5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 I32 whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
130 I32 naughty; /* How bad is this pattern? */
131 I32 sawback; /* Did we see \1, ...? */
133 I32 size; /* Code size. */
134 I32 npar; /* Capture buffer count, (OPEN). */
135 I32 cpar; /* Capture buffer count, (CLOSE). */
136 I32 nestroot; /* root parens we are in - used by accept */
139 regnode **open_parens; /* pointers to open parens */
140 regnode **close_parens; /* pointers to close parens */
141 regnode *opend; /* END node in program */
142 I32 utf8; /* whether the pattern is utf8 or not */
143 I32 orig_utf8; /* whether the pattern was originally in utf8 */
144 /* XXX use this for future optimisation of case
145 * where pattern must be upgraded to utf8. */
146 I32 uni_semantics; /* If a d charset modifier should use unicode
147 rules, even if the pattern is not in
149 HV *paren_names; /* Paren names */
151 regnode **recurse; /* Recurse regops */
152 I32 recurse_count; /* Number of recurse regops */
155 I32 override_recoding;
156 I32 in_multi_char_class;
157 struct reg_code_block *code_blocks; /* positions of literal (?{})
159 int num_code_blocks; /* size of code_blocks[] */
160 int code_index; /* next code_blocks[] slot */
162 char *starttry; /* -Dr: where regtry was called. */
163 #define RExC_starttry (pRExC_state->starttry)
165 SV *runtime_code_qr; /* qr with the runtime code blocks */
167 const char *lastparse;
169 AV *paren_name_list; /* idx -> name */
170 #define RExC_lastparse (pRExC_state->lastparse)
171 #define RExC_lastnum (pRExC_state->lastnum)
172 #define RExC_paren_name_list (pRExC_state->paren_name_list)
176 #define RExC_flags (pRExC_state->flags)
177 #define RExC_pm_flags (pRExC_state->pm_flags)
178 #define RExC_precomp (pRExC_state->precomp)
179 #define RExC_rx_sv (pRExC_state->rx_sv)
180 #define RExC_rx (pRExC_state->rx)
181 #define RExC_rxi (pRExC_state->rxi)
182 #define RExC_start (pRExC_state->start)
183 #define RExC_end (pRExC_state->end)
184 #define RExC_parse (pRExC_state->parse)
185 #define RExC_whilem_seen (pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
189 #define RExC_emit (pRExC_state->emit)
190 #define RExC_emit_start (pRExC_state->emit_start)
191 #define RExC_emit_bound (pRExC_state->emit_bound)
192 #define RExC_naughty (pRExC_state->naughty)
193 #define RExC_sawback (pRExC_state->sawback)
194 #define RExC_seen (pRExC_state->seen)
195 #define RExC_size (pRExC_state->size)
196 #define RExC_npar (pRExC_state->npar)
197 #define RExC_nestroot (pRExC_state->nestroot)
198 #define RExC_extralen (pRExC_state->extralen)
199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
200 #define RExC_utf8 (pRExC_state->utf8)
201 #define RExC_uni_semantics (pRExC_state->uni_semantics)
202 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
203 #define RExC_open_parens (pRExC_state->open_parens)
204 #define RExC_close_parens (pRExC_state->close_parens)
205 #define RExC_opend (pRExC_state->opend)
206 #define RExC_paren_names (pRExC_state->paren_names)
207 #define RExC_recurse (pRExC_state->recurse)
208 #define RExC_recurse_count (pRExC_state->recurse_count)
209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
210 #define RExC_contains_locale (pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 ((*s) == '{' && regcurly(s, FALSE)))
220 #undef SPSTART /* dratted cpp namespace... */
223 * Flags to be passed up and down.
225 #define WORST 0 /* Worst case. */
226 #define HASWIDTH 0x01 /* Known to match non-null strings. */
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229 * character. (There needs to be a case: in the switch statement in regexec.c
230 * for any node marked SIMPLE.) Note that this is not the same thing as
233 #define SPSTART 0x04 /* Starts with * or + */
234 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
235 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
236 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
240 /* whether trie related optimizations are enabled */
241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
242 #define TRIE_STUDY_OPT
243 #define FULL_TRIE_STUDY
249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
250 #define PBITVAL(paren) (1 << ((paren) & 7))
251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
255 #define REQUIRE_UTF8 STMT_START { \
257 *flagp = RESTART_UTF8; \
262 /* This converts the named class defined in regcomp.h to its equivalent class
263 * number defined in handy.h. */
264 #define namedclass_to_classnum(class) ((int) ((class) / 2))
265 #define classnum_to_namedclass(classnum) ((classnum) * 2)
267 /* About scan_data_t.
269 During optimisation we recurse through the regexp program performing
270 various inplace (keyhole style) optimisations. In addition study_chunk
271 and scan_commit populate this data structure with information about
272 what strings MUST appear in the pattern. We look for the longest
273 string that must appear at a fixed location, and we look for the
274 longest string that may appear at a floating location. So for instance
279 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
280 strings (because they follow a .* construct). study_chunk will identify
281 both FOO and BAR as being the longest fixed and floating strings respectively.
283 The strings can be composites, for instance
287 will result in a composite fixed substring 'foo'.
289 For each string some basic information is maintained:
291 - offset or min_offset
292 This is the position the string must appear at, or not before.
293 It also implicitly (when combined with minlenp) tells us how many
294 characters must match before the string we are searching for.
295 Likewise when combined with minlenp and the length of the string it
296 tells us how many characters must appear after the string we have
300 Only used for floating strings. This is the rightmost point that
301 the string can appear at. If set to I32 max it indicates that the
302 string can occur infinitely far to the right.
305 A pointer to the minimum number of characters of the pattern that the
306 string was found inside. This is important as in the case of positive
307 lookahead or positive lookbehind we can have multiple patterns
312 The minimum length of the pattern overall is 3, the minimum length
313 of the lookahead part is 3, but the minimum length of the part that
314 will actually match is 1. So 'FOO's minimum length is 3, but the
315 minimum length for the F is 1. This is important as the minimum length
316 is used to determine offsets in front of and behind the string being
317 looked for. Since strings can be composites this is the length of the
318 pattern at the time it was committed with a scan_commit. Note that
319 the length is calculated by study_chunk, so that the minimum lengths
320 are not known until the full pattern has been compiled, thus the
321 pointer to the value.
325 In the case of lookbehind the string being searched for can be
326 offset past the start point of the final matching string.
327 If this value was just blithely removed from the min_offset it would
328 invalidate some of the calculations for how many chars must match
329 before or after (as they are derived from min_offset and minlen and
330 the length of the string being searched for).
331 When the final pattern is compiled and the data is moved from the
332 scan_data_t structure into the regexp structure the information
333 about lookbehind is factored in, with the information that would
334 have been lost precalculated in the end_shift field for the
337 The fields pos_min and pos_delta are used to store the minimum offset
338 and the delta to the maximum offset at the current point in the pattern.
342 typedef struct scan_data_t {
343 /*I32 len_min; unused */
344 /*I32 len_delta; unused */
348 I32 last_end; /* min value, <0 unless valid. */
351 SV **longest; /* Either &l_fixed, or &l_float. */
352 SV *longest_fixed; /* longest fixed string found in pattern */
353 I32 offset_fixed; /* offset where it starts */
354 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
355 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
356 SV *longest_float; /* longest floating string found in pattern */
357 I32 offset_float_min; /* earliest point in string it can appear */
358 I32 offset_float_max; /* latest point in string it can appear */
359 I32 *minlen_float; /* pointer to the minlen relevant to the string */
360 I32 lookbehind_float; /* is the position of the string modified by LB */
364 struct regnode_charclass_class *start_class;
368 * Forward declarations for pregcomp()'s friends.
371 static const scan_data_t zero_scan_data =
372 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
374 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
375 #define SF_BEFORE_SEOL 0x0001
376 #define SF_BEFORE_MEOL 0x0002
377 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
378 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
381 # define SF_FIX_SHIFT_EOL (0+2)
382 # define SF_FL_SHIFT_EOL (0+4)
384 # define SF_FIX_SHIFT_EOL (+2)
385 # define SF_FL_SHIFT_EOL (+4)
388 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
391 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
392 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
393 #define SF_IS_INF 0x0040
394 #define SF_HAS_PAR 0x0080
395 #define SF_IN_PAR 0x0100
396 #define SF_HAS_EVAL 0x0200
397 #define SCF_DO_SUBSTR 0x0400
398 #define SCF_DO_STCLASS_AND 0x0800
399 #define SCF_DO_STCLASS_OR 0x1000
400 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
401 #define SCF_WHILEM_VISITED_POS 0x2000
403 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
404 #define SCF_SEEN_ACCEPT 0x8000
406 #define UTF cBOOL(RExC_utf8)
408 /* The enums for all these are ordered so things work out correctly */
409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
419 #define OOB_NAMEDCLASS -1
421 /* There is no code point that is out-of-bounds, so this is problematic. But
422 * its only current use is to initialize a variable that is always set before
424 #define OOB_UNICODE 0xDEADBEEF
426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
430 /* length of regex to show in messages that don't mark a position within */
431 #define RegexLengthToShowInErrorMessages 127
434 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
435 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
436 * op/pragma/warn/regcomp.
438 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
439 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
444 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
445 * arg. Show regex, up to a maximum length. If it's too long, chop and add
448 #define _FAIL(code) STMT_START { \
449 const char *ellipses = ""; \
450 IV len = RExC_end - RExC_precomp; \
453 SAVEFREESV(RExC_rx_sv); \
454 if (len > RegexLengthToShowInErrorMessages) { \
455 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
456 len = RegexLengthToShowInErrorMessages - 10; \
462 #define FAIL(msg) _FAIL( \
463 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
464 msg, (int)len, RExC_precomp, ellipses))
466 #define FAIL2(msg,arg) _FAIL( \
467 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
468 arg, (int)len, RExC_precomp, ellipses))
471 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
473 #define Simple_vFAIL(m) STMT_START { \
474 const IV offset = RExC_parse - RExC_precomp; \
475 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
480 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
482 #define vFAIL(m) STMT_START { \
484 SAVEFREESV(RExC_rx_sv); \
489 * Like Simple_vFAIL(), but accepts two arguments.
491 #define Simple_vFAIL2(m,a1) STMT_START { \
492 const IV offset = RExC_parse - RExC_precomp; \
493 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
494 (int)offset, RExC_precomp, RExC_precomp + offset); \
498 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
500 #define vFAIL2(m,a1) STMT_START { \
502 SAVEFREESV(RExC_rx_sv); \
503 Simple_vFAIL2(m, a1); \
508 * Like Simple_vFAIL(), but accepts three arguments.
510 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
511 const IV offset = RExC_parse - RExC_precomp; \
512 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
517 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
519 #define vFAIL3(m,a1,a2) STMT_START { \
521 SAVEFREESV(RExC_rx_sv); \
522 Simple_vFAIL3(m, a1, a2); \
526 * Like Simple_vFAIL(), but accepts four arguments.
528 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
529 const IV offset = RExC_parse - RExC_precomp; \
530 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
531 (int)offset, RExC_precomp, RExC_precomp + offset); \
534 #define vFAIL4(m,a1,a2,a3) STMT_START { \
536 SAVEFREESV(RExC_rx_sv); \
537 Simple_vFAIL4(m, a1, a2, a3); \
540 /* m is not necessarily a "literal string", in this macro */
541 #define reg_warn_non_literal_string(loc, m) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
544 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARNreg(loc,m) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN_dep(loc, m) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
556 (int)offset, RExC_precomp, RExC_precomp + offset); \
559 #define ckWARNdep(loc,m) STMT_START { \
560 const IV offset = loc - RExC_precomp; \
561 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
563 (int)offset, RExC_precomp, RExC_precomp + offset); \
566 #define ckWARNregdep(loc,m) STMT_START { \
567 const IV offset = loc - RExC_precomp; \
568 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
570 (int)offset, RExC_precomp, RExC_precomp + offset); \
573 #define ckWARN2regdep(loc,m, a1) STMT_START { \
574 const IV offset = loc - RExC_precomp; \
575 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
577 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
580 #define ckWARN2reg(loc, m, a1) STMT_START { \
581 const IV offset = loc - RExC_precomp; \
582 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
583 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
586 #define vWARN3(loc, m, a1, a2) STMT_START { \
587 const IV offset = loc - RExC_precomp; \
588 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
589 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
592 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
593 const IV offset = loc - RExC_precomp; \
594 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
595 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
598 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
599 const IV offset = loc - RExC_precomp; \
600 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
601 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
604 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
605 const IV offset = loc - RExC_precomp; \
606 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
607 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
610 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
611 const IV offset = loc - RExC_precomp; \
612 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
613 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
617 /* Allow for side effects in s */
618 #define REGC(c,s) STMT_START { \
619 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
622 /* Macros for recording node offsets. 20001227 mjd@plover.com
623 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
624 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
625 * Element 0 holds the number n.
626 * Position is 1 indexed.
628 #ifndef RE_TRACK_PATTERN_OFFSETS
629 #define Set_Node_Offset_To_R(node,byte)
630 #define Set_Node_Offset(node,byte)
631 #define Set_Cur_Node_Offset
632 #define Set_Node_Length_To_R(node,len)
633 #define Set_Node_Length(node,len)
634 #define Set_Node_Cur_Length(node)
635 #define Node_Offset(n)
636 #define Node_Length(n)
637 #define Set_Node_Offset_Length(node,offset,len)
638 #define ProgLen(ri) ri->u.proglen
639 #define SetProgLen(ri,x) ri->u.proglen = x
641 #define ProgLen(ri) ri->u.offsets[0]
642 #define SetProgLen(ri,x) ri->u.offsets[0] = x
643 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
645 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
646 __LINE__, (int)(node), (int)(byte))); \
648 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
650 RExC_offsets[2*(node)-1] = (byte); \
655 #define Set_Node_Offset(node,byte) \
656 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
659 #define Set_Node_Length_To_R(node,len) STMT_START { \
661 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
662 __LINE__, (int)(node), (int)(len))); \
664 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
666 RExC_offsets[2*(node)] = (len); \
671 #define Set_Node_Length(node,len) \
672 Set_Node_Length_To_R((node)-RExC_emit_start, len)
673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
674 #define Set_Node_Cur_Length(node) \
675 Set_Node_Length(node, RExC_parse - parse_start)
677 /* Get offsets and lengths */
678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
681 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
682 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
683 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
688 #define EXPERIMENTAL_INPLACESCAN
689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
691 #define DEBUG_STUDYDATA(str,data,depth) \
692 DEBUG_OPTIMISE_MORE_r(if(data){ \
693 PerlIO_printf(Perl_debug_log, \
694 "%*s" str "Pos:%"IVdf"/%"IVdf \
695 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
696 (int)(depth)*2, "", \
697 (IV)((data)->pos_min), \
698 (IV)((data)->pos_delta), \
699 (UV)((data)->flags), \
700 (IV)((data)->whilem_c), \
701 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
702 is_inf ? "INF " : "" \
704 if ((data)->last_found) \
705 PerlIO_printf(Perl_debug_log, \
706 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
707 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
708 SvPVX_const((data)->last_found), \
709 (IV)((data)->last_end), \
710 (IV)((data)->last_start_min), \
711 (IV)((data)->last_start_max), \
712 ((data)->longest && \
713 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
714 SvPVX_const((data)->longest_fixed), \
715 (IV)((data)->offset_fixed), \
716 ((data)->longest && \
717 (data)->longest==&((data)->longest_float)) ? "*" : "", \
718 SvPVX_const((data)->longest_float), \
719 (IV)((data)->offset_float_min), \
720 (IV)((data)->offset_float_max) \
722 PerlIO_printf(Perl_debug_log,"\n"); \
725 /* Mark that we cannot extend a found fixed substring at this point.
726 Update the longest found anchored substring and the longest found
727 floating substrings if needed. */
730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
732 const STRLEN l = CHR_SVLEN(data->last_found);
733 const STRLEN old_l = CHR_SVLEN(*data->longest);
734 GET_RE_DEBUG_FLAGS_DECL;
736 PERL_ARGS_ASSERT_SCAN_COMMIT;
738 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
739 SvSetMagicSV(*data->longest, data->last_found);
740 if (*data->longest == data->longest_fixed) {
741 data->offset_fixed = l ? data->last_start_min : data->pos_min;
742 if (data->flags & SF_BEFORE_EOL)
744 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
746 data->flags &= ~SF_FIX_BEFORE_EOL;
747 data->minlen_fixed=minlenp;
748 data->lookbehind_fixed=0;
750 else { /* *data->longest == data->longest_float */
751 data->offset_float_min = l ? data->last_start_min : data->pos_min;
752 data->offset_float_max = (l
753 ? data->last_start_max
754 : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta));
755 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
756 data->offset_float_max = I32_MAX;
757 if (data->flags & SF_BEFORE_EOL)
759 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
761 data->flags &= ~SF_FL_BEFORE_EOL;
762 data->minlen_float=minlenp;
763 data->lookbehind_float=0;
766 SvCUR_set(data->last_found, 0);
768 SV * const sv = data->last_found;
769 if (SvUTF8(sv) && SvMAGICAL(sv)) {
770 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
776 data->flags &= ~SF_BEFORE_EOL;
777 DEBUG_STUDYDATA("commit: ",data,0);
780 /* These macros set, clear and test whether the synthetic start class ('ssc',
781 * given by the parameter) matches an empty string (EOS). This uses the
782 * 'next_off' field in the node, to save a bit in the flags field. The ssc
783 * stands alone, so there is never a next_off, so this field is otherwise
784 * unused. The EOS information is used only for compilation, but theoretically
785 * it could be passed on to the execution code. This could be used to store
786 * more than one bit of information, but only this one is currently used. */
787 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END
788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
789 #define TEST_SSC_EOS(node) cBOOL((node)->next_off)
791 /* Can match anything (initialization) */
793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
795 PERL_ARGS_ASSERT_CL_ANYTHING;
797 ANYOF_BITMAP_SETALL(cl);
798 cl->flags = ANYOF_UNICODE_ALL;
801 /* If any portion of the regex is to operate under locale rules,
802 * initialization includes it. The reason this isn't done for all regexes
803 * is that the optimizer was written under the assumption that locale was
804 * all-or-nothing. Given the complexity and lack of documentation in the
805 * optimizer, and that there are inadequate test cases for locale, so many
806 * parts of it may not work properly, it is safest to avoid locale unless
808 if (RExC_contains_locale) {
809 ANYOF_CLASS_SETALL(cl); /* /l uses class */
810 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
813 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
817 /* Can match anything (initialization) */
819 S_cl_is_anything(const struct regnode_charclass_class *cl)
823 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
825 for (value = 0; value < ANYOF_MAX; value += 2)
826 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
828 if (!(cl->flags & ANYOF_UNICODE_ALL))
830 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
835 /* Can match anything (initialization) */
837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
839 PERL_ARGS_ASSERT_CL_INIT;
841 Zero(cl, 1, struct regnode_charclass_class);
843 cl_anything(pRExC_state, cl);
844 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
847 /* These two functions currently do the exact same thing */
848 #define cl_init_zero S_cl_init
850 /* 'AND' a given class with another one. Can create false positives. 'cl'
851 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
852 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
854 S_cl_and(struct regnode_charclass_class *cl,
855 const struct regnode_charclass_class *and_with)
857 PERL_ARGS_ASSERT_CL_AND;
859 assert(PL_regkind[and_with->type] == ANYOF);
861 /* I (khw) am not sure all these restrictions are necessary XXX */
862 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
863 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
864 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
865 && !(and_with->flags & ANYOF_LOC_FOLD)
866 && !(cl->flags & ANYOF_LOC_FOLD)) {
869 if (and_with->flags & ANYOF_INVERT)
870 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
871 cl->bitmap[i] &= ~and_with->bitmap[i];
873 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
874 cl->bitmap[i] &= and_with->bitmap[i];
875 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
877 if (and_with->flags & ANYOF_INVERT) {
879 /* Here, the and'ed node is inverted. Get the AND of the flags that
880 * aren't affected by the inversion. Those that are affected are
881 * handled individually below */
882 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
883 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
884 cl->flags |= affected_flags;
886 /* We currently don't know how to deal with things that aren't in the
887 * bitmap, but we know that the intersection is no greater than what
888 * is already in cl, so let there be false positives that get sorted
889 * out after the synthetic start class succeeds, and the node is
890 * matched for real. */
892 /* The inversion of these two flags indicate that the resulting
893 * intersection doesn't have them */
894 if (and_with->flags & ANYOF_UNICODE_ALL) {
895 cl->flags &= ~ANYOF_UNICODE_ALL;
897 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
898 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
901 else { /* and'd node is not inverted */
902 U8 outside_bitmap_but_not_utf8; /* Temp variable */
904 if (! ANYOF_NONBITMAP(and_with)) {
906 /* Here 'and_with' doesn't match anything outside the bitmap
907 * (except possibly ANYOF_UNICODE_ALL), which means the
908 * intersection can't either, except for ANYOF_UNICODE_ALL, in
909 * which case we don't know what the intersection is, but it's no
910 * greater than what cl already has, so can just leave it alone,
911 * with possible false positives */
912 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
913 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
914 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
917 else if (! ANYOF_NONBITMAP(cl)) {
919 /* Here, 'and_with' does match something outside the bitmap, and cl
920 * doesn't have a list of things to match outside the bitmap. If
921 * cl can match all code points above 255, the intersection will
922 * be those above-255 code points that 'and_with' matches. If cl
923 * can't match all Unicode code points, it means that it can't
924 * match anything outside the bitmap (since the 'if' that got us
925 * into this block tested for that), so we leave the bitmap empty.
927 if (cl->flags & ANYOF_UNICODE_ALL) {
928 ARG_SET(cl, ARG(and_with));
930 /* and_with's ARG may match things that don't require UTF8.
931 * And now cl's will too, in spite of this being an 'and'. See
932 * the comments below about the kludge */
933 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
937 /* Here, both 'and_with' and cl match something outside the
938 * bitmap. Currently we do not do the intersection, so just match
939 * whatever cl had at the beginning. */
943 /* Take the intersection of the two sets of flags. However, the
944 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
945 * kludge around the fact that this flag is not treated like the others
946 * which are initialized in cl_anything(). The way the optimizer works
947 * is that the synthetic start class (SSC) is initialized to match
948 * anything, and then the first time a real node is encountered, its
949 * values are AND'd with the SSC's with the result being the values of
950 * the real node. However, there are paths through the optimizer where
951 * the AND never gets called, so those initialized bits are set
952 * inappropriately, which is not usually a big deal, as they just cause
953 * false positives in the SSC, which will just mean a probably
954 * imperceptible slow down in execution. However this bit has a
955 * higher false positive consequence in that it can cause utf8.pm,
956 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
957 * bigger slowdown and also causes significant extra memory to be used.
958 * In order to prevent this, the code now takes a different tack. The
959 * bit isn't set unless some part of the regular expression needs it,
960 * but once set it won't get cleared. This means that these extra
961 * modules won't get loaded unless there was some path through the
962 * pattern that would have required them anyway, and so any false
963 * positives that occur by not ANDing them out when they could be
964 * aren't as severe as they would be if we treated this bit like all
966 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
967 & ANYOF_NONBITMAP_NON_UTF8;
968 cl->flags &= and_with->flags;
969 cl->flags |= outside_bitmap_but_not_utf8;
973 /* 'OR' a given class with another one. Can create false positives. 'cl'
974 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
975 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
979 PERL_ARGS_ASSERT_CL_OR;
981 if (or_with->flags & ANYOF_INVERT) {
983 /* Here, the or'd node is to be inverted. This means we take the
984 * complement of everything not in the bitmap, but currently we don't
985 * know what that is, so give up and match anything */
986 if (ANYOF_NONBITMAP(or_with)) {
987 cl_anything(pRExC_state, cl);
990 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
991 * <= (B1 | !B2) | (CL1 | !CL2)
992 * which is wasteful if CL2 is small, but we ignore CL2:
993 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
994 * XXXX Can we handle case-fold? Unclear:
995 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
996 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
998 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
999 && !(or_with->flags & ANYOF_LOC_FOLD)
1000 && !(cl->flags & ANYOF_LOC_FOLD) ) {
1003 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1004 cl->bitmap[i] |= ~or_with->bitmap[i];
1005 } /* XXXX: logic is complicated otherwise */
1007 cl_anything(pRExC_state, cl);
1010 /* And, we can just take the union of the flags that aren't affected
1011 * by the inversion */
1012 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1014 /* For the remaining flags:
1015 ANYOF_UNICODE_ALL and inverted means to not match anything above
1016 255, which means that the union with cl should just be
1017 what cl has in it, so can ignore this flag
1018 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1019 is 127-255 to match them, but then invert that, so the
1020 union with cl should just be what cl has in it, so can
1023 } else { /* 'or_with' is not inverted */
1024 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1025 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1026 && (!(or_with->flags & ANYOF_LOC_FOLD)
1027 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1030 /* OR char bitmap and class bitmap separately */
1031 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1032 cl->bitmap[i] |= or_with->bitmap[i];
1033 if (or_with->flags & ANYOF_CLASS) {
1034 ANYOF_CLASS_OR(or_with, cl);
1037 else { /* XXXX: logic is complicated, leave it along for a moment. */
1038 cl_anything(pRExC_state, cl);
1041 if (ANYOF_NONBITMAP(or_with)) {
1043 /* Use the added node's outside-the-bit-map match if there isn't a
1044 * conflict. If there is a conflict (both nodes match something
1045 * outside the bitmap, but what they match outside is not the same
1046 * pointer, and hence not easily compared until XXX we extend
1047 * inversion lists this far), give up and allow the start class to
1048 * match everything outside the bitmap. If that stuff is all above
1049 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1050 if (! ANYOF_NONBITMAP(cl)) {
1051 ARG_SET(cl, ARG(or_with));
1053 else if (ARG(cl) != ARG(or_with)) {
1055 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1056 cl_anything(pRExC_state, cl);
1059 cl->flags |= ANYOF_UNICODE_ALL;
1064 /* Take the union */
1065 cl->flags |= or_with->flags;
1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1070 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1072 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1077 dump_trie(trie,widecharmap,revcharmap)
1078 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1079 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1081 These routines dump out a trie in a somewhat readable format.
1082 The _interim_ variants are used for debugging the interim
1083 tables that are used to generate the final compressed
1084 representation which is what dump_trie expects.
1086 Part of the reason for their existence is to provide a form
1087 of documentation as to how the different representations function.
1092 Dumps the final compressed table form of the trie to Perl_debug_log.
1093 Used for debugging make_trie().
1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1098 AV *revcharmap, U32 depth)
1101 SV *sv=sv_newmortal();
1102 int colwidth= widecharmap ? 6 : 4;
1104 GET_RE_DEBUG_FLAGS_DECL;
1106 PERL_ARGS_ASSERT_DUMP_TRIE;
1108 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1109 (int)depth * 2 + 2,"",
1110 "Match","Base","Ofs" );
1112 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1113 SV ** const tmp = av_fetch( revcharmap, state, 0);
1115 PerlIO_printf( Perl_debug_log, "%*s",
1117 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1118 PL_colors[0], PL_colors[1],
1119 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1120 PERL_PV_ESCAPE_FIRSTCHAR
1125 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1126 (int)depth * 2 + 2,"");
1128 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1129 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1130 PerlIO_printf( Perl_debug_log, "\n");
1132 for( state = 1 ; state < trie->statecount ; state++ ) {
1133 const U32 base = trie->states[ state ].trans.base;
1135 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1137 if ( trie->states[ state ].wordnum ) {
1138 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1140 PerlIO_printf( Perl_debug_log, "%6s", "" );
1143 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1148 while( ( base + ofs < trie->uniquecharcount ) ||
1149 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1150 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1153 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1156 if ( ( base + ofs >= trie->uniquecharcount ) &&
1157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1160 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1162 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1164 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1168 PerlIO_printf( Perl_debug_log, "]");
1171 PerlIO_printf( Perl_debug_log, "\n" );
1173 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1174 for (word=1; word <= trie->wordcount; word++) {
1175 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1176 (int)word, (int)(trie->wordinfo[word].prev),
1177 (int)(trie->wordinfo[word].len));
1179 PerlIO_printf(Perl_debug_log, "\n" );
1182 Dumps a fully constructed but uncompressed trie in list form.
1183 List tries normally only are used for construction when the number of
1184 possible chars (trie->uniquecharcount) is very high.
1185 Used for debugging make_trie().
1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1189 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1193 SV *sv=sv_newmortal();
1194 int colwidth= widecharmap ? 6 : 4;
1195 GET_RE_DEBUG_FLAGS_DECL;
1197 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1199 /* print out the table precompression. */
1200 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1201 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1202 "------:-----+-----------------\n" );
1204 for( state=1 ; state < next_alloc ; state ++ ) {
1207 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1208 (int)depth * 2 + 2,"", (UV)state );
1209 if ( ! trie->states[ state ].wordnum ) {
1210 PerlIO_printf( Perl_debug_log, "%5s| ","");
1212 PerlIO_printf( Perl_debug_log, "W%4x| ",
1213 trie->states[ state ].wordnum
1216 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1217 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1219 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1221 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1222 PL_colors[0], PL_colors[1],
1223 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1224 PERL_PV_ESCAPE_FIRSTCHAR
1226 TRIE_LIST_ITEM(state,charid).forid,
1227 (UV)TRIE_LIST_ITEM(state,charid).newstate
1230 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1231 (int)((depth * 2) + 14), "");
1234 PerlIO_printf( Perl_debug_log, "\n");
1239 Dumps a fully constructed but uncompressed trie in table form.
1240 This is the normal DFA style state transition table, with a few
1241 twists to facilitate compression later.
1242 Used for debugging make_trie().
1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1246 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1251 SV *sv=sv_newmortal();
1252 int colwidth= widecharmap ? 6 : 4;
1253 GET_RE_DEBUG_FLAGS_DECL;
1255 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1258 print out the table precompression so that we can do a visual check
1259 that they are identical.
1262 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1265 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1267 PerlIO_printf( Perl_debug_log, "%*s",
1269 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1270 PL_colors[0], PL_colors[1],
1271 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1272 PERL_PV_ESCAPE_FIRSTCHAR
1278 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1280 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1281 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1284 PerlIO_printf( Perl_debug_log, "\n" );
1286 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1288 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1289 (int)depth * 2 + 2,"",
1290 (UV)TRIE_NODENUM( state ) );
1292 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1293 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1295 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1297 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1299 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1300 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1302 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1303 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1312 startbranch: the first branch in the whole branch sequence
1313 first : start branch of sequence of branch-exact nodes.
1314 May be the same as startbranch
1315 last : Thing following the last branch.
1316 May be the same as tail.
1317 tail : item following the branch sequence
1318 count : words in the sequence
1319 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1320 depth : indent depth
1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1324 A trie is an N'ary tree where the branches are determined by digital
1325 decomposition of the key. IE, at the root node you look up the 1st character and
1326 follow that branch repeat until you find the end of the branches. Nodes can be
1327 marked as "accepting" meaning they represent a complete word. Eg:
1331 would convert into the following structure. Numbers represent states, letters
1332 following numbers represent valid transitions on the letter from that state, if
1333 the number is in square brackets it represents an accepting state, otherwise it
1334 will be in parenthesis.
1336 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1340 (1) +-i->(6)-+-s->[7]
1342 +-s->(3)-+-h->(4)-+-e->[5]
1344 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1346 This shows that when matching against the string 'hers' we will begin at state 1
1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1350 single traverse. We store a mapping from accepting to state to which word was
1351 matched, and then when we have multiple possibilities we try to complete the
1352 rest of the regex in the order in which they occured in the alternation.
1354 The only prior NFA like behaviour that would be changed by the TRIE support is
1355 the silent ignoring of duplicate alternations which are of the form:
1357 / (DUPE|DUPE) X? (?{ ... }) Y /x
1359 Thus EVAL blocks following a trie may be called a different number of times with
1360 and without the optimisation. With the optimisations dupes will be silently
1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1362 the following demonstrates:
1364 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1366 which prints out 'word' three times, but
1368 'words'=~/(word|word|word)(?{ print $1 })S/
1370 which doesnt print it out at all. This is due to other optimisations kicking in.
1372 Example of what happens on a structural level:
1374 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1376 1: CURLYM[1] {1,32767}(18)
1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1388 and should turn into:
1390 1: CURLYM[1] {1,32767}(18)
1392 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1400 Cases where tail != last would be like /(?foo|bar)baz/:
1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1411 and would end up looking like:
1414 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1421 d = uvuni_to_utf8_flags(d, uv, 0);
1423 is the recommended Unicode-aware way of saying
1428 #define TRIE_STORE_REVCHAR(val) \
1431 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1432 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1433 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1434 SvCUR_set(zlopp, kapow - flrbbbbb); \
1437 av_push(revcharmap, zlopp); \
1439 char ooooff = (char)val; \
1440 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1444 #define TRIE_READ_CHAR STMT_START { \
1447 /* if it is UTF then it is either already folded, or does not need folding */ \
1448 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1450 else if (folder == PL_fold_latin1) { \
1451 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1452 if ( foldlen > 0 ) { \
1453 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1459 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1460 skiplen = UNISKIP(uvc); \
1461 foldlen -= skiplen; \
1462 scan = foldbuf + skiplen; \
1465 /* raw data, will be folded later if needed */ \
1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1474 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1475 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1476 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1478 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1479 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1480 TRIE_LIST_CUR( state )++; \
1483 #define TRIE_LIST_NEW(state) STMT_START { \
1484 Newxz( trie->states[ state ].trans.list, \
1485 4, reg_trie_trans_le ); \
1486 TRIE_LIST_CUR( state ) = 1; \
1487 TRIE_LIST_LEN( state ) = 4; \
1490 #define TRIE_HANDLE_WORD(state) STMT_START { \
1491 U16 dupe= trie->states[ state ].wordnum; \
1492 regnode * const noper_next = regnext( noper ); \
1495 /* store the word for dumping */ \
1497 if (OP(noper) != NOTHING) \
1498 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1500 tmp = newSVpvn_utf8( "", 0, UTF ); \
1501 av_push( trie_words, tmp ); \
1505 trie->wordinfo[curword].prev = 0; \
1506 trie->wordinfo[curword].len = wordlen; \
1507 trie->wordinfo[curword].accept = state; \
1509 if ( noper_next < tail ) { \
1511 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1512 trie->jump[curword] = (U16)(noper_next - convert); \
1514 jumper = noper_next; \
1516 nextbranch= regnext(cur); \
1520 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1521 /* chain, so that when the bits of chain are later */\
1522 /* linked together, the dups appear in the chain */\
1523 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1524 trie->wordinfo[dupe].prev = curword; \
1526 /* we haven't inserted this word yet. */ \
1527 trie->states[ state ].wordnum = curword; \
1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1533 ( ( base + charid >= ucharcount \
1534 && base + charid < ubound \
1535 && state == trie->trans[ base - ucharcount + charid ].check \
1536 && trie->trans[ base - ucharcount + charid ].next ) \
1537 ? trie->trans[ base - ucharcount + charid ].next \
1538 : ( state==1 ? special : 0 ) \
1542 #define MADE_JUMP_TRIE 2
1543 #define MADE_EXACT_TRIE 4
1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1549 /* first pass, loop through and scan words */
1550 reg_trie_data *trie;
1551 HV *widecharmap = NULL;
1552 AV *revcharmap = newAV();
1554 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1559 regnode *jumper = NULL;
1560 regnode *nextbranch = NULL;
1561 regnode *convert = NULL;
1562 U32 *prev_states; /* temp array mapping each state to previous one */
1563 /* we just use folder as a flag in utf8 */
1564 const U8 * folder = NULL;
1567 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1568 AV *trie_words = NULL;
1569 /* along with revcharmap, this only used during construction but both are
1570 * useful during debugging so we store them in the struct when debugging.
1573 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1574 STRLEN trie_charcount=0;
1576 SV *re_trie_maxbuff;
1577 GET_RE_DEBUG_FLAGS_DECL;
1579 PERL_ARGS_ASSERT_MAKE_TRIE;
1581 PERL_UNUSED_ARG(depth);
1588 case EXACTFU_TRICKYFOLD:
1589 case EXACTFU: folder = PL_fold_latin1; break;
1590 case EXACTF: folder = PL_fold; break;
1591 case EXACTFL: folder = PL_fold_locale; break;
1592 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1595 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1597 trie->startstate = 1;
1598 trie->wordcount = word_count;
1599 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1600 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1602 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1603 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1604 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1607 trie_words = newAV();
1610 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1611 if (!SvIOK(re_trie_maxbuff)) {
1612 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1614 DEBUG_TRIE_COMPILE_r({
1615 PerlIO_printf( Perl_debug_log,
1616 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1617 (int)depth * 2 + 2, "",
1618 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1619 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1623 /* Find the node we are going to overwrite */
1624 if ( first == startbranch && OP( last ) != BRANCH ) {
1625 /* whole branch chain */
1628 /* branch sub-chain */
1629 convert = NEXTOPER( first );
1632 /* -- First loop and Setup --
1634 We first traverse the branches and scan each word to determine if it
1635 contains widechars, and how many unique chars there are, this is
1636 important as we have to build a table with at least as many columns as we
1639 We use an array of integers to represent the character codes 0..255
1640 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1641 native representation of the character value as the key and IV's for the
1644 *TODO* If we keep track of how many times each character is used we can
1645 remap the columns so that the table compression later on is more
1646 efficient in terms of memory by ensuring the most common value is in the
1647 middle and the least common are on the outside. IMO this would be better
1648 than a most to least common mapping as theres a decent chance the most
1649 common letter will share a node with the least common, meaning the node
1650 will not be compressible. With a middle is most common approach the worst
1651 case is when we have the least common nodes twice.
