init()
418     /// };
419     ///
420     /// assert_eq!(*five, 5)
421     /// ```
422     #[unstable(feature = "allocator_api", issue = "32838")]
423     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
424     #[cfg(not(no_global_oom_handling))]
425     #[must_use]
426     // #[unstable(feature = "new_uninit", issue = "63291")]
427     pub const fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
428     where
429         A: ~const Allocator + ~const Destruct,
430     {
431         let layout = Layout::new::<mem::MaybeUninit<T>>();
432         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
433         // That would make code size bigger.
434         match Box::try_new_uninit_in(alloc) {
435             Ok(m) => m,
436             Err(_) => handle_alloc_error(layout),
437         }
438     }
439
440     /// Constructs a new box with uninitialized contents in the provided allocator,
441     /// returning an error if the allocation fails
442     ///
443     /// # Examples
444     ///
445     /// ```
446     /// #![feature(allocator_api, new_uninit)]
447     ///
448     /// use std::alloc::System;
449     ///
450     /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
451     ///
452     /// let five = unsafe {
453     ///     // Deferred initialization:
454     ///     five.as_mut_ptr().write(5);
455     ///
456     ///     five.assume_init()
457     /// };
458     ///
459     /// assert_eq!(*five, 5);
460     /// # Ok::<(), std::alloc::AllocError>(())
461     /// ```
462     #[unstable(feature = "allocator_api", issue = "32838")]
463     // #[unstable(feature = "new_uninit", issue = "63291")]
464     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
465     pub const fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
466     where
467         A: ~const Allocator + ~const Destruct,
468     {
469         let layout = Layout::new::<mem::MaybeUninit<T>>();
470         let ptr = alloc.allocate(layout)?.cast();
471         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
472     }
473
474     /// Constructs a new `Box` with uninitialized contents, with the memory
475     /// being filled with `0` bytes in the provided allocator.
476     ///
477     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
478     /// of this method.
479     ///
480     /// # Examples
481     ///
482     /// ```
483     /// #![feature(allocator_api, new_uninit)]
484     ///
485     /// use std::alloc::System;
486     ///
487     /// let zero = Box::<u32, _>::new_zeroed_in(System);
488     /// let zero = unsafe { zero.assume_init() };
489     ///
490     /// assert_eq!(*zero, 0)
491     /// ```
492     ///
493     /// [zeroed]: mem::MaybeUninit::zeroed
494     #[unstable(feature = "allocator_api", issue = "32838")]
495     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
496     #[cfg(not(no_global_oom_handling))]
497     // #[unstable(feature = "new_uninit", issue = "63291")]
498     #[must_use]
499     pub const fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
500     where
501         A: ~const Allocator + ~const Destruct,
502     {
503         let layout = Layout::new::<mem::MaybeUninit<T>>();
504         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
505         // That would make code size bigger.
506         match Box::try_new_zeroed_in(alloc) {
507             Ok(m) => m,
508             Err(_) => handle_alloc_error(layout),
509         }
510     }
511
512     /// Constructs a new `Box` with uninitialized contents, with the memory
513     /// being filled with `0` bytes in the provided allocator,
514     /// returning an error if the allocation fails,
515     ///
516     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
517     /// of this method.
518     ///
519     /// # Examples
520     ///
521     /// ```
522     /// #![feature(allocator_api, new_uninit)]
523     ///
524     /// use std::alloc::System;
525     ///
526     /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
527     /// let zero = unsafe { zero.assume_init() };
528     ///
529     /// assert_eq!(*zero, 0);
530     /// # Ok::<(), std::alloc::AllocError>(())
531     /// ```
532     ///
533     /// [zeroed]: mem::MaybeUninit::zeroed
534     #[unstable(feature = "allocator_api", issue = "32838")]
535     // #[unstable(feature = "new_uninit", issue = "63291")]
536     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
537     pub const fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
538     where
539         A: ~const Allocator + ~const Destruct,
540     {
541         let layout = Layout::new::<mem::MaybeUninit<T>>();
542         let ptr = alloc.allocate_zeroed(layout)?.cast();
543         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
544     }
545
546     /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then
547     /// `x` will be pinned in memory and unable to be moved.
548     #[cfg(not(no_global_oom_handling))]
549     #[unstable(feature = "allocator_api", issue = "32838")]
550     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
551     #[must_use]
552     #[inline(always)]
553     pub const fn pin_in(x: T, alloc: A) -> Pin<Self>
554     where
555         A: 'static + ~const Allocator + ~const Destruct,
556     {
557         Self::into_pin(Self::new_in(x, alloc))
558     }
559
560     /// Converts a `Box<T>` into a `Box<[T]>`
561     ///
562     /// This conversion does not allocate on the heap and happens in place.
563     #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
564     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
565     pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
566         let (raw, alloc) = Box::into_raw_with_allocator(boxed);
567         unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
568     }
569
570     /// Consumes the `Box`, returning the wrapped value.
571     ///
572     /// # Examples
573     ///
574     /// ```
575     /// #![feature(box_into_inner)]
576     ///
577     /// let c = Box::new(5);
578     ///
579     /// assert_eq!(Box::into_inner(c), 5);
580     /// ```
581     #[unstable(feature = "box_into_inner", issue = "80437")]
582     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
583     #[inline]
584     pub const fn into_inner(boxed: Self) -> T
585     where
586         Self: ~const Destruct,
587     {
588         *boxed
589     }
590 }
591
592 impl<T> Box<[T]> {
593     /// Constructs a new boxed slice with uninitialized contents.
594     ///
595     /// # Examples
596     ///
597     /// ```
598     /// #![feature(new_uninit)]
599     ///
600     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
601     ///
602     /// let values = unsafe {
603     ///     // Deferred initialization:
604     ///     values[0].as_mut_ptr().write(1);
605     ///     values[1].as_mut_ptr().write(2);
606     ///     values[2].as_mut_ptr().write(3);
607     ///
608     ///     values.assume_init()
609     /// };
610     ///
611     /// assert_eq!(*values, [1, 2, 3])
612     /// ```
613     #[cfg(not(no_global_oom_handling))]
614     #[unstable(feature = "new_uninit", issue = "63291")]
615     #[must_use]
616     pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
617         unsafe { RawVec::with_capacity(len).into_box(len) }
618     }
619
620     /// Constructs a new boxed slice with uninitialized contents, with the memory
621     /// being filled with `0` bytes.
622     ///
623     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
624     /// of this method.