1655 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1656 regnode *noper = NEXTOPER( cur );
1657 const U8 *uc = (U8*)STRING( noper );
1658 const U8 *e = uc + STR_LEN( noper );
1660 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1662 const U8 *scan = (U8*)NULL;
1663 U32 wordlen = 0; /* required init */
1665 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1667 if (OP(noper) == NOTHING) {
1668 regnode *noper_next= regnext(noper);
1669 if (noper_next != tail && OP(noper_next) == flags) {
1671 uc= (U8*)STRING(noper);
1672 e= uc + STR_LEN(noper);
1673 trie->minlen= STR_LEN(noper);
1680 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1681 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1682 regardless of encoding */
1683 if (OP( noper ) == EXACTFU_SS) {
1684 /* false positives are ok, so just set this */
1685 TRIE_BITMAP_SET(trie,0xDF);
1688 for ( ; uc < e ; uc += len ) {
1689 TRIE_CHARCOUNT(trie)++;
1694 U8 folded= folder[ (U8) uvc ];
1695 if ( !trie->charmap[ folded ] ) {
1696 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1697 TRIE_STORE_REVCHAR( folded );
1700 if ( !trie->charmap[ uvc ] ) {
1701 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1702 TRIE_STORE_REVCHAR( uvc );
1705 /* store the codepoint in the bitmap, and its folded
1707 TRIE_BITMAP_SET(trie, uvc);
1709 /* store the folded codepoint */
1710 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1713 /* store first byte of utf8 representation of
1714 variant codepoints */
1715 if (! UNI_IS_INVARIANT(uvc)) {
1716 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1719 set_bit = 0; /* We've done our bit :-) */
1724 widecharmap = newHV();
1726 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1729 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1731 if ( !SvTRUE( *svpp ) ) {
1732 sv_setiv( *svpp, ++trie->uniquecharcount );
1733 TRIE_STORE_REVCHAR(uvc);
1737 if( cur == first ) {
1738 trie->minlen = chars;
1739 trie->maxlen = chars;
1740 } else if (chars < trie->minlen) {
1741 trie->minlen = chars;
1742 } else if (chars > trie->maxlen) {
1743 trie->maxlen = chars;
1745 if (OP( noper ) == EXACTFU_SS) {
1746 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1747 if (trie->minlen > 1)
1750 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1751 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1752 * - We assume that any such sequence might match a 2 byte string */
1753 if (trie->minlen > 2 )
1757 } /* end first pass */
1758 DEBUG_TRIE_COMPILE_r(
1759 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1760 (int)depth * 2 + 2,"",
1761 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1762 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1763 (int)trie->minlen, (int)trie->maxlen )
1767 We now know what we are dealing with in terms of unique chars and
1768 string sizes so we can calculate how much memory a naive
1769 representation using a flat table will take. If it's over a reasonable
1770 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1771 conservative but potentially much slower representation using an array
1774 At the end we convert both representations into the same compressed
1775 form that will be used in regexec.c for matching with. The latter
1776 is a form that cannot be used to construct with but has memory
1777 properties similar to the list form and access properties similar
1778 to the table form making it both suitable for fast searches and
1779 small enough that its feasable to store for the duration of a program.
1781 See the comment in the code where the compressed table is produced
1782 inplace from the flat tabe representation for an explanation of how
1783 the compression works.
1788 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1791 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1793 Second Pass -- Array Of Lists Representation
1795 Each state will be represented by a list of charid:state records
1796 (reg_trie_trans_le) the first such element holds the CUR and LEN
1797 points of the allocated array. (See defines above).
1799 We build the initial structure using the lists, and then convert
1800 it into the compressed table form which allows faster lookups
1801 (but cant be modified once converted).
1804 STRLEN transcount = 1;
1806 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1807 "%*sCompiling trie using list compiler\n",
1808 (int)depth * 2 + 2, ""));
1810 trie->states = (reg_trie_state *)
1811 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1812 sizeof(reg_trie_state) );
1816 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1818 regnode *noper = NEXTOPER( cur );
1819 U8 *uc = (U8*)STRING( noper );
1820 const U8 *e = uc + STR_LEN( noper );
1821 U32 state = 1; /* required init */
1822 U16 charid = 0; /* sanity init */
1823 U8 *scan = (U8*)NULL; /* sanity init */
1824 STRLEN foldlen = 0; /* required init */
1825 U32 wordlen = 0; /* required init */
1826 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1829 if (OP(noper) == NOTHING) {
1830 regnode *noper_next= regnext(noper);
1831 if (noper_next != tail && OP(noper_next) == flags) {
1833 uc= (U8*)STRING(noper);
1834 e= uc + STR_LEN(noper);
1838 if (OP(noper) != NOTHING) {
1839 for ( ; uc < e ; uc += len ) {
1844 charid = trie->charmap[ uvc ];
1846 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1850 charid=(U16)SvIV( *svpp );
1853 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1860 if ( !trie->states[ state ].trans.list ) {
1861 TRIE_LIST_NEW( state );
1863 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1864 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1865 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1870 newstate = next_alloc++;
1871 prev_states[newstate] = state;
1872 TRIE_LIST_PUSH( state, charid, newstate );
1877 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1881 TRIE_HANDLE_WORD(state);
1883 } /* end second pass */
1885 /* next alloc is the NEXT state to be allocated */
1886 trie->statecount = next_alloc;
1887 trie->states = (reg_trie_state *)
1888 PerlMemShared_realloc( trie->states,
1890 * sizeof(reg_trie_state) );
1892 /* and now dump it out before we compress it */
1893 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1894 revcharmap, next_alloc,
1898 trie->trans = (reg_trie_trans *)
1899 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1906 for( state=1 ; state < next_alloc ; state ++ ) {
1910 DEBUG_TRIE_COMPILE_MORE_r(
1911 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1915 if (trie->states[state].trans.list) {
1916 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1920 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1921 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1922 if ( forid < minid ) {
1924 } else if ( forid > maxid ) {
1928 if ( transcount < tp + maxid - minid + 1) {
1930 trie->trans = (reg_trie_trans *)
1931 PerlMemShared_realloc( trie->trans,
1933 * sizeof(reg_trie_trans) );
1934 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1936 base = trie->uniquecharcount + tp - minid;
1937 if ( maxid == minid ) {
1939 for ( ; zp < tp ; zp++ ) {
1940 if ( ! trie->trans[ zp ].next ) {
1941 base = trie->uniquecharcount + zp - minid;
1942 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1943 trie->trans[ zp ].check = state;
1949 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1950 trie->trans[ tp ].check = state;
1955 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1956 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1957 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1958 trie->trans[ tid ].check = state;
1960 tp += ( maxid - minid + 1 );
1962 Safefree(trie->states[ state ].trans.list);
1965 DEBUG_TRIE_COMPILE_MORE_r(
1966 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1969 trie->states[ state ].trans.base=base;
1971 trie->lasttrans = tp + 1;
1975 Second Pass -- Flat Table Representation.
1977 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1978 We know that we will need Charcount+1 trans at most to store the data
1979 (one row per char at worst case) So we preallocate both structures
1980 assuming worst case.
1982 We then construct the trie using only the .next slots of the entry
1985 We use the .check field of the first entry of the node temporarily to
1986 make compression both faster and easier by keeping track of how many non
1987 zero fields are in the node.
1989 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1992 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1993 number representing the first entry of the node, and state as a
1994 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1995 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1996 are 2 entrys per node. eg:
2004 The table is internally in the right hand, idx form. However as we also
2005 have to deal with the states array which is indexed by nodenum we have to
2006 use TRIE_NODENUM() to convert.
2009 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2010 "%*sCompiling trie using table compiler\n",
2011 (int)depth * 2 + 2, ""));
2013 trie->trans = (reg_trie_trans *)
2014 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2015 * trie->uniquecharcount + 1,
2016 sizeof(reg_trie_trans) );
2017 trie->states = (reg_trie_state *)
2018 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2019 sizeof(reg_trie_state) );
2020 next_alloc = trie->uniquecharcount + 1;
2023 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2025 regnode *noper = NEXTOPER( cur );
2026 const U8 *uc = (U8*)STRING( noper );
2027 const U8 *e = uc + STR_LEN( noper );
2029 U32 state = 1; /* required init */
2031 U16 charid = 0; /* sanity init */
2032 U32 accept_state = 0; /* sanity init */
2033 U8 *scan = (U8*)NULL; /* sanity init */
2035 STRLEN foldlen = 0; /* required init */
2036 U32 wordlen = 0; /* required init */
2038 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2040 if (OP(noper) == NOTHING) {
2041 regnode *noper_next= regnext(noper);
2042 if (noper_next != tail && OP(noper_next) == flags) {
2044 uc= (U8*)STRING(noper);
2045 e= uc + STR_LEN(noper);
2049 if ( OP(noper) != NOTHING ) {
2050 for ( ; uc < e ; uc += len ) {
2055 charid = trie->charmap[ uvc ];
2057 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2058 charid = svpp ? (U16)SvIV(*svpp) : 0;
2062 if ( !trie->trans[ state + charid ].next ) {
2063 trie->trans[ state + charid ].next = next_alloc;
2064 trie->trans[ state ].check++;
2065 prev_states[TRIE_NODENUM(next_alloc)]
2066 = TRIE_NODENUM(state);
2067 next_alloc += trie->uniquecharcount;
2069 state = trie->trans[ state + charid ].next;
2071 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2073 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2076 accept_state = TRIE_NODENUM( state );
2077 TRIE_HANDLE_WORD(accept_state);
2079 } /* end second pass */
2081 /* and now dump it out before we compress it */
2082 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2084 next_alloc, depth+1));
2088 * Inplace compress the table.*
2090 For sparse data sets the table constructed by the trie algorithm will
2091 be mostly 0/FAIL transitions or to put it another way mostly empty.
2092 (Note that leaf nodes will not contain any transitions.)
2094 This algorithm compresses the tables by eliminating most such
2095 transitions, at the cost of a modest bit of extra work during lookup:
2097 - Each states[] entry contains a .base field which indicates the
2098 index in the state[] array wheres its transition data is stored.
2100 - If .base is 0 there are no valid transitions from that node.
2102 - If .base is nonzero then charid is added to it to find an entry in
2105 -If trans[states[state].base+charid].check!=state then the
2106 transition is taken to be a 0/Fail transition. Thus if there are fail
2107 transitions at the front of the node then the .base offset will point
2108 somewhere inside the previous nodes data (or maybe even into a node
2109 even earlier), but the .check field determines if the transition is
2113 The following process inplace converts the table to the compressed
2114 table: We first do not compress the root node 1,and mark all its
2115 .check pointers as 1 and set its .base pointer as 1 as well. This
2116 allows us to do a DFA construction from the compressed table later,
2117 and ensures that any .base pointers we calculate later are greater
2120 - We set 'pos' to indicate the first entry of the second node.
2122 - We then iterate over the columns of the node, finding the first and
2123 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2124 and set the .check pointers accordingly, and advance pos
2125 appropriately and repreat for the next node. Note that when we copy
2126 the next pointers we have to convert them from the original
2127 NODEIDX form to NODENUM form as the former is not valid post
2130 - If a node has no transitions used we mark its base as 0 and do not
2131 advance the pos pointer.
2133 - If a node only has one transition we use a second pointer into the
2134 structure to fill in allocated fail transitions from other states.
2135 This pointer is independent of the main pointer and scans forward
2136 looking for null transitions that are allocated to a state. When it
2137 finds one it writes the single transition into the "hole". If the
2138 pointer doesnt find one the single transition is appended as normal.
2140 - Once compressed we can Renew/realloc the structures to release the
2143 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2144 specifically Fig 3.47 and the associated pseudocode.
2148 const U32 laststate = TRIE_NODENUM( next_alloc );
2151 trie->statecount = laststate;
2153 for ( state = 1 ; state < laststate ; state++ ) {
2155 const U32 stateidx = TRIE_NODEIDX( state );
2156 const U32 o_used = trie->trans[ stateidx ].check;
2157 U32 used = trie->trans[ stateidx ].check;
2158 trie->trans[ stateidx ].check = 0;
2160 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2161 if ( flag || trie->trans[ stateidx + charid ].next ) {
2162 if ( trie->trans[ stateidx + charid ].next ) {
2164 for ( ; zp < pos ; zp++ ) {
2165 if ( ! trie->trans[ zp ].next ) {
2169 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2170 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2171 trie->trans[ zp ].check = state;
2172 if ( ++zp > pos ) pos = zp;
2179 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2181 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2182 trie->trans[ pos ].check = state;
2187 trie->lasttrans = pos + 1;
2188 trie->states = (reg_trie_state *)
2189 PerlMemShared_realloc( trie->states, laststate
2190 * sizeof(reg_trie_state) );
2191 DEBUG_TRIE_COMPILE_MORE_r(
2192 PerlIO_printf( Perl_debug_log,
2193 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2194 (int)depth * 2 + 2,"",
2195 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2198 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2201 } /* end table compress */
2203 DEBUG_TRIE_COMPILE_MORE_r(
2204 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2205 (int)depth * 2 + 2, "",
2206 (UV)trie->statecount,
2207 (UV)trie->lasttrans)
2209 /* resize the trans array to remove unused space */
2210 trie->trans = (reg_trie_trans *)
2211 PerlMemShared_realloc( trie->trans, trie->lasttrans
2212 * sizeof(reg_trie_trans) );
2214 { /* Modify the program and insert the new TRIE node */
2215 U8 nodetype =(U8)(flags & 0xFF);
2219 regnode *optimize = NULL;
2220 #ifdef RE_TRACK_PATTERN_OFFSETS
2223 U32 mjd_nodelen = 0;
2224 #endif /* RE_TRACK_PATTERN_OFFSETS */
2225 #endif /* DEBUGGING */
2227 This means we convert either the first branch or the first Exact,
2228 depending on whether the thing following (in 'last') is a branch
2229 or not and whther first is the startbranch (ie is it a sub part of
2230 the alternation or is it the whole thing.)
2231 Assuming its a sub part we convert the EXACT otherwise we convert
2232 the whole branch sequence, including the first.
2234 /* Find the node we are going to overwrite */
2235 if ( first != startbranch || OP( last ) == BRANCH ) {
2236 /* branch sub-chain */
2237 NEXT_OFF( first ) = (U16)(last - first);
2238 #ifdef RE_TRACK_PATTERN_OFFSETS
2240 mjd_offset= Node_Offset((convert));
2241 mjd_nodelen= Node_Length((convert));
2244 /* whole branch chain */
2246 #ifdef RE_TRACK_PATTERN_OFFSETS
2249 const regnode *nop = NEXTOPER( convert );
2250 mjd_offset= Node_Offset((nop));
2251 mjd_nodelen= Node_Length((nop));
2255 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2256 (int)depth * 2 + 2, "",
2257 (UV)mjd_offset, (UV)mjd_nodelen)
2260 /* But first we check to see if there is a common prefix we can
2261 split out as an EXACT and put in front of the TRIE node. */
2262 trie->startstate= 1;
2263 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2265 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2269 const U32 base = trie->states[ state ].trans.base;
2271 if ( trie->states[state].wordnum )
2274 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2275 if ( ( base + ofs >= trie->uniquecharcount ) &&
2276 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2277 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2279 if ( ++count > 1 ) {
2280 SV **tmp = av_fetch( revcharmap, ofs, 0);
2281 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2282 if ( state == 1 ) break;
2284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2286 PerlIO_printf(Perl_debug_log,
2287 "%*sNew Start State=%"UVuf" Class: [",
2288 (int)depth * 2 + 2, "",
2291 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2294 TRIE_BITMAP_SET(trie,*ch);
2296 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2298 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2302 TRIE_BITMAP_SET(trie,*ch);
2304 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2305 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2311 SV **tmp = av_fetch( revcharmap, idx, 0);
2313 char *ch = SvPV( *tmp, len );
2315 SV *sv=sv_newmortal();
2316 PerlIO_printf( Perl_debug_log,
2317 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2318 (int)depth * 2 + 2, "",
2320 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2321 PL_colors[0], PL_colors[1],
2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2323 PERL_PV_ESCAPE_FIRSTCHAR
2328 OP( convert ) = nodetype;
2329 str=STRING(convert);
2332 STR_LEN(convert) += len;
2338 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2343 trie->prefixlen = (state-1);
2345 regnode *n = convert+NODE_SZ_STR(convert);
2346 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2347 trie->startstate = state;
2348 trie->minlen -= (state - 1);
2349 trie->maxlen -= (state - 1);
2351 /* At least the UNICOS C compiler choked on this
2352 * being argument to DEBUG_r(), so let's just have
2355 #ifdef PERL_EXT_RE_BUILD
2361 regnode *fix = convert;
2362 U32 word = trie->wordcount;
2364 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2365 while( ++fix < n ) {
2366 Set_Node_Offset_Length(fix, 0, 0);
2369 SV ** const tmp = av_fetch( trie_words, word, 0 );
2371 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2372 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2374 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2382 NEXT_OFF(convert) = (U16)(tail - convert);
2383 DEBUG_r(optimize= n);
2389 if ( trie->maxlen ) {
2390 NEXT_OFF( convert ) = (U16)(tail - convert);
2391 ARG_SET( convert, data_slot );
2392 /* Store the offset to the first unabsorbed branch in
2393 jump[0], which is otherwise unused by the jump logic.
2394 We use this when dumping a trie and during optimisation. */
2396 trie->jump[0] = (U16)(nextbranch - convert);
2398 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2399 * and there is a bitmap
2400 * and the first "jump target" node we found leaves enough room
2401 * then convert the TRIE node into a TRIEC node, with the bitmap
2402 * embedded inline in the opcode - this is hypothetically faster.
2404 if ( !trie->states[trie->startstate].wordnum
2406 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2408 OP( convert ) = TRIEC;
2409 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2410 PerlMemShared_free(trie->bitmap);
2413 OP( convert ) = TRIE;
2415 /* store the type in the flags */
2416 convert->flags = nodetype;
2420 + regarglen[ OP( convert ) ];
2422 /* XXX We really should free up the resource in trie now,
2423 as we won't use them - (which resources?) dmq */
2425 /* needed for dumping*/
2426 DEBUG_r(if (optimize) {
2427 regnode *opt = convert;
2429 while ( ++opt < optimize) {
2430 Set_Node_Offset_Length(opt,0,0);
2433 Try to clean up some of the debris left after the
2436 while( optimize < jumper ) {
2437 mjd_nodelen += Node_Length((optimize));
2438 OP( optimize ) = OPTIMIZED;
2439 Set_Node_Offset_Length(optimize,0,0);
2442 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2444 } /* end node insert */
2446 /* Finish populating the prev field of the wordinfo array. Walk back
2447 * from each accept state until we find another accept state, and if
2448 * so, point the first word's .prev field at the second word. If the
2449 * second already has a .prev field set, stop now. This will be the
2450 * case either if we've already processed that word's accept state,
2451 * or that state had multiple words, and the overspill words were
2452 * already linked up earlier.
2459 for (word=1; word <= trie->wordcount; word++) {
2461 if (trie->wordinfo[word].prev)
2463 state = trie->wordinfo[word].accept;
2465 state = prev_states[state];
2468 prev = trie->states[state].wordnum;
2472 trie->wordinfo[word].prev = prev;
2474 Safefree(prev_states);
2478 /* and now dump out the compressed format */
2479 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2481 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2483 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2484 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2486 SvREFCNT_dec_NN(revcharmap);
2490 : trie->startstate>1
2496 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2498 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2500 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2501 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2504 We find the fail state for each state in the trie, this state is the longest proper
2505 suffix of the current state's 'word' that is also a proper prefix of another word in our
2506 trie. State 1 represents the word '' and is thus the default fail state. This allows
2507 the DFA not to have to restart after its tried and failed a word at a given point, it
2508 simply continues as though it had been matching the other word in the first place.
2510 'abcdgu'=~/abcdefg|cdgu/
2511 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2512 fail, which would bring us to the state representing 'd' in the second word where we would
2513 try 'g' and succeed, proceeding to match 'cdgu'.
2515 /* add a fail transition */
2516 const U32 trie_offset = ARG(source);
2517 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2519 const U32 ucharcount = trie->uniquecharcount;
2520 const U32 numstates = trie->statecount;
2521 const U32 ubound = trie->lasttrans + ucharcount;
2525 U32 base = trie->states[ 1 ].trans.base;
2528 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2529 GET_RE_DEBUG_FLAGS_DECL;
2531 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2533 PERL_UNUSED_ARG(depth);
2537 ARG_SET( stclass, data_slot );
2538 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2539 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2540 aho->trie=trie_offset;
2541 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2542 Copy( trie->states, aho->states, numstates, reg_trie_state );
2543 Newxz( q, numstates, U32);
2544 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2547 /* initialize fail[0..1] to be 1 so that we always have
2548 a valid final fail state */
2549 fail[ 0 ] = fail[ 1 ] = 1;
2551 for ( charid = 0; charid < ucharcount ; charid++ ) {
2552 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2554 q[ q_write ] = newstate;
2555 /* set to point at the root */
2556 fail[ q[ q_write++ ] ]=1;
2559 while ( q_read < q_write) {
2560 const U32 cur = q[ q_read++ % numstates ];
2561 base = trie->states[ cur ].trans.base;
2563 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2564 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2566 U32 fail_state = cur;
2569 fail_state = fail[ fail_state ];
2570 fail_base = aho->states[ fail_state ].trans.base;
2571 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2573 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2574 fail[ ch_state ] = fail_state;
2575 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2577 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2579 q[ q_write++ % numstates] = ch_state;
2583 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2584 when we fail in state 1, this allows us to use the
2585 charclass scan to find a valid start char. This is based on the principle
2586 that theres a good chance the string being searched contains lots of stuff
2587 that cant be a start char.
2589 fail[ 0 ] = fail[ 1 ] = 0;
2590 DEBUG_TRIE_COMPILE_r({
2591 PerlIO_printf(Perl_debug_log,
2592 "%*sStclass Failtable (%"UVuf" states): 0",
2593 (int)(depth * 2), "", (UV)numstates
2595 for( q_read=1; q_read<numstates; q_read++ ) {
2596 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2598 PerlIO_printf(Perl_debug_log, "\n");
2601 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2606 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2607 * These need to be revisited when a newer toolchain becomes available.
2609 #if defined(__sparc64__) && defined(__GNUC__)
2610 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2611 # undef SPARC64_GCC_WORKAROUND
2612 # define SPARC64_GCC_WORKAROUND 1
2616 #define DEBUG_PEEP(str,scan,depth) \
2617 DEBUG_OPTIMISE_r({if (scan){ \
2618 SV * const mysv=sv_newmortal(); \
2619 regnode *Next = regnext(scan); \
2620 regprop(RExC_rx, mysv, scan); \
2621 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2622 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2623 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2627 /* The below joins as many adjacent EXACTish nodes as possible into a single
2628 * one. The regop may be changed if the node(s) contain certain sequences that
2629 * require special handling. The joining is only done if:
2630 * 1) there is room in the current conglomerated node to entirely contain the
2632 * 2) they are the exact same node type
2634 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2635 * these get optimized out
2637 * If a node is to match under /i (folded), the number of characters it matches
2638 * can be different than its character length if it contains a multi-character
2639 * fold. *min_subtract is set to the total delta of the input nodes.
2641 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2642 * and contains LATIN SMALL LETTER SHARP S
2644 * This is as good a place as any to discuss the design of handling these
2645 * multi-character fold sequences. It's been wrong in Perl for a very long
2646 * time. There are three code points in Unicode whose multi-character folds
2647 * were long ago discovered to mess things up. The previous designs for
2648 * dealing with these involved assigning a special node for them. This
2649 * approach doesn't work, as evidenced by this example:
2650 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2651 * Both these fold to "sss", but if the pattern is parsed to create a node that
2652 * would match just the \xDF, it won't be able to handle the case where a
2653 * successful match would have to cross the node's boundary. The new approach
2654 * that hopefully generally solves the problem generates an EXACTFU_SS node
2657 * It turns out that there are problems with all multi-character folds, and not
2658 * just these three. Now the code is general, for all such cases, but the
2659 * three still have some special handling. The approach taken is:
2660 * 1) This routine examines each EXACTFish node that could contain multi-
2661 * character fold sequences. It returns in *min_subtract how much to
2662 * subtract from the the actual length of the string to get a real minimum
2663 * match length; it is 0 if there are no multi-char folds. This delta is
2664 * used by the caller to adjust the min length of the match, and the delta
2665 * between min and max, so that the optimizer doesn't reject these
2666 * possibilities based on size constraints.
2667 * 2) Certain of these sequences require special handling by the trie code,
2668 * so, if found, this code changes the joined node type to special ops:
2669 * EXACTFU_TRICKYFOLD and EXACTFU_SS.
2670 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2671 * is used for an EXACTFU node that contains at least one "ss" sequence in
2672 * it. For non-UTF-8 patterns and strings, this is the only case where
2673 * there is a possible fold length change. That means that a regular
2674 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2675 * with length changes, and so can be processed faster. regexec.c takes
2676 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2677 * pre-folded by regcomp.c. This saves effort in regex matching.
2678 * However, the pre-folding isn't done for non-UTF8 patterns because the
2679 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2680 * down by forcing the pattern into UTF8 unless necessary. Also what
2681 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2682 * possibilities for the non-UTF8 patterns are quite simple, except for
2683 * the sharp s. All the ones that don't involve a UTF-8 target string are
2684 * members of a fold-pair, and arrays are set up for all of them so that
2685 * the other member of the pair can be found quickly. Code elsewhere in
2686 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2687 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2688 * described in the next item.
2689 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2690 * 'ss' or not is not knowable at compile time. It will match iff the
2691 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2692 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2693 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2694 * described in item 3). An assumption that the optimizer part of
2695 * regexec.c (probably unwittingly) makes is that a character in the
2696 * pattern corresponds to at most a single character in the target string.
2697 * (And I do mean character, and not byte here, unlike other parts of the
2698 * documentation that have never been updated to account for multibyte
2699 * Unicode.) This assumption is wrong only in this case, as all other
2700 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2701 * virtue of having this file pre-fold UTF-8 patterns. I'm
2702 * reluctant to try to change this assumption, so instead the code punts.
2703 * This routine examines EXACTF nodes for the sharp s, and returns a
2704 * boolean indicating whether or not the node is an EXACTF node that
2705 * contains a sharp s. When it is true, the caller sets a flag that later
2706 * causes the optimizer in this file to not set values for the floating
2707 * and fixed string lengths, and thus avoids the optimizer code in
2708 * regexec.c that makes the invalid assumption. Thus, there is no
2709 * optimization based on string lengths for EXACTF nodes that contain the
2710 * sharp s. This only happens for /id rules (which means the pattern
2714 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2715 if (PL_regkind[OP(scan)] == EXACT) \
2716 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2719 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2720 /* Merge several consecutive EXACTish nodes into one. */
2721 regnode *n = regnext(scan);
2723 regnode *next = scan + NODE_SZ_STR(scan);
2727 regnode *stop = scan;
2728 GET_RE_DEBUG_FLAGS_DECL;
2730 PERL_UNUSED_ARG(depth);
2733 PERL_ARGS_ASSERT_JOIN_EXACT;
2734 #ifndef EXPERIMENTAL_INPLACESCAN
2735 PERL_UNUSED_ARG(flags);
2736 PERL_UNUSED_ARG(val);
2738 DEBUG_PEEP("join",scan,depth);
2740 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2741 * EXACT ones that are mergeable to the current one. */
2743 && (PL_regkind[OP(n)] == NOTHING
2744 || (stringok && OP(n) == OP(scan)))
2746 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2749 if (OP(n) == TAIL || n > next)
2751 if (PL_regkind[OP(n)] == NOTHING) {
2752 DEBUG_PEEP("skip:",n,depth);
2753 NEXT_OFF(scan) += NEXT_OFF(n);
2754 next = n + NODE_STEP_REGNODE;
2761 else if (stringok) {
2762 const unsigned int oldl = STR_LEN(scan);
2763 regnode * const nnext = regnext(n);
2765 /* XXX I (khw) kind of doubt that this works on platforms where
2766 * U8_MAX is above 255 because of lots of other assumptions */
2767 /* Don't join if the sum can't fit into a single node */
2768 if (oldl + STR_LEN(n) > U8_MAX)
2771 DEBUG_PEEP("merg",n,depth);
2774 NEXT_OFF(scan) += NEXT_OFF(n);
2775 STR_LEN(scan) += STR_LEN(n);
2776 next = n + NODE_SZ_STR(n);
2777 /* Now we can overwrite *n : */
2778 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2786 #ifdef EXPERIMENTAL_INPLACESCAN
2787 if (flags && !NEXT_OFF(n)) {
2788 DEBUG_PEEP("atch", val, depth);
2789 if (reg_off_by_arg[OP(n)]) {
2790 ARG_SET(n, val - n);
2793 NEXT_OFF(n) = val - n;
2801 *has_exactf_sharp_s = FALSE;
2803 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2804 * can now analyze for sequences of problematic code points. (Prior to
2805 * this final joining, sequences could have been split over boundaries, and
2806 * hence missed). The sequences only happen in folding, hence for any
2807 * non-EXACT EXACTish node */
2808 if (OP(scan) != EXACT) {
2809 const U8 * const s0 = (U8*) STRING(scan);
2811 const U8 * const s_end = s0 + STR_LEN(scan);
2813 /* One pass is made over the node's string looking for all the
2814 * possibilities. to avoid some tests in the loop, there are two main
2815 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2819 /* Examine the string for a multi-character fold sequence. UTF-8
2820 * patterns have all characters pre-folded by the time this code is
2822 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2823 length sequence we are looking for is 2 */
2826 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2827 if (! len) { /* Not a multi-char fold: get next char */
2832 /* Nodes with 'ss' require special handling, except for EXACTFL
2833 * and EXACTFA for which there is no multi-char fold to this */
2834 if (len == 2 && *s == 's' && *(s+1) == 's'
2835 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2838 OP(scan) = EXACTFU_SS;
2841 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */
2842 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2843 COMBINING_DIAERESIS_UTF8
2844 COMBINING_ACUTE_ACCENT_UTF8,
2846 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2847 COMBINING_DIAERESIS_UTF8
2848 COMBINING_ACUTE_ACCENT_UTF8,
2853 /* These two folds require special handling by trie's, so
2854 * change the node type to indicate this. If EXACTFA and
2855 * EXACTFL were ever to be handled by trie's, this would
2856 * have to be changed. If this node has already been
2857 * changed to EXACTFU_SS in this loop, leave it as is. (I
2858 * (khw) think it doesn't matter in regexec.c for UTF
2859 * patterns, but no need to change it */
2860 if (OP(scan) == EXACTFU) {
2861 OP(scan) = EXACTFU_TRICKYFOLD;
2865 else { /* Here is a generic multi-char fold. */
2866 const U8* multi_end = s + len;
2868 /* Count how many characters in it. In the case of /l and
2869 * /aa, no folds which contain ASCII code points are
2870 * allowed, so check for those, and skip if found. (In
2871 * EXACTFL, no folds are allowed to any Latin1 code point,
2872 * not just ASCII. But there aren't any of these
2873 * currently, nor ever likely, so don't take the time to
2874 * test for them. The code that generates the
2875 * is_MULTI_foo() macros croaks should one actually get put
2876 * into Unicode .) */
2877 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2878 count = utf8_length(s, multi_end);
2882 while (s < multi_end) {
2885 goto next_iteration;
2895 /* The delta is how long the sequence is minus 1 (1 is how long
2896 * the character that folds to the sequence is) */
2897 *min_subtract += count - 1;
2901 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2903 /* Here, the pattern is not UTF-8. Look for the multi-char folds
2904 * that are all ASCII. As in the above case, EXACTFL and EXACTFA
2905 * nodes can't have multi-char folds to this range (and there are
2906 * no existing ones in the upper latin1 range). In the EXACTF
2907 * case we look also for the sharp s, which can be in the final
2908 * position. Otherwise we can stop looking 1 byte earlier because
2909 * have to find at least two characters for a multi-fold */
2910 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2912 /* The below is perhaps overboard, but this allows us to save a
2913 * test each time through the loop at the expense of a mask. This
2914 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2915 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they
2916 * are 64. This uses an exclusive 'or' to find that bit and then
2917 * inverts it to form a mask, with just a single 0, in the bit
2918 * position where 'S' and 's' differ. */
2919 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2920 const U8 s_masked = 's' & S_or_s_mask;
2923 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2924 if (! len) { /* Not a multi-char fold. */
2925 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2927 *has_exactf_sharp_s = TRUE;
2934 && ((*s & S_or_s_mask) == s_masked)
2935 && ((*(s+1) & S_or_s_mask) == s_masked))
2938 /* EXACTF nodes need to know that the minimum length
2939 * changed so that a sharp s in the string can match this
2940 * ss in the pattern, but they remain EXACTF nodes, as they
2941 * won't match this unless the target string is is UTF-8,
2942 * which we don't know until runtime */
2943 if (OP(scan) != EXACTF) {
2944 OP(scan) = EXACTFU_SS;
2948 *min_subtract += len - 1;
2955 /* Allow dumping but overwriting the collection of skipped
2956 * ops and/or strings with fake optimized ops */
2957 n = scan + NODE_SZ_STR(scan);
2965 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2969 /* REx optimizer. Converts nodes into quicker variants "in place".
2970 Finds fixed substrings. */
2972 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2973 to the position after last scanned or to NULL. */
2975 #define INIT_AND_WITHP \
2976 assert(!and_withp); \
2977 Newx(and_withp,1,struct regnode_charclass_class); \
2978 SAVEFREEPV(and_withp)
2980 /* this is a chain of data about sub patterns we are processing that
2981 need to be handled separately/specially in study_chunk. Its so
2982 we can simulate recursion without losing state. */
2984 typedef struct scan_frame {
2985 regnode *last; /* last node to process in this frame */
2986 regnode *next; /* next node to process when last is reached */
2987 struct scan_frame *prev; /*previous frame*/
2988 I32 stop; /* what stopparen do we use */
2992 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2995 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2996 I32 *minlenp, I32 *deltap,
3001 struct regnode_charclass_class *and_withp,
3002 U32 flags, U32 depth)
3003 /* scanp: Start here (read-write). */
3004 /* deltap: Write maxlen-minlen here. */
3005 /* last: Stop before this one. */
3006 /* data: string data about the pattern */
3007 /* stopparen: treat close N as END */
3008 /* recursed: which subroutines have we recursed into */
3009 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3012 I32 min = 0; /* There must be at least this number of characters to match */
3014 regnode *scan = *scanp, *next;
3016 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3017 int is_inf_internal = 0; /* The studied chunk is infinite */
3018 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3019 scan_data_t data_fake;
3020 SV *re_trie_maxbuff = NULL;
3021 regnode *first_non_open = scan;
3022 I32 stopmin = I32_MAX;
3023 scan_frame *frame = NULL;
3024 GET_RE_DEBUG_FLAGS_DECL;
3026 PERL_ARGS_ASSERT_STUDY_CHUNK;
3029 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3033 while (first_non_open && OP(first_non_open) == OPEN)
3034 first_non_open=regnext(first_non_open);
3039 while ( scan && OP(scan) != END && scan < last ){
3040 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3041 node length to get a real minimum (because
3042 the folded version may be shorter) */
3043 bool has_exactf_sharp_s = FALSE;
3044 /* Peephole optimizer: */
3045 DEBUG_STUDYDATA("Peep:", data,depth);
3046 DEBUG_PEEP("Peep",scan,depth);
3048 /* Its not clear to khw or hv why this is done here, and not in the
3049 * clauses that deal with EXACT nodes. khw's guess is that it's
3050 * because of a previous design */
3051 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3053 /* Follow the next-chain of the current node and optimize
3054 away all the NOTHINGs from it. */
3055 if (OP(scan) != CURLYX) {
3056 const int max = (reg_off_by_arg[OP(scan)]
3058 /* I32 may be smaller than U16 on CRAYs! */
3059 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3060 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3064 /* Skip NOTHING and LONGJMP. */
3065 while ((n = regnext(n))
3066 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3067 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3068 && off + noff < max)
3070 if (reg_off_by_arg[OP(scan)])
3073 NEXT_OFF(scan) = off;
3078 /* The principal pseudo-switch. Cannot be a switch, since we
3079 look into several different things. */
3080 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3081 || OP(scan) == IFTHEN) {
3082 next = regnext(scan);
3084 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3086 if (OP(next) == code || code == IFTHEN) {
3087 /* NOTE - There is similar code to this block below for handling
3088 TRIE nodes on a re-study. If you change stuff here check there
3090 I32 max1 = 0, min1 = I32_MAX, num = 0;
3091 struct regnode_charclass_class accum;
3092 regnode * const startbranch=scan;
3094 if (flags & SCF_DO_SUBSTR)
3095 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3096 if (flags & SCF_DO_STCLASS)
3097 cl_init_zero(pRExC_state, &accum);
3099 while (OP(scan) == code) {
3100 I32 deltanext, minnext, f = 0, fake;
3101 struct regnode_charclass_class this_class;
3104 data_fake.flags = 0;
3106 data_fake.whilem_c = data->whilem_c;
3107 data_fake.last_closep = data->last_closep;
3110 data_fake.last_closep = &fake;
3112 data_fake.pos_delta = delta;
3113 next = regnext(scan);
3114 scan = NEXTOPER(scan);
3116 scan = NEXTOPER(scan);
3117 if (flags & SCF_DO_STCLASS) {
3118 cl_init(pRExC_state, &this_class);
3119 data_fake.start_class = &this_class;
3120 f = SCF_DO_STCLASS_AND;
3122 if (flags & SCF_WHILEM_VISITED_POS)
3123 f |= SCF_WHILEM_VISITED_POS;
3125 /* we suppose the run is continuous, last=next...*/
3126 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3128 stopparen, recursed, NULL, f,depth+1);
3131 if (deltanext == I32_MAX) {
3132 is_inf = is_inf_internal = 1;
3134 } else if (max1 < minnext + deltanext)
3135 max1 = minnext + deltanext;
3137 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3139 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3140 if ( stopmin > minnext)
3141 stopmin = min + min1;
3142 flags &= ~SCF_DO_SUBSTR;
3144 data->flags |= SCF_SEEN_ACCEPT;
3147 if (data_fake.flags & SF_HAS_EVAL)
3148 data->flags |= SF_HAS_EVAL;
3149 data->whilem_c = data_fake.whilem_c;
3151 if (flags & SCF_DO_STCLASS)
3152 cl_or(pRExC_state, &accum, &this_class);
3154 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3156 if (flags & SCF_DO_SUBSTR) {
3157 data->pos_min += min1;
3158 if (data->pos_delta >= I32_MAX - (max1 - min1))
3159 data->pos_delta = I32_MAX;
3161 data->pos_delta += max1 - min1;
3162 if (max1 != min1 || is_inf)
3163 data->longest = &(data->longest_float);
3166 if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0)
3169 delta += max1 - min1;
3170 if (flags & SCF_DO_STCLASS_OR) {
3171 cl_or(pRExC_state, data->start_class, &accum);
3173 cl_and(data->start_class, and_withp);
3174 flags &= ~SCF_DO_STCLASS;
3177 else if (flags & SCF_DO_STCLASS_AND) {
3179 cl_and(data->start_class, &accum);
3180 flags &= ~SCF_DO_STCLASS;
3183 /* Switch to OR mode: cache the old value of
3184 * data->start_class */
3186 StructCopy(data->start_class, and_withp,
3187 struct regnode_charclass_class);
3188 flags &= ~SCF_DO_STCLASS_AND;
3189 StructCopy(&accum, data->start_class,
3190 struct regnode_charclass_class);
3191 flags |= SCF_DO_STCLASS_OR;
3192 SET_SSC_EOS(data->start_class);
3196 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3199 Assuming this was/is a branch we are dealing with: 'scan' now
3200 points at the item that follows the branch sequence, whatever
3201 it is. We now start at the beginning of the sequence and look
3208 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3210 If we can find such a subsequence we need to turn the first
3211 element into a trie and then add the subsequent branch exact
3212 strings to the trie.