625     ///
626     /// # Examples
627     ///
628     /// ```
629     /// #![feature(new_uninit)]
630     ///
631     /// let values = Box::<[u32]>::new_zeroed_slice(3);
632     /// let values = unsafe { values.assume_init() };
633     ///
634     /// assert_eq!(*values, [0, 0, 0])
635     /// ```
636     ///
637     /// [zeroed]: mem::MaybeUninit::zeroed
638     #[cfg(not(no_global_oom_handling))]
639     #[unstable(feature = "new_uninit", issue = "63291")]
640     #[must_use]
641     pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
642         unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
643     }
644
645     /// Constructs a new boxed slice with uninitialized contents. Returns an error if
646     /// the allocation fails
647     ///
648     /// # Examples
649     ///
650     /// ```
651     /// #![feature(allocator_api, new_uninit)]
652     ///
653     /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
654     /// let values = unsafe {
655     ///     // Deferred initialization:
656     ///     values[0].as_mut_ptr().write(1);
657     ///     values[1].as_mut_ptr().write(2);
658     ///     values[2].as_mut_ptr().write(3);
659     ///     values.assume_init()
660     /// };
661     ///
662     /// assert_eq!(*values, [1, 2, 3]);
663     /// # Ok::<(), std::alloc::AllocError>(())
664     /// ```
665     #[unstable(feature = "allocator_api", issue = "32838")]
666     #[inline]
667     pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
668         unsafe {
669             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
670                 Ok(l) => l,
671                 Err(_) => return Err(AllocError),
672             };
673             let ptr = Global.allocate(layout)?;
674             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
675         }
676     }
677
678     /// Constructs a new boxed slice with uninitialized contents, with the memory
679     /// being filled with `0` bytes. Returns an error if the allocation fails
680     ///
681     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
682     /// of this method.
683     ///
684     /// # Examples
685     ///
686     /// ```
687     /// #![feature(allocator_api, new_uninit)]
688     ///
689     /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
690     /// let values = unsafe { values.assume_init() };
691     ///
692     /// assert_eq!(*values, [0, 0, 0]);
693     /// # Ok::<(), std::alloc::AllocError>(())
694     /// ```
695     ///
696     /// [zeroed]: mem::MaybeUninit::zeroed
697     #[unstable(feature = "allocator_api", issue = "32838")]
698     #[inline]
699     pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
700         unsafe {
701             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
702                 Ok(l) => l,
703                 Err(_) => return Err(AllocError),
704             };
705             let ptr = Global.allocate_zeroed(layout)?;
706             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
707         }
708     }
709 }
710
711 impl<T, A: Allocator> Box<[T], A> {
712     /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
713     ///
714     /// # Examples
715     ///
716     /// ```
717     /// #![feature(allocator_api, new_uninit)]
718     ///
719     /// use std::alloc::System;
720     ///
721     /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
722     ///
723     /// let values = unsafe {
724     ///     // Deferred initialization:
725     ///     values[0].as_mut_ptr().write(1);
726     ///     values[1].as_mut_ptr().write(2);
727     ///     values[2].as_mut_ptr().write(3);
728     ///
729     ///     values.assume_init()
730     /// };
731     ///
732     /// assert_eq!(*values, [1, 2, 3])
733     /// ```
734     #[cfg(not(no_global_oom_handling))]
735     #[unstable(feature = "allocator_api", issue = "32838")]
736     // #[unstable(feature = "new_uninit", issue = "63291")]
737     #[must_use]
738     pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
739         unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
740     }
741
742     /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
743     /// with the memory being filled with `0` bytes.
744     ///
745     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
746     /// of this method.
747     ///
748     /// # Examples
749     ///
750     /// ```
751     /// #![feature(allocator_api, new_uninit)]
752     ///
753     /// use std::alloc::System;
754     ///
755     /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
756     /// let values = unsafe { values.assume_init() };
757     ///
758     /// assert_eq!(*values, [0, 0, 0])
759     /// ```
760     ///
761     /// [zeroed]: mem::MaybeUninit::zeroed
762     #[cfg(not(no_global_oom_handling))]
763     #[unstable(feature = "allocator_api", issue = "32838")]
764     // #[unstable(feature = "new_uninit", issue = "63291")]
765     #[must_use]
766     pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
767         unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
768     }
769 }
770
771 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
772     /// Converts to `Box<T, A>`.
773     ///
774     /// # Safety
775     ///
776     /// As with [`MaybeUninit::assume_init`],
777     /// it is up to the caller to guarantee that the value
778     /// really is in an initialized state.
779     /// Calling this when the content is not yet fully initialized
780     /// causes immediate undefined behavior.
781     ///
782     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
783     ///
784     /// # Examples
785     ///
786     /// ```
787     /// #![feature(new_uninit)]
788     ///
789     /// let mut five = Box::<u32>::new_uninit();
790     ///
791     /// let five: Box<u32> = unsafe {
792     ///     // Deferred initialization:
793     ///     five.as_mut_ptr().write(5);
794     ///
795     ///     five.assume_init()
796     /// };
797     ///
798     /// assert_eq!(*five, 5)
799     /// ```
800     #[unstable(feature = "new_uninit", issue = "63291")]
801     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
802     #[inline]
803     pub const unsafe fn assume_init(self) -> Box<T, A> {
804         let (raw, alloc) = Box::into_raw_with_allocator(self);
805         unsafe { Box::from_raw_in(raw as *mut T, alloc) }
806     }
807
808     /// Writes the value and converts to `Box<T, A>`.
809     ///
810     /// This method converts the box similarly to [`Box::assume_init`] but
811     /// writes `value` into it before conversion thus guaranteeing safety.
812     /// In some scenarios use of this method may improve performance because
813     /// the compiler may be able to optimize copying from stack.
814     ///
815     /// # Examples
816     ///
817     /// ```
818     /// #![feature(new_uninit)]
819     ///
820     /// let big_box = Box::<[usize; 1024]>::new_uninit();
821     ///
822     /// let mut array = [0; 1024];
823     /// for (i, place) in array.iter_mut().enumerate() {
824     ///     *place = i;
825     /// }
826     ///
827     /// // The optimizer may be able to elide this copy, so previous code writes
828     /// // to heap directly.