3216 1. patterns where the whole set of branches can be converted.
3218 2. patterns where only a subset can be converted.
3220 In case 1 we can replace the whole set with a single regop
3221 for the trie. In case 2 we need to keep the start and end
3224 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3225 becomes BRANCH TRIE; BRANCH X;
3227 There is an additional case, that being where there is a
3228 common prefix, which gets split out into an EXACT like node
3229 preceding the TRIE node.
3231 If x(1..n)==tail then we can do a simple trie, if not we make
3232 a "jump" trie, such that when we match the appropriate word
3233 we "jump" to the appropriate tail node. Essentially we turn
3234 a nested if into a case structure of sorts.
3239 if (!re_trie_maxbuff) {
3240 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3241 if (!SvIOK(re_trie_maxbuff))
3242 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3244 if ( SvIV(re_trie_maxbuff)>=0 ) {
3246 regnode *first = (regnode *)NULL;
3247 regnode *last = (regnode *)NULL;
3248 regnode *tail = scan;
3253 SV * const mysv = sv_newmortal(); /* for dumping */
3255 /* var tail is used because there may be a TAIL
3256 regop in the way. Ie, the exacts will point to the
3257 thing following the TAIL, but the last branch will
3258 point at the TAIL. So we advance tail. If we
3259 have nested (?:) we may have to move through several
3263 while ( OP( tail ) == TAIL ) {
3264 /* this is the TAIL generated by (?:) */
3265 tail = regnext( tail );
3269 DEBUG_TRIE_COMPILE_r({
3270 regprop(RExC_rx, mysv, tail );
3271 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3272 (int)depth * 2 + 2, "",
3273 "Looking for TRIE'able sequences. Tail node is: ",
3274 SvPV_nolen_const( mysv )
3280 Step through the branches
3281 cur represents each branch,
3282 noper is the first thing to be matched as part of that branch
3283 noper_next is the regnext() of that node.
3285 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3286 via a "jump trie" but we also support building with NOJUMPTRIE,
3287 which restricts the trie logic to structures like /FOO|BAR/.
3289 If noper is a trieable nodetype then the branch is a possible optimization
3290 target. If we are building under NOJUMPTRIE then we require that noper_next
3291 is the same as scan (our current position in the regex program).
3293 Once we have two or more consecutive such branches we can create a
3294 trie of the EXACT's contents and stitch it in place into the program.
3296 If the sequence represents all of the branches in the alternation we
3297 replace the entire thing with a single TRIE node.
3299 Otherwise when it is a subsequence we need to stitch it in place and
3300 replace only the relevant branches. This means the first branch has
3301 to remain as it is used by the alternation logic, and its next pointer,
3302 and needs to be repointed at the item on the branch chain following
3303 the last branch we have optimized away.
3305 This could be either a BRANCH, in which case the subsequence is internal,
3306 or it could be the item following the branch sequence in which case the
3307 subsequence is at the end (which does not necessarily mean the first node
3308 is the start of the alternation).
3310 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3313 ----------------+-----------
3317 EXACTFU_SS | EXACTFU
3318 EXACTFU_TRICKYFOLD | EXACTFU
3323 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3324 ( EXACT == (X) ) ? EXACT : \
3325 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3328 /* dont use tail as the end marker for this traverse */
3329 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3330 regnode * const noper = NEXTOPER( cur );
3331 U8 noper_type = OP( noper );
3332 U8 noper_trietype = TRIE_TYPE( noper_type );
3333 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3334 regnode * const noper_next = regnext( noper );
3335 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3336 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3339 DEBUG_TRIE_COMPILE_r({
3340 regprop(RExC_rx, mysv, cur);
3341 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3342 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3344 regprop(RExC_rx, mysv, noper);
3345 PerlIO_printf( Perl_debug_log, " -> %s",
3346 SvPV_nolen_const(mysv));
3349 regprop(RExC_rx, mysv, noper_next );
3350 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3351 SvPV_nolen_const(mysv));
3353 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3354 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3355 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3359 /* Is noper a trieable nodetype that can be merged with the
3360 * current trie (if there is one)? */
3364 ( noper_trietype == NOTHING)
3365 || ( trietype == NOTHING )
3366 || ( trietype == noper_trietype )
3369 && noper_next == tail
3373 /* Handle mergable triable node
3374 * Either we are the first node in a new trieable sequence,
3375 * in which case we do some bookkeeping, otherwise we update
3376 * the end pointer. */
3379 if ( noper_trietype == NOTHING ) {
3380 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3381 regnode * const noper_next = regnext( noper );
3382 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3383 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3386 if ( noper_next_trietype ) {
3387 trietype = noper_next_trietype;
3388 } else if (noper_next_type) {
3389 /* a NOTHING regop is 1 regop wide. We need at least two
3390 * for a trie so we can't merge this in */
3394 trietype = noper_trietype;
3397 if ( trietype == NOTHING )
3398 trietype = noper_trietype;
3403 } /* end handle mergable triable node */
3405 /* handle unmergable node -
3406 * noper may either be a triable node which can not be tried
3407 * together with the current trie, or a non triable node */
3409 /* If last is set and trietype is not NOTHING then we have found
3410 * at least two triable branch sequences in a row of a similar
3411 * trietype so we can turn them into a trie. If/when we
3412 * allow NOTHING to start a trie sequence this condition will be
3413 * required, and it isn't expensive so we leave it in for now. */
3414 if ( trietype && trietype != NOTHING )
3415 make_trie( pRExC_state,
3416 startbranch, first, cur, tail, count,
3417 trietype, depth+1 );
3418 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3422 && noper_next == tail
3425 /* noper is triable, so we can start a new trie sequence */
3428 trietype = noper_trietype;
3430 /* if we already saw a first but the current node is not triable then we have
3431 * to reset the first information. */
3436 } /* end handle unmergable node */
3437 } /* loop over branches */
3438 DEBUG_TRIE_COMPILE_r({
3439 regprop(RExC_rx, mysv, cur);
3440 PerlIO_printf( Perl_debug_log,
3441 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3442 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3445 if ( last && trietype ) {
3446 if ( trietype != NOTHING ) {
3447 /* the last branch of the sequence was part of a trie,
3448 * so we have to construct it here outside of the loop
3450 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3451 #ifdef TRIE_STUDY_OPT
3452 if ( ((made == MADE_EXACT_TRIE &&
3453 startbranch == first)
3454 || ( first_non_open == first )) &&
3456 flags |= SCF_TRIE_RESTUDY;
3457 if ( startbranch == first
3460 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3465 /* at this point we know whatever we have is a NOTHING sequence/branch
3466 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3468 if ( startbranch == first ) {
3470 /* the entire thing is a NOTHING sequence, something like this:
3471 * (?:|) So we can turn it into a plain NOTHING op. */
3472 DEBUG_TRIE_COMPILE_r({
3473 regprop(RExC_rx, mysv, cur);
3474 PerlIO_printf( Perl_debug_log,
3475 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3476 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3479 OP(startbranch)= NOTHING;
3480 NEXT_OFF(startbranch)= tail - startbranch;
3481 for ( opt= startbranch + 1; opt < tail ; opt++ )
3485 } /* end if ( last) */
3486 } /* TRIE_MAXBUF is non zero */
3491 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3492 scan = NEXTOPER(NEXTOPER(scan));
3493 } else /* single branch is optimized. */
3494 scan = NEXTOPER(scan);
3496 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3497 scan_frame *newframe = NULL;
3502 if (OP(scan) != SUSPEND) {
3503 /* set the pointer */
3504 if (OP(scan) == GOSUB) {
3506 RExC_recurse[ARG2L(scan)] = scan;
3507 start = RExC_open_parens[paren-1];
3508 end = RExC_close_parens[paren-1];
3511 start = RExC_rxi->program + 1;
3515 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3516 SAVEFREEPV(recursed);
3518 if (!PAREN_TEST(recursed,paren+1)) {
3519 PAREN_SET(recursed,paren+1);
3520 Newx(newframe,1,scan_frame);
3522 if (flags & SCF_DO_SUBSTR) {
3523 SCAN_COMMIT(pRExC_state,data,minlenp);
3524 data->longest = &(data->longest_float);
3526 is_inf = is_inf_internal = 1;
3527 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3528 cl_anything(pRExC_state, data->start_class);
3529 flags &= ~SCF_DO_STCLASS;
3532 Newx(newframe,1,scan_frame);
3535 end = regnext(scan);
3540 SAVEFREEPV(newframe);
3541 newframe->next = regnext(scan);
3542 newframe->last = last;
3543 newframe->stop = stopparen;
3544 newframe->prev = frame;
3554 else if (OP(scan) == EXACT) {
3555 I32 l = STR_LEN(scan);
3558 const U8 * const s = (U8*)STRING(scan);
3559 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3560 l = utf8_length(s, s + l);
3562 uc = *((U8*)STRING(scan));
3565 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3566 /* The code below prefers earlier match for fixed
3567 offset, later match for variable offset. */
3568 if (data->last_end == -1) { /* Update the start info. */
3569 data->last_start_min = data->pos_min;
3570 data->last_start_max = is_inf
3571 ? I32_MAX : data->pos_min + data->pos_delta;
3573 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3575 SvUTF8_on(data->last_found);
3577 SV * const sv = data->last_found;
3578 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3579 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3580 if (mg && mg->mg_len >= 0)
3581 mg->mg_len += utf8_length((U8*)STRING(scan),
3582 (U8*)STRING(scan)+STR_LEN(scan));
3584 data->last_end = data->pos_min + l;
3585 data->pos_min += l; /* As in the first entry. */
3586 data->flags &= ~SF_BEFORE_EOL;
3588 if (flags & SCF_DO_STCLASS_AND) {
3589 /* Check whether it is compatible with what we know already! */
3593 /* If compatible, we or it in below. It is compatible if is
3594 * in the bitmp and either 1) its bit or its fold is set, or 2)
3595 * it's for a locale. Even if there isn't unicode semantics
3596 * here, at runtime there may be because of matching against a
3597 * utf8 string, so accept a possible false positive for
3598 * latin1-range folds */
3600 (!(data->start_class->flags & ANYOF_LOCALE)
3601 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3602 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3603 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3608 ANYOF_CLASS_ZERO(data->start_class);
3609 ANYOF_BITMAP_ZERO(data->start_class);
3611 ANYOF_BITMAP_SET(data->start_class, uc);
3612 else if (uc >= 0x100) {
3615 /* Some Unicode code points fold to the Latin1 range; as
3616 * XXX temporary code, instead of figuring out if this is
3617 * one, just assume it is and set all the start class bits
3618 * that could be some such above 255 code point's fold
3619 * which will generate fals positives. As the code
3620 * elsewhere that does compute the fold settles down, it
3621 * can be extracted out and re-used here */
3622 for (i = 0; i < 256; i++){
3623 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3624 ANYOF_BITMAP_SET(data->start_class, i);
3628 CLEAR_SSC_EOS(data->start_class);
3630 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3632 else if (flags & SCF_DO_STCLASS_OR) {
3633 /* false positive possible if the class is case-folded */
3635 ANYOF_BITMAP_SET(data->start_class, uc);
3637 data->start_class->flags |= ANYOF_UNICODE_ALL;
3638 CLEAR_SSC_EOS(data->start_class);
3639 cl_and(data->start_class, and_withp);
3641 flags &= ~SCF_DO_STCLASS;
3643 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3644 I32 l = STR_LEN(scan);
3645 UV uc = *((U8*)STRING(scan));
3647 /* Search for fixed substrings supports EXACT only. */
3648 if (flags & SCF_DO_SUBSTR) {
3650 SCAN_COMMIT(pRExC_state, data, minlenp);
3653 const U8 * const s = (U8 *)STRING(scan);
3654 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3655 l = utf8_length(s, s + l);
3657 if (has_exactf_sharp_s) {
3658 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3660 min += l - min_subtract;
3662 delta += min_subtract;
3663 if (flags & SCF_DO_SUBSTR) {
3664 data->pos_min += l - min_subtract;
3665 if (data->pos_min < 0) {
3668 data->pos_delta += min_subtract;
3670 data->longest = &(data->longest_float);
3673 if (flags & SCF_DO_STCLASS_AND) {
3674 /* Check whether it is compatible with what we know already! */
3677 (!(data->start_class->flags & ANYOF_LOCALE)
3678 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3679 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3683 ANYOF_CLASS_ZERO(data->start_class);
3684 ANYOF_BITMAP_ZERO(data->start_class);
3686 ANYOF_BITMAP_SET(data->start_class, uc);
3687 CLEAR_SSC_EOS(data->start_class);
3688 if (OP(scan) == EXACTFL) {
3689 /* XXX This set is probably no longer necessary, and
3690 * probably wrong as LOCALE now is on in the initial
3692 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3696 /* Also set the other member of the fold pair. In case
3697 * that unicode semantics is called for at runtime, use
3698 * the full latin1 fold. (Can't do this for locale,
3699 * because not known until runtime) */
3700 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3702 /* All other (EXACTFL handled above) folds except under
3703 * /iaa that include s, S, and sharp_s also may include
3705 if (OP(scan) != EXACTFA) {
3706 if (uc == 's' || uc == 'S') {
3707 ANYOF_BITMAP_SET(data->start_class,
3708 LATIN_SMALL_LETTER_SHARP_S);
3710 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3711 ANYOF_BITMAP_SET(data->start_class, 's');
3712 ANYOF_BITMAP_SET(data->start_class, 'S');
3717 else if (uc >= 0x100) {
3719 for (i = 0; i < 256; i++){
3720 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3721 ANYOF_BITMAP_SET(data->start_class, i);
3726 else if (flags & SCF_DO_STCLASS_OR) {
3727 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3728 /* false positive possible if the class is case-folded.
3729 Assume that the locale settings are the same... */
3731 ANYOF_BITMAP_SET(data->start_class, uc);
3732 if (OP(scan) != EXACTFL) {
3734 /* And set the other member of the fold pair, but
3735 * can't do that in locale because not known until
3737 ANYOF_BITMAP_SET(data->start_class,
3738 PL_fold_latin1[uc]);
3740 /* All folds except under /iaa that include s, S,
3741 * and sharp_s also may include the others */
3742 if (OP(scan) != EXACTFA) {
3743 if (uc == 's' || uc == 'S') {
3744 ANYOF_BITMAP_SET(data->start_class,
3745 LATIN_SMALL_LETTER_SHARP_S);
3747 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3748 ANYOF_BITMAP_SET(data->start_class, 's');
3749 ANYOF_BITMAP_SET(data->start_class, 'S');
3754 CLEAR_SSC_EOS(data->start_class);
3756 cl_and(data->start_class, and_withp);
3758 flags &= ~SCF_DO_STCLASS;
3760 else if (REGNODE_VARIES(OP(scan))) {
3761 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3762 I32 f = flags, pos_before = 0;
3763 regnode * const oscan = scan;
3764 struct regnode_charclass_class this_class;
3765 struct regnode_charclass_class *oclass = NULL;
3766 I32 next_is_eval = 0;
3768 switch (PL_regkind[OP(scan)]) {
3769 case WHILEM: /* End of (?:...)* . */
3770 scan = NEXTOPER(scan);
3773 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3774 next = NEXTOPER(scan);
3775 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3777 maxcount = REG_INFTY;
3778 next = regnext(scan);
3779 scan = NEXTOPER(scan);
3783 if (flags & SCF_DO_SUBSTR)
3788 if (flags & SCF_DO_STCLASS) {
3790 maxcount = REG_INFTY;
3791 next = regnext(scan);
3792 scan = NEXTOPER(scan);
3795 is_inf = is_inf_internal = 1;
3796 scan = regnext(scan);
3797 if (flags & SCF_DO_SUBSTR) {
3798 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3799 data->longest = &(data->longest_float);
3801 goto optimize_curly_tail;
3803 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3804 && (scan->flags == stopparen))
3809 mincount = ARG1(scan);
3810 maxcount = ARG2(scan);
3812 next = regnext(scan);
3813 if (OP(scan) == CURLYX) {
3814 I32 lp = (data ? *(data->last_closep) : 0);
3815 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3817 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3818 next_is_eval = (OP(scan) == EVAL);
3820 if (flags & SCF_DO_SUBSTR) {
3821 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3822 pos_before = data->pos_min;
3826 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3828 data->flags |= SF_IS_INF;
3830 if (flags & SCF_DO_STCLASS) {
3831 cl_init(pRExC_state, &this_class);
3832 oclass = data->start_class;
3833 data->start_class = &this_class;
3834 f |= SCF_DO_STCLASS_AND;
3835 f &= ~SCF_DO_STCLASS_OR;
3837 /* Exclude from super-linear cache processing any {n,m}
3838 regops for which the combination of input pos and regex
3839 pos is not enough information to determine if a match
3842 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3843 regex pos at the \s*, the prospects for a match depend not
3844 only on the input position but also on how many (bar\s*)
3845 repeats into the {4,8} we are. */
3846 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3847 f &= ~SCF_WHILEM_VISITED_POS;
3849 /* This will finish on WHILEM, setting scan, or on NULL: */
3850 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3851 last, data, stopparen, recursed, NULL,
3853 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3855 if (flags & SCF_DO_STCLASS)
3856 data->start_class = oclass;
3857 if (mincount == 0 || minnext == 0) {
3858 if (flags & SCF_DO_STCLASS_OR) {
3859 cl_or(pRExC_state, data->start_class, &this_class);
3861 else if (flags & SCF_DO_STCLASS_AND) {
3862 /* Switch to OR mode: cache the old value of
3863 * data->start_class */
3865 StructCopy(data->start_class, and_withp,
3866 struct regnode_charclass_class);
3867 flags &= ~SCF_DO_STCLASS_AND;
3868 StructCopy(&this_class, data->start_class,
3869 struct regnode_charclass_class);
3870 flags |= SCF_DO_STCLASS_OR;
3871 SET_SSC_EOS(data->start_class);
3873 } else { /* Non-zero len */
3874 if (flags & SCF_DO_STCLASS_OR) {
3875 cl_or(pRExC_state, data->start_class, &this_class);
3876 cl_and(data->start_class, and_withp);
3878 else if (flags & SCF_DO_STCLASS_AND)
3879 cl_and(data->start_class, &this_class);
3880 flags &= ~SCF_DO_STCLASS;
3882 if (!scan) /* It was not CURLYX, but CURLY. */
3884 if ( /* ? quantifier ok, except for (?{ ... }) */
3885 (next_is_eval || !(mincount == 0 && maxcount == 1))
3886 && (minnext == 0) && (deltanext == 0)
3887 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3888 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3890 /* Fatal warnings may leak the regexp without this: */
3891 SAVEFREESV(RExC_rx_sv);
3892 ckWARNreg(RExC_parse,
3893 "Quantifier unexpected on zero-length expression");
3894 (void)ReREFCNT_inc(RExC_rx_sv);
3897 min += minnext * mincount;
3898 is_inf_internal |= deltanext == I32_MAX
3899 || (maxcount == REG_INFTY && minnext + deltanext > 0);
3900 is_inf |= is_inf_internal;
3904 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3906 /* Try powerful optimization CURLYX => CURLYN. */
3907 if ( OP(oscan) == CURLYX && data
3908 && data->flags & SF_IN_PAR
3909 && !(data->flags & SF_HAS_EVAL)
3910 && !deltanext && minnext == 1 ) {
3911 /* Try to optimize to CURLYN. */
3912 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3913 regnode * const nxt1 = nxt;
3920 if (!REGNODE_SIMPLE(OP(nxt))
3921 && !(PL_regkind[OP(nxt)] == EXACT
3922 && STR_LEN(nxt) == 1))
3928 if (OP(nxt) != CLOSE)
3930 if (RExC_open_parens) {
3931 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3932 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3934 /* Now we know that nxt2 is the only contents: */
3935 oscan->flags = (U8)ARG(nxt);
3937 OP(nxt1) = NOTHING; /* was OPEN. */
3940 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3941 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3942 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3943 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3944 OP(nxt + 1) = OPTIMIZED; /* was count. */
3945 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3950 /* Try optimization CURLYX => CURLYM. */
3951 if ( OP(oscan) == CURLYX && data
3952 && !(data->flags & SF_HAS_PAR)
3953 && !(data->flags & SF_HAS_EVAL)
3954 && !deltanext /* atom is fixed width */
3955 && minnext != 0 /* CURLYM can't handle zero width */
3956 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3958 /* XXXX How to optimize if data == 0? */
3959 /* Optimize to a simpler form. */
3960 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3964 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3965 && (OP(nxt2) != WHILEM))
3967 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3968 /* Need to optimize away parenths. */
3969 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3970 /* Set the parenth number. */
3971 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3973 oscan->flags = (U8)ARG(nxt);
3974 if (RExC_open_parens) {
3975 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3976 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3978 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3979 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3982 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3983 OP(nxt + 1) = OPTIMIZED; /* was count. */
3984 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3985 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3988 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3989 regnode *nnxt = regnext(nxt1);
3991 if (reg_off_by_arg[OP(nxt1)])
3992 ARG_SET(nxt1, nxt2 - nxt1);
3993 else if (nxt2 - nxt1 < U16_MAX)
3994 NEXT_OFF(nxt1) = nxt2 - nxt1;
3996 OP(nxt) = NOTHING; /* Cannot beautify */
4001 /* Optimize again: */
4002 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4003 NULL, stopparen, recursed, NULL, 0,depth+1);
4008 else if ((OP(oscan) == CURLYX)
4009 && (flags & SCF_WHILEM_VISITED_POS)
4010 /* See the comment on a similar expression above.
4011 However, this time it's not a subexpression
4012 we care about, but the expression itself. */
4013 && (maxcount == REG_INFTY)
4014 && data && ++data->whilem_c < 16) {
4015 /* This stays as CURLYX, we can put the count/of pair. */
4016 /* Find WHILEM (as in regexec.c) */
4017 regnode *nxt = oscan + NEXT_OFF(oscan);
4019 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4021 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4022 | (RExC_whilem_seen << 4)); /* On WHILEM */
4024 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4026 if (flags & SCF_DO_SUBSTR) {
4027 SV *last_str = NULL;
4028 int counted = mincount != 0;
4030 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4031 #if defined(SPARC64_GCC_WORKAROUND)
4034 const char *s = NULL;
4037 if (pos_before >= data->last_start_min)
4040 b = data->last_start_min;
4043 s = SvPV_const(data->last_found, l);
4044 old = b - data->last_start_min;
4047 I32 b = pos_before >= data->last_start_min
4048 ? pos_before : data->last_start_min;
4050 const char * const s = SvPV_const(data->last_found, l);
4051 I32 old = b - data->last_start_min;
4055 old = utf8_hop((U8*)s, old) - (U8*)s;
4057 /* Get the added string: */
4058 last_str = newSVpvn_utf8(s + old, l, UTF);
4059 if (deltanext == 0 && pos_before == b) {
4060 /* What was added is a constant string */
4062 SvGROW(last_str, (mincount * l) + 1);
4063 repeatcpy(SvPVX(last_str) + l,
4064 SvPVX_const(last_str), l, mincount - 1);
4065 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4066 /* Add additional parts. */
4067 SvCUR_set(data->last_found,
4068 SvCUR(data->last_found) - l);
4069 sv_catsv(data->last_found, last_str);
4071 SV * sv = data->last_found;
4073 SvUTF8(sv) && SvMAGICAL(sv) ?
4074 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4075 if (mg && mg->mg_len >= 0)
4076 mg->mg_len += CHR_SVLEN(last_str) - l;
4078 data->last_end += l * (mincount - 1);
4081 /* start offset must point into the last copy */
4082 data->last_start_min += minnext * (mincount - 1);
4083 data->last_start_max += is_inf ? I32_MAX
4084 : (maxcount - 1) * (minnext + data->pos_delta);
4087 /* It is counted once already... */
4088 data->pos_min += minnext * (mincount - counted);
4090 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n",
4091 counted, deltanext, I32_MAX, minnext, maxcount, mincount);
4092 if (deltanext != I32_MAX)
4093 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta);
4095 if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta)
4096 data->pos_delta = I32_MAX;
4098 data->pos_delta += - counted * deltanext +
4099 (minnext + deltanext) * maxcount - minnext * mincount;
4100 if (mincount != maxcount) {
4101 /* Cannot extend fixed substrings found inside
4103 SCAN_COMMIT(pRExC_state,data,minlenp);
4104 if (mincount && last_str) {
4105 SV * const sv = data->last_found;
4106 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4107 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4111 sv_setsv(sv, last_str);
4112 data->last_end = data->pos_min;
4113 data->last_start_min =
4114 data->pos_min - CHR_SVLEN(last_str);
4115 data->last_start_max = is_inf
4117 : data->pos_min + data->pos_delta
4118 - CHR_SVLEN(last_str);
4120 data->longest = &(data->longest_float);
4122 SvREFCNT_dec(last_str);
4124 if (data && (fl & SF_HAS_EVAL))
4125 data->flags |= SF_HAS_EVAL;
4126 optimize_curly_tail:
4127 if (OP(oscan) != CURLYX) {
4128 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4130 NEXT_OFF(oscan) += NEXT_OFF(next);
4133 default: /* REF, and CLUMP only? */
4134 if (flags & SCF_DO_SUBSTR) {
4135 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4136 data->longest = &(data->longest_float);
4138 is_inf = is_inf_internal = 1;
4139 if (flags & SCF_DO_STCLASS_OR)
4140 cl_anything(pRExC_state, data->start_class);
4141 flags &= ~SCF_DO_STCLASS;
4145 else if (OP(scan) == LNBREAK) {
4146 if (flags & SCF_DO_STCLASS) {
4148 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4149 if (flags & SCF_DO_STCLASS_AND) {
4150 for (value = 0; value < 256; value++)
4151 if (!is_VERTWS_cp(value))
4152 ANYOF_BITMAP_CLEAR(data->start_class, value);
4155 for (value = 0; value < 256; value++)
4156 if (is_VERTWS_cp(value))
4157 ANYOF_BITMAP_SET(data->start_class, value);
4159 if (flags & SCF_DO_STCLASS_OR)
4160 cl_and(data->start_class, and_withp);
4161 flags &= ~SCF_DO_STCLASS;
4164 delta++; /* Because of the 2 char string cr-lf */
4165 if (flags & SCF_DO_SUBSTR) {
4166 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4168 data->pos_delta += 1;
4169 data->longest = &(data->longest_float);
4172 else if (REGNODE_SIMPLE(OP(scan))) {
4175 if (flags & SCF_DO_SUBSTR) {
4176 SCAN_COMMIT(pRExC_state,data,minlenp);
4180 if (flags & SCF_DO_STCLASS) {
4182 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4184 /* Some of the logic below assumes that switching
4185 locale on will only add false positives. */
4186 switch (PL_regkind[OP(scan)]) {
4192 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan));
4195 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4196 cl_anything(pRExC_state, data->start_class);
4199 if (OP(scan) == SANY)
4201 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4202 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4203 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4204 cl_anything(pRExC_state, data->start_class);
4206 if (flags & SCF_DO_STCLASS_AND || !value)
4207 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4210 if (flags & SCF_DO_STCLASS_AND)
4211 cl_and(data->start_class,
4212 (struct regnode_charclass_class*)scan);
4214 cl_or(pRExC_state, data->start_class,
4215 (struct regnode_charclass_class*)scan);
4223 classnum = FLAGS(scan);
4224 if (flags & SCF_DO_STCLASS_AND) {
4225 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4226 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1);
4227 for (value = 0; value < loop_max; value++) {
4228 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4229 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4235 if (data->start_class->flags & ANYOF_LOCALE) {
4236 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum));
4240 /* Even if under locale, set the bits for non-locale
4241 * in case it isn't a true locale-node. This will
4242 * create false positives if it truly is locale */
4243 for (value = 0; value < loop_max; value++) {
4244 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4245 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4257 classnum = FLAGS(scan);
4258 if (flags & SCF_DO_STCLASS_AND) {
4259 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4260 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum));
4261 for (value = 0; value < loop_max; value++) {
4262 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4263 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4269 if (data->start_class->flags & ANYOF_LOCALE) {
4270 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1);
4274 /* Even if under locale, set the bits for non-locale in
4275 * case it isn't a true locale-node. This will create
4276 * false positives if it truly is locale */
4277 for (value = 0; value < loop_max; value++) {
4278 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4279 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4282 if (PL_regkind[OP(scan)] == NPOSIXD) {
4283 data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL;
4289 if (flags & SCF_DO_STCLASS_OR)
4290 cl_and(data->start_class, and_withp);
4291 flags &= ~SCF_DO_STCLASS;
4294 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4295 data->flags |= (OP(scan) == MEOL
4298 SCAN_COMMIT(pRExC_state, data, minlenp);
4301 else if ( PL_regkind[OP(scan)] == BRANCHJ
4302 /* Lookbehind, or need to calculate parens/evals/stclass: */
4303 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4304 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4305 if ( OP(scan) == UNLESSM &&
4307 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4308 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4311 regnode *upto= regnext(scan);
4313 SV * const mysv_val=sv_newmortal();
4314 DEBUG_STUDYDATA("OPFAIL",data,depth);
4316 /*DEBUG_PARSE_MSG("opfail");*/
4317 regprop(RExC_rx, mysv_val, upto);
4318 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4319 SvPV_nolen_const(mysv_val),
4320 (IV)REG_NODE_NUM(upto),
4325 NEXT_OFF(scan) = upto - scan;
4326 for (opt= scan + 1; opt < upto ; opt++)
4327 OP(opt) = OPTIMIZED;
4331 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4332 || OP(scan) == UNLESSM )
4334 /* Negative Lookahead/lookbehind
4335 In this case we can't do fixed string optimisation.
4338 I32 deltanext, minnext, fake = 0;
4340 struct regnode_charclass_class intrnl;
4343 data_fake.flags = 0;
4345 data_fake.whilem_c = data->whilem_c;
4346 data_fake.last_closep = data->last_closep;
4349 data_fake.last_closep = &fake;
4350 data_fake.pos_delta = delta;
4351 if ( flags & SCF_DO_STCLASS && !scan->flags
4352 && OP(scan) == IFMATCH ) { /* Lookahead */
4353 cl_init(pRExC_state, &intrnl);
4354 data_fake.start_class = &intrnl;
4355 f |= SCF_DO_STCLASS_AND;
4357 if (flags & SCF_WHILEM_VISITED_POS)
4358 f |= SCF_WHILEM_VISITED_POS;
4359 next = regnext(scan);
4360 nscan = NEXTOPER(NEXTOPER(scan));
4361 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4362 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4365 FAIL("Variable length lookbehind not implemented");
4367 else if (minnext > (I32)U8_MAX) {
4368 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4370 scan->flags = (U8)minnext;
4373 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4375 if (data_fake.flags & SF_HAS_EVAL)
4376 data->flags |= SF_HAS_EVAL;
4377 data->whilem_c = data_fake.whilem_c;
4379 if (f & SCF_DO_STCLASS_AND) {
4380 if (flags & SCF_DO_STCLASS_OR) {
4381 /* OR before, AND after: ideally we would recurse with
4382 * data_fake to get the AND applied by study of the
4383 * remainder of the pattern, and then derecurse;
4384 * *** HACK *** for now just treat as "no information".
4385 * See [perl #56690].
4387 cl_init(pRExC_state, data->start_class);
4389 /* AND before and after: combine and continue */
4390 const int was = TEST_SSC_EOS(data->start_class);
4392 cl_and(data->start_class, &intrnl);
4394 SET_SSC_EOS(data->start_class);
4398 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4400 /* Positive Lookahead/lookbehind
4401 In this case we can do fixed string optimisation,
4402 but we must be careful about it. Note in the case of
4403 lookbehind the positions will be offset by the minimum
4404 length of the pattern, something we won't know about
4405 until after the recurse.
4407 I32 deltanext, fake = 0;
4409 struct regnode_charclass_class intrnl;
4411 /* We use SAVEFREEPV so that when the full compile
4412 is finished perl will clean up the allocated
4413 minlens when it's all done. This way we don't
4414 have to worry about freeing them when we know
4415 they wont be used, which would be a pain.
4418 Newx( minnextp, 1, I32 );
4419 SAVEFREEPV(minnextp);
4422 StructCopy(data, &data_fake, scan_data_t);
4423 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4426 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4427 data_fake.last_found=newSVsv(data->last_found);
4431 data_fake.last_closep = &fake;
4432 data_fake.flags = 0;
4433 data_fake.pos_delta = delta;
4435 data_fake.flags |= SF_IS_INF;
4436 if ( flags & SCF_DO_STCLASS && !scan->flags
4437 && OP(scan) == IFMATCH ) { /* Lookahead */
4438 cl_init(pRExC_state, &intrnl);
4439 data_fake.start_class = &intrnl;
4440 f |= SCF_DO_STCLASS_AND;
4442 if (flags & SCF_WHILEM_VISITED_POS)
4443 f |= SCF_WHILEM_VISITED_POS;
4444 next = regnext(scan);
4445 nscan = NEXTOPER(NEXTOPER(scan));
4447 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4448 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4451 FAIL("Variable length lookbehind not implemented");
4453 else if (*minnextp > (I32)U8_MAX) {
4454 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4456 scan->flags = (U8)*minnextp;
4461 if (f & SCF_DO_STCLASS_AND) {
4462 const int was = TEST_SSC_EOS(data.start_class);
4464 cl_and(data->start_class, &intrnl);
4466 SET_SSC_EOS(data->start_class);
4469 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4471 if (data_fake.flags & SF_HAS_EVAL)
4472 data->flags |= SF_HAS_EVAL;
4473 data->whilem_c = data_fake.whilem_c;
4474 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4475 if (RExC_rx->minlen<*minnextp)
4476 RExC_rx->minlen=*minnextp;
4477 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4478 SvREFCNT_dec_NN(data_fake.last_found);
4480 if ( data_fake.minlen_fixed != minlenp )
4482 data->offset_fixed= data_fake.offset_fixed;
4483 data->minlen_fixed= data_fake.minlen_fixed;
4484 data->lookbehind_fixed+= scan->flags;
4486 if ( data_fake.minlen_float != minlenp )
4488 data->minlen_float= data_fake.minlen_float;
4489 data->offset_float_min=data_fake.offset_float_min;
4490 data->offset_float_max=data_fake.offset_float_max;
4491 data->lookbehind_float+= scan->flags;
4498 else if (OP(scan) == OPEN) {
4499 if (stopparen != (I32)ARG(scan))
4502 else if (OP(scan) == CLOSE) {
4503 if (stopparen == (I32)ARG(scan)) {
4506 if ((I32)ARG(scan) == is_par) {
4507 next = regnext(scan);
4509 if ( next && (OP(next) != WHILEM) && next < last)
4510 is_par = 0; /* Disable optimization */
4513 *(data->last_closep) = ARG(scan);
4515 else if (OP(scan) == EVAL) {
4517 data->flags |= SF_HAS_EVAL;
4519 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4520 if (flags & SCF_DO_SUBSTR) {
4521 SCAN_COMMIT(pRExC_state,data,minlenp);
4522 flags &= ~SCF_DO_SUBSTR;
4524 if (data && OP(scan)==ACCEPT) {
4525 data->flags |= SCF_SEEN_ACCEPT;
4530 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4532 if (flags & SCF_DO_SUBSTR) {
4533 SCAN_COMMIT(pRExC_state,data,minlenp);
4534 data->longest = &(data->longest_float);
4536 is_inf = is_inf_internal = 1;
4537 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4538 cl_anything(pRExC_state, data->start_class);
4539 flags &= ~SCF_DO_STCLASS;
4541 else if (OP(scan) == GPOS) {
4542 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4543 !(delta || is_inf || (data && data->pos_delta)))
4545 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4546 RExC_rx->extflags |= RXf_ANCH_GPOS;
4547 if (RExC_rx->gofs < (U32)min)
4548 RExC_rx->gofs = min;
4550 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4554 #ifdef TRIE_STUDY_OPT
4555 #ifdef FULL_TRIE_STUDY
4556 else if (PL_regkind[OP(scan)] == TRIE) {
4557 /* NOTE - There is similar code to this block above for handling
4558 BRANCH nodes on the initial study. If you change stuff here
4560 regnode *trie_node= scan;
4561 regnode *tail= regnext(scan);
4562 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4563 I32 max1 = 0, min1 = I32_MAX;
4564 struct regnode_charclass_class accum;
4566 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4567 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4568 if (flags & SCF_DO_STCLASS)
4569 cl_init_zero(pRExC_state, &accum);
4575 const regnode *nextbranch= NULL;
4578 for ( word=1 ; word <= trie->wordcount ; word++)
4580 I32 deltanext=0, minnext=0, f = 0, fake;
4581 struct regnode_charclass_class this_class;
4583 data_fake.flags = 0;
4585 data_fake.whilem_c = data->whilem_c;
4586 data_fake.last_closep = data->last_closep;
4589 data_fake.last_closep = &fake;
4590 data_fake.pos_delta = delta;
4591 if (flags & SCF_DO_STCLASS) {
4592 cl_init(pRExC_state, &this_class);
4593 data_fake.start_class = &this_class;
4594 f = SCF_DO_STCLASS_AND;
4596 if (flags & SCF_WHILEM_VISITED_POS)
4597 f |= SCF_WHILEM_VISITED_POS;
4599 if (trie->jump[word]) {
4601 nextbranch = trie_node + trie->jump[0];
4602 scan= trie_node + trie->jump[word];
4603 /* We go from the jump point to the branch that follows
4604 it. Note this means we need the vestigal unused branches
4605 even though they arent otherwise used.
4607 minnext = study_chunk(pRExC_state, &scan, minlenp,
4608 &deltanext, (regnode *)nextbranch, &data_fake,
4609 stopparen, recursed, NULL, f,depth+1);
4611 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4612 nextbranch= regnext((regnode*)nextbranch);
4614 if (min1 > (I32)(minnext + trie->minlen))
4615 min1 = minnext + trie->minlen;
4616 if (deltanext == I32_MAX) {
4617 is_inf = is_inf_internal = 1;
4619 } else if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4620 max1 = minnext + deltanext + trie->maxlen;
4622 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4624 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4625 if ( stopmin > min + min1)
4626 stopmin = min + min1;
4627 flags &= ~SCF_DO_SUBSTR;
4629 data->flags |= SCF_SEEN_ACCEPT;
4632 if (data_fake.flags & SF_HAS_EVAL)
4633 data->flags |= SF_HAS_EVAL;
4634 data->whilem_c = data_fake.whilem_c;
4636 if (flags & SCF_DO_STCLASS)
4637 cl_or(pRExC_state, &accum, &this_class);
4640 if (flags & SCF_DO_SUBSTR) {
4641 data->pos_min += min1;
4642 data->pos_delta += max1 - min1;
4643 if (max1 != min1 || is_inf)
4644 data->longest = &(data->longest_float);
4647 delta += max1 - min1;
4648 if (flags & SCF_DO_STCLASS_OR) {
4649 cl_or(pRExC_state, data->start_class, &accum);
4651 cl_and(data->start_class, and_withp);
4652 flags &= ~SCF_DO_STCLASS;
4655 else if (flags & SCF_DO_STCLASS_AND) {
4657 cl_and(data->start_class, &accum);
4658 flags &= ~SCF_DO_STCLASS;
4661 /* Switch to OR mode: cache the old value of
4662 * data->start_class */
4664 StructCopy(data->start_class, and_withp,
4665 struct regnode_charclass_class);
4666 flags &= ~SCF_DO_STCLASS_AND;
4667 StructCopy(&accum, data->start_class,
4668 struct regnode_charclass_class);
4669 flags |= SCF_DO_STCLASS_OR;
4670 SET_SSC_EOS(data->start_class);
4677 else if (PL_regkind[OP(scan)] == TRIE) {
4678 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4681 min += trie->minlen;
4682 delta += (trie->maxlen - trie->minlen);
4683 flags &= ~SCF_DO_STCLASS; /* xxx */
4684 if (flags & SCF_DO_SUBSTR) {
4685 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4686 data->pos_min += trie->minlen;
4687 data->pos_delta += (trie->maxlen - trie->minlen);
4688 if (trie->maxlen != trie->minlen)
4689 data->longest = &(data->longest_float);
4691 if (trie->jump) /* no more substrings -- for now /grr*/
4692 flags &= ~SCF_DO_SUBSTR;
4694 #endif /* old or new */
4695 #endif /* TRIE_STUDY_OPT */
4697 /* Else: zero-length, ignore. */
4698 scan = regnext(scan);
4703 stopparen = frame->stop;
4704 frame = frame->prev;
4705 goto fake_study_recurse;
4710 DEBUG_STUDYDATA("pre-fin:",data,depth);
4713 *deltap = is_inf_internal ? I32_MAX : delta;
4714 if (flags & SCF_DO_SUBSTR && is_inf)
4715 data->pos_delta = I32_MAX - data->pos_min;
4716 if (is_par > (I32)U8_MAX)
4718 if (is_par && pars==1 && data) {
4719 data->flags |= SF_IN_PAR;
4720 data->flags &= ~SF_HAS_PAR;
4722 else if (pars && data) {
4723 data->flags |= SF_HAS_PAR;
4724 data->flags &= ~SF_IN_PAR;
4726 if (flags & SCF_DO_STCLASS_OR)
4727 cl_and(data->start_class, and_withp);
4728 if (flags & SCF_TRIE_RESTUDY)
4729 data->flags |= SCF_TRIE_RESTUDY;
4731 DEBUG_STUDYDATA("post-fin:",data,depth);
4733 return min < stopmin ? min : stopmin;
4737 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4739 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4741 PERL_ARGS_ASSERT_ADD_DATA;
4743 Renewc(RExC_rxi->data,
4744 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4745 char, struct reg_data);
4747 Renew(RExC_rxi->data->what, count + n, U8);
4749 Newx(RExC_rxi->data->what, n, U8);
4750 RExC_rxi->data->count = count + n;
4751 Copy(s, RExC_rxi->data->what + count, n, U8);
4755 /*XXX: todo make this not included in a non debugging perl */
4756 #ifndef PERL_IN_XSUB_RE
4758 Perl_reginitcolors(pTHX)
4761 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4763 char *t = savepv(s);
4767 t = strchr(t, '\t');
4773 PL_colors[i] = t = (char *)"";
4778 PL_colors[i++] = (char *)"";
4785 #ifdef TRIE_STUDY_OPT
4786 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
4789 (data.flags & SCF_TRIE_RESTUDY) \
4797 #define CHECK_RESTUDY_GOTO_butfirst
4801 * pregcomp - compile a regular expression into internal code
4803 * Decides which engine's compiler to call based on the hint currently in
4807 #ifndef PERL_IN_XSUB_RE
4809 /* return the currently in-scope regex engine (or the default if none) */
4811 regexp_engine const *
4812 Perl_current_re_engine(pTHX)
4816 if (IN_PERL_COMPILETIME) {
4817 HV * const table = GvHV(PL_hintgv);
4821 return &PL_core_reg_engine;
4822 ptr = hv_fetchs(table, "regcomp", FALSE);
4823 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4824 return &PL_core_reg_engine;
4825 return INT2PTR(regexp_engine*,SvIV(*ptr));
4829 if (!PL_curcop->cop_hints_hash)
4830 return &PL_core_reg_engine;
4831 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4832 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4833 return &PL_core_reg_engine;
4834 return INT2PTR(regexp_engine*,SvIV(ptr));
4840 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4843 regexp_engine const *eng = current_re_engine();
4844 GET_RE_DEBUG_FLAGS_DECL;
4846 PERL_ARGS_ASSERT_PREGCOMP;
4848 /* Dispatch a request to compile a regexp to correct regexp engine. */
4850 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4853 return CALLREGCOMP_ENG(eng, pattern, flags);
4857 /* public(ish) entry point for the perl core's own regex compiling code.
4858 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4859 * pattern rather than a list of OPs, and uses the internal engine rather
4860 * than the current one */
4863 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4865 SV *pat = pattern; /* defeat constness! */
4866 PERL_ARGS_ASSERT_RE_COMPILE;
4867 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4868 #ifdef PERL_IN_XSUB_RE
4871 &PL_core_reg_engine,
4873 NULL, NULL, rx_flags, 0);
4877 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
4878 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
4879 * point to the realloced string and length.
4881 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
4885 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
4886 char **pat_p, STRLEN *plen_p, int num_code_blocks)
4888 U8 *const src = (U8*)*pat_p;
4891 STRLEN s = 0, d = 0;
4893 GET_RE_DEBUG_FLAGS_DECL;
4895 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4896 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4898 Newx(dst, *plen_p * 2 + 1, U8);
4900 while (s < *plen_p) {
4901 const UV uv = NATIVE_TO_ASCII(src[s]);
4902 if (UNI_IS_INVARIANT(uv))
4903 dst[d] = (U8)UTF_TO_NATIVE(uv);
4905 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
4906 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
4908 if (n < num_code_blocks) {
4909 if (!do_end && pRExC_state->code_blocks[n].start == s) {
4910 pRExC_state->code_blocks[n].start = d;
4911 assert(dst[d] == '(');
4914 else if (do_end && pRExC_state->code_blocks[n].end == s) {
4915 pRExC_state->code_blocks[n].end = d;
4916 assert(dst[d] == ')');
4926 *pat_p = (char*) dst;
4928 RExC_orig_utf8 = RExC_utf8 = 1;
4933 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
4934 * while recording any code block indices, and handling overloading,
4935 * nested qr// objects etc. If pat is null, it will allocate a new
4936 * string, or just return the first arg, if there's only one.
4938 * Returns the malloced/updated pat.
4939 * patternp and pat_count is the array of SVs to be concatted;
4940 * oplist is the optional list of ops that generated the SVs;
4941 * recompile_p is a pointer to a boolean that will be set if
4942 * the regex will need to be recompiled.
4943 * delim, if non-null is an SV that will be inserted between each element
4947 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
4948 SV *pat, SV ** const patternp, int pat_count,
4949 OP *oplist, bool *recompile_p, SV *delim)
4953 bool use_delim = FALSE;
4954 bool alloced = FALSE;
4956 /* if we know we have at least two args, create an empty string,
4957 * then concatenate args to that. For no args, return an empty string */
4958 if (!pat && pat_count != 1) {
4959 pat = newSVpvn("", 0);
4964 for (svp = patternp; svp < patternp + pat_count; svp++) {
4967 STRLEN orig_patlen = 0;
4969 SV *msv = use_delim ? delim : *svp;
4971 /* if we've got a delimiter, we go round the loop twice for each
4972 * svp slot (except the last), using the delimiter the second
4981 if (SvTYPE(msv) == SVt_PVAV) {
4982 /* we've encountered an interpolated array within
4983 * the pattern, e.g. /...@a..../. Expand the list of elements,
4984 * then recursively append elements.
4985 * The code in this block is based on S_pushav() */
4987 AV *const av = (AV*)msv;
4988 const I32 maxarg = AvFILL(av) + 1;
4992 assert(oplist->op_type == OP_PADAV
4993 || oplist->op_type == OP_RV2AV);
4994 oplist = oplist->op_sibling;;
4997 if (SvRMAGICAL(av)) {
5000 Newx(array, maxarg, SV*);
5002 for (i=0; i < (U32)maxarg; i++) {
5003 SV ** const svp = av_fetch(av, i, FALSE);
5004 array[i] = svp ? *svp : &PL_sv_undef;
5008 array = AvARRAY(av);
5010 pat = S_concat_pat(aTHX_ pRExC_state, pat,
5011 array, maxarg, NULL, recompile_p,
5013 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5019 /* we make the assumption here that each op in the list of
5020 * op_siblings maps to one SV pushed onto the stack,
5021 * except for code blocks, with have both an OP_NULL and
5023 * This allows us to match up the list of SVs against the
5024 * list of OPs to find the next code block.
5026 * Note that PUSHMARK PADSV PADSV ..
5028 * PADRANGE PADSV PADSV ..
5029 * so the alignment still works. */
5032 if (oplist->op_type == OP_NULL
5033 && (oplist->op_flags & OPf_SPECIAL))
5035 assert(n < pRExC_state->num_code_blocks);
5036 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5037 pRExC_state->code_blocks[n].block = oplist;
5038 pRExC_state->code_blocks[n].src_regex = NULL;
5041 oplist = oplist->op_sibling; /* skip CONST */
5044 oplist = oplist->op_sibling;;
5047 /* apply magic and QR overloading to arg */
5050 if (SvROK(msv) && SvAMAGIC(msv)) {
5051 SV *sv = AMG_CALLunary(msv, regexp_amg);
5055 if (SvTYPE(sv) != SVt_REGEXP)
5056 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5061 /* try concatenation overload ... */
5062 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5063 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5066 /* overloading involved: all bets are off over literal
5067 * code. Pretend we haven't seen it */
5068 pRExC_state->num_code_blocks -= n;
5072 /* ... or failing that, try "" overload */
5073 while (SvAMAGIC(msv)
5074 && (sv = AMG_CALLunary(msv, string_amg))
5078 && SvRV(msv) == SvRV(sv))
5083 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5087 /* this is a partially unrolled
5088 * sv_catsv_nomg(pat, msv);
5089 * that allows us to adjust code block indices if
5092 char *dst = SvPV_force_nomg(pat, dlen);
5093 const char *src = SvPV_flags_const(msv, slen, 0);
5095 if (SvUTF8(msv) && !SvUTF8(pat)) {
5096 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5097 sv_setpvn(pat, dst, dlen);
5100 sv_catpvn_nomg(pat, src, slen);
5107 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5110 /* extract any code blocks within any embedded qr//'s */
5111 if (rx && SvTYPE(rx) == SVt_REGEXP
5112 && RX_ENGINE((REGEXP*)rx)->op_comp)
5115 RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
5116 if (ri->num_code_blocks) {
5118 /* the presence of an embedded qr// with code means
5119 * we should always recompile: the text of the
5120 * qr// may not have changed, but it may be a
5121 * different closure than last time */
5123 Renew(pRExC_state->code_blocks,
5124 pRExC_state->num_code_blocks + ri->num_code_blocks,
5125 struct reg_code_block);
5126 pRExC_state->num_code_blocks += ri->num_code_blocks;
5128 for (i=0; i < ri->num_code_blocks; i++) {
5129 struct reg_code_block *src, *dst;
5130 STRLEN offset = orig_patlen
5131 + ReANY((REGEXP *)rx)->pre_prefix;
5132 assert(n < pRExC_state->num_code_blocks);
5133 src = &ri->code_blocks[i];
5134 dst = &pRExC_state->code_blocks[n];
5135 dst->start = src->start + offset;
5136 dst->end = src->end + offset;
5137 dst->block = src->block;
5138 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5147 /* avoid calling magic multiple times on a single element e.g. =~ $qr */
5156 /* see if there are any run-time code blocks in the pattern.
5157 * False positives are allowed */
5160 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5161 char *pat, STRLEN plen)
5166 for (s = 0; s < plen; s++) {
5167 if (n < pRExC_state->num_code_blocks
5168 && s == pRExC_state->code_blocks[n].start)
5170 s = pRExC_state->code_blocks[n].end;
5174 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
5176 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
5178 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
5185 /* Handle run-time code blocks. We will already have compiled any direct
5186 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5187 * copy of it, but with any literal code blocks blanked out and
5188 * appropriate chars escaped; then feed it into
5190 * eval "qr'modified_pattern'"
5194 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5198 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
5200 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5201 * and merge them with any code blocks of the original regexp.
5203 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5204 * instead, just save the qr and return FALSE; this tells our caller that
5205 * the original pattern needs upgrading to utf8.
5209 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5210 char *pat, STRLEN plen)
5214 GET_RE_DEBUG_FLAGS_DECL;
5216 if (pRExC_state->runtime_code_qr) {
5217 /* this is the second time we've been called; this should
5218 * only happen if the main pattern got upgraded to utf8
5219 * during compilation; re-use the qr we compiled first time
5220 * round (which should be utf8 too)
5222 qr = pRExC_state->runtime_code_qr;
5223 pRExC_state->runtime_code_qr = NULL;
5224 assert(RExC_utf8 && SvUTF8(qr));
5230 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5234 /* determine how many extra chars we need for ' and \ escaping */
5235 for (s = 0; s < plen; s++) {
5236 if (pat[s] == '\'' || pat[s] == '\\')
5240 Newx(newpat, newlen, char);
5242 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5244 for (s = 0; s < plen; s++) {
5245 if (n < pRExC_state->num_code_blocks
5246 && s == pRExC_state->code_blocks[n].start)
5248 /* blank out literal code block */
5249 assert(pat[s] == '(');
5250 while (s <= pRExC_state->code_blocks[n].end) {
5258 if (pat[s] == '\'' || pat[s] == '\\')
5263 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5267 PerlIO_printf(Perl_debug_log,
5268 "%sre-parsing pattern for runtime code:%s %s\n",
5269 PL_colors[4],PL_colors[5],newpat);
5272 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5278 PUSHSTACKi(PERLSI_REQUIRE);
5279 /* G_RE_REPARSING causes the toker to collapse \\ into \ when
5280 * parsing qr''; normally only q'' does this. It also alters
5282 eval_sv(sv, G_SCALAR|G_RE_REPARSING);
5283 SvREFCNT_dec_NN(sv);
5288 SV * const errsv = ERRSV;
5289 if (SvTRUE_NN(errsv))
5291 Safefree(pRExC_state->code_blocks);
5292 /* use croak_sv ? */
5293 Perl_croak_nocontext("%s", SvPV_nolen_const(errsv));
5296 assert(SvROK(qr_ref));
5298 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5299 /* the leaving below frees the tmp qr_ref.
5300 * Give qr a life of its own */
5308 if (!RExC_utf8 && SvUTF8(qr)) {
5309 /* first time through; the pattern got upgraded; save the
5310 * qr for the next time through */
5311 assert(!pRExC_state->runtime_code_qr);
5312 pRExC_state->runtime_code_qr = qr;
5317 /* extract any code blocks within the returned qr// */
5320 /* merge the main (r1) and run-time (r2) code blocks into one */
5322 RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
5323 struct reg_code_block *new_block, *dst;
5324 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5327 if (!r2->num_code_blocks) /* we guessed wrong */
5329 SvREFCNT_dec_NN(qr);
5334 r1->num_code_blocks + r2->num_code_blocks,
5335 struct reg_code_block);
5338 while ( i1 < r1->num_code_blocks
5339 || i2 < r2->num_code_blocks)
5341 struct reg_code_block *src;
5344 if (i1 == r1->num_code_blocks) {
5345 src = &r2->code_blocks[i2++];
5348 else if (i2 == r2->num_code_blocks)
5349 src = &r1->code_blocks[i1++];
5350 else if ( r1->code_blocks[i1].start
5351 < r2->code_blocks[i2].start)
5353 src = &r1->code_blocks[i1++];
5354 assert(src->end < r2->code_blocks[i2].start);
5357 assert( r1->code_blocks[i1].start
5358 > r2->code_blocks[i2].start);
5359 src = &r2->code_blocks[i2++];
5361 assert(src->end < r1->code_blocks[i1].start);
5364 assert(pat[src->start] == '(');
5365 assert(pat[src->end] == ')');
5366 dst->start = src->start;
5367 dst->end = src->end;
5368 dst->block = src->block;
5369 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5373 r1->num_code_blocks += r2->num_code_blocks;
5374 Safefree(r1->code_blocks);
5375 r1->code_blocks = new_block;
5378 SvREFCNT_dec_NN(qr);
5384 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5386 /* This is the common code for setting up the floating and fixed length
5387 * string data extracted from Perl_re_op_compile() below. Returns a boolean
5388 * as to whether succeeded or not */
5392 if (! (longest_length
5393 || (eol /* Can't have SEOL and MULTI */
5394 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5396 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5397 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5402 /* copy the information about the longest from the reg_scan_data
5403 over to the program. */
5404 if (SvUTF8(sv_longest)) {
5405 *rx_utf8 = sv_longest;
5408 *rx_substr = sv_longest;
5411 /* end_shift is how many chars that must be matched that
5412 follow this item. We calculate it ahead of time as once the
5413 lookbehind offset is added in we lose the ability to correctly
5415 ml = minlen ? *(minlen) : (I32)longest_length;
5416 *rx_end_shift = ml - offset
5417 - longest_length + (SvTAIL(sv_longest) != 0)
5420 t = (eol/* Can't have SEOL and MULTI */
5421 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5422 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5428 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5429 * regular expression into internal code.
5430 * The pattern may be passed either as:
5431 * a list of SVs (patternp plus pat_count)
5432 * a list of OPs (expr)
5433 * If both are passed, the SV list is used, but the OP list indicates
5434 * which SVs are actually pre-compiled code blocks
5436 * The SVs in the list have magic and qr overloading applied to them (and
5437 * the list may be modified in-place with replacement SVs in the latter
5440 * If the pattern hasn't changed from old_re, then old_re will be
5443 * eng is the current engine. If that engine has an op_comp method, then
5444 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5445 * do the initial concatenation of arguments and pass on to the external
5448 * If is_bare_re is not null, set it to a boolean indicating whether the
5449 * arg list reduced (after overloading) to a single bare regex which has
5450 * been returned (i.e. /$qr/).
5452 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5454 * pm_flags contains the PMf_* flags, typically based on those from the
5455 * pm_flags field of the related PMOP. Currently we're only interested in
5456 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5458 * We can't allocate space until we know how big the compiled form will be,
5459 * but we can't compile it (and thus know how big it is) until we've got a
5460 * place to put the code. So we cheat: we compile it twice, once with code
5461 * generation turned off and size counting turned on, and once "for real".
5462 * This also means that we don't allocate space until we are sure that the
5463 * thing really will compile successfully, and we never have to move the
5464 * code and thus invalidate pointers into it. (Note that it has to be in
5465 * one piece because free() must be able to free it all.) [NB: not true in perl]
5467 * Beware that the optimization-preparation code in here knows about some
5468 * of the structure of the compiled regexp. [I'll say.]
5472 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5473 OP *expr, const regexp_engine* eng, REGEXP *old_re,
5474 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5479 regexp_internal *ri;
5487 SV *code_blocksv = NULL;
5488 SV** new_patternp = patternp;
5490 /* these are all flags - maybe they should be turned
5491 * into a single int with different bit masks */
5492 I32 sawlookahead = 0;
5495 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5497 bool runtime_code = 0;
5499 RExC_state_t RExC_state;
5500 RExC_state_t * const pRExC_state = &RExC_state;
5501 #ifdef TRIE_STUDY_OPT
5503 RExC_state_t copyRExC_state;
5505 GET_RE_DEBUG_FLAGS_DECL;
5507 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5509 DEBUG_r(if (!PL_colorset) reginitcolors());
5511 #ifndef PERL_IN_XSUB_RE
5512 /* Initialize these here instead of as-needed, as is quick and avoids
5513 * having to test them each time otherwise */
5514 if (! PL_AboveLatin1) {
5515 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5516 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5517 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5519 PL_L1Posix_ptrs[_CC_ALPHANUMERIC]
5520 = _new_invlist_C_array(L1PosixAlnum_invlist);
5521 PL_Posix_ptrs[_CC_ALPHANUMERIC]
5522 = _new_invlist_C_array(PosixAlnum_invlist);
5524 PL_L1Posix_ptrs[_CC_ALPHA]
5525 = _new_invlist_C_array(L1PosixAlpha_invlist);
5526 PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist);
5528 PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist);
5529 PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist);
5531 /* Cased is the same as Alpha in the ASCII range */
5532 PL_L1Posix_ptrs[_CC_CASED] = _new_invlist_C_array(L1Cased_invlist);
5533 PL_Posix_ptrs[_CC_CASED] = _new_invlist_C_array(PosixAlpha_invlist);
5535 PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist);
5536 PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist);
5538 PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5539 PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5541 PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist);
5542 PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist);
5544 PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist);
5545 PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist);
5547 PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist);
5548 PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist);
5550 PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist);
5551 PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist);
5553 PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist);
5554 PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist);
5555 PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist);
5556 PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist);
5558 PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist);
5559 PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist);
5561 PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist);
5563 PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist);
5564 PL_L1Posix_ptrs[_CC_WORDCHAR]
5565 = _new_invlist_C_array(L1PosixWord_invlist);
5567 PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist);
5568 PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist);
5570 PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist);
5574 pRExC_state->code_blocks = NULL;
5575 pRExC_state->num_code_blocks = 0;
5578 *is_bare_re = FALSE;
5580 if (expr && (expr->op_type == OP_LIST ||
5581 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5582 /* allocate code_blocks if needed */
5586 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
5587 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5588 ncode++; /* count of DO blocks */
5590 pRExC_state->num_code_blocks = ncode;
5591 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5596 /* compile-time pattern with just OP_CONSTs and DO blocks */
5601 /* find how many CONSTs there are */
5604 if (expr->op_type == OP_CONST)
5607 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5608 if (o->op_type == OP_CONST)
5612 /* fake up an SV array */
5614 assert(!new_patternp);
5615 Newx(new_patternp, n, SV*);
5616 SAVEFREEPV(new_patternp);
5620 if (expr->op_type == OP_CONST)
5621 new_patternp[n] = cSVOPx_sv(expr);
5623 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5624 if (o->op_type == OP_CONST)
5625 new_patternp[n++] = cSVOPo_sv;
5630 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5631 "Assembling pattern from %d elements%s\n", pat_count,
5632 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5634 /* set expr to the first arg op */
5636 if (pRExC_state->num_code_blocks
5637 && expr->op_type != OP_CONST)
5639 expr = cLISTOPx(expr)->op_first;
5640 assert( expr->op_type == OP_PUSHMARK
5641 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
5642 || expr->op_type == OP_PADRANGE);
5643 expr = expr->op_sibling;
5646 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
5647 expr, &recompile, NULL);
5649 /* handle bare (possibly after overloading) regex: foo =~ $re */
5654 if (SvTYPE(re) == SVt_REGEXP) {
5658 Safefree(pRExC_state->code_blocks);
5659 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5660 "Precompiled pattern%s\n",
5661 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5667 exp = SvPV_nomg(pat, plen);
5669 if (!eng->op_comp) {
5670 if ((SvUTF8(pat) && IN_BYTES)
5671 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5673 /* make a temporary copy; either to convert to bytes,
5674 * or to avoid repeating get-magic / overloaded stringify */
5675 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5676 (IN_BYTES ? 0 : SvUTF8(pat)));
5678 Safefree(pRExC_state->code_blocks);
5679 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5682 /* ignore the utf8ness if the pattern is 0 length */
5683 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5684 RExC_uni_semantics = 0;
5685 RExC_contains_locale = 0;
5686 pRExC_state->runtime_code_qr = NULL;
5689 SV *dsv= sv_newmortal();
5690 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
5691 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5692 PL_colors[4],PL_colors[5],s);
5696 /* we jump here if we upgrade the pattern to utf8 and have to
5699 if ((pm_flags & PMf_USE_RE_EVAL)
5700 /* this second condition covers the non-regex literal case,
5701 * i.e. $foo =~ '(?{})'. */
5702 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
5704 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
5706 /* return old regex if pattern hasn't changed */
5707 /* XXX: note in the below we have to check the flags as well as the pattern.
5709 * Things get a touch tricky as we have to compare the utf8 flag independently
5710 * from the compile flags.
5715 && !!RX_UTF8(old_re) == !!RExC_utf8
5716 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
5717 && RX_PRECOMP(old_re)
5718 && RX_PRELEN(old_re) == plen
5719 && memEQ(RX_PRECOMP(old_re), exp, plen)
5720 && !runtime_code /* with runtime code, always recompile */ )
5722 Safefree(pRExC_state->code_blocks);
5726 rx_flags = orig_rx_flags;
5728 if (initial_charset == REGEX_LOCALE_CHARSET) {
5729 RExC_contains_locale = 1;
5731 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5733 /* Set to use unicode semantics if the pattern is in utf8 and has the
5734 * 'depends' charset specified, as it means unicode when utf8 */
5735 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5739 RExC_flags = rx_flags;
5740 RExC_pm_flags = pm_flags;
5743 if (TAINTING_get && TAINT_get)
5744 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5746 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5747 /* whoops, we have a non-utf8 pattern, whilst run-time code
5748 * got compiled as utf8. Try again with a utf8 pattern */
5749 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5750 pRExC_state->num_code_blocks);
5751 goto redo_first_pass;
5754 assert(!pRExC_state->runtime_code_qr);
5759 RExC_in_lookbehind = 0;
5760 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5762 RExC_override_recoding = 0;
5763 RExC_in_multi_char_class = 0;
5765 /* First pass: determine size, legality. */
5768 RExC_end = exp + plen;
5773 RExC_emit = &PL_regdummy;
5774 RExC_whilem_seen = 0;
5775 RExC_open_parens = NULL;
5776 RExC_close_parens = NULL;
5778 RExC_paren_names = NULL;
5780 RExC_paren_name_list = NULL;
5782 RExC_recurse = NULL;
5783 RExC_recurse_count = 0;
5784 pRExC_state->code_index = 0;
5786 #if 0 /* REGC() is (currently) a NOP at the first pass.
5787 * Clever compilers notice this and complain. --jhi */
5788 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5791 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5793 RExC_lastparse=NULL;
5795 /* reg may croak on us, not giving us a chance to free
5796 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
5797 need it to survive as long as the regexp (qr/(?{})/).
5798 We must check that code_blocksv is not already set, because we may
5799 have jumped back to restart the sizing pass. */
5800 if (pRExC_state->code_blocks && !code_blocksv) {
5801 code_blocksv = newSV_type(SVt_PV);
5802 SAVEFREESV(code_blocksv);
5803 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
5804 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
5806 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5807 /* It's possible to write a regexp in ascii that represents Unicode
5808 codepoints outside of the byte range, such as via \x{100}. If we
5809 detect such a sequence we have to convert the entire pattern to utf8
5810 and then recompile, as our sizing calculation will have been based
5811 on 1 byte == 1 character, but we will need to use utf8 to encode
5812 at least some part of the pattern, and therefore must convert the whole
5815 if (flags & RESTART_UTF8) {
5816 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5817 pRExC_state->num_code_blocks);
5818 goto redo_first_pass;
5820 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags);
5823 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
5826 PerlIO_printf(Perl_debug_log,
5827 "Required size %"IVdf" nodes\n"
5828 "Starting second pass (creation)\n",
5831 RExC_lastparse=NULL;
5834 /* The first pass could have found things that force Unicode semantics */
5835 if ((RExC_utf8 || RExC_uni_semantics)
5836 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5838 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5841 /* Small enough for pointer-storage convention?
5842 If extralen==0, this means that we will not need long jumps. */
5843 if (RExC_size >= 0x10000L && RExC_extralen)
5844 RExC_size += RExC_extralen;
5847 if (RExC_whilem_seen > 15)
5848 RExC_whilem_seen = 15;
5850 /* Allocate space and zero-initialize. Note, the two step process
5851 of zeroing when in debug mode, thus anything assigned has to
5852 happen after that */
5853 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5855 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5856 char, regexp_internal);
5857 if ( r == NULL || ri == NULL )
5858 FAIL("Regexp out of space");
5860 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5861 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5863 /* bulk initialize base fields with 0. */
5864 Zero(ri, sizeof(regexp_internal), char);
5867 /* non-zero initialization begins here */
5870 r->extflags = rx_flags;
5871 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
5873 if (pm_flags & PMf_IS_QR) {
5874 ri->code_blocks = pRExC_state->code_blocks;
5875 ri->num_code_blocks = pRExC_state->num_code_blocks;
5880 for (n = 0; n < pRExC_state->num_code_blocks; n++)
5881 if (pRExC_state->code_blocks[n].src_regex)
5882 SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
5883 SAVEFREEPV(pRExC_state->code_blocks);
5887 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5888 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5890 /* The caret is output if there are any defaults: if not all the STD
5891 * flags are set, or if no character set specifier is needed */
5893 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5895 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5896 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5897 >> RXf_PMf_STD_PMMOD_SHIFT);
5898 const char *fptr = STD_PAT_MODS; /*"msix"*/
5900 /* Allocate for the worst case, which is all the std flags are turned
5901 * on. If more precision is desired, we could do a population count of
5902 * the flags set. This could be done with a small lookup table, or by
5903 * shifting, masking and adding, or even, when available, assembly
5904 * language for a machine-language population count.
5905 * We never output a minus, as all those are defaults, so are
5906 * covered by the caret */
5907 const STRLEN wraplen = plen + has_p + has_runon
5908 + has_default /* If needs a caret */
5910 /* If needs a character set specifier */
5911 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5912 + (sizeof(STD_PAT_MODS) - 1)
5913 + (sizeof("(?:)") - 1);
5915 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
5916 r->xpv_len_u.xpvlenu_pv = p;
5918 SvFLAGS(rx) |= SVf_UTF8;
5921 /* If a default, cover it using the caret */
5923 *p++= DEFAULT_PAT_MOD;
5927 const char* const name = get_regex_charset_name(r->extflags, &len);
5928 Copy(name, p, len, char);
5932 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5935 while((ch = *fptr++)) {
5943 Copy(RExC_precomp, p, plen, char);
5944 assert ((RX_WRAPPED(rx) - p) < 16);
5945 r->pre_prefix = p - RX_WRAPPED(rx);
5951 SvCUR_set(rx, p - RX_WRAPPED(rx));
5955 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5957 if (RExC_seen & REG_SEEN_RECURSE) {
5958 Newxz(RExC_open_parens, RExC_npar,regnode *);
5959 SAVEFREEPV(RExC_open_parens);
5960 Newxz(RExC_close_parens,RExC_npar,regnode *);
5961 SAVEFREEPV(RExC_close_parens);
5964 /* Useful during FAIL. */
5965 #ifdef RE_TRACK_PATTERN_OFFSETS
5966 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5967 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5968 "%s %"UVuf" bytes for offset annotations.\n",
5969 ri->u.offsets ? "Got" : "Couldn't get",
5970 (UV)((2*RExC_size+1) * sizeof(U32))));
5972 SetProgLen(ri,RExC_size);
5977 /* Second pass: emit code. */
5978 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5979 RExC_pm_flags = pm_flags;
5981 RExC_end = exp + plen;
5984 RExC_emit_start = ri->program;
5985 RExC_emit = ri->program;
5986 RExC_emit_bound = ri->program + RExC_size + 1;
5987 pRExC_state->code_index = 0;
5989 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5990 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5992 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags);
5994 /* XXXX To minimize changes to RE engine we always allocate
5995 3-units-long substrs field. */
5996 Newx(r->substrs, 1, struct reg_substr_data);
5997 if (RExC_recurse_count) {
5998 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
5999 SAVEFREEPV(RExC_recurse);
6003 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6004 Zero(r->substrs, 1, struct reg_substr_data);
6006 #ifdef TRIE_STUDY_OPT
6008 StructCopy(&zero_scan_data, &data, scan_data_t);
6009 copyRExC_state = RExC_state;
6012 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6014 RExC_state = copyRExC_state;
6015 if (seen & REG_TOP_LEVEL_BRANCHES)
6016 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6018 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6019 StructCopy(&zero_scan_data, &data, scan_data_t);
6022 StructCopy(&zero_scan_data, &data, scan_data_t);
6025 /* Dig out information for optimizations. */
6026 r->extflags = RExC_flags; /* was pm_op */
6027 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6030 SvUTF8_on(rx); /* Unicode in it? */
6031 ri->regstclass = NULL;
6032 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
6033 r->intflags |= PREGf_NAUGHTY;
6034 scan = ri->program + 1; /* First BRANCH. */
6036 /* testing for BRANCH here tells us whether there is "must appear"
6037 data in the pattern. If there is then we can use it for optimisations */
6038 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
6040 STRLEN longest_float_length, longest_fixed_length;
6041 struct regnode_charclass_class ch_class; /* pointed to by data */
6043 I32 last_close = 0; /* pointed to by data */
6044 regnode *first= scan;
6045 regnode *first_next= regnext(first);
6047 * Skip introductions and multiplicators >= 1
6048 * so that we can extract the 'meat' of the pattern that must
6049 * match in the large if() sequence following.
6050 * NOTE that EXACT is NOT covered here, as it is normally
6051 * picked up by the optimiser separately.
6053 * This is unfortunate as the optimiser isnt handling lookahead
6054 * properly currently.
6057 while ((OP(first) == OPEN && (sawopen = 1)) ||
6058 /* An OR of *one* alternative - should not happen now. */
6059 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6060 /* for now we can't handle lookbehind IFMATCH*/
6061 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6062 (OP(first) == PLUS) ||
6063 (OP(first) == MINMOD) ||
6064 /* An {n,m} with n>0 */
6065 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6066 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6069 * the only op that could be a regnode is PLUS, all the rest
6070 * will be regnode_1 or regnode_2.