829     /// let big_box = Box::write(big_box, array);
830     ///
831     /// for (i, x) in big_box.iter().enumerate() {
832     ///     assert_eq!(*x, i);
833     /// }
834     /// ```
835     #[unstable(feature = "new_uninit", issue = "63291")]
836     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
837     #[inline]
838     pub const fn write(mut boxed: Self, value: T) -> Box<T, A> {
839         unsafe {
840             (*boxed).write(value);
841             boxed.assume_init()
842         }
843     }
844 }
845
846 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
847     /// Converts to `Box<[T], A>`.
848     ///
849     /// # Safety
850     ///
851     /// As with [`MaybeUninit::assume_init`],
852     /// it is up to the caller to guarantee that the values
853     /// really are in an initialized state.
854     /// Calling this when the content is not yet fully initialized
855     /// causes immediate undefined behavior.
856     ///
857     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
858     ///
859     /// # Examples
860     ///
861     /// ```
862     /// #![feature(new_uninit)]
863     ///
864     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
865     ///
866     /// let values = unsafe {
867     ///     // Deferred initialization:
868     ///     values[0].as_mut_ptr().write(1);
869     ///     values[1].as_mut_ptr().write(2);
870     ///     values[2].as_mut_ptr().write(3);
871     ///
872     ///     values.assume_init()
873     /// };
874     ///
875     /// assert_eq!(*values, [1, 2, 3])
876     /// ```
877     #[unstable(feature = "new_uninit", issue = "63291")]
878     #[inline]
879     pub unsafe fn assume_init(self) -> Box<[T], A> {
880         let (raw, alloc) = Box::into_raw_with_allocator(self);
881         unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
882     }
883 }
884
885 impl<T: ?Sized> Box<T> {
886     /// Constructs a box from a raw pointer.
887     ///
888     /// After calling this function, the raw pointer is owned by the
889     /// resulting `Box`. Specifically, the `Box` destructor will call
890     /// the destructor of `T` and free the allocated memory. For this
891     /// to be safe, the memory must have been allocated in accordance
892     /// with the [memory layout] used by `Box` .
893     ///
894     /// # Safety
895     ///
896     /// This function is unsafe because improper use may lead to
897     /// memory problems. For example, a double-free may occur if the
898     /// function is called twice on the same raw pointer.
899     ///
900     /// The safety conditions are described in the [memory layout] section.
901     ///
902     /// # Examples
903     ///
904     /// Recreate a `Box` which was previously converted to a raw pointer
905     /// using [`Box::into_raw`]:
906     /// ```
907     /// let x = Box::new(5);
908     /// let ptr = Box::into_raw(x);
909     /// let x = unsafe { Box::from_raw(ptr) };
910     /// ```
911     /// Manually create a `Box` from scratch by using the global allocator:
912     /// ```
913     /// use std::alloc::{alloc, Layout};
914     ///
915     /// unsafe {
916     ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
917     ///     // In general .write is required to avoid attempting to destruct
918     ///     // the (uninitialized) previous contents of `ptr`, though for this
919     ///     // simple example `*ptr = 5` would have worked as well.
920     ///     ptr.write(5);
921     ///     let x = Box::from_raw(ptr);
922     /// }
923     /// ```
924     ///
925     /// [memory layout]: self#memory-layout
926     /// [`Layout`]: crate::Layout
927     #[stable(feature = "box_raw", since = "1.4.0")]
928     #[inline]
929     pub unsafe fn from_raw(raw: *mut T) -> Self {
930         unsafe { Self::from_raw_in(raw, Global) }
931     }
932 }
933
934 impl<T: ?Sized, A: Allocator> Box<T, A> {
935     /// Constructs a box from a raw pointer in the given allocator.
936     ///
937     /// After calling this function, the raw pointer is owned by the
938     /// resulting `Box`. Specifically, the `Box` destructor will call
939     /// the destructor of `T` and free the allocated memory. For this
940     /// to be safe, the memory must have been allocated in accordance
941     /// with the [memory layout] used by `Box` .
942     ///
943     /// # Safety
944     ///
945     /// This function is unsafe because improper use may lead to
946     /// memory problems. For example, a double-free may occur if the
947     /// function is called twice on the same raw pointer.
948     ///
949     ///
950     /// # Examples
951     ///
952     /// Recreate a `Box` which was previously converted to a raw pointer
953     /// using [`Box::into_raw_with_allocator`]:
954     /// ```
955     /// #![feature(allocator_api)]
956     ///
957     /// use std::alloc::System;
958     ///
959     /// let x = Box::new_in(5, System);
960     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
961     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
962     /// ```
963     /// Manually create a `Box` from scratch by using the system allocator:
964     /// ```
965     /// #![feature(allocator_api, slice_ptr_get)]
966     ///
967     /// use std::alloc::{Allocator, Layout, System};
968     ///
969     /// unsafe {
970     ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
971     ///     // In general .write is required to avoid attempting to destruct
972     ///     // the (uninitialized) previous contents of `ptr`, though for this
973     ///     // simple example `*ptr = 5` would have worked as well.
974     ///     ptr.write(5);
975     ///     let x = Box::from_raw_in(ptr, System);
976     /// }
977     /// # Ok::<(), std::alloc::AllocError>(())
978     /// ```
979     ///
980     /// [memory layout]: self#memory-layout
981     /// [`Layout`]: crate::Layout
982     #[unstable(feature = "allocator_api", issue = "32838")]
983     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
984     #[inline]
985     pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
986         Box(unsafe { Unique::new_unchecked(raw) }, alloc)
987     }
988
989     /// Consumes the `Box`, returning a wrapped raw pointer.
990     ///
991     /// The pointer will be properly aligned and non-null.
992     ///
993     /// After calling this function, the caller is responsible for the
994     /// memory previously managed by the `Box`. In particular, the
995     /// caller should properly destroy `T` and release the memory, taking
996     /// into account the [memory layout] used by `Box`. The easiest way to
997     /// do this is to convert the raw pointer back into a `Box` with the
998     /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
999     /// the cleanup.
1000     ///
1001     /// Note: this is an associated function, which means that you have
1002     /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1003     /// is so that there is no conflict with a method on the inner type.