6073 if (OP(first) == PLUS)
6076 first += regarglen[OP(first)];
6078 first = NEXTOPER(first);
6079 first_next= regnext(first);
6082 /* Starting-point info. */
6084 DEBUG_PEEP("first:",first,0);
6085 /* Ignore EXACT as we deal with it later. */
6086 if (PL_regkind[OP(first)] == EXACT) {
6087 if (OP(first) == EXACT)
6088 NOOP; /* Empty, get anchored substr later. */
6090 ri->regstclass = first;
6093 else if (PL_regkind[OP(first)] == TRIE &&
6094 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6097 /* this can happen only on restudy */
6098 if ( OP(first) == TRIE ) {
6099 struct regnode_1 *trieop = (struct regnode_1 *)
6100 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6101 StructCopy(first,trieop,struct regnode_1);
6102 trie_op=(regnode *)trieop;
6104 struct regnode_charclass *trieop = (struct regnode_charclass *)
6105 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6106 StructCopy(first,trieop,struct regnode_charclass);
6107 trie_op=(regnode *)trieop;
6110 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6111 ri->regstclass = trie_op;
6114 else if (REGNODE_SIMPLE(OP(first)))
6115 ri->regstclass = first;
6116 else if (PL_regkind[OP(first)] == BOUND ||
6117 PL_regkind[OP(first)] == NBOUND)
6118 ri->regstclass = first;
6119 else if (PL_regkind[OP(first)] == BOL) {
6120 r->extflags |= (OP(first) == MBOL
6122 : (OP(first) == SBOL
6125 first = NEXTOPER(first);
6128 else if (OP(first) == GPOS) {
6129 r->extflags |= RXf_ANCH_GPOS;
6130 first = NEXTOPER(first);
6133 else if ((!sawopen || !RExC_sawback) &&
6134 (OP(first) == STAR &&
6135 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6136 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6138 /* turn .* into ^.* with an implied $*=1 */
6140 (OP(NEXTOPER(first)) == REG_ANY)
6143 r->extflags |= type;
6144 r->intflags |= PREGf_IMPLICIT;
6145 first = NEXTOPER(first);
6148 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6149 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6150 /* x+ must match at the 1st pos of run of x's */
6151 r->intflags |= PREGf_SKIP;
6153 /* Scan is after the zeroth branch, first is atomic matcher. */
6154 #ifdef TRIE_STUDY_OPT
6157 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6158 (IV)(first - scan + 1))
6162 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6163 (IV)(first - scan + 1))
6169 * If there's something expensive in the r.e., find the
6170 * longest literal string that must appear and make it the
6171 * regmust. Resolve ties in favor of later strings, since
6172 * the regstart check works with the beginning of the r.e.
6173 * and avoiding duplication strengthens checking. Not a
6174 * strong reason, but sufficient in the absence of others.
6175 * [Now we resolve ties in favor of the earlier string if
6176 * it happens that c_offset_min has been invalidated, since the
6177 * earlier string may buy us something the later one won't.]
6180 data.longest_fixed = newSVpvs("");
6181 data.longest_float = newSVpvs("");
6182 data.last_found = newSVpvs("");
6183 data.longest = &(data.longest_fixed);
6184 ENTER_with_name("study_chunk");
6185 SAVEFREESV(data.longest_fixed);
6186 SAVEFREESV(data.longest_float);
6187 SAVEFREESV(data.last_found);
6189 if (!ri->regstclass) {
6190 cl_init(pRExC_state, &ch_class);
6191 data.start_class = &ch_class;
6192 stclass_flag = SCF_DO_STCLASS_AND;
6193 } else /* XXXX Check for BOUND? */
6195 data.last_closep = &last_close;
6197 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6198 &data, -1, NULL, NULL,
6199 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6202 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
6205 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6206 && data.last_start_min == 0 && data.last_end > 0
6207 && !RExC_seen_zerolen
6208 && !(RExC_seen & REG_SEEN_VERBARG)
6209 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6210 r->extflags |= RXf_CHECK_ALL;
6211 scan_commit(pRExC_state, &data,&minlen,0);
6213 longest_float_length = CHR_SVLEN(data.longest_float);
6215 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6216 && data.offset_fixed == data.offset_float_min
6217 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6218 && S_setup_longest (aTHX_ pRExC_state,
6222 &(r->float_end_shift),
6223 data.lookbehind_float,
6224 data.offset_float_min,
6226 longest_float_length,
6227 cBOOL(data.flags & SF_FL_BEFORE_EOL),
6228 cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
6230 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6231 r->float_max_offset = data.offset_float_max;
6232 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6233 r->float_max_offset -= data.lookbehind_float;
6234 SvREFCNT_inc_simple_void_NN(data.longest_float);
6237 r->float_substr = r->float_utf8 = NULL;
6238 longest_float_length = 0;
6241 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6243 if (S_setup_longest (aTHX_ pRExC_state,
6245 &(r->anchored_utf8),
6246 &(r->anchored_substr),
6247 &(r->anchored_end_shift),
6248 data.lookbehind_fixed,
6251 longest_fixed_length,
6252 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
6253 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
6255 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6256 SvREFCNT_inc_simple_void_NN(data.longest_fixed);
6259 r->anchored_substr = r->anchored_utf8 = NULL;
6260 longest_fixed_length = 0;
6262 LEAVE_with_name("study_chunk");
6265 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6266 ri->regstclass = NULL;
6268 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6270 && ! TEST_SSC_EOS(data.start_class)
6271 && !cl_is_anything(data.start_class))
6273 const U32 n = add_data(pRExC_state, 1, "f");
6274 OP(data.start_class) = ANYOF_SYNTHETIC;
6276 Newx(RExC_rxi->data->data[n], 1,
6277 struct regnode_charclass_class);
6278 StructCopy(data.start_class,
6279 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6280 struct regnode_charclass_class);
6281 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6282 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6283 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6284 regprop(r, sv, (regnode*)data.start_class);
6285 PerlIO_printf(Perl_debug_log,
6286 "synthetic stclass \"%s\".\n",
6287 SvPVX_const(sv));});
6290 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6291 if (longest_fixed_length > longest_float_length) {
6292 r->check_end_shift = r->anchored_end_shift;
6293 r->check_substr = r->anchored_substr;
6294 r->check_utf8 = r->anchored_utf8;
6295 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6296 if (r->extflags & RXf_ANCH_SINGLE)
6297 r->extflags |= RXf_NOSCAN;
6300 r->check_end_shift = r->float_end_shift;
6301 r->check_substr = r->float_substr;
6302 r->check_utf8 = r->float_utf8;
6303 r->check_offset_min = r->float_min_offset;
6304 r->check_offset_max = r->float_max_offset;
6306 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6307 This should be changed ASAP! */
6308 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6309 r->extflags |= RXf_USE_INTUIT;
6310 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6311 r->extflags |= RXf_INTUIT_TAIL;
6313 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6314 if ( (STRLEN)minlen < longest_float_length )
6315 minlen= longest_float_length;
6316 if ( (STRLEN)minlen < longest_fixed_length )
6317 minlen= longest_fixed_length;
6321 /* Several toplevels. Best we can is to set minlen. */
6323 struct regnode_charclass_class ch_class;
6326 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6328 scan = ri->program + 1;
6329 cl_init(pRExC_state, &ch_class);
6330 data.start_class = &ch_class;
6331 data.last_closep = &last_close;
6334 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6335 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6337 CHECK_RESTUDY_GOTO_butfirst(NOOP);
6339 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6340 = r->float_substr = r->float_utf8 = NULL;
6342 if (! TEST_SSC_EOS(data.start_class)
6343 && !cl_is_anything(data.start_class))
6345 const U32 n = add_data(pRExC_state, 1, "f");
6346 OP(data.start_class) = ANYOF_SYNTHETIC;
6348 Newx(RExC_rxi->data->data[n], 1,
6349 struct regnode_charclass_class);
6350 StructCopy(data.start_class,
6351 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6352 struct regnode_charclass_class);
6353 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6354 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6355 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6356 regprop(r, sv, (regnode*)data.start_class);
6357 PerlIO_printf(Perl_debug_log,
6358 "synthetic stclass \"%s\".\n",
6359 SvPVX_const(sv));});
6363 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6364 the "real" pattern. */
6366 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6367 (IV)minlen, (IV)r->minlen);
6369 r->minlenret = minlen;
6370 if (r->minlen < minlen)
6373 if (RExC_seen & REG_SEEN_GPOS)
6374 r->extflags |= RXf_GPOS_SEEN;
6375 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6376 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */
6377 if (pRExC_state->num_code_blocks)
6378 r->extflags |= RXf_EVAL_SEEN;
6379 if (RExC_seen & REG_SEEN_CANY)
6380 r->extflags |= RXf_CANY_SEEN;
6381 if (RExC_seen & REG_SEEN_VERBARG)
6383 r->intflags |= PREGf_VERBARG_SEEN;
6384 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
6386 if (RExC_seen & REG_SEEN_CUTGROUP)
6387 r->intflags |= PREGf_CUTGROUP_SEEN;
6388 if (pm_flags & PMf_USE_RE_EVAL)
6389 r->intflags |= PREGf_USE_RE_EVAL;
6390 if (RExC_paren_names)
6391 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6393 RXp_PAREN_NAMES(r) = NULL;
6396 regnode *first = ri->program + 1;
6398 regnode *next = NEXTOPER(first);
6401 if (PL_regkind[fop] == NOTHING && nop == END)
6402 r->extflags |= RXf_NULL;
6403 else if (PL_regkind[fop] == BOL && nop == END)
6404 r->extflags |= RXf_START_ONLY;
6405 else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END)
6406 r->extflags |= RXf_WHITE;
6407 else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END )
6408 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6412 if (RExC_paren_names) {
6413 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6414 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6417 ri->name_list_idx = 0;
6419 if (RExC_recurse_count) {
6420 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6421 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6422 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6425 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6426 /* assume we don't need to swap parens around before we match */
6429 PerlIO_printf(Perl_debug_log,"Final program:\n");
6432 #ifdef RE_TRACK_PATTERN_OFFSETS
6433 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6434 const U32 len = ri->u.offsets[0];
6436 GET_RE_DEBUG_FLAGS_DECL;
6437 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6438 for (i = 1; i <= len; i++) {
6439 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6440 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6441 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6443 PerlIO_printf(Perl_debug_log, "\n");
6448 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
6449 * by setting the regexp SV to readonly-only instead. If the
6450 * pattern's been recompiled, the USEDness should remain. */
6451 if (old_re && SvREADONLY(old_re))
6459 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6462 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6464 PERL_UNUSED_ARG(value);
6466 if (flags & RXapif_FETCH) {
6467 return reg_named_buff_fetch(rx, key, flags);
6468 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6469 Perl_croak_no_modify();
6471 } else if (flags & RXapif_EXISTS) {
6472 return reg_named_buff_exists(rx, key, flags)
6475 } else if (flags & RXapif_REGNAMES) {
6476 return reg_named_buff_all(rx, flags);
6477 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6478 return reg_named_buff_scalar(rx, flags);
6480 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6486 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6489 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6490 PERL_UNUSED_ARG(lastkey);
6492 if (flags & RXapif_FIRSTKEY)
6493 return reg_named_buff_firstkey(rx, flags);
6494 else if (flags & RXapif_NEXTKEY)
6495 return reg_named_buff_nextkey(rx, flags);
6497 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6503 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6506 AV *retarray = NULL;
6508 struct regexp *const rx = ReANY(r);
6510 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6512 if (flags & RXapif_ALL)
6515 if (rx && RXp_PAREN_NAMES(rx)) {
6516 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6519 SV* sv_dat=HeVAL(he_str);
6520 I32 *nums=(I32*)SvPVX(sv_dat);
6521 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6522 if ((I32)(rx->nparens) >= nums[i]
6523 && rx->offs[nums[i]].start != -1
6524 && rx->offs[nums[i]].end != -1)
6527 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6532 ret = newSVsv(&PL_sv_undef);
6535 av_push(retarray, ret);
6538 return newRV_noinc(MUTABLE_SV(retarray));
6545 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6548 struct regexp *const rx = ReANY(r);
6550 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6552 if (rx && RXp_PAREN_NAMES(rx)) {
6553 if (flags & RXapif_ALL) {
6554 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6556 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6558 SvREFCNT_dec_NN(sv);
6570 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6572 struct regexp *const rx = ReANY(r);
6574 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6576 if ( rx && RXp_PAREN_NAMES(rx) ) {
6577 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6579 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6586 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6588 struct regexp *const rx = ReANY(r);
6589 GET_RE_DEBUG_FLAGS_DECL;
6591 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6593 if (rx && RXp_PAREN_NAMES(rx)) {
6594 HV *hv = RXp_PAREN_NAMES(rx);
6596 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6599 SV* sv_dat = HeVAL(temphe);
6600 I32 *nums = (I32*)SvPVX(sv_dat);
6601 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6602 if ((I32)(rx->lastparen) >= nums[i] &&
6603 rx->offs[nums[i]].start != -1 &&
6604 rx->offs[nums[i]].end != -1)
6610 if (parno || flags & RXapif_ALL) {
6611 return newSVhek(HeKEY_hek(temphe));
6619 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6624 struct regexp *const rx = ReANY(r);
6626 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6628 if (rx && RXp_PAREN_NAMES(rx)) {
6629 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6630 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6631 } else if (flags & RXapif_ONE) {
6632 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6633 av = MUTABLE_AV(SvRV(ret));
6634 length = av_len(av);
6635 SvREFCNT_dec_NN(ret);
6636 return newSViv(length + 1);
6638 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6642 return &PL_sv_undef;
6646 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6648 struct regexp *const rx = ReANY(r);
6651 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6653 if (rx && RXp_PAREN_NAMES(rx)) {
6654 HV *hv= RXp_PAREN_NAMES(rx);
6656 (void)hv_iterinit(hv);
6657 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6660 SV* sv_dat = HeVAL(temphe);
6661 I32 *nums = (I32*)SvPVX(sv_dat);
6662 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6663 if ((I32)(rx->lastparen) >= nums[i] &&
6664 rx->offs[nums[i]].start != -1 &&
6665 rx->offs[nums[i]].end != -1)
6671 if (parno || flags & RXapif_ALL) {
6672 av_push(av, newSVhek(HeKEY_hek(temphe)));
6677 return newRV_noinc(MUTABLE_SV(av));
6681 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6684 struct regexp *const rx = ReANY(r);
6690 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6692 if ( ( n == RX_BUFF_IDX_CARET_PREMATCH
6693 || n == RX_BUFF_IDX_CARET_FULLMATCH
6694 || n == RX_BUFF_IDX_CARET_POSTMATCH
6696 && !(rx->extflags & RXf_PMf_KEEPCOPY)
6703 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6704 /* no need to distinguish between them any more */
6705 n = RX_BUFF_IDX_FULLMATCH;
6707 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6708 && rx->offs[0].start != -1)
6710 /* $`, ${^PREMATCH} */
6711 i = rx->offs[0].start;
6715 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6716 && rx->offs[0].end != -1)
6718 /* $', ${^POSTMATCH} */
6719 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6720 i = rx->sublen + rx->suboffset - rx->offs[0].end;
6723 if ( 0 <= n && n <= (I32)rx->nparens &&
6724 (s1 = rx->offs[n].start) != -1 &&
6725 (t1 = rx->offs[n].end) != -1)
6727 /* $&, ${^MATCH}, $1 ... */
6729 s = rx->subbeg + s1 - rx->suboffset;
6734 assert(s >= rx->subbeg);
6735 assert(rx->sublen >= (s - rx->subbeg) + i );
6737 #if NO_TAINT_SUPPORT
6738 sv_setpvn(sv, s, i);
6740 const int oldtainted = TAINT_get;
6742 sv_setpvn(sv, s, i);
6743 TAINT_set(oldtainted);
6745 if ( (rx->extflags & RXf_CANY_SEEN)
6746 ? (RXp_MATCH_UTF8(rx)
6747 && (!i || is_utf8_string((U8*)s, i)))
6748 : (RXp_MATCH_UTF8(rx)) )
6755 if (RXp_MATCH_TAINTED(rx)) {
6756 if (SvTYPE(sv) >= SVt_PVMG) {
6757 MAGIC* const mg = SvMAGIC(sv);
6760 SvMAGIC_set(sv, mg->mg_moremagic);
6762 if ((mgt = SvMAGIC(sv))) {
6763 mg->mg_moremagic = mgt;
6764 SvMAGIC_set(sv, mg);
6775 sv_setsv(sv,&PL_sv_undef);
6781 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6782 SV const * const value)
6784 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6786 PERL_UNUSED_ARG(rx);
6787 PERL_UNUSED_ARG(paren);
6788 PERL_UNUSED_ARG(value);
6791 Perl_croak_no_modify();
6795 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6798 struct regexp *const rx = ReANY(r);
6802 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6804 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6806 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6807 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6811 case RX_BUFF_IDX_PREMATCH: /* $` */
6812 if (rx->offs[0].start != -1) {
6813 i = rx->offs[0].start;
6822 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6823 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6825 case RX_BUFF_IDX_POSTMATCH: /* $' */
6826 if (rx->offs[0].end != -1) {
6827 i = rx->sublen - rx->offs[0].end;
6829 s1 = rx->offs[0].end;
6836 case RX_BUFF_IDX_CARET_FULLMATCH: /* ${^MATCH} */
6837 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6841 /* $& / ${^MATCH}, $1, $2, ... */
6843 if (paren <= (I32)rx->nparens &&
6844 (s1 = rx->offs[paren].start) != -1 &&
6845 (t1 = rx->offs[paren].end) != -1)
6851 if (ckWARN(WARN_UNINITIALIZED))
6852 report_uninit((const SV *)sv);
6857 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6858 const char * const s = rx->subbeg - rx->suboffset + s1;
6863 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6870 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6872 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6873 PERL_UNUSED_ARG(rx);
6877 return newSVpvs("Regexp");
6880 /* Scans the name of a named buffer from the pattern.
6881 * If flags is REG_RSN_RETURN_NULL returns null.
6882 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6883 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6884 * to the parsed name as looked up in the RExC_paren_names hash.
6885 * If there is an error throws a vFAIL().. type exception.
6888 #define REG_RSN_RETURN_NULL 0
6889 #define REG_RSN_RETURN_NAME 1
6890 #define REG_RSN_RETURN_DATA 2
6893 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6895 char *name_start = RExC_parse;
6897 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6899 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6900 /* skip IDFIRST by using do...while */
6903 RExC_parse += UTF8SKIP(RExC_parse);
6904 } while (isWORDCHAR_utf8((U8*)RExC_parse));
6908 } while (isWORDCHAR(*RExC_parse));
6910 RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6911 vFAIL("Group name must start with a non-digit word character");
6915 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6916 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6917 if ( flags == REG_RSN_RETURN_NAME)
6919 else if (flags==REG_RSN_RETURN_DATA) {
6922 if ( ! sv_name ) /* should not happen*/
6923 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6924 if (RExC_paren_names)
6925 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6927 sv_dat = HeVAL(he_str);
6929 vFAIL("Reference to nonexistent named group");
6933 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6934 (unsigned long) flags);
6936 assert(0); /* NOT REACHED */
6941 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6942 int rem=(int)(RExC_end - RExC_parse); \
6951 if (RExC_lastparse!=RExC_parse) \
6952 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6955 iscut ? "..." : "<" \
6958 PerlIO_printf(Perl_debug_log,"%16s",""); \
6961 num = RExC_size + 1; \
6963 num=REG_NODE_NUM(RExC_emit); \
6964 if (RExC_lastnum!=num) \
6965 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6967 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6968 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6969 (int)((depth*2)), "", \
6973 RExC_lastparse=RExC_parse; \
6978 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6979 DEBUG_PARSE_MSG((funcname)); \
6980 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6982 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6983 DEBUG_PARSE_MSG((funcname)); \
6984 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
6987 /* This section of code defines the inversion list object and its methods. The
6988 * interfaces are highly subject to change, so as much as possible is static to
6989 * this file. An inversion list is here implemented as a malloc'd C UV array
6990 * with some added info that is placed as UVs at the beginning in a header
6991 * portion. An inversion list for Unicode is an array of code points, sorted
6992 * by ordinal number. The zeroth element is the first code point in the list.
6993 * The 1th element is the first element beyond that not in the list. In other
6994 * words, the first range is
6995 * invlist[0]..(invlist[1]-1)
6996 * The other ranges follow. Thus every element whose index is divisible by two
6997 * marks the beginning of a range that is in the list, and every element not
6998 * divisible by two marks the beginning of a range not in the list. A single
6999 * element inversion list that contains the single code point N generally
7000 * consists of two elements
7003 * (The exception is when N is the highest representable value on the
7004 * machine, in which case the list containing just it would be a single
7005 * element, itself. By extension, if the last range in the list extends to
7006 * infinity, then the first element of that range will be in the inversion list
7007 * at a position that is divisible by two, and is the final element in the
7009 * Taking the complement (inverting) an inversion list is quite simple, if the
7010 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7011 * This implementation reserves an element at the beginning of each inversion
7012 * list to contain 0 when the list contains 0, and contains 1 otherwise. The
7013 * actual beginning of the list is either that element if 0, or the next one if
7016 * More about inversion lists can be found in "Unicode Demystified"
7017 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7018 * More will be coming when functionality is added later.
7020 * The inversion list data structure is currently implemented as an SV pointing
7021 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7022 * array of UV whose memory management is automatically handled by the existing
7023 * facilities for SV's.
7025 * Some of the methods should always be private to the implementation, and some
7026 * should eventually be made public */
7028 /* The header definitions are in F<inline_invlist.c> */
7029 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV))
7030 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH)
7032 #define INVLIST_INITIAL_LEN 10
7034 PERL_STATIC_INLINE UV*
7035 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7037 /* Returns a pointer to the first element in the inversion list's array.
7038 * This is called upon initialization of an inversion list. Where the
7039 * array begins depends on whether the list has the code point U+0000
7040 * in it or not. The other parameter tells it whether the code that
7041 * follows this call is about to put a 0 in the inversion list or not.
7042 * The first element is either the element with 0, if 0, or the next one,
7045 UV* zero = get_invlist_zero_addr(invlist);
7047 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7050 assert(! *_get_invlist_len_addr(invlist));
7052 /* 1^1 = 0; 1^0 = 1 */
7053 *zero = 1 ^ will_have_0;
7054 return zero + *zero;
7057 PERL_STATIC_INLINE UV*
7058 S_invlist_array(pTHX_ SV* const invlist)
7060 /* Returns the pointer to the inversion list's array. Every time the
7061 * length changes, this needs to be called in case malloc or realloc moved
7064 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7066 /* Must not be empty. If these fail, you probably didn't check for <len>
7067 * being non-zero before trying to get the array */
7068 assert(*_get_invlist_len_addr(invlist));
7069 assert(*get_invlist_zero_addr(invlist) == 0
7070 || *get_invlist_zero_addr(invlist) == 1);
7072 /* The array begins either at the element reserved for zero if the
7073 * list contains 0 (that element will be set to 0), or otherwise the next
7074 * element (in which case the reserved element will be set to 1). */
7075 return (UV *) (get_invlist_zero_addr(invlist)
7076 + *get_invlist_zero_addr(invlist));
7079 PERL_STATIC_INLINE void
7080 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7082 /* Sets the current number of elements stored in the inversion list */
7084 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7086 *_get_invlist_len_addr(invlist) = len;
7088 assert(len <= SvLEN(invlist));
7090 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7091 /* If the list contains U+0000, that element is part of the header,
7092 * and should not be counted as part of the array. It will contain
7093 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7095 * SvCUR_set(invlist,
7096 * TO_INTERNAL_SIZE(len
7097 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7098 * But, this is only valid if len is not 0. The consequences of not doing
7099 * this is that the memory allocation code may think that 1 more UV is
7100 * being used than actually is, and so might do an unnecessary grow. That
7101 * seems worth not bothering to make this the precise amount.
7103 * Note that when inverting, SvCUR shouldn't change */
7106 PERL_STATIC_INLINE IV*
7107 S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7109 /* Return the address of the UV that is reserved to hold the cached index
7112 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7114 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7117 PERL_STATIC_INLINE IV
7118 S_invlist_previous_index(pTHX_ SV* const invlist)
7120 /* Returns cached index of previous search */
7122 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7124 return *get_invlist_previous_index_addr(invlist);
7127 PERL_STATIC_INLINE void
7128 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7130 /* Caches <index> for later retrieval */
7132 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7134 assert(index == 0 || index < (int) _invlist_len(invlist));
7136 *get_invlist_previous_index_addr(invlist) = index;
7139 PERL_STATIC_INLINE UV
7140 S_invlist_max(pTHX_ SV* const invlist)
7142 /* Returns the maximum number of elements storable in the inversion list's
7143 * array, without having to realloc() */
7145 PERL_ARGS_ASSERT_INVLIST_MAX;
7147 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
7148 ? _invlist_len(invlist)
7149 : FROM_INTERNAL_SIZE(SvLEN(invlist));
7152 PERL_STATIC_INLINE UV*
7153 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7155 /* Return the address of the UV that is reserved to hold 0 if the inversion
7156 * list contains 0. This has to be the last element of the heading, as the
7157 * list proper starts with either it if 0, or the next element if not.
7158 * (But we force it to contain either 0 or 1) */
7160 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7162 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7165 #ifndef PERL_IN_XSUB_RE
7167 Perl__new_invlist(pTHX_ IV initial_size)
7170 /* Return a pointer to a newly constructed inversion list, with enough
7171 * space to store 'initial_size' elements. If that number is negative, a
7172 * system default is used instead */
7176 if (initial_size < 0) {
7177 initial_size = INVLIST_INITIAL_LEN;
7180 /* Allocate the initial space */
7181 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7182 invlist_set_len(new_list, 0);
7184 /* Force iterinit() to be used to get iteration to work */
7185 *get_invlist_iter_addr(new_list) = UV_MAX;
7187 /* This should force a segfault if a method doesn't initialize this
7189 *get_invlist_zero_addr(new_list) = UV_MAX;
7191 *get_invlist_previous_index_addr(new_list) = 0;
7192 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7193 #if HEADER_LENGTH != 5
7194 # error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7202 S__new_invlist_C_array(pTHX_ UV* list)
7204 /* Return a pointer to a newly constructed inversion list, initialized to
7205 * point to <list>, which has to be in the exact correct inversion list
7206 * form, including internal fields. Thus this is a dangerous routine that
7207 * should not be used in the wrong hands */
7209 SV* invlist = newSV_type(SVt_PV);
7211 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7213 SvPV_set(invlist, (char *) list);
7214 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7215 shouldn't touch it */
7216 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7218 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7219 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7222 /* Initialize the iteration pointer.
7223 * XXX This could be done at compile time in charclass_invlists.h, but I
7224 * (khw) am not confident that the suffixes for specifying the C constant
7225 * UV_MAX are portable, e.g. 'ull' on a 32 bit machine that is configured
7226 * to use 64 bits; might need a Configure probe */
7227 invlist_iterfinish(invlist);
7233 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7235 /* Grow the maximum size of an inversion list */
7237 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7239 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7242 PERL_STATIC_INLINE void
7243 S_invlist_trim(pTHX_ SV* const invlist)
7245 PERL_ARGS_ASSERT_INVLIST_TRIM;
7247 /* Change the length of the inversion list to how many entries it currently
7250 SvPV_shrink_to_cur((SV *) invlist);
7253 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7256 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7258 /* Subject to change or removal. Append the range from 'start' to 'end' at
7259 * the end of the inversion list. The range must be above any existing
7263 UV max = invlist_max(invlist);
7264 UV len = _invlist_len(invlist);
7266 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7268 if (len == 0) { /* Empty lists must be initialized */
7269 array = _invlist_array_init(invlist, start == 0);
7272 /* Here, the existing list is non-empty. The current max entry in the
7273 * list is generally the first value not in the set, except when the
7274 * set extends to the end of permissible values, in which case it is
7275 * the first entry in that final set, and so this call is an attempt to
7276 * append out-of-order */
7278 UV final_element = len - 1;
7279 array = invlist_array(invlist);
7280 if (array[final_element] > start
7281 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7283 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7284 array[final_element], start,
7285 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7288 /* Here, it is a legal append. If the new range begins with the first
7289 * value not in the set, it is extending the set, so the new first
7290 * value not in the set is one greater than the newly extended range.
7292 if (array[final_element] == start) {
7293 if (end != UV_MAX) {
7294 array[final_element] = end + 1;
7297 /* But if the end is the maximum representable on the machine,
7298 * just let the range that this would extend to have no end */
7299 invlist_set_len(invlist, len - 1);
7305 /* Here the new range doesn't extend any existing set. Add it */
7307 len += 2; /* Includes an element each for the start and end of range */
7309 /* If overflows the existing space, extend, which may cause the array to be
7312 invlist_extend(invlist, len);
7313 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7314 failure in invlist_array() */
7315 array = invlist_array(invlist);
7318 invlist_set_len(invlist, len);
7321 /* The next item on the list starts the range, the one after that is
7322 * one past the new range. */
7323 array[len - 2] = start;
7324 if (end != UV_MAX) {
7325 array[len - 1] = end + 1;
7328 /* But if the end is the maximum representable on the machine, just let
7329 * the range have no end */
7330 invlist_set_len(invlist, len - 1);
7334 #ifndef PERL_IN_XSUB_RE
7337 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7339 /* Searches the inversion list for the entry that contains the input code
7340 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7341 * return value is the index into the list's array of the range that
7346 IV high = _invlist_len(invlist);
7347 const IV highest_element = high - 1;
7350 PERL_ARGS_ASSERT__INVLIST_SEARCH;
7352 /* If list is empty, return failure. */
7357 /* (We can't get the array unless we know the list is non-empty) */
7358 array = invlist_array(invlist);
7360 mid = invlist_previous_index(invlist);
7361 assert(mid >=0 && mid <= highest_element);
7363 /* <mid> contains the cache of the result of the previous call to this
7364 * function (0 the first time). See if this call is for the same result,
7365 * or if it is for mid-1. This is under the theory that calls to this
7366 * function will often be for related code points that are near each other.
7367 * And benchmarks show that caching gives better results. We also test
7368 * here if the code point is within the bounds of the list. These tests
7369 * replace others that would have had to be made anyway to make sure that
7370 * the array bounds were not exceeded, and these give us extra information
7371 * at the same time */
7372 if (cp >= array[mid]) {
7373 if (cp >= array[highest_element]) {
7374 return highest_element;
7377 /* Here, array[mid] <= cp < array[highest_element]. This means that
7378 * the final element is not the answer, so can exclude it; it also
7379 * means that <mid> is not the final element, so can refer to 'mid + 1'
7381 if (cp < array[mid + 1]) {
7387 else { /* cp < aray[mid] */
7388 if (cp < array[0]) { /* Fail if outside the array */
7392 if (cp >= array[mid - 1]) {
7397 /* Binary search. What we are looking for is <i> such that
7398 * array[i] <= cp < array[i+1]
7399 * The loop below converges on the i+1. Note that there may not be an
7400 * (i+1)th element in the array, and things work nonetheless */
7401 while (low < high) {
7402 mid = (low + high) / 2;
7403 assert(mid <= highest_element);
7404 if (array[mid] <= cp) { /* cp >= array[mid] */
7407 /* We could do this extra test to exit the loop early.
7408 if (cp < array[low]) {
7413 else { /* cp < array[mid] */
7420 invlist_set_previous_index(invlist, high);
7425 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7427 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7428 * but is used when the swash has an inversion list. This makes this much
7429 * faster, as it uses a binary search instead of a linear one. This is
7430 * intimately tied to that function, and perhaps should be in utf8.c,
7431 * except it is intimately tied to inversion lists as well. It assumes
7432 * that <swatch> is all 0's on input */
7435 const IV len = _invlist_len(invlist);
7439 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7441 if (len == 0) { /* Empty inversion list */
7445 array = invlist_array(invlist);
7447 /* Find which element it is */
7448 i = _invlist_search(invlist, start);
7450 /* We populate from <start> to <end> */
7451 while (current < end) {
7454 /* The inversion list gives the results for every possible code point
7455 * after the first one in the list. Only those ranges whose index is
7456 * even are ones that the inversion list matches. For the odd ones,
7457 * and if the initial code point is not in the list, we have to skip
7458 * forward to the next element */
7459 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7461 if (i >= len) { /* Finished if beyond the end of the array */
7465 if (current >= end) { /* Finished if beyond the end of what we
7467 if (LIKELY(end < UV_MAX)) {
7471 /* We get here when the upper bound is the maximum
7472 * representable on the machine, and we are looking for just
7473 * that code point. Have to special case it */
7475 goto join_end_of_list;
7478 assert(current >= start);
7480 /* The current range ends one below the next one, except don't go past
7483 upper = (i < len && array[i] < end) ? array[i] : end;
7485 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7486 * for each code point in it */
7487 for (; current < upper; current++) {
7488 const STRLEN offset = (STRLEN)(current - start);
7489 swatch[offset >> 3] |= 1 << (offset & 7);
7494 /* Quit if at the end of the list */
7497 /* But first, have to deal with the highest possible code point on
7498 * the platform. The previous code assumes that <end> is one
7499 * beyond where we want to populate, but that is impossible at the
7500 * platform's infinity, so have to handle it specially */
7501 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7503 const STRLEN offset = (STRLEN)(end - start);
7504 swatch[offset >> 3] |= 1 << (offset & 7);
7509 /* Advance to the next range, which will be for code points not in the
7518 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7520 /* Take the union of two inversion lists and point <output> to it. *output
7521 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7522 * the reference count to that list will be decremented. The first list,
7523 * <a>, may be NULL, in which case a copy of the second list is returned.
7524 * If <complement_b> is TRUE, the union is taken of the complement
7525 * (inversion) of <b> instead of b itself.
7527 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7528 * Richard Gillam, published by Addison-Wesley, and explained at some
7529 * length there. The preface says to incorporate its examples into your
7530 * code at your own risk.
7532 * The algorithm is like a merge sort.
7534 * XXX A potential performance improvement is to keep track as we go along
7535 * if only one of the inputs contributes to the result, meaning the other
7536 * is a subset of that one. In that case, we can skip the final copy and
7537 * return the larger of the input lists, but then outside code might need
7538 * to keep track of whether to free the input list or not */
7540 UV* array_a; /* a's array */
7542 UV len_a; /* length of a's array */
7545 SV* u; /* the resulting union */
7549 UV i_a = 0; /* current index into a's array */
7553 /* running count, as explained in the algorithm source book; items are
7554 * stopped accumulating and are output when the count changes to/from 0.
7555 * The count is incremented when we start a range that's in the set, and
7556 * decremented when we start a range that's not in the set. So its range
7557 * is 0 to 2. Only when the count is zero is something not in the set.
7561 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7564 /* If either one is empty, the union is the other one */
7565 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7572 *output = invlist_clone(b);
7574 _invlist_invert(*output);
7576 } /* else *output already = b; */
7579 else if ((len_b = _invlist_len(b)) == 0) {
7584 /* The complement of an empty list is a list that has everything in it,
7585 * so the union with <a> includes everything too */
7590 *output = _new_invlist(1);
7591 _append_range_to_invlist(*output, 0, UV_MAX);
7593 else if (*output != a) {
7594 *output = invlist_clone(a);
7596 /* else *output already = a; */
7600 /* Here both lists exist and are non-empty */
7601 array_a = invlist_array(a);
7602 array_b = invlist_array(b);
7604 /* If are to take the union of 'a' with the complement of b, set it
7605 * up so are looking at b's complement. */
7608 /* To complement, we invert: if the first element is 0, remove it. To
7609 * do this, we just pretend the array starts one later, and clear the
7610 * flag as we don't have to do anything else later */
7611 if (array_b[0] == 0) {
7614 complement_b = FALSE;
7618 /* But if the first element is not zero, we unshift a 0 before the
7619 * array. The data structure reserves a space for that 0 (which
7620 * should be a '1' right now), so physical shifting is unneeded,
7621 * but temporarily change that element to 0. Before exiting the
7622 * routine, we must restore the element to '1' */
7629 /* Size the union for the worst case: that the sets are completely
7631 u = _new_invlist(len_a + len_b);
7633 /* Will contain U+0000 if either component does */
7634 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7635 || (len_b > 0 && array_b[0] == 0));
7637 /* Go through each list item by item, stopping when exhausted one of
7639 while (i_a < len_a && i_b < len_b) {
7640 UV cp; /* The element to potentially add to the union's array */
7641 bool cp_in_set; /* is it in the the input list's set or not */
7643 /* We need to take one or the other of the two inputs for the union.
7644 * Since we are merging two sorted lists, we take the smaller of the
7645 * next items. In case of a tie, we take the one that is in its set
7646 * first. If we took one not in the set first, it would decrement the
7647 * count, possibly to 0 which would cause it to be output as ending the
7648 * range, and the next time through we would take the same number, and
7649 * output it again as beginning the next range. By doing it the
7650 * opposite way, there is no possibility that the count will be
7651 * momentarily decremented to 0, and thus the two adjoining ranges will
7652 * be seamlessly merged. (In a tie and both are in the set or both not
7653 * in the set, it doesn't matter which we take first.) */
7654 if (array_a[i_a] < array_b[i_b]
7655 || (array_a[i_a] == array_b[i_b]
7656 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7658 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7662 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7663 cp = array_b[i_b++];
7666 /* Here, have chosen which of the two inputs to look at. Only output
7667 * if the running count changes to/from 0, which marks the
7668 * beginning/end of a range in that's in the set */
7671 array_u[i_u++] = cp;
7678 array_u[i_u++] = cp;
7683 /* Here, we are finished going through at least one of the lists, which
7684 * means there is something remaining in at most one. We check if the list
7685 * that hasn't been exhausted is positioned such that we are in the middle
7686 * of a range in its set or not. (i_a and i_b point to the element beyond
7687 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7688 * is potentially more to output.