1004     ///
1005     /// # Examples
1006     /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1007     /// for automatic cleanup:
1008     /// ```
1009     /// let x = Box::new(String::from("Hello"));
1010     /// let ptr = Box::into_raw(x);
1011     /// let x = unsafe { Box::from_raw(ptr) };
1012     /// ```
1013     /// Manual cleanup by explicitly running the destructor and deallocating
1014     /// the memory:
1015     /// ```
1016     /// use std::alloc::{dealloc, Layout};
1017     /// use std::ptr;
1018     ///
1019     /// let x = Box::new(String::from("Hello"));
1020     /// let p = Box::into_raw(x);
1021     /// unsafe {
1022     ///     ptr::drop_in_place(p);
1023     ///     dealloc(p as *mut u8, Layout::new::<String>());
1024     /// }
1025     /// ```
1026     ///
1027     /// [memory layout]: self#memory-layout
1028     #[stable(feature = "box_raw", since = "1.4.0")]
1029     #[inline]
1030     pub fn into_raw(b: Self) -> *mut T {
1031         Self::into_raw_with_allocator(b).0
1032     }
1033
1034     /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1035     ///
1036     /// The pointer will be properly aligned and non-null.
1037     ///
1038     /// After calling this function, the caller is responsible for the
1039     /// memory previously managed by the `Box`. In particular, the
1040     /// caller should properly destroy `T` and release the memory, taking
1041     /// into account the [memory layout] used by `Box`. The easiest way to
1042     /// do this is to convert the raw pointer back into a `Box` with the
1043     /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1044     /// the cleanup.
1045     ///
1046     /// Note: this is an associated function, which means that you have
1047     /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1048     /// is so that there is no conflict with a method on the inner type.
1049     ///
1050     /// # Examples
1051     /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1052     /// for automatic cleanup:
1053     /// ```
1054     /// #![feature(allocator_api)]
1055     ///
1056     /// use std::alloc::System;
1057     ///
1058     /// let x = Box::new_in(String::from("Hello"), System);
1059     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1060     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1061     /// ```
1062     /// Manual cleanup by explicitly running the destructor and deallocating
1063     /// the memory:
1064     /// ```
1065     /// #![feature(allocator_api)]
1066     ///
1067     /// use std::alloc::{Allocator, Layout, System};
1068     /// use std::ptr::{self, NonNull};
1069     ///
1070     /// let x = Box::new_in(String::from("Hello"), System);
1071     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1072     /// unsafe {
1073     ///     ptr::drop_in_place(ptr);
1074     ///     let non_null = NonNull::new_unchecked(ptr);
1075     ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1076     /// }
1077     /// ```
1078     ///
1079     /// [memory layout]: self#memory-layout
1080     #[unstable(feature = "allocator_api", issue = "32838")]
1081     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1082     #[inline]
1083     pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1084         let (leaked, alloc) = Box::into_unique(b);
1085         (leaked.as_ptr(), alloc)
1086     }
1087
1088     #[unstable(
1089         feature = "ptr_internals",
1090         issue = "none",
1091         reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1092     )]
1093     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1094     #[inline]
1095     #[doc(hidden)]
1096     pub const fn into_unique(b: Self) -> (Unique<T>, A) {
1097         // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1098         // raw pointer for the type system. Turning it directly into a raw pointer would not be
1099         // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1100         // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1101         // behaves correctly.
1102         let alloc = unsafe { ptr::read(&b.1) };
1103         (Unique::from(Box::leak(b)), alloc)
1104     }
1105
1106     /// Returns a reference to the underlying allocator.
1107     ///
1108     /// Note: this is an associated function, which means that you have
1109     /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1110     /// is so that there is no conflict with a method on the inner type.
1111     #[unstable(feature = "allocator_api", issue = "32838")]
1112     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1113     #[inline]
1114     pub const fn allocator(b: &Self) -> &A {
1115         &b.1
1116     }
1117
1118     /// Consumes and leaks the `Box`, returning a mutable reference,
1119     /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1120     /// `'a`. If the type has only static references, or none at all, then this
1121     /// may be chosen to be `'static`.
1122     ///
1123     /// This function is mainly useful for data that lives for the remainder of
1124     /// the program's life. Dropping the returned reference will cause a memory
1125     /// leak. If this is not acceptable, the reference should first be wrapped
1126     /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1127     /// then be dropped which will properly destroy `T` and release the
1128     /// allocated memory.
1129     ///
1130     /// Note: this is an associated function, which means that you have
1131     /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1132     /// is so that there is no conflict with a method on the inner type.
1133     ///
1134     /// # Examples
1135     ///
1136     /// Simple usage:
1137     ///
1138     /// ```
1139     /// let x = Box::new(41);
1140     /// let static_ref: &'static mut usize = Box::leak(x);
1141     /// *static_ref += 1;
1142     /// assert_eq!(*static_ref, 42);
1143     /// ```
1144     ///
1145     /// Unsized data:
1146     ///
1147     /// ```
1148     /// let x = vec![1, 2, 3].into_boxed_slice();
1149     /// let static_ref = Box::leak(x);
1150     /// static_ref[0] = 4;
1151     /// assert_eq!(*static_ref, [4, 2, 3]);
1152     /// ```
1153     #[stable(feature = "box_leak", since = "1.26.0")]
1154     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1155     #[inline]
1156     pub const fn leak<'a>(b: Self) -> &'a mut T
1157     where
1158         A: 'a,
1159     {
1160         unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1161     }
1162
1163     /// Converts a `Box<T>` into a `Pin<Box<T>>`
1164     ///
1165     /// This conversion does not allocate on the heap and happens in place.
1166     ///
1167     /// This is also available via [`From`].
1168     #[unstable(feature = "box_into_pin", issue = "62370")]
1169     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1170     pub const fn into_pin(boxed: Self) -> Pin<Self>
1171     where
1172         A: 'static,
1173     {
1174         // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1175         // when `T: !Unpin`,  so it's safe to pin it directly without any
1176         // additional requirements.
1177         unsafe { Pin::new_unchecked(boxed) }
1178     }
1179 }
1180
1181 #[stable(feature = "rust1", since = "1.0.0")]
1182 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1183     fn drop(&mut self) {
1184         // FIXME: Do nothing, drop is currently performed by compiler.
1185     }
1186 }
1187
1188 #[cfg(not(no_global_oom_handling))]
1189 #[stable(feature = "rust1", since = "1.0.0")]
1190 impl<T: Default> Default for Box<T> {
1191     /// Creates a `Box<T>`, with the `Default` value for T.