7689 * There are four cases:
7690 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7691 * in the union is entirely from the non-exhausted set.
7692 * 2) Both were in their sets, count is 2. Nothing further should
7693 * be output, as everything that remains will be in the exhausted
7694 * list's set, hence in the union; decrementing to 1 but not 0 insures
7696 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7697 * Nothing further should be output because the union includes
7698 * everything from the exhausted set. Not decrementing ensures that.
7699 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7700 * decrementing to 0 insures that we look at the remainder of the
7701 * non-exhausted set */
7702 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7703 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7708 /* The final length is what we've output so far, plus what else is about to
7709 * be output. (If 'count' is non-zero, then the input list we exhausted
7710 * has everything remaining up to the machine's limit in its set, and hence
7711 * in the union, so there will be no further output. */
7714 /* At most one of the subexpressions will be non-zero */
7715 len_u += (len_a - i_a) + (len_b - i_b);
7718 /* Set result to final length, which can change the pointer to array_u, so
7720 if (len_u != _invlist_len(u)) {
7721 invlist_set_len(u, len_u);
7723 array_u = invlist_array(u);
7726 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7727 * the other) ended with everything above it not in its set. That means
7728 * that the remaining part of the union is precisely the same as the
7729 * non-exhausted list, so can just copy it unchanged. (If both list were
7730 * exhausted at the same time, then the operations below will be both 0.)
7733 IV copy_count; /* At most one will have a non-zero copy count */
7734 if ((copy_count = len_a - i_a) > 0) {
7735 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7737 else if ((copy_count = len_b - i_b) > 0) {
7738 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7742 /* If we've changed b, restore it */
7747 /* We may be removing a reference to one of the inputs */
7748 if (a == *output || b == *output) {
7749 assert(! invlist_is_iterating(*output));
7750 SvREFCNT_dec_NN(*output);
7758 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7760 /* Take the intersection of two inversion lists and point <i> to it. *i
7761 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7762 * the reference count to that list will be decremented.
7763 * If <complement_b> is TRUE, the result will be the intersection of <a>
7764 * and the complement (or inversion) of <b> instead of <b> directly.
7766 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7767 * Richard Gillam, published by Addison-Wesley, and explained at some
7768 * length there. The preface says to incorporate its examples into your
7769 * code at your own risk. In fact, it had bugs
7771 * The algorithm is like a merge sort, and is essentially the same as the
7775 UV* array_a; /* a's array */
7777 UV len_a; /* length of a's array */
7780 SV* r; /* the resulting intersection */
7784 UV i_a = 0; /* current index into a's array */
7788 /* running count, as explained in the algorithm source book; items are
7789 * stopped accumulating and are output when the count changes to/from 2.
7790 * The count is incremented when we start a range that's in the set, and
7791 * decremented when we start a range that's not in the set. So its range
7792 * is 0 to 2. Only when the count is 2 is something in the intersection.
7796 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7799 /* Special case if either one is empty */
7800 len_a = _invlist_len(a);
7801 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7803 if (len_a != 0 && complement_b) {
7805 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7806 * be empty. Here, also we are using 'b's complement, which hence
7807 * must be every possible code point. Thus the intersection is
7810 *i = invlist_clone(a);
7816 /* else *i is already 'a' */
7820 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7821 * intersection must be empty */
7828 *i = _new_invlist(0);
7832 /* Here both lists exist and are non-empty */
7833 array_a = invlist_array(a);
7834 array_b = invlist_array(b);
7836 /* If are to take the intersection of 'a' with the complement of b, set it
7837 * up so are looking at b's complement. */
7840 /* To complement, we invert: if the first element is 0, remove it. To
7841 * do this, we just pretend the array starts one later, and clear the
7842 * flag as we don't have to do anything else later */
7843 if (array_b[0] == 0) {
7846 complement_b = FALSE;
7850 /* But if the first element is not zero, we unshift a 0 before the
7851 * array. The data structure reserves a space for that 0 (which
7852 * should be a '1' right now), so physical shifting is unneeded,
7853 * but temporarily change that element to 0. Before exiting the
7854 * routine, we must restore the element to '1' */
7861 /* Size the intersection for the worst case: that the intersection ends up
7862 * fragmenting everything to be completely disjoint */
7863 r= _new_invlist(len_a + len_b);
7865 /* Will contain U+0000 iff both components do */
7866 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7867 && len_b > 0 && array_b[0] == 0);
7869 /* Go through each list item by item, stopping when exhausted one of
7871 while (i_a < len_a && i_b < len_b) {
7872 UV cp; /* The element to potentially add to the intersection's
7874 bool cp_in_set; /* Is it in the input list's set or not */
7876 /* We need to take one or the other of the two inputs for the
7877 * intersection. Since we are merging two sorted lists, we take the
7878 * smaller of the next items. In case of a tie, we take the one that
7879 * is not in its set first (a difference from the union algorithm). If
7880 * we took one in the set first, it would increment the count, possibly
7881 * to 2 which would cause it to be output as starting a range in the
7882 * intersection, and the next time through we would take that same
7883 * number, and output it again as ending the set. By doing it the
7884 * opposite of this, there is no possibility that the count will be
7885 * momentarily incremented to 2. (In a tie and both are in the set or
7886 * both not in the set, it doesn't matter which we take first.) */
7887 if (array_a[i_a] < array_b[i_b]
7888 || (array_a[i_a] == array_b[i_b]
7889 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7891 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7895 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7899 /* Here, have chosen which of the two inputs to look at. Only output
7900 * if the running count changes to/from 2, which marks the
7901 * beginning/end of a range that's in the intersection */
7905 array_r[i_r++] = cp;
7910 array_r[i_r++] = cp;
7916 /* Here, we are finished going through at least one of the lists, which
7917 * means there is something remaining in at most one. We check if the list
7918 * that has been exhausted is positioned such that we are in the middle
7919 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7920 * the ones we care about.) There are four cases:
7921 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7922 * nothing left in the intersection.
7923 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7924 * above 2. What should be output is exactly that which is in the
7925 * non-exhausted set, as everything it has is also in the intersection
7926 * set, and everything it doesn't have can't be in the intersection
7927 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7928 * gets incremented to 2. Like the previous case, the intersection is
7929 * everything that remains in the non-exhausted set.
7930 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7931 * remains 1. And the intersection has nothing more. */
7932 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7933 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7938 /* The final length is what we've output so far plus what else is in the
7939 * intersection. At most one of the subexpressions below will be non-zero */
7942 len_r += (len_a - i_a) + (len_b - i_b);
7945 /* Set result to final length, which can change the pointer to array_r, so
7947 if (len_r != _invlist_len(r)) {
7948 invlist_set_len(r, len_r);
7950 array_r = invlist_array(r);
7953 /* Finish outputting any remaining */
7954 if (count >= 2) { /* At most one will have a non-zero copy count */
7956 if ((copy_count = len_a - i_a) > 0) {
7957 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7959 else if ((copy_count = len_b - i_b) > 0) {
7960 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7964 /* If we've changed b, restore it */
7969 /* We may be removing a reference to one of the inputs */
7970 if (a == *i || b == *i) {
7971 assert(! invlist_is_iterating(*i));
7972 SvREFCNT_dec_NN(*i);
7980 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7982 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7983 * set. A pointer to the inversion list is returned. This may actually be
7984 * a new list, in which case the passed in one has been destroyed. The
7985 * passed in inversion list can be NULL, in which case a new one is created
7986 * with just the one range in it */
7991 if (invlist == NULL) {
7992 invlist = _new_invlist(2);
7996 len = _invlist_len(invlist);
7999 /* If comes after the final entry actually in the list, can just append it
8002 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8003 && start >= invlist_array(invlist)[len - 1]))
8005 _append_range_to_invlist(invlist, start, end);
8009 /* Here, can't just append things, create and return a new inversion list
8010 * which is the union of this range and the existing inversion list */
8011 range_invlist = _new_invlist(2);
8012 _append_range_to_invlist(range_invlist, start, end);
8014 _invlist_union(invlist, range_invlist, &invlist);
8016 /* The temporary can be freed */
8017 SvREFCNT_dec_NN(range_invlist);
8024 PERL_STATIC_INLINE SV*
8025 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8026 return _add_range_to_invlist(invlist, cp, cp);
8029 #ifndef PERL_IN_XSUB_RE
8031 Perl__invlist_invert(pTHX_ SV* const invlist)
8033 /* Complement the input inversion list. This adds a 0 if the list didn't
8034 * have a zero; removes it otherwise. As described above, the data
8035 * structure is set up so that this is very efficient */
8037 UV* len_pos = _get_invlist_len_addr(invlist);
8039 PERL_ARGS_ASSERT__INVLIST_INVERT;
8041 assert(! invlist_is_iterating(invlist));
8043 /* The inverse of matching nothing is matching everything */
8044 if (*len_pos == 0) {
8045 _append_range_to_invlist(invlist, 0, UV_MAX);
8049 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
8050 * zero element was a 0, so it is being removed, so the length decrements
8051 * by 1; and vice-versa. SvCUR is unaffected */
8052 if (*get_invlist_zero_addr(invlist) ^= 1) {
8061 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8063 /* Complement the input inversion list (which must be a Unicode property,
8064 * all of which don't match above the Unicode maximum code point.) And
8065 * Perl has chosen to not have the inversion match above that either. This
8066 * adds a 0x110000 if the list didn't end with it, and removes it if it did
8072 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8074 _invlist_invert(invlist);
8076 len = _invlist_len(invlist);
8078 if (len != 0) { /* If empty do nothing */
8079 array = invlist_array(invlist);
8080 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8081 /* Add 0x110000. First, grow if necessary */
8083 if (invlist_max(invlist) < len) {
8084 invlist_extend(invlist, len);
8085 array = invlist_array(invlist);
8087 invlist_set_len(invlist, len);
8088 array[len - 1] = PERL_UNICODE_MAX + 1;
8090 else { /* Remove the 0x110000 */
8091 invlist_set_len(invlist, len - 1);
8099 PERL_STATIC_INLINE SV*
8100 S_invlist_clone(pTHX_ SV* const invlist)
8103 /* Return a new inversion list that is a copy of the input one, which is
8106 /* Need to allocate extra space to accommodate Perl's addition of a
8107 * trailing NUL to SvPV's, since it thinks they are always strings */
8108 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8109 STRLEN length = SvCUR(invlist);
8111 PERL_ARGS_ASSERT_INVLIST_CLONE;
8113 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8114 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8119 PERL_STATIC_INLINE UV*
8120 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8122 /* Return the address of the UV that contains the current iteration
8125 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8127 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8130 PERL_STATIC_INLINE UV*
8131 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8133 /* Return the address of the UV that contains the version id. */
8135 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8137 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8140 PERL_STATIC_INLINE void
8141 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8143 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8145 *get_invlist_iter_addr(invlist) = 0;
8148 PERL_STATIC_INLINE void
8149 S_invlist_iterfinish(pTHX_ SV* invlist)
8151 /* Terminate iterator for invlist. This is to catch development errors.
8152 * Any iteration that is interrupted before completed should call this
8153 * function. Functions that add code points anywhere else but to the end
8154 * of an inversion list assert that they are not in the middle of an
8155 * iteration. If they were, the addition would make the iteration
8156 * problematical: if the iteration hadn't reached the place where things
8157 * were being added, it would be ok */
8159 PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
8161 *get_invlist_iter_addr(invlist) = UV_MAX;
8165 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8167 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8168 * This call sets in <*start> and <*end>, the next range in <invlist>.
8169 * Returns <TRUE> if successful and the next call will return the next
8170 * range; <FALSE> if was already at the end of the list. If the latter,
8171 * <*start> and <*end> are unchanged, and the next call to this function
8172 * will start over at the beginning of the list */
8174 UV* pos = get_invlist_iter_addr(invlist);
8175 UV len = _invlist_len(invlist);
8178 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8181 *pos = UV_MAX; /* Force iterinit() to be required next time */
8185 array = invlist_array(invlist);
8187 *start = array[(*pos)++];
8193 *end = array[(*pos)++] - 1;
8199 PERL_STATIC_INLINE bool
8200 S_invlist_is_iterating(pTHX_ SV* const invlist)
8202 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8204 return *(get_invlist_iter_addr(invlist)) < UV_MAX;
8207 PERL_STATIC_INLINE UV
8208 S_invlist_highest(pTHX_ SV* const invlist)
8210 /* Returns the highest code point that matches an inversion list. This API
8211 * has an ambiguity, as it returns 0 under either the highest is actually
8212 * 0, or if the list is empty. If this distinction matters to you, check
8213 * for emptiness before calling this function */
8215 UV len = _invlist_len(invlist);
8218 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8224 array = invlist_array(invlist);
8226 /* The last element in the array in the inversion list always starts a
8227 * range that goes to infinity. That range may be for code points that are
8228 * matched in the inversion list, or it may be for ones that aren't
8229 * matched. In the latter case, the highest code point in the set is one
8230 * less than the beginning of this range; otherwise it is the final element
8231 * of this range: infinity */
8232 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8234 : array[len - 1] - 1;
8237 #ifndef PERL_IN_XSUB_RE
8239 Perl__invlist_contents(pTHX_ SV* const invlist)
8241 /* Get the contents of an inversion list into a string SV so that they can
8242 * be printed out. It uses the format traditionally done for debug tracing
8246 SV* output = newSVpvs("\n");
8248 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8250 assert(! invlist_is_iterating(invlist));
8252 invlist_iterinit(invlist);
8253 while (invlist_iternext(invlist, &start, &end)) {
8254 if (end == UV_MAX) {
8255 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8257 else if (end != start) {
8258 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8262 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8270 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP
8272 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header)
8274 /* Dumps out the ranges in an inversion list. The string 'header'
8275 * if present is output on a line before the first range */
8279 PERL_ARGS_ASSERT__INVLIST_DUMP;
8281 if (header && strlen(header)) {
8282 PerlIO_printf(Perl_debug_log, "%s\n", header);
8284 if (invlist_is_iterating(invlist)) {
8285 PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n");
8289 invlist_iterinit(invlist);
8290 while (invlist_iternext(invlist, &start, &end)) {
8291 if (end == UV_MAX) {
8292 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8294 else if (end != start) {
8295 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n",
8299 PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start);
8307 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8309 /* Return a boolean as to if the two passed in inversion lists are
8310 * identical. The final argument, if TRUE, says to take the complement of
8311 * the second inversion list before doing the comparison */
8313 UV* array_a = invlist_array(a);
8314 UV* array_b = invlist_array(b);
8315 UV len_a = _invlist_len(a);
8316 UV len_b = _invlist_len(b);
8318 UV i = 0; /* current index into the arrays */
8319 bool retval = TRUE; /* Assume are identical until proven otherwise */
8321 PERL_ARGS_ASSERT__INVLISTEQ;
8323 /* If are to compare 'a' with the complement of b, set it
8324 * up so are looking at b's complement. */
8327 /* The complement of nothing is everything, so <a> would have to have
8328 * just one element, starting at zero (ending at infinity) */
8330 return (len_a == 1 && array_a[0] == 0);
8332 else if (array_b[0] == 0) {
8334 /* Otherwise, to complement, we invert. Here, the first element is
8335 * 0, just remove it. To do this, we just pretend the array starts
8336 * one later, and clear the flag as we don't have to do anything
8341 complement_b = FALSE;
8345 /* But if the first element is not zero, we unshift a 0 before the
8346 * array. The data structure reserves a space for that 0 (which
8347 * should be a '1' right now), so physical shifting is unneeded,
8348 * but temporarily change that element to 0. Before exiting the
8349 * routine, we must restore the element to '1' */
8356 /* Make sure that the lengths are the same, as well as the final element
8357 * before looping through the remainder. (Thus we test the length, final,
8358 * and first elements right off the bat) */
8359 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8362 else for (i = 0; i < len_a - 1; i++) {
8363 if (array_a[i] != array_b[i]) {
8376 #undef HEADER_LENGTH
8377 #undef INVLIST_INITIAL_LENGTH
8378 #undef TO_INTERNAL_SIZE
8379 #undef FROM_INTERNAL_SIZE
8380 #undef INVLIST_LEN_OFFSET
8381 #undef INVLIST_ZERO_OFFSET
8382 #undef INVLIST_ITER_OFFSET
8383 #undef INVLIST_VERSION_ID
8384 #undef INVLIST_PREVIOUS_INDEX_OFFSET
8386 /* End of inversion list object */
8389 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state)
8391 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
8392 * constructs, and updates RExC_flags with them. On input, RExC_parse
8393 * should point to the first flag; it is updated on output to point to the
8394 * final ')' or ':'. There needs to be at least one flag, or this will
8397 /* for (?g), (?gc), and (?o) warnings; warning
8398 about (?c) will warn about (?g) -- japhy */
8400 #define WASTED_O 0x01
8401 #define WASTED_G 0x02
8402 #define WASTED_C 0x04
8403 #define WASTED_GC (0x02|0x04)
8404 I32 wastedflags = 0x00;
8405 U32 posflags = 0, negflags = 0;
8406 U32 *flagsp = &posflags;
8407 char has_charset_modifier = '\0';
8409 bool has_use_defaults = FALSE;
8410 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
8412 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
8414 /* '^' as an initial flag sets certain defaults */
8415 if (UCHARAT(RExC_parse) == '^') {
8417 has_use_defaults = TRUE;
8418 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8419 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8420 ? REGEX_UNICODE_CHARSET
8421 : REGEX_DEPENDS_CHARSET);
8424 cs = get_regex_charset(RExC_flags);
8425 if (cs == REGEX_DEPENDS_CHARSET
8426 && (RExC_utf8 || RExC_uni_semantics))
8428 cs = REGEX_UNICODE_CHARSET;
8431 while (*RExC_parse) {
8432 /* && strchr("iogcmsx", *RExC_parse) */
8433 /* (?g), (?gc) and (?o) are useless here
8434 and must be globally applied -- japhy */
8435 switch (*RExC_parse) {
8437 /* Code for the imsx flags */
8438 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8440 case LOCALE_PAT_MOD:
8441 if (has_charset_modifier) {
8442 goto excess_modifier;
8444 else if (flagsp == &negflags) {
8447 cs = REGEX_LOCALE_CHARSET;
8448 has_charset_modifier = LOCALE_PAT_MOD;
8449 RExC_contains_locale = 1;
8451 case UNICODE_PAT_MOD:
8452 if (has_charset_modifier) {
8453 goto excess_modifier;
8455 else if (flagsp == &negflags) {
8458 cs = REGEX_UNICODE_CHARSET;
8459 has_charset_modifier = UNICODE_PAT_MOD;
8461 case ASCII_RESTRICT_PAT_MOD:
8462 if (flagsp == &negflags) {
8465 if (has_charset_modifier) {
8466 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8467 goto excess_modifier;
8469 /* Doubled modifier implies more restricted */
8470 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8473 cs = REGEX_ASCII_RESTRICTED_CHARSET;
8475 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8477 case DEPENDS_PAT_MOD:
8478 if (has_use_defaults) {
8479 goto fail_modifiers;
8481 else if (flagsp == &negflags) {
8484 else if (has_charset_modifier) {
8485 goto excess_modifier;
8488 /* The dual charset means unicode semantics if the
8489 * pattern (or target, not known until runtime) are
8490 * utf8, or something in the pattern indicates unicode
8492 cs = (RExC_utf8 || RExC_uni_semantics)
8493 ? REGEX_UNICODE_CHARSET
8494 : REGEX_DEPENDS_CHARSET;
8495 has_charset_modifier = DEPENDS_PAT_MOD;
8499 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8500 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8502 else if (has_charset_modifier == *(RExC_parse - 1)) {
8503 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8506 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8511 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8513 case ONCE_PAT_MOD: /* 'o' */
8514 case GLOBAL_PAT_MOD: /* 'g' */
8515 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8516 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8517 if (! (wastedflags & wflagbit) ) {
8518 wastedflags |= wflagbit;
8521 "Useless (%s%c) - %suse /%c modifier",
8522 flagsp == &negflags ? "?-" : "?",
8524 flagsp == &negflags ? "don't " : "",
8531 case CONTINUE_PAT_MOD: /* 'c' */
8532 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8533 if (! (wastedflags & WASTED_C) ) {
8534 wastedflags |= WASTED_GC;
8537 "Useless (%sc) - %suse /gc modifier",
8538 flagsp == &negflags ? "?-" : "?",
8539 flagsp == &negflags ? "don't " : ""
8544 case KEEPCOPY_PAT_MOD: /* 'p' */
8545 if (flagsp == &negflags) {
8547 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8549 *flagsp |= RXf_PMf_KEEPCOPY;
8553 /* A flag is a default iff it is following a minus, so
8554 * if there is a minus, it means will be trying to
8555 * re-specify a default which is an error */
8556 if (has_use_defaults || flagsp == &negflags) {
8557 goto fail_modifiers;
8560 wastedflags = 0; /* reset so (?g-c) warns twice */
8564 RExC_flags |= posflags;
8565 RExC_flags &= ~negflags;
8566 set_regex_charset(&RExC_flags, cs);
8572 vFAIL3("Sequence (%.*s...) not recognized",
8573 RExC_parse-seqstart, seqstart);
8582 - reg - regular expression, i.e. main body or parenthesized thing
8584 * Caller must absorb opening parenthesis.
8586 * Combining parenthesis handling with the base level of regular expression
8587 * is a trifle forced, but the need to tie the tails of the branches to what
8588 * follows makes it hard to avoid.
8590 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8592 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8594 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8597 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
8598 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
8599 needs to be restarted.
8600 Otherwise would only return NULL if regbranch() returns NULL, which
8603 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8604 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
8607 regnode *ret; /* Will be the head of the group. */
8610 regnode *ender = NULL;
8613 U32 oregflags = RExC_flags;
8614 bool have_branch = 0;
8616 I32 freeze_paren = 0;
8617 I32 after_freeze = 0;
8619 char * parse_start = RExC_parse; /* MJD */
8620 char * const oregcomp_parse = RExC_parse;
8622 GET_RE_DEBUG_FLAGS_DECL;
8624 PERL_ARGS_ASSERT_REG;
8625 DEBUG_PARSE("reg ");
8627 *flagp = 0; /* Tentatively. */
8630 /* Make an OPEN node, if parenthesized. */
8632 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8633 char *start_verb = RExC_parse;
8634 STRLEN verb_len = 0;
8635 char *start_arg = NULL;
8636 unsigned char op = 0;
8638 int internal_argval = 0; /* internal_argval is only useful if !argok */
8639 while ( *RExC_parse && *RExC_parse != ')' ) {
8640 if ( *RExC_parse == ':' ) {
8641 start_arg = RExC_parse + 1;
8647 verb_len = RExC_parse - start_verb;
8650 while ( *RExC_parse && *RExC_parse != ')' )
8652 if ( *RExC_parse != ')' )
8653 vFAIL("Unterminated verb pattern argument");
8654 if ( RExC_parse == start_arg )
8657 if ( *RExC_parse != ')' )
8658 vFAIL("Unterminated verb pattern");
8661 switch ( *start_verb ) {
8662 case 'A': /* (*ACCEPT) */
8663 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8665 internal_argval = RExC_nestroot;
8668 case 'C': /* (*COMMIT) */
8669 if ( memEQs(start_verb,verb_len,"COMMIT") )
8672 case 'F': /* (*FAIL) */
8673 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8678 case ':': /* (*:NAME) */
8679 case 'M': /* (*MARK:NAME) */
8680 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8685 case 'P': /* (*PRUNE) */
8686 if ( memEQs(start_verb,verb_len,"PRUNE") )
8689 case 'S': /* (*SKIP) */
8690 if ( memEQs(start_verb,verb_len,"SKIP") )
8693 case 'T': /* (*THEN) */
8694 /* [19:06] <TimToady> :: is then */
8695 if ( memEQs(start_verb,verb_len,"THEN") ) {
8697 RExC_seen |= REG_SEEN_CUTGROUP;
8703 vFAIL3("Unknown verb pattern '%.*s'",
8704 verb_len, start_verb);
8707 if ( start_arg && internal_argval ) {
8708 vFAIL3("Verb pattern '%.*s' may not have an argument",
8709 verb_len, start_verb);
8710 } else if ( argok < 0 && !start_arg ) {
8711 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8712 verb_len, start_verb);
8714 ret = reganode(pRExC_state, op, internal_argval);
8715 if ( ! internal_argval && ! SIZE_ONLY ) {
8717 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8718 ARG(ret) = add_data( pRExC_state, 1, "S" );
8719 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8726 if (!internal_argval)
8727 RExC_seen |= REG_SEEN_VERBARG;
8728 } else if ( start_arg ) {
8729 vFAIL3("Verb pattern '%.*s' may not have an argument",
8730 verb_len, start_verb);
8732 ret = reg_node(pRExC_state, op);
8734 nextchar(pRExC_state);
8737 if (*RExC_parse == '?') { /* (?...) */
8738 bool is_logical = 0;
8739 const char * const seqstart = RExC_parse;
8742 paren = *RExC_parse++;
8743 ret = NULL; /* For look-ahead/behind. */
8746 case 'P': /* (?P...) variants for those used to PCRE/Python */
8747 paren = *RExC_parse++;
8748 if ( paren == '<') /* (?P<...>) named capture */
8750 else if (paren == '>') { /* (?P>name) named recursion */
8751 goto named_recursion;
8753 else if (paren == '=') { /* (?P=...) named backref */
8754 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8755 you change this make sure you change that */
8756 char* name_start = RExC_parse;
8758 SV *sv_dat = reg_scan_name(pRExC_state,
8759 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8760 if (RExC_parse == name_start || *RExC_parse != ')')
8761 vFAIL2("Sequence %.3s... not terminated",parse_start);
8764 num = add_data( pRExC_state, 1, "S" );
8765 RExC_rxi->data->data[num]=(void*)sv_dat;
8766 SvREFCNT_inc_simple_void(sv_dat);
8769 ret = reganode(pRExC_state,
8772 : (ASCII_FOLD_RESTRICTED)
8774 : (AT_LEAST_UNI_SEMANTICS)
8782 Set_Node_Offset(ret, parse_start+1);
8783 Set_Node_Cur_Length(ret); /* MJD */
8785 nextchar(pRExC_state);
8789 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8791 case '<': /* (?<...) */
8792 if (*RExC_parse == '!')
8794 else if (*RExC_parse != '=')
8800 case '\'': /* (?'...') */
8801 name_start= RExC_parse;
8802 svname = reg_scan_name(pRExC_state,
8803 SIZE_ONLY ? /* reverse test from the others */
8804 REG_RSN_RETURN_NAME :
8805 REG_RSN_RETURN_NULL);
8806 if (RExC_parse == name_start) {
8808 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8811 if (*RExC_parse != paren)
8812 vFAIL2("Sequence (?%c... not terminated",
8813 paren=='>' ? '<' : paren);
8817 if (!svname) /* shouldn't happen */
8819 "panic: reg_scan_name returned NULL");
8820 if (!RExC_paren_names) {
8821 RExC_paren_names= newHV();
8822 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8824 RExC_paren_name_list= newAV();
8825 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8828 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8830 sv_dat = HeVAL(he_str);
8832 /* croak baby croak */
8834 "panic: paren_name hash element allocation failed");
8835 } else if ( SvPOK(sv_dat) ) {
8836 /* (?|...) can mean we have dupes so scan to check
8837 its already been stored. Maybe a flag indicating
8838 we are inside such a construct would be useful,
8839 but the arrays are likely to be quite small, so
8840 for now we punt -- dmq */
8841 IV count = SvIV(sv_dat);
8842 I32 *pv = (I32*)SvPVX(sv_dat);
8844 for ( i = 0 ; i < count ; i++ ) {
8845 if ( pv[i] == RExC_npar ) {
8851 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8852 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8853 pv[count] = RExC_npar;
8854 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8857 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8858 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8860 SvIV_set(sv_dat, 1);
8863 /* Yes this does cause a memory leak in debugging Perls */
8864 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8865 SvREFCNT_dec_NN(svname);
8868 /*sv_dump(sv_dat);*/
8870 nextchar(pRExC_state);
8872 goto capturing_parens;
8874 RExC_seen |= REG_SEEN_LOOKBEHIND;
8875 RExC_in_lookbehind++;
8877 case '=': /* (?=...) */
8878 RExC_seen_zerolen++;
8880 case '!': /* (?!...) */
8881 RExC_seen_zerolen++;
8882 if (*RExC_parse == ')') {
8883 ret=reg_node(pRExC_state, OPFAIL);
8884 nextchar(pRExC_state);
8888 case '|': /* (?|...) */
8889 /* branch reset, behave like a (?:...) except that
8890 buffers in alternations share the same numbers */
8892 after_freeze = freeze_paren = RExC_npar;
8894 case ':': /* (?:...) */
8895 case '>': /* (?>...) */
8897 case '$': /* (?$...) */
8898 case '@': /* (?@...) */
8899 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8901 case '0' : /* (?0) */
8902 case 'R' : /* (?R) */
8903 if (*RExC_parse != ')')
8904 FAIL("Sequence (?R) not terminated");
8905 ret = reg_node(pRExC_state, GOSTART);
8906 *flagp |= POSTPONED;
8907 nextchar(pRExC_state);
8910 { /* named and numeric backreferences */
8912 case '&': /* (?&NAME) */
8913 parse_start = RExC_parse - 1;
8916 SV *sv_dat = reg_scan_name(pRExC_state,
8917 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8918 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8920 goto gen_recurse_regop;
8921 assert(0); /* NOT REACHED */
8923 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8925 vFAIL("Illegal pattern");
8927 goto parse_recursion;
8929 case '-': /* (?-1) */
8930 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8931 RExC_parse--; /* rewind to let it be handled later */
8935 case '1': case '2': case '3': case '4': /* (?1) */
8936 case '5': case '6': case '7': case '8': case '9':
8939 num = atoi(RExC_parse);
8940 parse_start = RExC_parse - 1; /* MJD */
8941 if (*RExC_parse == '-')
8943 while (isDIGIT(*RExC_parse))
8945 if (*RExC_parse!=')')
8946 vFAIL("Expecting close bracket");
8949 if ( paren == '-' ) {
8951 Diagram of capture buffer numbering.
8952 Top line is the normal capture buffer numbers
8953 Bottom line is the negative indexing as from
8957 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
8961 num = RExC_npar + num;
8964 vFAIL("Reference to nonexistent group");
8966 } else if ( paren == '+' ) {
8967 num = RExC_npar + num - 1;
8970 ret = reganode(pRExC_state, GOSUB, num);
8972 if (num > (I32)RExC_rx->nparens) {
8974 vFAIL("Reference to nonexistent group");
8976 ARG2L_SET( ret, RExC_recurse_count++);
8978 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
8979 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
8983 RExC_seen |= REG_SEEN_RECURSE;
8984 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
8985 Set_Node_Offset(ret, parse_start); /* MJD */
8987 *flagp |= POSTPONED;
8988 nextchar(pRExC_state);
8990 } /* named and numeric backreferences */
8991 assert(0); /* NOT REACHED */
8993 case '?': /* (??...) */
8995 if (*RExC_parse != '{') {
8997 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9000 *flagp |= POSTPONED;
9001 paren = *RExC_parse++;
9003 case '{': /* (?{...}) */
9006 struct reg_code_block *cb;
9008 RExC_seen_zerolen++;
9010 if ( !pRExC_state->num_code_blocks
9011 || pRExC_state->code_index >= pRExC_state->num_code_blocks
9012 || pRExC_state->code_blocks[pRExC_state->code_index].start
9013 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
9016 if (RExC_pm_flags & PMf_USE_RE_EVAL)
9017 FAIL("panic: Sequence (?{...}): no code block found\n");
9018 FAIL("Eval-group not allowed at runtime, use re 'eval'");
9020 /* this is a pre-compiled code block (?{...}) */
9021 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
9022 RExC_parse = RExC_start + cb->end;
9025 if (cb->src_regex) {
9026 n = add_data(pRExC_state, 2, "rl");
9027 RExC_rxi->data->data[n] =
9028 (void*)SvREFCNT_inc((SV*)cb->src_regex);
9029 RExC_rxi->data->data[n+1] = (void*)o;
9032 n = add_data(pRExC_state, 1,
9033 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
9034 RExC_rxi->data->data[n] = (void*)o;
9037 pRExC_state->code_index++;
9038 nextchar(pRExC_state);
9042 ret = reg_node(pRExC_state, LOGICAL);
9043 eval = reganode(pRExC_state, EVAL, n);
9046 /* for later propagation into (??{}) return value */
9047 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
9049 REGTAIL(pRExC_state, ret, eval);
9050 /* deal with the length of this later - MJD */
9053 ret = reganode(pRExC_state, EVAL, n);
9054 Set_Node_Length(ret, RExC_parse - parse_start + 1);
9055 Set_Node_Offset(ret, parse_start);
9058 case '(': /* (?(?{...})...) and (?(?=...)...) */
9061 if (RExC_parse[0] == '?') { /* (?(?...)) */
9062 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
9063 || RExC_parse[1] == '<'
9064 || RExC_parse[1] == '{') { /* Lookahead or eval. */
9068 ret = reg_node(pRExC_state, LOGICAL);
9072 tail = reg(pRExC_state, 1, &flag, depth+1);
9073 if (flag & RESTART_UTF8) {
9074 *flagp = RESTART_UTF8;
9077 REGTAIL(pRExC_state, ret, tail);
9081 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
9082 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
9084 char ch = RExC_parse[0] == '<' ? '>' : '\'';
9085 char *name_start= RExC_parse++;
9087 SV *sv_dat=reg_scan_name(pRExC_state,
9088 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9089 if (RExC_parse == name_start || *RExC_parse != ch)
9090 vFAIL2("Sequence (?(%c... not terminated",
9091 (ch == '>' ? '<' : ch));
9094 num = add_data( pRExC_state, 1, "S" );
9095 RExC_rxi->data->data[num]=(void*)sv_dat;
9096 SvREFCNT_inc_simple_void(sv_dat);
9098 ret = reganode(pRExC_state,NGROUPP,num);
9099 goto insert_if_check_paren;
9101 else if (RExC_parse[0] == 'D' &&
9102 RExC_parse[1] == 'E' &&
9103 RExC_parse[2] == 'F' &&
9104 RExC_parse[3] == 'I' &&
9105 RExC_parse[4] == 'N' &&
9106 RExC_parse[5] == 'E')
9108 ret = reganode(pRExC_state,DEFINEP,0);
9111 goto insert_if_check_paren;
9113 else if (RExC_parse[0] == 'R') {
9116 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9117 parno = atoi(RExC_parse++);
9118 while (isDIGIT(*RExC_parse))
9120 } else if (RExC_parse[0] == '&') {
9123 sv_dat = reg_scan_name(pRExC_state,
9124 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9125 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
9127 ret = reganode(pRExC_state,INSUBP,parno);
9128 goto insert_if_check_paren;
9130 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9133 parno = atoi(RExC_parse++);
9135 while (isDIGIT(*RExC_parse))
9137 ret = reganode(pRExC_state, GROUPP, parno);
9139 insert_if_check_paren:
9140 if ((c = *nextchar(pRExC_state)) != ')')
9141 vFAIL("Switch condition not recognized");
9143 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
9144 br = regbranch(pRExC_state, &flags, 1,depth+1);
9146 if (flags & RESTART_UTF8) {
9147 *flagp = RESTART_UTF8;
9150 FAIL2("panic: regbranch returned NULL, flags=%#X",
9153 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
9154 c = *nextchar(pRExC_state);
9159 vFAIL("(?(DEFINE)....) does not allow branches");
9160 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
9161 if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
9162 if (flags & RESTART_UTF8) {
9163 *flagp = RESTART_UTF8;
9166 FAIL2("panic: regbranch returned NULL, flags=%#X",
9169 REGTAIL(pRExC_state, ret, lastbr);
9172 c = *nextchar(pRExC_state);
9177 vFAIL("Switch (?(condition)... contains too many branches");
9178 ender = reg_node(pRExC_state, TAIL);
9179 REGTAIL(pRExC_state, br, ender);
9181 REGTAIL(pRExC_state, lastbr, ender);
9182 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
9185 REGTAIL(pRExC_state, ret, ender);
9186 RExC_size++; /* XXX WHY do we need this?!!
9187 For large programs it seems to be required
9188 but I can't figure out why. -- dmq*/
9192 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
9195 case '[': /* (?[ ... ]) */
9196 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
9199 RExC_parse--; /* for vFAIL to print correctly */
9200 vFAIL("Sequence (? incomplete");
9202 default: /* e.g., (?i) */
9205 parse_lparen_question_flags(pRExC_state);
9206 if (UCHARAT(RExC_parse) != ':') {
9207 nextchar(pRExC_state);
9212 nextchar(pRExC_state);
9222 ret = reganode(pRExC_state, OPEN, parno);
9225 RExC_nestroot = parno;
9226 if (RExC_seen & REG_SEEN_RECURSE
9227 && !RExC_open_parens[parno-1])
9229 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9230 "Setting open paren #%"IVdf" to %d\n",
9231 (IV)parno, REG_NODE_NUM(ret)));
9232 RExC_open_parens[parno-1]= ret;
9235 Set_Node_Length(ret, 1); /* MJD */
9236 Set_Node_Offset(ret, RExC_parse); /* MJD */
9244 /* Pick up the branches, linking them together. */
9245 parse_start = RExC_parse; /* MJD */
9246 br = regbranch(pRExC_state, &flags, 1,depth+1);
9248 /* branch_len = (paren != 0); */
9251 if (flags & RESTART_UTF8) {
9252 *flagp = RESTART_UTF8;
9255 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9257 if (*RExC_parse == '|') {
9258 if (!SIZE_ONLY && RExC_extralen) {
9259 reginsert(pRExC_state, BRANCHJ, br, depth+1);
9262 reginsert(pRExC_state, BRANCH, br, depth+1);
9263 Set_Node_Length(br, paren != 0);
9264 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9268 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
9270 else if (paren == ':') {
9271 *flagp |= flags&SIMPLE;
9273 if (is_open) { /* Starts with OPEN. */
9274 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9276 else if (paren != '?') /* Not Conditional */
9278 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9280 while (*RExC_parse == '|') {
9281 if (!SIZE_ONLY && RExC_extralen) {
9282 ender = reganode(pRExC_state, LONGJMP,0);
9283 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9286 RExC_extralen += 2; /* Account for LONGJMP. */
9287 nextchar(pRExC_state);
9289 if (RExC_npar > after_freeze)
9290 after_freeze = RExC_npar;
9291 RExC_npar = freeze_paren;
9293 br = regbranch(pRExC_state, &flags, 0, depth+1);
9296 if (flags & RESTART_UTF8) {
9297 *flagp = RESTART_UTF8;
9300 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9302 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9304 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9307 if (have_branch || paren != ':') {
9308 /* Make a closing node, and hook it on the end. */
9311 ender = reg_node(pRExC_state, TAIL);
9314 ender = reganode(pRExC_state, CLOSE, parno);
9315 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9316 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9317 "Setting close paren #%"IVdf" to %d\n",
9318 (IV)parno, REG_NODE_NUM(ender)));
9319 RExC_close_parens[parno-1]= ender;
9320 if (RExC_nestroot == parno)
9323 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9324 Set_Node_Length(ender,1); /* MJD */
9330 *flagp &= ~HASWIDTH;
9333 ender = reg_node(pRExC_state, SUCCEED);
9336 ender = reg_node(pRExC_state, END);
9338 assert(!RExC_opend); /* there can only be one! */
9343 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9344 SV * const mysv_val1=sv_newmortal();
9345 SV * const mysv_val2=sv_newmortal();
9346 DEBUG_PARSE_MSG("lsbr");
9347 regprop(RExC_rx, mysv_val1, lastbr);
9348 regprop(RExC_rx, mysv_val2, ender);
9349 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9350 SvPV_nolen_const(mysv_val1),
9351 (IV)REG_NODE_NUM(lastbr),
9352 SvPV_nolen_const(mysv_val2),
9353 (IV)REG_NODE_NUM(ender),
9354 (IV)(ender - lastbr)
9357 REGTAIL(pRExC_state, lastbr, ender);
9359 if (have_branch && !SIZE_ONLY) {
9362 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9364 /* Hook the tails of the branches to the closing node. */
9365 for (br = ret; br; br = regnext(br)) {
9366 const U8 op = PL_regkind[OP(br)];
9368 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9369 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9372 else if (op == BRANCHJ) {
9373 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9374 /* for now we always disable this optimisation * /
9375 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9381 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9382 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9383 SV * const mysv_val1=sv_newmortal();
9384 SV * const mysv_val2=sv_newmortal();
9385 DEBUG_PARSE_MSG("NADA");
9386 regprop(RExC_rx, mysv_val1, ret);
9387 regprop(RExC_rx, mysv_val2, ender);
9388 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9389 SvPV_nolen_const(mysv_val1),
9390 (IV)REG_NODE_NUM(ret),
9391 SvPV_nolen_const(mysv_val2),
9392 (IV)REG_NODE_NUM(ender),
9397 if (OP(ender) == TAIL) {
9402 for ( opt= br + 1; opt < ender ; opt++ )
9404 NEXT_OFF(br)= ender - br;
9412 static const char parens[] = "=!<,>";
9414 if (paren && (p = strchr(parens, paren))) {
9415 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9416 int flag = (p - parens) > 1;
9419 node = SUSPEND, flag = 0;
9420 reginsert(pRExC_state, node,ret, depth+1);
9421 Set_Node_Cur_Length(ret);
9422 Set_Node_Offset(ret, parse_start + 1);
9424 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9428 /* Check for proper termination. */
9430 RExC_flags = oregflags;
9431 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9432 RExC_parse = oregcomp_parse;
9433 vFAIL("Unmatched (");
9436 else if (!paren && RExC_parse < RExC_end) {
9437 if (*RExC_parse == ')') {
9439 vFAIL("Unmatched )");
9442 FAIL("Junk on end of regexp"); /* "Can't happen". */
9443 assert(0); /* NOTREACHED */
9446 if (RExC_in_lookbehind) {
9447 RExC_in_lookbehind--;
9449 if (after_freeze > RExC_npar)
9450 RExC_npar = after_freeze;
9455 - regbranch - one alternative of an | operator
9457 * Implements the concatenation operator.
9459 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9463 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9467 regnode *chain = NULL;
9469 I32 flags = 0, c = 0;
9470 GET_RE_DEBUG_FLAGS_DECL;
9472 PERL_ARGS_ASSERT_REGBRANCH;
9474 DEBUG_PARSE("brnc");
9479 if (!SIZE_ONLY && RExC_extralen)
9480 ret = reganode(pRExC_state, BRANCHJ,0);
9482 ret = reg_node(pRExC_state, BRANCH);
9483 Set_Node_Length(ret, 1);
9487 if (!first && SIZE_ONLY)
9488 RExC_extralen += 1; /* BRANCHJ */
9490 *flagp = WORST; /* Tentatively. */
9493 nextchar(pRExC_state);
9494 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9496 latest = regpiece(pRExC_state, &flags,depth+1);
9497 if (latest == NULL) {
9498 if (flags & TRYAGAIN)
9500 if (flags & RESTART_UTF8) {
9501 *flagp = RESTART_UTF8;
9504 FAIL2("panic: regpiece returned NULL, flags=%#X", flags);
9506 else if (ret == NULL)
9508 *flagp |= flags&(HASWIDTH|POSTPONED);
9509 if (chain == NULL) /* First piece. */
9510 *flagp |= flags&SPSTART;
9513 REGTAIL(pRExC_state, chain, latest);
9518 if (chain == NULL) { /* Loop ran zero times. */
9519 chain = reg_node(pRExC_state, NOTHING);
9524 *flagp |= flags&SIMPLE;
9531 - regpiece - something followed by possible [*+?]
9533 * Note that the branching code sequences used for ? and the general cases
9534 * of * and + are somewhat optimized: they use the same NOTHING node as
9535 * both the endmarker for their branch list and the body of the last branch.
9536 * It might seem that this node could be dispensed with entirely, but the
9537 * endmarker role is not redundant.
9539 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
9541 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9545 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9552 const char * const origparse = RExC_parse;
9554 I32 max = REG_INFTY;
9555 #ifdef RE_TRACK_PATTERN_OFFSETS
9558 const char *maxpos = NULL;
9560 /* Save the original in case we change the emitted regop to a FAIL. */
9561 regnode * const orig_emit = RExC_emit;
9563 GET_RE_DEBUG_FLAGS_DECL;
9565 PERL_ARGS_ASSERT_REGPIECE;
9567 DEBUG_PARSE("piec");
9569 ret = regatom(pRExC_state, &flags,depth+1);
9571 if (flags & (TRYAGAIN|RESTART_UTF8))
9572 *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
9574 FAIL2("panic: regatom returned NULL, flags=%#X", flags);
9580 if (op == '{' && regcurly(RExC_parse, FALSE)) {
9582 #ifdef RE_TRACK_PATTERN_OFFSETS
9583 parse_start = RExC_parse; /* MJD */
9585 next = RExC_parse + 1;
9586 while (isDIGIT(*next) || *next == ',') {
9595 if (*next == '}') { /* got one */
9599 min = atoi(RExC_parse);
9603 maxpos = RExC_parse;
9605 if (!max && *maxpos != '0')
9606 max = REG_INFTY; /* meaning "infinity" */
9607 else if (max >= REG_INFTY)
9608 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9610 nextchar(pRExC_state);
9611 if (max < min) { /* If can't match, warn and optimize to fail
9614 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9616 /* We can't back off the size because we have to reserve
9617 * enough space for all the things we are about to throw
9618 * away, but we can shrink it by the ammount we are about
9620 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9623 RExC_emit = orig_emit;
9625 ret = reg_node(pRExC_state, OPFAIL);
9628 else if (max == 0) { /* replace {0} with a nothing node */
9630 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)NOTHING];
9633 RExC_emit = orig_emit;
9635 ret = reg_node(pRExC_state, NOTHING);
9640 if ((flags&SIMPLE)) {
9641 RExC_naughty += 2 + RExC_naughty / 2;
9642 reginsert(pRExC_state, CURLY, ret, depth+1);
9643 Set_Node_Offset(ret, parse_start+1); /* MJD */
9644 Set_Node_Cur_Length(ret);
9647 regnode * const w = reg_node(pRExC_state, WHILEM);
9650 REGTAIL(pRExC_state, ret, w);
9651 if (!SIZE_ONLY && RExC_extralen) {
9652 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9653 reginsert(pRExC_state, NOTHING,ret, depth+1);
9654 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9656 reginsert(pRExC_state, CURLYX,ret, depth+1);
9658 Set_Node_Offset(ret, parse_start+1);
9659 Set_Node_Length(ret,
9660 op == '{' ? (RExC_parse - parse_start) : 1);
9662 if (!SIZE_ONLY && RExC_extralen)
9663 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9664 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9666 RExC_whilem_seen++, RExC_extralen += 3;
9667 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9676 ARG1_SET(ret, (U16)min);
9677 ARG2_SET(ret, (U16)max);
9689 #if 0 /* Now runtime fix should be reliable. */
9691 /* if this is reinstated, don't forget to put this back into perldiag:
9693 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9695 (F) The part of the regexp subject to either the * or + quantifier
9696 could match an empty string. The {#} shows in the regular
9697 expression about where the problem was discovered.
9701 if (!(flags&HASWIDTH) && op != '?')
9702 vFAIL("Regexp *+ operand could be empty");
9705 #ifdef RE_TRACK_PATTERN_OFFSETS
9706 parse_start = RExC_parse;
9708 nextchar(pRExC_state);
9710 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9712 if (op == '*' && (flags&SIMPLE)) {
9713 reginsert(pRExC_state, STAR, ret, depth+1);
9717 else if (op == '*') {
9721 else if (op == '+' && (flags&SIMPLE)) {
9722 reginsert(pRExC_state, PLUS, ret, depth+1);
9726 else if (op == '+') {
9730 else if (op == '?') {
9735 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9736 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
9737 ckWARN3reg(RExC_parse,
9738 "%.*s matches null string many times",
9739 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9741 (void)ReREFCNT_inc(RExC_rx_sv);
9744 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9745 nextchar(pRExC_state);
9746 reginsert(pRExC_state, MINMOD, ret, depth+1);
9747 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9749 #ifndef REG_ALLOW_MINMOD_SUSPEND
9752 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9754 nextchar(pRExC_state);
9755 ender = reg_node(pRExC_state, SUCCEED);
9756 REGTAIL(pRExC_state, ret, ender);
9757 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9759 ender = reg_node(pRExC_state, TAIL);
9760 REGTAIL(pRExC_state, ret, ender);
9764 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9766 vFAIL("Nested quantifiers");
9773 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
9774 const bool strict /* Apply stricter parsing rules? */
9778 /* This is expected to be called by a parser routine that has recognized '\N'
9779 and needs to handle the rest. RExC_parse is expected to point at the first
9780 char following the N at the time of the call. On successful return,
9781 RExC_parse has been updated to point to just after the sequence identified
9782 by this routine, and <*flagp> has been updated.
9784 The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9787 \N may begin either a named sequence, or if outside a character class, mean
9788 to match a non-newline. For non single-quoted regexes, the tokenizer has
9789 attempted to decide which, and in the case of a named sequence, converted it
9790 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9791 where c1... are the characters in the sequence. For single-quoted regexes,
9792 the tokenizer passes the \N sequence through unchanged; this code will not
9793 attempt to determine this nor expand those, instead raising a syntax error.
9794 The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9795 or there is no '}', it signals that this \N occurrence means to match a
9798 Only the \N{U+...} form should occur in a character class, for the same
9799 reason that '.' inside a character class means to just match a period: it
9800 just doesn't make sense.
9802 The function raises an error (via vFAIL), and doesn't return for various
9803 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
9804 success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
9805 RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
9806 only possible if node_p is non-NULL.
9809 If <valuep> is non-null, it means the caller can accept an input sequence
9810 consisting of a just a single code point; <*valuep> is set to that value
9811 if the input is such.
9813 If <node_p> is non-null it signifies that the caller can accept any other
9814 legal sequence (i.e., one that isn't just a single code point). <*node_p>
9816 1) \N means not-a-NL: points to a newly created REG_ANY node;
9817 2) \N{}: points to a new NOTHING node;
9818 3) otherwise: points to a new EXACT node containing the resolved
9820 Note that FALSE is returned for single code point sequences if <valuep> is
9824 char * endbrace; /* '}' following the name */
9826 char *endchar; /* Points to '.' or '}' ending cur char in the input
9828 bool has_multiple_chars; /* true if the input stream contains a sequence of
9829 more than one character */
9831 GET_RE_DEBUG_FLAGS_DECL;
9833 PERL_ARGS_ASSERT_GROK_BSLASH_N;
9837 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
9839 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9840 * modifier. The other meaning does not */
9841 p = (RExC_flags & RXf_PMf_EXTENDED)
9842 ? regwhite( pRExC_state, RExC_parse )
9845 /* Disambiguate between \N meaning a named character versus \N meaning
9846 * [^\n]. The former is assumed when it can't be the latter. */
9847 if (*p != '{' || regcurly(p, FALSE)) {
9850 /* no bare \N in a charclass */
9851 if (in_char_class) {
9852 vFAIL("\\N in a character class must be a named character: \\N{...}");
9856 nextchar(pRExC_state);
9857 *node_p = reg_node(pRExC_state, REG_ANY);
9858 *flagp |= HASWIDTH|SIMPLE;
9861 Set_Node_Length(*node_p, 1); /* MJD */
9865 /* Here, we have decided it should be a named character or sequence */
9867 /* The test above made sure that the next real character is a '{', but
9868 * under the /x modifier, it could be separated by space (or a comment and
9869 * \n) and this is not allowed (for consistency with \x{...} and the
9870 * tokenizer handling of \N{NAME}). */
9871 if (*RExC_parse != '{') {
9872 vFAIL("Missing braces on \\N{}");
9875 RExC_parse++; /* Skip past the '{' */
9877 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9878 || ! (endbrace == RExC_parse /* nothing between the {} */
9879 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9880 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9882 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9883 vFAIL("\\N{NAME} must be resolved by the lexer");
9886 if (endbrace == RExC_parse) { /* empty: \N{} */
9889 *node_p = reg_node(pRExC_state,NOTHING);
9891 else if (in_char_class) {
9892 if (SIZE_ONLY && in_char_class) {
9894 RExC_parse++; /* Position after the "}" */
9895 vFAIL("Zero length \\N{}");
9898 ckWARNreg(RExC_parse,
9899 "Ignoring zero length \\N{} in character class");
9907 nextchar(pRExC_state);
9911 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9912 RExC_parse += 2; /* Skip past the 'U+' */
9914 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9916 /* Code points are separated by dots. If none, there is only one code
9917 * point, and is terminated by the brace */
9918 has_multiple_chars = (endchar < endbrace);
9920 if (valuep && (! has_multiple_chars || in_char_class)) {
9921 /* We only pay attention to the first char of
9922 multichar strings being returned in char classes. I kinda wonder
9923 if this makes sense as it does change the behaviour
9924 from earlier versions, OTOH that behaviour was broken
9925 as well. XXX Solution is to recharacterize as
9926 [rest-of-class]|multi1|multi2... */
9928 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9929 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9930 | PERL_SCAN_DISALLOW_PREFIX
9931 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9933 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9935 /* The tokenizer should have guaranteed validity, but it's possible to
9936 * bypass it by using single quoting, so check */
9937 if (length_of_hex == 0
9938 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9940 RExC_parse += length_of_hex; /* Includes all the valid */
9941 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9942 ? UTF8SKIP(RExC_parse)
9944 /* Guard against malformed utf8 */
9945 if (RExC_parse >= endchar) {
9946 RExC_parse = endchar;
9948 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9951 if (in_char_class && has_multiple_chars) {
9953 RExC_parse = endbrace;
9954 vFAIL("\\N{} in character class restricted to one character");
9957 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9961 RExC_parse = endbrace + 1;
9963 else if (! node_p || ! has_multiple_chars) {
9965 /* Here, the input is legal, but not according to the caller's
9966 * options. We fail without advancing the parse, so that the
9967 * caller can try again */
9973 /* What is done here is to convert this to a sub-pattern of the form
9974 * (?:\x{char1}\x{char2}...)
9975 * and then call reg recursively. That way, it retains its atomicness,
9976 * while not having to worry about special handling that some code
9977 * points may have. toke.c has converted the original Unicode values
9978 * to native, so that we can just pass on the hex values unchanged. We
9979 * do have to set a flag to keep recoding from happening in the
9982 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
9984 char *orig_end = RExC_end;
9987 while (RExC_parse < endbrace) {
9989 /* Convert to notation the rest of the code understands */
9990 sv_catpv(substitute_parse, "\\x{");
9991 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
9992 sv_catpv(substitute_parse, "}");
9994 /* Point to the beginning of the next character in the sequence. */
9995 RExC_parse = endchar + 1;
9996 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9998 sv_catpv(substitute_parse, ")");
10000 RExC_parse = SvPV(substitute_parse, len);
10002 /* Don't allow empty number */
10004 vFAIL("Invalid hexadecimal number in \\N{U+...}");
10006 RExC_end = RExC_parse + len;
10008 /* The values are Unicode, and therefore not subject to recoding */
10009 RExC_override_recoding = 1;
10011 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
10012 if (flags & RESTART_UTF8) {
10013 *flagp = RESTART_UTF8;
10016 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X",
10019 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10021 RExC_parse = endbrace;
10022 RExC_end = orig_end;
10023 RExC_override_recoding = 0;
10025 nextchar(pRExC_state);
10035 * It returns the code point in utf8 for the value in *encp.
10036 * value: a code value in the source encoding
10037 * encp: a pointer to an Encode object
10039 * If the result from Encode is not a single character,
10040 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
10043 S_reg_recode(pTHX_ const char value, SV **encp)
10046 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
10047 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
10048 const STRLEN newlen = SvCUR(sv);
10049 UV uv = UNICODE_REPLACEMENT;
10051 PERL_ARGS_ASSERT_REG_RECODE;
10055 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
10058 if (!newlen || numlen != newlen) {
10059 uv = UNICODE_REPLACEMENT;
10065 PERL_STATIC_INLINE U8
10066 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
10070 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
10076 op = get_regex_charset(RExC_flags);
10077 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
10078 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
10079 been, so there is no hole */
10082 return op + EXACTF;
10085 PERL_STATIC_INLINE void
10086 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
10088 /* This knows the details about sizing an EXACTish node, setting flags for
10089 * it (by setting <*flagp>, and potentially populating it with a single
10092 * If <len> (the length in bytes) is non-zero, this function assumes that
10093 * the node has already been populated, and just does the sizing. In this
10094 * case <code_point> should be the final code point that has already been
10095 * placed into the node. This value will be ignored except that under some
10096 * circumstances <*flagp> is set based on it.
10098 * If <len> is zero, the function assumes that the node is to contain only
10099 * the single character given by <code_point> and calculates what <len>
10100 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
10101 * additionally will populate the node's STRING with <code_point>, if <len>
10102 * is 0. In both cases <*flagp> is appropriately set
10104 * It knows that under FOLD, UTF characters and the Latin Sharp S must be
10105 * folded (the latter only when the rules indicate it can match 'ss') */
10107 bool len_passed_in = cBOOL(len != 0);
10108 U8 character[UTF8_MAXBYTES_CASE+1];
10110 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
10112 if (! len_passed_in) {
10115 to_uni_fold(NATIVE_TO_UNI(code_point), character, &len);
10118 uvchr_to_utf8( character, code_point);
10119 len = UTF8SKIP(character);
10123 || code_point != LATIN_SMALL_LETTER_SHARP_S
10124 || ASCII_FOLD_RESTRICTED
10125 || ! AT_LEAST_UNI_SEMANTICS)
10127 *character = (U8) code_point;
10132 *(character + 1) = 's';
10138 RExC_size += STR_SZ(len);
10141 RExC_emit += STR_SZ(len);
10142 STR_LEN(node) = len;
10143 if (! len_passed_in) {
10144 Copy((char *) character, STRING(node), len, char);
10148 *flagp |= HASWIDTH;
10150 /* A single character node is SIMPLE, except for the special-cased SHARP S
10152 if ((len == 1 || (UTF && len == UNISKIP(code_point)))
10153 && (code_point != LATIN_SMALL_LETTER_SHARP_S
10154 || ! FOLD || ! DEPENDS_SEMANTICS))
10161 - regatom - the lowest level
10163 Try to identify anything special at the start of the pattern. If there
10164 is, then handle it as required. This may involve generating a single regop,
10165 such as for an assertion; or it may involve recursing, such as to
10166 handle a () structure.
10168 If the string doesn't start with something special then we gobble up
10169 as much literal text as we can.
10171 Once we have been able to handle whatever type of thing started the
10172 sequence, we return.
10174 Note: we have to be careful with escapes, as they can be both literal
10175 and special, and in the case of \10 and friends, context determines which.
10177 A summary of the code structure is:
10179 switch (first_byte) {
10180 cases for each special:
10181 handle this special;
10184 switch (2nd byte) {
10185 cases for each unambiguous special:
10186 handle this special;
10188 cases for each ambigous special/literal:
10190 if (special) handle here
10192 default: // unambiguously literal:
10195 default: // is a literal char
10198 create EXACTish node for literal;
10199 while (more input and node isn't full) {
10200 switch (input_byte) {
10201 cases for each special;
10202 make sure parse pointer is set so that the next call to
10203 regatom will see this special first
10204 goto loopdone; // EXACTish node terminated by prev. char
10206 append char to EXACTISH node;
10208 get next input byte;
10212 return the generated node;
10214 Specifically there are two separate switches for handling
10215 escape sequences, with the one for handling literal escapes requiring
10216 a dummy entry for all of the special escapes that are actually handled
10219 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
10221 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10223 Otherwise does not return NULL.
10227 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10230 regnode *ret = NULL;
10232 char *parse_start = RExC_parse;
10236 GET_RE_DEBUG_FLAGS_DECL;
10238 *flagp = WORST; /* Tentatively. */
10240 DEBUG_PARSE("atom");
10242 PERL_ARGS_ASSERT_REGATOM;
10245 switch ((U8)*RExC_parse) {
10247 RExC_seen_zerolen++;
10248 nextchar(pRExC_state);
10249 if (RExC_flags & RXf_PMf_MULTILINE)
10250 ret = reg_node(pRExC_state, MBOL);
10251 else if (RExC_flags & RXf_PMf_SINGLELINE)
10252 ret = reg_node(pRExC_state, SBOL);
10254 ret = reg_node(pRExC_state, BOL);
10255 Set_Node_Length(ret, 1); /* MJD */
10258 nextchar(pRExC_state);
10260 RExC_seen_zerolen++;
10261 if (RExC_flags & RXf_PMf_MULTILINE)
10262 ret = reg_node(pRExC_state, MEOL);
10263 else if (RExC_flags & RXf_PMf_SINGLELINE)
10264 ret = reg_node(pRExC_state, SEOL);
10266 ret = reg_node(pRExC_state, EOL);
10267 Set_Node_Length(ret, 1); /* MJD */
10270 nextchar(pRExC_state);
10271 if (RExC_flags & RXf_PMf_SINGLELINE)
10272 ret = reg_node(pRExC_state, SANY);
10274 ret = reg_node(pRExC_state, REG_ANY);
10275 *flagp |= HASWIDTH|SIMPLE;
10277 Set_Node_Length(ret, 1); /* MJD */
10281 char * const oregcomp_parse = ++RExC_parse;
10282 ret = regclass(pRExC_state, flagp,depth+1,
10283 FALSE, /* means parse the whole char class */
10284 TRUE, /* allow multi-char folds */
10285 FALSE, /* don't silence non-portable warnings. */
10287 if (*RExC_parse != ']') {
10288 RExC_parse = oregcomp_parse;
10289 vFAIL("Unmatched [");
10292 if (*flagp & RESTART_UTF8)
10294 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10297 nextchar(pRExC_state);
10298 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10302 nextchar(pRExC_state);
10303 ret = reg(pRExC_state, 1, &flags,depth+1);
10305 if (flags & TRYAGAIN) {
10306 if (RExC_parse == RExC_end) {
10307 /* Make parent create an empty node if needed. */
10308 *flagp |= TRYAGAIN;
10313 if (flags & RESTART_UTF8) {
10314 *flagp = RESTART_UTF8;
10317 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags);
10319 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10323 if (flags & TRYAGAIN) {
10324 *flagp |= TRYAGAIN;
10327 vFAIL("Internal urp");
10328 /* Supposed to be caught earlier. */
10331 if (!regcurly(RExC_parse, FALSE)) {
10340 vFAIL("Quantifier follows nothing");
10345 This switch handles escape sequences that resolve to some kind
10346 of special regop and not to literal text. Escape sequnces that
10347 resolve to literal text are handled below in the switch marked
10350 Every entry in this switch *must* have a corresponding entry
10351 in the literal escape switch. However, the opposite is not
10352 required, as the default for this switch is to jump to the
10353 literal text handling code.
10355 switch ((U8)*++RExC_parse) {
10357 /* Special Escapes */
10359 RExC_seen_zerolen++;
10360 ret = reg_node(pRExC_state, SBOL);
10362 goto finish_meta_pat;
10364 ret = reg_node(pRExC_state, GPOS);
10365 RExC_seen |= REG_SEEN_GPOS;
10367 goto finish_meta_pat;
10369 RExC_seen_zerolen++;
10370 ret = reg_node(pRExC_state, KEEPS);
10372 /* XXX:dmq : disabling in-place substitution seems to
10373 * be necessary here to avoid cases of memory corruption, as
10374 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10376 RExC_seen |= REG_SEEN_LOOKBEHIND;
10377 goto finish_meta_pat;
10379 ret = reg_node(pRExC_state, SEOL);
10381 RExC_seen_zerolen++; /* Do not optimize RE away */
10382 goto finish_meta_pat;
10384 ret = reg_node(pRExC_state, EOS);
10386 RExC_seen_zerolen++; /* Do not optimize RE away */
10387 goto finish_meta_pat;
10389 ret = reg_node(pRExC_state, CANY);
10390 RExC_seen |= REG_SEEN_CANY;
10391 *flagp |= HASWIDTH|SIMPLE;
10392 goto finish_meta_pat;
10394 ret = reg_node(pRExC_state, CLUMP);
10395 *flagp |= HASWIDTH;
10396 goto finish_meta_pat;
10402 arg = ANYOF_WORDCHAR;
10406 RExC_seen_zerolen++;
10407 RExC_seen |= REG_SEEN_LOOKBEHIND;
10408 op = BOUND + get_regex_charset(RExC_flags);
10409 if (op > BOUNDA) { /* /aa is same as /a */
10412 ret = reg_node(pRExC_state, op);
10413 FLAGS(ret) = get_regex_charset(RExC_flags);
10415 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10416 ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead");
10418 goto finish_meta_pat;
10420 RExC_seen_zerolen++;
10421 RExC_seen |= REG_SEEN_LOOKBEHIND;
10422 op = NBOUND + get_regex_charset(RExC_flags);
10423 if (op > NBOUNDA) { /* /aa is same as /a */
10426 ret = reg_node(pRExC_state, op);
10427 FLAGS(ret) = get_regex_charset(RExC_flags);
10429 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10430 ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead");
10432 goto finish_meta_pat;
10442 ret = reg_node(pRExC_state, LNBREAK);
10443 *flagp |= HASWIDTH|SIMPLE;
10444 goto finish_meta_pat;
10452 goto join_posix_op_known;
10458 arg = ANYOF_VERTWS;
10460 goto join_posix_op_known;
10470 op = POSIXD + get_regex_charset(RExC_flags);
10471 if (op > POSIXA) { /* /aa is same as /a */
10475 join_posix_op_known:
10478 op += NPOSIXD - POSIXD;
10481 ret = reg_node(pRExC_state, op);
10483 FLAGS(ret) = namedclass_to_classnum(arg);
10486 *flagp |= HASWIDTH|SIMPLE;
10490 nextchar(pRExC_state);
10491 Set_Node_Length(ret, 2); /* MJD */
10497 char* parse_start = RExC_parse - 2;
10502 ret = regclass(pRExC_state, flagp,depth+1,
10503 TRUE, /* means just parse this element */
10504 FALSE, /* don't allow multi-char folds */
10505 FALSE, /* don't silence non-portable warnings.
10506 It would be a bug if these returned
10509 /* regclass() can only return RESTART_UTF8 if multi-char folds
10512 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10517 Set_Node_Offset(ret, parse_start + 2);
10518 Set_Node_Cur_Length(ret);
10519 nextchar(pRExC_state);
10523 /* Handle \N and \N{NAME} with multiple code points here and not
10524 * below because it can be multicharacter. join_exact() will join
10525 * them up later on. Also this makes sure that things like
10526 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10527 * The options to the grok function call causes it to fail if the
10528 * sequence is just a single code point. We then go treat it as
10529 * just another character in the current EXACT node, and hence it
10530 * gets uniform treatment with all the other characters. The
10531 * special treatment for quantifiers is not needed for such single
10532 * character sequences */
10534 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
10535 FALSE /* not strict */ )) {
10536 if (*flagp & RESTART_UTF8)
10542 case 'k': /* Handle \k<NAME> and \k'NAME' */
10545 char ch= RExC_parse[1];
10546 if (ch != '<' && ch != '\'' && ch != '{') {
10548 vFAIL2("Sequence %.2s... not terminated",parse_start);
10550 /* this pretty much dupes the code for (?P=...) in reg(), if
10551 you change this make sure you change that */
10552 char* name_start = (RExC_parse += 2);
10554 SV *sv_dat = reg_scan_name(pRExC_state,
10555 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10556 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10557 if (RExC_parse == name_start || *RExC_parse != ch)
10558 vFAIL2("Sequence %.3s... not terminated",parse_start);
10561 num = add_data( pRExC_state, 1, "S" );
10562 RExC_rxi->data->data[num]=(void*)sv_dat;
10563 SvREFCNT_inc_simple_void(sv_dat);
10567 ret = reganode(pRExC_state,
10570 : (ASCII_FOLD_RESTRICTED)
10572 : (AT_LEAST_UNI_SEMANTICS)
10578 *flagp |= HASWIDTH;
10580 /* override incorrect value set in reganode MJD */
10581 Set_Node_Offset(ret, parse_start+1);
10582 Set_Node_Cur_Length(ret); /* MJD */
10583 nextchar(pRExC_state);
10589 case '1': case '2': case '3': case '4':
10590 case '5': case '6': case '7': case '8': case '9':
10593 bool isg = *RExC_parse == 'g';
10598 if (*RExC_parse == '{') {
10602 if (*RExC_parse == '-') {
10606 if (hasbrace && !isDIGIT(*RExC_parse)) {
10607 if (isrel) RExC_parse--;
10609 goto parse_named_seq;
10611 num = atoi(RExC_parse);
10612 if (isg && num == 0)
10613 vFAIL("Reference to invalid group 0");
10615 num = RExC_npar - num;
10617 vFAIL("Reference to nonexistent or unclosed group");
10619 if (!isg && num > 9 && num >= RExC_npar)
10620 /* Probably a character specified in octal, e.g. \35 */
10623 char * const parse_start = RExC_parse - 1; /* MJD */
10624 while (isDIGIT(*RExC_parse))
10626 if (parse_start == RExC_parse - 1)
10627 vFAIL("Unterminated \\g... pattern");
10629 if (*RExC_parse != '}')
10630 vFAIL("Unterminated \\g{...} pattern");
10634 if (num > (I32)RExC_rx->nparens)
10635 vFAIL("Reference to nonexistent group");
10638 ret = reganode(pRExC_state,
10641 : (ASCII_FOLD_RESTRICTED)
10643 : (AT_LEAST_UNI_SEMANTICS)
10649 *flagp |= HASWIDTH;
10651 /* override incorrect value set in reganode MJD */
10652 Set_Node_Offset(ret, parse_start+1);
10653 Set_Node_Cur_Length(ret); /* MJD */
10655 nextchar(pRExC_state);
10660 if (RExC_parse >= RExC_end)
10661 FAIL("Trailing \\");
10664 /* Do not generate "unrecognized" warnings here, we fall
10665 back into the quick-grab loop below */
10672 if (RExC_flags & RXf_PMf_EXTENDED) {
10673 if ( reg_skipcomment( pRExC_state ) )
10680 parse_start = RExC_parse - 1;
10689 #define MAX_NODE_STRING_SIZE 127
10690 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10692 U8 upper_parse = MAX_NODE_STRING_SIZE;
10695 bool next_is_quantifier;
10696 char * oldp = NULL;
10698 /* If a folding node contains only code points that don't
10699 * participate in folds, it can be changed into an EXACT node,
10700 * which allows the optimizer more things to look for */
10704 node_type = compute_EXACTish(pRExC_state);
10705 ret = reg_node(pRExC_state, node_type);
10707 /* In pass1, folded, we use a temporary buffer instead of the
10708 * actual node, as the node doesn't exist yet */
10709 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10715 /* We do the EXACTFish to EXACT node only if folding, and not if in
10716 * locale, as whether a character folds or not isn't known until
10718 maybe_exact = FOLD && ! LOC;
10720 /* XXX The node can hold up to 255 bytes, yet this only goes to
10721 * 127. I (khw) do not know why. Keeping it somewhat less than
10722 * 255 allows us to not have to worry about overflow due to
10723 * converting to utf8 and fold expansion, but that value is
10724 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10725 * split up by this limit into a single one using the real max of
10726 * 255. Even at 127, this breaks under rare circumstances. If
10727 * folding, we do not want to split a node at a character that is a
10728 * non-final in a multi-char fold, as an input string could just
10729 * happen to want to match across the node boundary. The join
10730 * would solve that problem if the join actually happens. But a
10731 * series of more than two nodes in a row each of 127 would cause
10732 * the first join to succeed to get to 254, but then there wouldn't
10733 * be room for the next one, which could at be one of those split
10734 * multi-char folds. I don't know of any fool-proof solution. One
10735 * could back off to end with only a code point that isn't such a
10736 * non-final, but it is possible for there not to be any in the
10738 for (p = RExC_parse - 1;
10739 len < upper_parse && p < RExC_end;
10744 if (RExC_flags & RXf_PMf_EXTENDED)
10745 p = regwhite( pRExC_state, p );
10756 /* Literal Escapes Switch
10758 This switch is meant to handle escape sequences that
10759 resolve to a literal character.
10761 Every escape sequence that represents something
10762 else, like an assertion or a char class, is handled
10763 in the switch marked 'Special Escapes' above in this
10764 routine, but also has an entry here as anything that
10765 isn't explicitly mentioned here will be treated as
10766 an unescaped equivalent literal.