1192     fn default() -> Self {
1193         box T::default()
1194     }
1195 }
1196
1197 #[cfg(not(no_global_oom_handling))]
1198 #[stable(feature = "rust1", since = "1.0.0")]
1199 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
1200 impl<T> const Default for Box<[T]> {
1201     fn default() -> Self {
1202         let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1203         Box(ptr, Global)
1204     }
1205 }
1206
1207 #[cfg(not(no_global_oom_handling))]
1208 #[stable(feature = "default_box_extra", since = "1.17.0")]
1209 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
1210 impl const Default for Box<str> {
1211     fn default() -> Self {
1212         // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1213         let ptr: Unique<str> = unsafe {
1214             let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1215             Unique::new_unchecked(bytes.as_ptr() as *mut str)
1216         };
1217         Box(ptr, Global)
1218     }
1219 }
1220
1221 #[cfg(not(no_global_oom_handling))]
1222 #[stable(feature = "rust1", since = "1.0.0")]
1223 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1224     /// Returns a new box with a `clone()` of this box's contents.
1225     ///
1226     /// # Examples
1227     ///
1228     /// ```
1229     /// let x = Box::new(5);
1230     /// let y = x.clone();
1231     ///
1232     /// // The value is the same
1233     /// assert_eq!(x, y);
1234     ///
1235     /// // But they are unique objects
1236     /// assert_ne!(&*x as *const i32, &*y as *const i32);
1237     /// ```
1238     #[inline]
1239     fn clone(&self) -> Self {
1240         // Pre-allocate memory to allow writing the cloned value directly.
1241         let mut boxed = Self::new_uninit_in(self.1.clone());
1242         unsafe {
1243             (**self).write_clone_into_raw(boxed.as_mut_ptr());
1244             boxed.assume_init()
1245         }
1246     }
1247
1248     /// Copies `source`'s contents into `self` without creating a new allocation.
1249     ///
1250     /// # Examples
1251     ///
1252     /// ```
1253     /// let x = Box::new(5);
1254     /// let mut y = Box::new(10);
1255     /// let yp: *const i32 = &*y;
1256     ///
1257     /// y.clone_from(&x);
1258     ///
1259     /// // The value is the same
1260     /// assert_eq!(x, y);
1261     ///
1262     /// // And no allocation occurred
1263     /// assert_eq!(yp, &*y);
1264     /// ```
1265     #[inline]
1266     fn clone_from(&mut self, source: &Self) {
1267         (**self).clone_from(&(**source));
1268     }
1269 }
1270
1271 #[cfg(not(no_global_oom_handling))]
1272 #[stable(feature = "box_slice_clone", since = "1.3.0")]
1273 impl Clone for Box<str> {
1274     fn clone(&self) -> Self {
1275         // this makes a copy of the data
1276         let buf: Box<[u8]> = self.as_bytes().into();
1277         unsafe { from_boxed_utf8_unchecked(buf) }
1278     }
1279 }
1280
1281 #[stable(feature = "rust1", since = "1.0.0")]
1282 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1283     #[inline]
1284     fn eq(&self, other: &Self) -> bool {
1285         PartialEq::eq(&**self, &**other)
1286     }
1287     #[inline]
1288     fn ne(&self, other: &Self) -> bool {
1289         PartialEq::ne(&**self, &**other)
1290     }
1291 }
1292 #[stable(feature = "rust1", since = "1.0.0")]
1293 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1294     #[inline]
1295     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1296         PartialOrd::partial_cmp(&**self, &**other)
1297     }
1298     #[inline]
1299     fn lt(&self, other: &Self) -> bool {
1300         PartialOrd::lt(&**self, &**other)
1301     }
1302     #[inline]
1303     fn le(&self, other: &Self) -> bool {
1304         PartialOrd::le(&**self, &**other)
1305     }
1306     #[inline]
1307     fn ge(&self, other: &Self) -> bool {
1308         PartialOrd::ge(&**self, &**other)
1309     }
1310     #[inline]
1311     fn gt(&self, other: &Self) -> bool {
1312         PartialOrd::gt(&**self, &**other)
1313     }
1314 }
1315 #[stable(feature = "rust1", since = "1.0.0")]
1316 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1317     #[inline]
1318     fn cmp(&self, other: &Self) -> Ordering {
1319         Ord::cmp(&**self, &**other)
1320     }
1321 }
1322 #[stable(feature = "rust1", since = "1.0.0")]
1323 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1324
1325 #[stable(feature = "rust1", since = "1.0.0")]
1326 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1327     fn hash<H: Hasher>(&self, state: &mut H) {
1328         (**self).hash(state);
1329     }
1330 }
1331
1332 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1333 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1334     fn finish(&self) -> u64 {
1335         (**self).finish()
1336     }
1337     fn write(&mut self, bytes: &[u8]) {
1338         (**self).write(bytes)
1339     }
1340     fn write_u8(&mut self, i: u8) {
1341         (**self).write_u8(i)
1342     }
1343     fn write_u16(&mut self, i: u16) {
1344         (**self).write_u16(i)
1345     }
1346     fn write_u32(&mut self, i: u32) {
1347         (**self).write_u32(i)
1348     }
1349     fn write_u64(&mut self, i: u64) {
1350         (**self).write_u64(i)
1351     }
1352     fn write_u128(&mut self, i: u128) {
1353         (**self).write_u128(i)
1354     }
1355     fn write_usize(&mut self, i: usize) {
1356         (**self).write_usize(i)
1357     }
1358     fn write_i8(&mut self, i: i8) {
1359         (**self).write_i8(i)
1360     }
1361     fn write_i16(&mut self, i: i16) {
1362         (**self).write_i16(i)
1363     }
1364     fn write_i32(&mut self, i: i32) {
1365         (**self).write_i32(i)
1366     }
1367     fn write_i64(&mut self, i: i64) {
1368         (**self).write_i64(i)
1369     }
1370     fn write_i128(&mut self, i: i128) {
1371         (**self).write_i128(i)
1372     }
1373     fn write_isize(&mut self, i: isize) {
1374         (**self).write_isize(i)
1375     }
1376     fn write_length_prefix(&mut self, len: usize) {
1377         (**self).write_length_prefix(len)
1378     }
1379     fn write_str(&mut self, s: &str) {
1380         (**self).write_str(s)
1381     }
1382 }
1383
1384 #[cfg(not(no_global_oom_handling))]
1385 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1386 impl<T> From<T> for Box<T> {
1387     /// Converts a `T` into a `Box<T>`
1388     ///
1389     /// The conversion allocates on the heap and moves `t`
1390     /// from the stack into it.
1391     ///
1392     /// # Examples
1393     ///
1394     /// ```rust
1395     /// let x = 5;
1396     /// let boxed = Box::new(5);
1397     ///
1398     /// assert_eq!(Box::from(x), boxed);
1399     /// ```
1400     fn from(t: T) -> Self {
1401         Box::new(t)
1402     }
1403 }
1404
1405 #[stable(feature = "pin", since = "1.33.0")]
1406 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1407 impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>>
1408 where
1409     A: 'static,
1410 {
1411     /// Converts a `Box<T>` into a `Pin<Box<T>>`
1412     ///
1413     /// This conversion does not allocate on the heap and happens in place.
1414     fn from(boxed: Box<T, A>) -> Self {
1415         Box::into_pin(boxed)
1416     }
1417 }
1418
1419 #[cfg(not(no_global_oom_handling))]
1420 #[stable(feature = "box_from_slice", since = "1.17.0")]
1421 impl<T: Copy> From<&[T]> for Box<[T]> {
1422     /// Converts a `&[T]` into a `Box<[T]>`
1423     ///
1424     /// This conversion allocates on the heap
1425     /// and performs a copy of `slice`.
1426     ///
1427     /// # Examples
1428     /// ```rust
1429     /// // create a &[u8] which will be used to create a Box<[u8]>
1430     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1431     /// let boxed_slice: Box<[u8]> = Box::from(slice);
1432     ///
1433     /// println!("{boxed_slice:?}");
1434     /// ```
1435     fn from(slice: &[T]) -> Box<[T]> {
1436         let len = slice.len();
1437         let buf = RawVec::with_capacity(len);
1438         unsafe {
1439             ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1440             buf.into_box(slice.len()).assume_init()
1441         }
1442     }
1443 }
1444
1445 #[cfg(not(no_global_oom_handling))]
1446 #[stable(feature = "box_from_cow", since = "1.45.0")]
1447 impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> {
1448     /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
1449     ///
1450     /// When `cow` is the `Cow::Borrowed` variant, this
1451     /// conversion allocates on the heap and copies the
1452     /// underlying slice. Otherwise, it will try to reuse the owned
1453     /// `Vec`'s allocation.
1454     #[inline]
1455     fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
1456         match cow {
1457             Cow::Borrowed(slice) => Box::from(slice),
1458             Cow::Owned(slice) => Box::from(slice),
1459         }
1460     }
1461 }
1462
1463 #[cfg(not(no_global_oom_handling))]
1464 #[stable(feature = "box_from_slice", since = "1.17.0")]
1465 impl From<&str> for Box<str> {
1466     /// Converts a `&str` into a `Box<str>`
1467     ///
1468     /// This conversion allocates on the heap
1469     /// and performs a copy of `s`.
1470     ///
1471     /// # Examples
1472     ///
1473     /// ```rust
1474     /// let boxed: Box<str> = Box::from("hello");
1475     /// println!("{boxed}");
1476     /// ```
1477     #[inline]
1478     fn from(s: &str) -> Box<str> {
1479         unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
1480     }
1481 }
1482
1483 #[cfg(not(no_global_oom_handling))]
1484 #[stable(feature = "box_from_cow", since = "1.45.0")]
1485 impl From<Cow<'_, str>> for Box<str> {
1486     /// Converts a `Cow<'_, str>` into a `Box<str>`
1487     ///
1488     /// When `cow` is the `Cow::Borrowed` variant, this
1489     /// conversion allocates on the heap and copies the
1490     /// underlying `str`. Otherwise, it will try to reuse the owned
1491     /// `String`'s allocation.
1492     ///
1493     /// # Examples
1494     ///
1495     /// ```rust
1496     /// use std::borrow::Cow;
1497     ///
1498     /// let unboxed = Cow::Borrowed("hello");
1499     /// let boxed: Box<str> = Box::from(unboxed);
1500     /// println!("{boxed}");
1501     /// ```
1502     ///
1503     /// ```rust
1504     /// # use std::borrow::Cow;
1505     /// let unboxed = Cow::Owned("hello".to_string());
1506     /// let boxed: Box<str> = Box::from(unboxed);
1507     /// println!("{boxed}");
1508     /// ```
1509     #[inline]
1510     fn from(cow: Cow<'_, str>) -> Box<str> {
1511         match cow {
1512             Cow::Borrowed(s) => Box::from(s),
1513             Cow::Owned(s) => Box::from(s),
1514         }
1515     }
1516 }
1517
1518 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
1519 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1520     /// Converts a `Box<str>` into a `Box<[u8]>`
1521     ///
1522     /// This conversion does not allocate on the heap and happens in place.
1523     ///
1524     /// # Examples
1525     /// ```rust
1526     /// // create a Box<str> which will be used to create a Box<[u8]>
1527     /// let boxed: Box<str> = Box::from("hello");
1528     /// let boxed_str: Box<[u8]> = Box::from(boxed);
1529     ///
1530     /// // create a &[u8] which will be used to create a Box<[u8]>
1531     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1532     /// let boxed_slice = Box::from(slice);
1533     ///
1534     /// assert_eq!(boxed_slice, boxed_str);
1535     /// ```
1536     #[inline]
1537     fn from(s: Box<str, A>) -> Self {
1538         let (raw, alloc) = Box::into_raw_with_allocator(s);
1539         unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1540     }
1541 }
1542
1543 #[cfg(not(no_global_oom_handling))]
1544 #[stable(feature = "box_from_array", since = "1.45.0")]
1545 impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1546     /// Converts a `[T; N]` into a `Box<[T]>`
1547     ///
1548     /// This conversion moves the array to newly heap-allocated memory.
1549     ///
1550     /// # Examples
1551     ///
1552     /// ```rust
1553     /// let boxed: Box<[u8]> = Box::from([4, 2]);
1554     /// println!("{boxed:?}");
1555     /// ```
1556     fn from(array: [T; N]) -> Box<[T]> {
1557         box array
1558     }
1559 }
1560
1561 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
1562 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
1563     type Error = Box<[T]>;
1564
1565     /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1566     ///
1567     /// The conversion occurs in-place and does not require a
1568     /// new memory allocation.
1569     ///
1570     /// # Errors
1571     ///
1572     /// Returns the old `Box<[T]>` in the `Err` variant if
1573     /// `boxed_slice.len()` does not equal `N`.
1574     fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
1575         if boxed_slice.len() == N {
1576             Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
1577         } else {
1578             Err(boxed_slice)
1579         }
1580     }
1581 }
1582
1583 impl<A: Allocator> Box<dyn Any, A> {
1584     /// Attempt to downcast the box to a concrete type.
1585     ///
1586     /// # Examples
1587     ///
1588     /// ```
1589     /// use std::any::Any;
1590     ///
1591     /// fn print_if_string(value: Box<dyn Any>) {
1592     ///     if let Ok(string) = value.downcast::<String>() {
1593     ///         println!("String ({}): {}", string.len(), string);
1594     ///     }
1595     /// }
1596     ///
1597     /// let my_string = "Hello World".to_string();
1598     /// print_if_string(Box::new(my_string));
1599     /// print_if_string(Box::new(0i8));
1600     /// ```
1601     #[inline]
1602     #[stable(feature = "rust1", since = "1.0.0")]
1603     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1604         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1605     }
1606
1607     /// Downcasts the box to a concrete type.
1608     ///
1609     /// For a safe alternative see [`downcast`].
1610     ///
1611     /// # Examples
1612     ///
1613     /// ```
1614     /// #![feature(downcast_unchecked)]
1615     ///
1616     /// use std::any::Any;
1617     ///
1618     /// let x: Box<dyn Any> = Box::new(1_usize);
1619     ///
1620     /// unsafe {
1621     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1622     /// }
1623     /// ```
1624     ///
1625     /// # Safety
1626     ///
1627     /// The contained value must be of type `T`. Calling this method
1628     /// with the incorrect type is *undefined behavior*.
1629     ///
1630     /// [`downcast`]: Self::downcast
1631     #[inline]
1632     #[unstable(feature = "downcast_unchecked", issue = "90850")]
1633     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1634         debug_assert!(self.is::<T>());
1635         unsafe {
1636             let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1637             Box::from_raw_in(raw as *mut T, alloc)
1638         }
1639     }
1640 }
1641
1642 impl<A: Allocator> Box<dyn Any + Send, A> {
1643     /// Attempt to downcast the box to a concrete type.
1644     ///
1645     /// # Examples
1646     ///
1647     /// ```
1648     /// use std::any::Any;
1649     ///
1650     /// fn print_if_string(value: Box<dyn Any + Send>) {
1651     ///     if let Ok(string) = value.downcast::<String>() {
1652     ///         println!("String ({}): {}", string.len(), string);
1653     ///     }
1654     /// }
1655     ///
1656     /// let my_string = "Hello World".to_string();
1657     /// print_if_string(Box::new(my_string));
1658     /// print_if_string(Box::new(0i8));
1659     /// ```
1660     #[inline]
1661     #[stable(feature = "rust1", since = "1.0.0")]
1662     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1663         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1664     }
1665
1666     /// Downcasts the box to a concrete type.
1667     ///
1668     /// For a safe alternative see [`downcast`].
1669     ///
1670     /// # Examples
1671     ///
1672     /// ```
1673     /// #![feature(downcast_unchecked)]
1674     ///
1675     /// use std::any::Any;
1676     ///
1677     /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1678     ///
1679     /// unsafe {
1680     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1681     /// }
1682     /// ```
1683     ///
1684     /// # Safety
1685     ///
1686     /// The contained value must be of type `T`. Calling this method
1687     /// with the incorrect type is *undefined behavior*.
1688     ///
1689     /// [`downcast`]: Self::downcast
1690     #[inline]
1691     #[unstable(feature = "downcast_unchecked", issue = "90850")]
1692     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1693         debug_assert!(self.is::<T>());
1694         unsafe {
1695             let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1696             Box::from_raw_in(raw as *mut T, alloc)
1697         }
1698     }
1699 }
1700
1701 impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1702     /// Attempt to downcast the box to a concrete type.
1703     ///
1704     /// # Examples
1705     ///
1706     /// ```
1707     /// use std::any::Any;
1708     ///
1709     /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1710     ///     if let Ok(string) = value.downcast::<String>() {
1711     ///         println!("String ({}): {}", string.len(), string);
1712     ///     }
1713     /// }
1714     ///
1715     /// let my_string = "Hello World".to_string();
1716     /// print_if_string(Box::new(my_string));
1717     /// print_if_string(Box::new(0i8));
1718     /// ```
1719     #[inline]
1720     #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
1721     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1722         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1723     }
1724
1725     /// Downcasts the box to a concrete type.
1726     ///
1727     /// For a safe alternative see [`downcast`].
1728     ///
1729     /// # Examples
1730     ///
1731     /// ```
1732     /// #![feature(downcast_unchecked)]
1733     ///
1734     /// use std::any::Any;
1735     ///
1736     /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1737     ///
1738     /// unsafe {
1739     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1740     /// }
1741     /// ```
1742     ///
1743     /// # Safety
1744     ///
1745     /// The contained value must be of type `T`. Calling this method
1746     /// with the incorrect type is *undefined behavior*.
1747     ///
1748     /// [`downcast`]: Self::downcast
1749     #[inline]
1750     #[unstable(feature = "downcast_unchecked", issue = "90850")]
1751     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1752         debug_assert!(self.is::<T>());
1753         unsafe {
1754             let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1755                 Box::into_raw_with_allocator(self);
1756             Box::from_raw_in(raw as *mut T, alloc)
1757         }
1758     }
1759 }
1760
1761 #[stable(feature = "rust1", since = "1.0.0")]
1762 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1763     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1764         fmt::Display::fmt(&**self, f)
1765     }
1766 }
1767
1768 #[stable(feature = "rust1", since = "1.0.0")]
1769 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1770     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1771         fmt::Debug::fmt(&**self, f)
1772     }
1773 }
1774
1775 #[stable(feature = "rust1", since = "1.0.0")]
1776 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1777     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1778         // It's not possible to extract the inner Uniq directly from the Box,
1779         // instead we cast it to a *const which aliases the Unique
1780         let ptr: *const T = &**self;
1781         fmt::Pointer::fmt(&ptr, f)
1782     }
1783 }
1784
1785 #[stable(feature = "rust1", since = "1.0.0")]
1786 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1787 impl<T: ?Sized, A: Allocator> const Deref for Box<T, A> {
1788     type Target = T;
1789
1790     fn deref(&self) -> &T {
1791         &**self
1792     }
1793 }
1794
1795 #[stable(feature = "rust1", since = "1.0.0")]
1796 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1797 impl<T: ?Sized, A: Allocator> const DerefMut for Box<T, A> {
1798     fn deref_mut(&mut self) -> &mut T {
1799         &mut **self
1800     }
1801 }
1802
1803 #[unstable(feature = "receiver_trait", issue = "none")]
1804 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
1805
1806 #[stable(feature = "rust1", since = "1.0.0")]
1807 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1808     type Item = I::Item;
1809     fn next(&mut self) -> Option<I::Item> {
1810         (**self).next()
1811     }
1812     fn size_hint(&self) -> (usize, Option<usize>) {
1813         (**self).size_hint()
1814     }
1815     fn nth(&mut self, n: usize) -> Option<I::Item> {
1816         (**self).nth(n)
1817     }
1818     fn last(self) -> Option<I::Item> {
1819         BoxIter::last(self)
1820     }
1821 }
1822
1823 trait BoxIter {
1824     type Item;
1825     fn last(self) -> Option<Self::Item>;
1826 }
1827
1828 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1829     type Item = I::Item;
1830     default fn last(self) -> Option<I::Item> {
1831         #[inline]
1832         fn some<T>(_: Option<T>, x: T) -> Option<T> {
1833             Some(x)
1834         }
1835
1836         self.fold(None, some)
1837     }
1838 }
1839
1840 /// Specialization for sized `I`s that uses `I`s implementation of `last()`
1841 /// instead of the default.
1842 #[stable(feature = "rust1", since = "1.0.0")]
1843 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
1844     fn last(self) -> Option<I::Item> {
1845         (*self).last()
1846     }
1847 }
1848
1849 #[stable(feature = "rust1", since = "1.0.0")]
1850 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
1851     fn next_back(&mut self) -> Option<I::Item> {
1852         (**self).next_back()
1853     }
1854     fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1855         (**self).nth_back(n)
1856     }
1857 }
1858 #[stable(feature = "rust1", since = "1.0.0")]
1859 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
1860     fn len(&self) -> usize {
1861         (**self).len()
1862     }
1863     fn is_empty(&self) -> bool {
1864         (**self).is_empty()
1865     }
1866 }
1867
1868 #[stable(feature = "fused", since = "1.26.0")]
1869 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
1870
1871 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1872 impl<Args, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
1873     type Output = <F as FnOnce<Args>>::Output;
1874
1875     extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
1876         <F as FnOnce<Args>>::call_once(*self, args)
1877     }
1878 }
1879
1880 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1881 impl<Args, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
1882     extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
1883         <F as FnMut<Args>>::call_mut(self, args)
1884     }
1885 }
1886
1887 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1888 impl<Args, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
1889     extern "rust-call" fn call(&self, args: Args) -> Self::Output {
1890         <F as Fn<Args>>::call(self, args)
1891     }
1892 }
1893
1894 #[unstable(feature = "coerce_unsized", issue = "27732")]
1895 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
1896
1897 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
1898 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
1899
1900 #[cfg(not(no_global_oom_handling))]
1901 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
1902 impl<I> FromIterator<I> for Box<[I]> {
1903     fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
1904         iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
1905     }
1906 }
1907
1908 #[cfg(not(no_global_oom_handling))]
1909 #[stable(feature = "box_slice_clone", since = "1.3.0")]
1910 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
1911     fn clone(&self) -> Self {
1912         let alloc = Box::allocator(self).clone();
1913         self.to_vec_in(alloc).into_boxed_slice()
1914     }
1915
1916     fn clone_from(&mut self, other: &Self) {
1917         if self.len() == other.len() {
1918             self.clone_from_slice(&other);
1919         } else {
1920             *self = other.clone();
1921         }
1922     }
1923 }
1924
1925 #[stable(feature = "box_borrow", since = "1.1.0")]
1926 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
1927     fn borrow(&self) -> &T {
1928         &**self
1929     }
1930 }
1931
1932 #[stable(feature = "box_borrow", since = "1.1.0")]
1933 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
1934     fn borrow_mut(&mut self) -> &mut T {
1935         &mut **self
1936     }
1937 }
1938
1939 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
1940 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
1941     fn as_ref(&self) -> &T {
1942         &**self
1943     }
1944 }
1945
1946 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
1947 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
1948     fn as_mut(&mut self) -> &mut T {
1949         &mut **self
1950     }
1951 }
1952
1953 /* Nota bene
1954  *
1955  *  We could have chosen not to add this impl, and instead have written a
1956  *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
1957  *  because Box<T> implements Unpin even when T does not, as a result of
1958  *  this impl.
1959  *
1960  *  We chose this API instead of the alternative for a few reasons:
1961  *      - Logically, it is helpful to understand pinning in regard to the
1962  *        memory region being pointed to. For this reason none of the
1963  *        standard library pointer types support projecting through a pin
1964  *        (Box<T> is the only pointer type in std for which this would be
1965  *        safe.)
1966  *      - It is in practice very useful to have Box<T> be unconditionally
1967  *        Unpin because of trait objects, for which the structural auto
1968  *        trait functionality does not apply (e.g., Box<dyn Foo> would
1969  *        otherwise not be Unpin).
1970  *
1971  *  Another type with the same semantics as Box but only a conditional
1972  *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
1973  *  could have a method to project a Pin<T> from it.
1974  */
1975 #[stable(feature = "pin", since = "1.33.0")]
1976 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1977 impl<T: ?Sized, A: Allocator> const Unpin for Box<T, A> where A: 'static {}
1978
1979 #[unstable(feature = "generator_trait", issue = "43122")]
1980 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
1981 where
1982     A: 'static,
1983 {
1984     type Yield = G::Yield;
1985     type Return = G::Return;
1986
1987     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
1988         G::resume(Pin::new(&mut *self), arg)
1989     }
1990 }
1991
1992 #[unstable(feature = "generator_trait", issue = "43122")]
1993 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
1994 where
1995     A: 'static,
1996 {
1997     type Yield = G::Yield;
1998     type Return = G::Return;
1999
2000     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
2001         G::resume((*self).as_mut(), arg)
2002     }
2003 }
2004
2005 #[stable(feature = "futures_api", since = "1.36.0")]
2006 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2007 where
2008     A: 'static,
2009 {
2010     type Output = F::Output;
2011
2012     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2013         F::poll(Pin::new(&mut *self), cx)
2014     }
2015 }
2016
2017 #[unstable(feature = "async_iterator", issue = "79024")]
2018 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
2019     type Item = S::Item;
2020
2021     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2022         Pin::new(&mut **self).poll_next(cx)
2023     }
2024
2025     fn size_hint(&self) -> (usize, Option<usize>) {
2026         (**self).size_hint()
2027     }
2028 }