10769 switch ((U8)*++p) {
10770 /* These are all the special escapes. */
10771 case 'A': /* Start assertion */
10772 case 'b': case 'B': /* Word-boundary assertion*/
10773 case 'C': /* Single char !DANGEROUS! */
10774 case 'd': case 'D': /* digit class */
10775 case 'g': case 'G': /* generic-backref, pos assertion */
10776 case 'h': case 'H': /* HORIZWS */
10777 case 'k': case 'K': /* named backref, keep marker */
10778 case 'p': case 'P': /* Unicode property */
10779 case 'R': /* LNBREAK */
10780 case 's': case 'S': /* space class */
10781 case 'v': case 'V': /* VERTWS */
10782 case 'w': case 'W': /* word class */
10783 case 'X': /* eXtended Unicode "combining character sequence" */
10784 case 'z': case 'Z': /* End of line/string assertion */
10788 /* Anything after here is an escape that resolves to a
10789 literal. (Except digits, which may or may not)
10795 case 'N': /* Handle a single-code point named character. */
10796 /* The options cause it to fail if a multiple code
10797 * point sequence. Handle those in the switch() above
10799 RExC_parse = p + 1;
10800 if (! grok_bslash_N(pRExC_state, NULL, &ender,
10801 flagp, depth, FALSE,
10802 FALSE /* not strict */ ))
10804 if (*flagp & RESTART_UTF8)
10805 FAIL("panic: grok_bslash_N set RESTART_UTF8");
10806 RExC_parse = p = oldp;
10810 if (ender > 0xff) {
10827 ender = ASCII_TO_NATIVE('\033');
10831 ender = ASCII_TO_NATIVE('\007');
10837 const char* error_msg;
10839 bool valid = grok_bslash_o(&p,
10842 TRUE, /* out warnings */
10843 FALSE, /* not strict */
10844 TRUE, /* Output warnings
10849 RExC_parse = p; /* going to die anyway; point
10850 to exact spot of failure */
10854 if (PL_encoding && ender < 0x100) {
10855 goto recode_encoding;
10857 if (ender > 0xff) {
10864 UV result = UV_MAX; /* initialize to erroneous
10866 const char* error_msg;
10868 bool valid = grok_bslash_x(&p,
10871 TRUE, /* out warnings */
10872 FALSE, /* not strict */
10873 TRUE, /* Output warnings
10878 RExC_parse = p; /* going to die anyway; point
10879 to exact spot of failure */
10884 if (PL_encoding && ender < 0x100) {
10885 goto recode_encoding;
10887 if (ender > 0xff) {
10894 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10896 case '0': case '1': case '2': case '3':case '4':
10897 case '5': case '6': case '7':
10899 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10901 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10903 ender = grok_oct(p, &numlen, &flags, NULL);
10904 if (ender > 0xff) {
10908 if (SIZE_ONLY /* like \08, \178 */
10911 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
10913 reg_warn_non_literal_string(
10915 form_short_octal_warning(p, numlen));
10918 else { /* Not to be treated as an octal constant, go
10923 if (PL_encoding && ender < 0x100)
10924 goto recode_encoding;
10927 if (! RExC_override_recoding) {
10928 SV* enc = PL_encoding;
10929 ender = reg_recode((const char)(U8)ender, &enc);
10930 if (!enc && SIZE_ONLY)
10931 ckWARNreg(p, "Invalid escape in the specified encoding");
10937 FAIL("Trailing \\");
10940 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
10941 /* Include any { following the alpha to emphasize
10942 * that it could be part of an escape at some point
10944 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
10945 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
10947 goto normal_default;
10948 } /* End of switch on '\' */
10950 default: /* A literal character */
10953 && RExC_flags & RXf_PMf_EXTENDED
10954 && ckWARN(WARN_DEPRECATED)
10955 && is_PATWS_non_low(p, UTF))
10957 vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
10958 "Escape literal pattern white space under /x");
10962 if (UTF8_IS_START(*p) && UTF) {
10964 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
10965 &numlen, UTF8_ALLOW_DEFAULT);
10971 } /* End of switch on the literal */
10973 /* Here, have looked at the literal character and <ender>
10974 * contains its ordinal, <p> points to the character after it
10977 if ( RExC_flags & RXf_PMf_EXTENDED)
10978 p = regwhite( pRExC_state, p );
10980 /* If the next thing is a quantifier, it applies to this
10981 * character only, which means that this character has to be in
10982 * its own node and can't just be appended to the string in an
10983 * existing node, so if there are already other characters in
10984 * the node, close the node with just them, and set up to do
10985 * this character again next time through, when it will be the
10986 * only thing in its new node */
10987 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
10995 /* See comments for join_exact() as to why we fold
10996 * this non-UTF at compile time */
10997 || (node_type == EXACTFU
10998 && ender == LATIN_SMALL_LETTER_SHARP_S))
11002 /* Prime the casefolded buffer. Locale rules, which
11003 * apply only to code points < 256, aren't known until
11004 * execution, so for them, just output the original
11005 * character using utf8. If we start to fold non-UTF
11006 * patterns, be sure to update join_exact() */
11007 if (LOC && ender < 256) {
11008 if (UNI_IS_INVARIANT(ender)) {
11012 *s = UTF8_TWO_BYTE_HI(ender);
11013 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
11018 UV folded = _to_uni_fold_flags(
11023 | ((LOC) ? FOLD_FLAGS_LOCALE
11024 : (ASCII_FOLD_RESTRICTED)
11025 ? FOLD_FLAGS_NOMIX_ASCII
11029 /* If this node only contains non-folding code
11030 * points so far, see if this new one is also
11033 if (folded != ender) {
11034 maybe_exact = FALSE;
11037 /* Here the fold is the original; we have
11038 * to check further to see if anything
11040 if (! PL_utf8_foldable) {
11041 SV* swash = swash_init("utf8",
11043 &PL_sv_undef, 1, 0);
11045 _get_swash_invlist(swash);
11046 SvREFCNT_dec_NN(swash);
11048 if (_invlist_contains_cp(PL_utf8_foldable,
11051 maybe_exact = FALSE;
11059 /* The loop increments <len> each time, as all but this
11060 * path (and the one just below for UTF) through it add
11061 * a single byte to the EXACTish node. But this one
11062 * has changed len to be the correct final value, so
11063 * subtract one to cancel out the increment that
11065 len += foldlen - 1;
11068 *(s++) = (char) ender;
11069 maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender);
11073 const STRLEN unilen = reguni(pRExC_state, ender, s);
11079 /* See comment just above for - 1 */
11083 REGC((char)ender, s++);
11086 if (next_is_quantifier) {
11088 /* Here, the next input is a quantifier, and to get here,
11089 * the current character is the only one in the node.
11090 * Also, here <len> doesn't include the final byte for this
11096 } /* End of loop through literal characters */
11098 /* Here we have either exhausted the input or ran out of room in
11099 * the node. (If we encountered a character that can't be in the
11100 * node, transfer is made directly to <loopdone>, and so we
11101 * wouldn't have fallen off the end of the loop.) In the latter
11102 * case, we artificially have to split the node into two, because
11103 * we just don't have enough space to hold everything. This
11104 * creates a problem if the final character participates in a
11105 * multi-character fold in the non-final position, as a match that
11106 * should have occurred won't, due to the way nodes are matched,
11107 * and our artificial boundary. So back off until we find a non-
11108 * problematic character -- one that isn't at the beginning or
11109 * middle of such a fold. (Either it doesn't participate in any
11110 * folds, or appears only in the final position of all the folds it
11111 * does participate in.) A better solution with far fewer false
11112 * positives, and that would fill the nodes more completely, would
11113 * be to actually have available all the multi-character folds to
11114 * test against, and to back-off only far enough to be sure that
11115 * this node isn't ending with a partial one. <upper_parse> is set
11116 * further below (if we need to reparse the node) to include just
11117 * up through that final non-problematic character that this code
11118 * identifies, so when it is set to less than the full node, we can
11119 * skip the rest of this */
11120 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
11122 const STRLEN full_len = len;
11124 assert(len >= MAX_NODE_STRING_SIZE);
11126 /* Here, <s> points to the final byte of the final character.
11127 * Look backwards through the string until find a non-
11128 * problematic character */
11132 /* These two have no multi-char folds to non-UTF characters
11134 if (ASCII_FOLD_RESTRICTED || LOC) {
11138 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
11142 if (! PL_NonL1NonFinalFold) {
11143 PL_NonL1NonFinalFold = _new_invlist_C_array(
11144 NonL1_Perl_Non_Final_Folds_invlist);
11147 /* Point to the first byte of the final character */
11148 s = (char *) utf8_hop((U8 *) s, -1);
11150 while (s >= s0) { /* Search backwards until find
11151 non-problematic char */
11152 if (UTF8_IS_INVARIANT(*s)) {
11154 /* There are no ascii characters that participate
11155 * in multi-char folds under /aa. In EBCDIC, the
11156 * non-ascii invariants are all control characters,
11157 * so don't ever participate in any folds. */
11158 if (ASCII_FOLD_RESTRICTED
11159 || ! IS_NON_FINAL_FOLD(*s))
11164 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
11166 /* No Latin1 characters participate in multi-char
11167 * folds under /l */
11169 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
11175 else if (! _invlist_contains_cp(
11176 PL_NonL1NonFinalFold,
11177 valid_utf8_to_uvchr((U8 *) s, NULL)))
11182 /* Here, the current character is problematic in that
11183 * it does occur in the non-final position of some
11184 * fold, so try the character before it, but have to
11185 * special case the very first byte in the string, so
11186 * we don't read outside the string */
11187 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
11188 } /* End of loop backwards through the string */
11190 /* If there were only problematic characters in the string,
11191 * <s> will point to before s0, in which case the length
11192 * should be 0, otherwise include the length of the
11193 * non-problematic character just found */
11194 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
11197 /* Here, have found the final character, if any, that is
11198 * non-problematic as far as ending the node without splitting
11199 * it across a potential multi-char fold. <len> contains the
11200 * number of bytes in the node up-to and including that
11201 * character, or is 0 if there is no such character, meaning
11202 * the whole node contains only problematic characters. In
11203 * this case, give up and just take the node as-is. We can't
11209 /* Here, the node does contain some characters that aren't
11210 * problematic. If one such is the final character in the
11211 * node, we are done */
11212 if (len == full_len) {
11215 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
11217 /* If the final character is problematic, but the
11218 * penultimate is not, back-off that last character to
11219 * later start a new node with it */
11224 /* Here, the final non-problematic character is earlier
11225 * in the input than the penultimate character. What we do
11226 * is reparse from the beginning, going up only as far as
11227 * this final ok one, thus guaranteeing that the node ends
11228 * in an acceptable character. The reason we reparse is
11229 * that we know how far in the character is, but we don't
11230 * know how to correlate its position with the input parse.
11231 * An alternate implementation would be to build that
11232 * correlation as we go along during the original parse,
11233 * but that would entail extra work for every node, whereas
11234 * this code gets executed only when the string is too
11235 * large for the node, and the final two characters are
11236 * problematic, an infrequent occurrence. Yet another
11237 * possible strategy would be to save the tail of the
11238 * string, and the next time regatom is called, initialize
11239 * with that. The problem with this is that unless you
11240 * back off one more character, you won't be guaranteed
11241 * regatom will get called again, unless regbranch,
11242 * regpiece ... are also changed. If you do back off that
11243 * extra character, so that there is input guaranteed to
11244 * force calling regatom, you can't handle the case where
11245 * just the first character in the node is acceptable. I
11246 * (khw) decided to try this method which doesn't have that
11247 * pitfall; if performance issues are found, we can do a
11248 * combination of the current approach plus that one */
11254 } /* End of verifying node ends with an appropriate char */
11256 loopdone: /* Jumped to when encounters something that shouldn't be in
11259 /* If 'maybe_exact' is still set here, means there are no
11260 * code points in the node that participate in folds */
11261 if (FOLD && maybe_exact) {
11265 /* I (khw) don't know if you can get here with zero length, but the
11266 * old code handled this situation by creating a zero-length EXACT
11267 * node. Might as well be NOTHING instead */
11272 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11275 RExC_parse = p - 1;
11276 Set_Node_Cur_Length(ret); /* MJD */
11277 nextchar(pRExC_state);
11279 /* len is STRLEN which is unsigned, need to copy to signed */
11282 vFAIL("Internal disaster");
11285 } /* End of label 'defchar:' */
11287 } /* End of giant switch on input character */
11293 S_regwhite( RExC_state_t *pRExC_state, char *p )
11295 const char *e = RExC_end;
11297 PERL_ARGS_ASSERT_REGWHITE;
11302 else if (*p == '#') {
11305 if (*p++ == '\n') {
11311 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11320 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
11322 /* Returns the next non-pattern-white space, non-comment character (the
11323 * latter only if 'recognize_comment is true) in the string p, which is
11324 * ended by RExC_end. If there is no line break ending a comment,
11325 * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */
11326 const char *e = RExC_end;
11328 PERL_ARGS_ASSERT_REGPATWS;
11332 if ((len = is_PATWS_safe(p, e, UTF))) {
11335 else if (recognize_comment && *p == '#') {
11339 if (is_LNBREAK_safe(p, e, UTF)) {
11345 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11353 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11354 Character classes ([:foo:]) can also be negated ([:^foo:]).
11355 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11356 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11357 but trigger failures because they are currently unimplemented. */
11359 #define POSIXCC_DONE(c) ((c) == ':')
11360 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11361 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11363 PERL_STATIC_INLINE I32
11364 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
11367 I32 namedclass = OOB_NAMEDCLASS;
11369 PERL_ARGS_ASSERT_REGPPOSIXCC;
11371 if (value == '[' && RExC_parse + 1 < RExC_end &&
11372 /* I smell either [: or [= or [. -- POSIX has been here, right? */
11373 POSIXCC(UCHARAT(RExC_parse)))
11375 const char c = UCHARAT(RExC_parse);
11376 char* const s = RExC_parse++;
11378 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11380 if (RExC_parse == RExC_end) {
11383 /* Try to give a better location for the error (than the end of
11384 * the string) by looking for the matching ']' */
11386 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11389 vFAIL2("Unmatched '%c' in POSIX class", c);
11391 /* Grandfather lone [:, [=, [. */
11395 const char* const t = RExC_parse++; /* skip over the c */
11398 if (UCHARAT(RExC_parse) == ']') {
11399 const char *posixcc = s + 1;
11400 RExC_parse++; /* skip over the ending ] */
11403 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11404 const I32 skip = t - posixcc;
11406 /* Initially switch on the length of the name. */
11409 if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
11410 this is the Perl \w
11412 namedclass = ANYOF_WORDCHAR;
11415 /* Names all of length 5. */
11416 /* alnum alpha ascii blank cntrl digit graph lower
11417 print punct space upper */
11418 /* Offset 4 gives the best switch position. */
11419 switch (posixcc[4]) {
11421 if (memEQ(posixcc, "alph", 4)) /* alpha */
11422 namedclass = ANYOF_ALPHA;
11425 if (memEQ(posixcc, "spac", 4)) /* space */
11426 namedclass = ANYOF_PSXSPC;
11429 if (memEQ(posixcc, "grap", 4)) /* graph */
11430 namedclass = ANYOF_GRAPH;
11433 if (memEQ(posixcc, "asci", 4)) /* ascii */
11434 namedclass = ANYOF_ASCII;
11437 if (memEQ(posixcc, "blan", 4)) /* blank */
11438 namedclass = ANYOF_BLANK;
11441 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11442 namedclass = ANYOF_CNTRL;
11445 if (memEQ(posixcc, "alnu", 4)) /* alnum */
11446 namedclass = ANYOF_ALPHANUMERIC;
11449 if (memEQ(posixcc, "lowe", 4)) /* lower */
11450 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
11451 else if (memEQ(posixcc, "uppe", 4)) /* upper */
11452 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
11455 if (memEQ(posixcc, "digi", 4)) /* digit */
11456 namedclass = ANYOF_DIGIT;
11457 else if (memEQ(posixcc, "prin", 4)) /* print */
11458 namedclass = ANYOF_PRINT;
11459 else if (memEQ(posixcc, "punc", 4)) /* punct */
11460 namedclass = ANYOF_PUNCT;
11465 if (memEQ(posixcc, "xdigit", 6))
11466 namedclass = ANYOF_XDIGIT;
11470 if (namedclass == OOB_NAMEDCLASS)
11471 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11474 /* The #defines are structured so each complement is +1 to
11475 * the normal one */
11479 assert (posixcc[skip] == ':');
11480 assert (posixcc[skip+1] == ']');
11481 } else if (!SIZE_ONLY) {
11482 /* [[=foo=]] and [[.foo.]] are still future. */
11484 /* adjust RExC_parse so the warning shows after
11485 the class closes */
11486 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11488 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11491 /* Maternal grandfather:
11492 * "[:" ending in ":" but not in ":]" */
11494 vFAIL("Unmatched '[' in POSIX class");
11497 /* Grandfather lone [:, [=, [. */
11507 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
11509 /* This applies some heuristics at the current parse position (which should
11510 * be at a '[') to see if what follows might be intended to be a [:posix:]
11511 * class. It returns true if it really is a posix class, of course, but it
11512 * also can return true if it thinks that what was intended was a posix
11513 * class that didn't quite make it.
11515 * It will return true for
11517 * [:alphanumerics] (as long as the ] isn't followed immediately by a
11518 * ')' indicating the end of the (?[
11519 * [:any garbage including %^&$ punctuation:]
11521 * This is designed to be called only from S_handle_regex_sets; it could be
11522 * easily adapted to be called from the spot at the beginning of regclass()
11523 * that checks to see in a normal bracketed class if the surrounding []
11524 * have been omitted ([:word:] instead of [[:word:]]). But doing so would
11525 * change long-standing behavior, so I (khw) didn't do that */
11526 char* p = RExC_parse + 1;
11527 char first_char = *p;
11529 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
11531 assert(*(p - 1) == '[');
11533 if (! POSIXCC(first_char)) {
11538 while (p < RExC_end && isWORDCHAR(*p)) p++;
11540 if (p >= RExC_end) {
11544 if (p - RExC_parse > 2 /* Got at least 1 word character */
11545 && (*p == first_char
11546 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
11551 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
11554 && p - RExC_parse > 2 /* [:] evaluates to colon;
11555 [::] is a bad posix class. */
11556 && first_char == *(p - 1));
11560 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth,
11561 char * const oregcomp_parse)
11563 /* Handle the (?[...]) construct to do set operations */
11566 UV start, end; /* End points of code point ranges */
11568 char *save_end, *save_parse;
11573 const bool save_fold = FOLD;
11575 GET_RE_DEBUG_FLAGS_DECL;
11577 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
11580 vFAIL("(?[...]) not valid in locale");
11582 RExC_uni_semantics = 1;
11584 /* This will return only an ANYOF regnode, or (unlikely) something smaller
11585 * (such as EXACT). Thus we can skip most everything if just sizing. We
11586 * call regclass to handle '[]' so as to not have to reinvent its parsing
11587 * rules here (throwing away the size it computes each time). And, we exit
11588 * upon an unescaped ']' that isn't one ending a regclass. To do both
11589 * these things, we need to realize that something preceded by a backslash
11590 * is escaped, so we have to keep track of backslashes */
11593 Perl_ck_warner_d(aTHX_
11594 packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
11595 "The regex_sets feature is experimental" REPORT_LOCATION,
11596 (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse);
11598 while (RExC_parse < RExC_end) {
11599 SV* current = NULL;
11600 RExC_parse = regpatws(pRExC_state, RExC_parse,
11601 TRUE); /* means recognize comments */
11602 switch (*RExC_parse) {
11606 /* Skip the next byte (which could cause us to end up in
11607 * the middle of a UTF-8 character, but since none of those
11608 * are confusable with anything we currently handle in this
11609 * switch (invariants all), it's safe. We'll just hit the
11610 * default: case next time and keep on incrementing until
11611 * we find one of the invariants we do handle. */
11616 /* If this looks like it is a [:posix:] class, leave the
11617 * parse pointer at the '[' to fool regclass() into
11618 * thinking it is part of a '[[:posix:]]'. That function
11619 * will use strict checking to force a syntax error if it
11620 * doesn't work out to a legitimate class */
11621 bool is_posix_class
11622 = could_it_be_a_POSIX_class(pRExC_state);
11623 if (! is_posix_class) {
11627 /* regclass() can only return RESTART_UTF8 if multi-char
11628 folds are allowed. */
11629 if (!regclass(pRExC_state, flagp,depth+1,
11630 is_posix_class, /* parse the whole char
11631 class only if not a
11633 FALSE, /* don't allow multi-char folds */
11634 TRUE, /* silence non-portable warnings. */
11636 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11639 /* function call leaves parse pointing to the ']', except
11640 * if we faked it */
11641 if (is_posix_class) {
11645 SvREFCNT_dec(current); /* In case it returned something */
11651 if (RExC_parse < RExC_end
11652 && *RExC_parse == ')')
11654 node = reganode(pRExC_state, ANYOF, 0);
11655 RExC_size += ANYOF_SKIP;
11656 nextchar(pRExC_state);
11657 Set_Node_Length(node,
11658 RExC_parse - oregcomp_parse + 1); /* MJD */
11667 FAIL("Syntax error in (?[...])");
11670 /* Pass 2 only after this. Everything in this construct is a
11671 * metacharacter. Operands begin with either a '\' (for an escape
11672 * sequence), or a '[' for a bracketed character class. Any other
11673 * character should be an operator, or parenthesis for grouping. Both
11674 * types of operands are handled by calling regclass() to parse them. It
11675 * is called with a parameter to indicate to return the computed inversion
11676 * list. The parsing here is implemented via a stack. Each entry on the
11677 * stack is a single character representing one of the operators, or the
11678 * '('; or else a pointer to an operand inversion list. */
11680 #define IS_OPERAND(a) (! SvIOK(a))
11682 /* The stack starts empty. It is a syntax error if the first thing parsed
11683 * is a binary operator; everything else is pushed on the stack. When an
11684 * operand is parsed, the top of the stack is examined. If it is a binary
11685 * operator, the item before it should be an operand, and both are replaced
11686 * by the result of doing that operation on the new operand and the one on
11687 * the stack. Thus a sequence of binary operands is reduced to a single
11688 * one before the next one is parsed.
11690 * A unary operator may immediately follow a binary in the input, for
11693 * When an operand is parsed and the top of the stack is a unary operator,
11694 * the operation is performed, and then the stack is rechecked to see if
11695 * this new operand is part of a binary operation; if so, it is handled as
11698 * A '(' is simply pushed on the stack; it is valid only if the stack is
11699 * empty, or the top element of the stack is an operator or another '('
11700 * (for which the parenthesized expression will become an operand). By the
11701 * time the corresponding ')' is parsed everything in between should have
11702 * been parsed and evaluated to a single operand (or else is a syntax
11703 * error), and is handled as a regular operand */
11707 while (RExC_parse < RExC_end) {
11708 I32 top_index = av_tindex(stack);
11710 SV* current = NULL;
11712 /* Skip white space */
11713 RExC_parse = regpatws(pRExC_state, RExC_parse,
11714 TRUE); /* means recognize comments */
11715 if (RExC_parse >= RExC_end) {
11716 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
11718 if ((curchar = UCHARAT(RExC_parse)) == ']') {
11725 if (av_tindex(stack) >= 0 /* This makes sure that we can
11726 safely subtract 1 from
11727 RExC_parse in the next clause.
11728 If we have something on the
11729 stack, we have parsed something
11731 && UCHARAT(RExC_parse - 1) == '('
11732 && RExC_parse < RExC_end)
11734 /* If is a '(?', could be an embedded '(?flags:(?[...])'.
11735 * This happens when we have some thing like
11737 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
11739 * qr/(?[ \p{Digit} & $thai_or_lao ])/;
11741 * Here we would be handling the interpolated
11742 * '$thai_or_lao'. We handle this by a recursive call to
11743 * ourselves which returns the inversion list the
11744 * interpolated expression evaluates to. We use the flags
11745 * from the interpolated pattern. */
11746 U32 save_flags = RExC_flags;
11747 const char * const save_parse = ++RExC_parse;
11749 parse_lparen_question_flags(pRExC_state);
11751 if (RExC_parse == save_parse /* Makes sure there was at
11752 least one flag (or this
11753 embedding wasn't compiled)
11755 || RExC_parse >= RExC_end - 4
11756 || UCHARAT(RExC_parse) != ':'
11757 || UCHARAT(++RExC_parse) != '('
11758 || UCHARAT(++RExC_parse) != '?'
11759 || UCHARAT(++RExC_parse) != '[')
11762 /* In combination with the above, this moves the
11763 * pointer to the point just after the first erroneous
11764 * character (or if there are no flags, to where they
11765 * should have been) */
11766 if (RExC_parse >= RExC_end - 4) {
11767 RExC_parse = RExC_end;
11769 else if (RExC_parse != save_parse) {
11770 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11772 vFAIL("Expecting '(?flags:(?[...'");
11775 (void) handle_regex_sets(pRExC_state, ¤t, flagp,
11776 depth+1, oregcomp_parse);
11778 /* Here, 'current' contains the embedded expression's
11779 * inversion list, and RExC_parse points to the trailing
11780 * ']'; the next character should be the ')' which will be
11781 * paired with the '(' that has been put on the stack, so
11782 * the whole embedded expression reduces to '(operand)' */
11785 RExC_flags = save_flags;
11786 goto handle_operand;
11791 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11792 vFAIL("Unexpected character");
11795 /* regclass() can only return RESTART_UTF8 if multi-char
11796 folds are allowed. */
11797 if (!regclass(pRExC_state, flagp,depth+1,
11798 TRUE, /* means parse just the next thing */
11799 FALSE, /* don't allow multi-char folds */
11800 FALSE, /* don't silence non-portable warnings. */
11802 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11804 /* regclass() will return with parsing just the \ sequence,
11805 * leaving the parse pointer at the next thing to parse */
11807 goto handle_operand;
11809 case '[': /* Is a bracketed character class */
11811 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
11813 if (! is_posix_class) {
11817 /* regclass() can only return RESTART_UTF8 if multi-char
11818 folds are allowed. */
11819 if(!regclass(pRExC_state, flagp,depth+1,
11820 is_posix_class, /* parse the whole char class
11821 only if not a posix class */
11822 FALSE, /* don't allow multi-char folds */
11823 FALSE, /* don't silence non-portable warnings. */
11825 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11827 /* function call leaves parse pointing to the ']', except if we
11829 if (is_posix_class) {
11833 goto handle_operand;
11842 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
11843 || ! IS_OPERAND(*top_ptr))
11846 vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
11848 av_push(stack, newSVuv(curchar));
11852 av_push(stack, newSVuv(curchar));
11856 if (top_index >= 0) {
11857 top_ptr = av_fetch(stack, top_index, FALSE);
11859 if (IS_OPERAND(*top_ptr)) {
11861 vFAIL("Unexpected '(' with no preceding operator");
11864 av_push(stack, newSVuv(curchar));
11871 || ! (current = av_pop(stack))
11872 || ! IS_OPERAND(current)
11873 || ! (lparen = av_pop(stack))
11874 || IS_OPERAND(lparen)
11875 || SvUV(lparen) != '(')
11878 vFAIL("Unexpected ')'");
11881 SvREFCNT_dec_NN(lparen);
11888 /* Here, we have an operand to process, in 'current' */
11890 if (top_index < 0) { /* Just push if stack is empty */
11891 av_push(stack, current);
11894 SV* top = av_pop(stack);
11895 char current_operator;
11897 if (IS_OPERAND(top)) {
11898 vFAIL("Operand with no preceding operator");
11900 current_operator = (char) SvUV(top);
11901 switch (current_operator) {
11902 case '(': /* Push the '(' back on followed by the new
11904 av_push(stack, top);
11905 av_push(stack, current);
11906 SvREFCNT_inc(top); /* Counters the '_dec' done
11907 just after the 'break', so
11908 it doesn't get wrongly freed
11913 _invlist_invert(current);
11915 /* Unlike binary operators, the top of the stack,
11916 * now that this unary one has been popped off, may
11917 * legally be an operator, and we now have operand
11920 SvREFCNT_dec_NN(top);
11921 goto handle_operand;
11924 _invlist_intersection(av_pop(stack),
11927 av_push(stack, current);
11932 _invlist_union(av_pop(stack), current, ¤t);
11933 av_push(stack, current);
11937 _invlist_subtract(av_pop(stack), current, ¤t);
11938 av_push(stack, current);
11941 case '^': /* The union minus the intersection */
11947 element = av_pop(stack);
11948 _invlist_union(element, current, &u);
11949 _invlist_intersection(element, current, &i);
11950 _invlist_subtract(u, i, ¤t);
11951 av_push(stack, current);
11952 SvREFCNT_dec_NN(i);
11953 SvREFCNT_dec_NN(u);
11954 SvREFCNT_dec_NN(element);
11959 Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
11961 SvREFCNT_dec_NN(top);
11965 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11968 if (av_tindex(stack) < 0 /* Was empty */
11969 || ((final = av_pop(stack)) == NULL)
11970 || ! IS_OPERAND(final)
11971 || av_tindex(stack) >= 0) /* More left on stack */
11973 vFAIL("Incomplete expression within '(?[ ])'");
11976 /* Here, 'final' is the resultant inversion list from evaluating the
11977 * expression. Return it if so requested */
11978 if (return_invlist) {
11979 *return_invlist = final;
11983 /* Otherwise generate a resultant node, based on 'final'. regclass() is
11984 * expecting a string of ranges and individual code points */
11985 invlist_iterinit(final);
11986 result_string = newSVpvs("");
11987 while (invlist_iternext(final, &start, &end)) {
11988 if (start == end) {
11989 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
11992 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
11997 save_parse = RExC_parse;
11998 RExC_parse = SvPV(result_string, len);
11999 save_end = RExC_end;
12000 RExC_end = RExC_parse + len;
12002 /* We turn off folding around the call, as the class we have constructed
12003 * already has all folding taken into consideration, and we don't want
12004 * regclass() to add to that */
12005 RExC_flags &= ~RXf_PMf_FOLD;
12006 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
12008 node = regclass(pRExC_state, flagp,depth+1,
12009 FALSE, /* means parse the whole char class */
12010 FALSE, /* don't allow multi-char folds */
12011 TRUE, /* silence non-portable warnings. The above may very
12012 well have generated non-portable code points, but
12013 they're valid on this machine */
12016 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
12019 RExC_flags |= RXf_PMf_FOLD;
12021 RExC_parse = save_parse + 1;
12022 RExC_end = save_end;
12023 SvREFCNT_dec_NN(final);
12024 SvREFCNT_dec_NN(result_string);
12025 SvREFCNT_dec_NN(stack);
12027 nextchar(pRExC_state);
12028 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
12033 /* The names of properties whose definitions are not known at compile time are
12034 * stored in this SV, after a constant heading. So if the length has been
12035 * changed since initialization, then there is a run-time definition. */
12036 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
12039 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
12040 const bool stop_at_1, /* Just parse the next thing, don't
12041 look for a full character class */
12042 bool allow_multi_folds,
12043 const bool silence_non_portable, /* Don't output warnings
12046 SV** ret_invlist) /* Return an inversion list, not a node */
12048 /* parse a bracketed class specification. Most of these will produce an
12049 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
12050 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
12051 * under /i with multi-character folds: it will be rewritten following the
12052 * paradigm of this example, where the <multi-fold>s are characters which
12053 * fold to multiple character sequences:
12054 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
12055 * gets effectively rewritten as:
12056 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
12057 * reg() gets called (recursively) on the rewritten version, and this
12058 * function will return what it constructs. (Actually the <multi-fold>s
12059 * aren't physically removed from the [abcdefghi], it's just that they are
12060 * ignored in the recursion by means of a flag:
12061 * <RExC_in_multi_char_class>.)
12063 * ANYOF nodes contain a bit map for the first 256 characters, with the
12064 * corresponding bit set if that character is in the list. For characters
12065 * above 255, a range list or swash is used. There are extra bits for \w,
12066 * etc. in locale ANYOFs, as what these match is not determinable at
12069 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
12070 * to be restarted. This can only happen if ret_invlist is non-NULL.
12074 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
12076 UV value = OOB_UNICODE, save_value = OOB_UNICODE;
12079 IV namedclass = OOB_NAMEDCLASS;
12080 char *rangebegin = NULL;
12081 bool need_class = 0;
12083 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
12084 than just initialized. */
12085 SV* properties = NULL; /* Code points that match \p{} \P{} */
12086 SV* posixes = NULL; /* Code points that match classes like, [:word:],
12087 extended beyond the Latin1 range */
12088 UV element_count = 0; /* Number of distinct elements in the class.
12089 Optimizations may be possible if this is tiny */
12090 AV * multi_char_matches = NULL; /* Code points that fold to more than one
12091 character; used under /i */
12093 char * stop_ptr = RExC_end; /* where to stop parsing */
12094 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
12096 const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
12098 /* Unicode properties are stored in a swash; this holds the current one
12099 * being parsed. If this swash is the only above-latin1 component of the
12100 * character class, an optimization is to pass it directly on to the
12101 * execution engine. Otherwise, it is set to NULL to indicate that there
12102 * are other things in the class that have to be dealt with at execution
12104 SV* swash = NULL; /* Code points that match \p{} \P{} */
12106 /* Set if a component of this character class is user-defined; just passed
12107 * on to the engine */
12108 bool has_user_defined_property = FALSE;
12110 /* inversion list of code points this node matches only when the target
12111 * string is in UTF-8. (Because is under /d) */
12112 SV* depends_list = NULL;
12114 /* inversion list of code points this node matches. For much of the
12115 * function, it includes only those that match regardless of the utf8ness
12116 * of the target string */
12117 SV* cp_list = NULL;
12120 /* In a range, counts how many 0-2 of the ends of it came from literals,
12121 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */
12122 UV literal_endpoint = 0;
12124 bool invert = FALSE; /* Is this class to be complemented */
12126 /* Is there any thing like \W or [:^digit:] that matches above the legal
12127 * Unicode range? */
12128 bool runtime_posix_matches_above_Unicode = FALSE;
12130 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
12131 case we need to change the emitted regop to an EXACT. */
12132 const char * orig_parse = RExC_parse;
12133 const I32 orig_size = RExC_size;
12134 GET_RE_DEBUG_FLAGS_DECL;
12136 PERL_ARGS_ASSERT_REGCLASS;
12138 PERL_UNUSED_ARG(depth);
12141 DEBUG_PARSE("clas");
12143 /* Assume we are going to generate an ANYOF node. */
12144 ret = reganode(pRExC_state, ANYOF, 0);
12147 RExC_size += ANYOF_SKIP;
12148 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
12151 ANYOF_FLAGS(ret) = 0;
12153 RExC_emit += ANYOF_SKIP;
12155 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
12157 listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
12158 initial_listsv_len = SvCUR(listsv);
12159 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
12163 RExC_parse = regpatws(pRExC_state, RExC_parse,
12164 FALSE /* means don't recognize comments */);
12167 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
12170 allow_multi_folds = FALSE;
12173 RExC_parse = regpatws(pRExC_state, RExC_parse,
12174 FALSE /* means don't recognize comments */);
12178 /* Check that they didn't say [:posix:] instead of [[:posix:]] */
12179 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
12180 const char *s = RExC_parse;
12181 const char c = *s++;
12183 while (isWORDCHAR(*s))
12185 if (*s && c == *s && s[1] == ']') {
12186 SAVEFREESV(RExC_rx_sv);
12188 "POSIX syntax [%c %c] belongs inside character classes",
12190 (void)ReREFCNT_inc(RExC_rx_sv);
12194 /* If the caller wants us to just parse a single element, accomplish this
12195 * by faking the loop ending condition */
12196 if (stop_at_1 && RExC_end > RExC_parse) {
12197 stop_ptr = RExC_parse + 1;
12200 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
12201 if (UCHARAT(RExC_parse) == ']')
12202 goto charclassloop;
12206 if (RExC_parse >= stop_ptr) {
12211 RExC_parse = regpatws(pRExC_state, RExC_parse,
12212 FALSE /* means don't recognize comments */);
12215 if (UCHARAT(RExC_parse) == ']') {
12221 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
12222 save_value = value;
12223 save_prevvalue = prevvalue;
12226 rangebegin = RExC_parse;
12230 value = utf8n_to_uvchr((U8*)RExC_parse,
12231 RExC_end - RExC_parse,
12232 &numlen, UTF8_ALLOW_DEFAULT);
12233 RExC_parse += numlen;
12236 value = UCHARAT(RExC_parse++);
12239 && RExC_parse < RExC_end
12240 && POSIXCC(UCHARAT(RExC_parse)))
12242 namedclass = regpposixcc(pRExC_state, value, strict);
12244 else if (value == '\\') {
12246 value = utf8n_to_uvchr((U8*)RExC_parse,
12247 RExC_end - RExC_parse,
12248 &numlen, UTF8_ALLOW_DEFAULT);
12249 RExC_parse += numlen;
12252 value = UCHARAT(RExC_parse++);
12254 /* Some compilers cannot handle switching on 64-bit integer
12255 * values, therefore value cannot be an UV. Yes, this will
12256 * be a problem later if we want switch on Unicode.
12257 * A similar issue a little bit later when switching on
12258 * namedclass. --jhi */
12260 /* If the \ is escaping white space when white space is being
12261 * skipped, it means that that white space is wanted literally, and
12262 * is already in 'value'. Otherwise, need to translate the escape
12263 * into what it signifies. */
12264 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
12266 case 'w': namedclass = ANYOF_WORDCHAR; break;
12267 case 'W': namedclass = ANYOF_NWORDCHAR; break;
12268 case 's': namedclass = ANYOF_SPACE; break;
12269 case 'S': namedclass = ANYOF_NSPACE; break;
12270 case 'd': namedclass = ANYOF_DIGIT; break;
12271 case 'D': namedclass = ANYOF_NDIGIT; break;
12272 case 'v': namedclass = ANYOF_VERTWS; break;
12273 case 'V': namedclass = ANYOF_NVERTWS; break;
12274 case 'h': namedclass = ANYOF_HORIZWS; break;
12275 case 'H': namedclass = ANYOF_NHORIZWS; break;
12276 case 'N': /* Handle \N{NAME} in class */
12278 /* We only pay attention to the first char of
12279 multichar strings being returned. I kinda wonder
12280 if this makes sense as it does change the behaviour
12281 from earlier versions, OTOH that behaviour was broken
12283 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
12284 TRUE, /* => charclass */
12287 if (*flagp & RESTART_UTF8)
12288 FAIL("panic: grok_bslash_N set RESTART_UTF8");
12298 /* We will handle any undefined properties ourselves */
12299 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
12301 if (RExC_parse >= RExC_end)
12302 vFAIL2("Empty \\%c{}", (U8)value);
12303 if (*RExC_parse == '{') {
12304 const U8 c = (U8)value;
12305 e = strchr(RExC_parse++, '}');
12307 vFAIL2("Missing right brace on \\%c{}", c);
12308 while (isSPACE(UCHARAT(RExC_parse)))
12310 if (e == RExC_parse)
12311 vFAIL2("Empty \\%c{}", c);
12312 n = e - RExC_parse;
12313 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
12324 if (UCHARAT(RExC_parse) == '^') {
12327 /* toggle. (The rhs xor gets the single bit that
12328 * differs between P and p; the other xor inverts just
12330 value ^= 'P' ^ 'p';
12332 while (isSPACE(UCHARAT(RExC_parse))) {
12337 /* Try to get the definition of the property into
12338 * <invlist>. If /i is in effect, the effective property
12339 * will have its name be <__NAME_i>. The design is
12340 * discussed in commit
12341 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
12342 Newx(name, n + sizeof("_i__\n"), char);
12344 sprintf(name, "%s%.*s%s\n",
12345 (FOLD) ? "__" : "",
12351 /* Look up the property name, and get its swash and
12352 * inversion list, if the property is found */
12354 SvREFCNT_dec_NN(swash);
12356 swash = _core_swash_init("utf8", name, &PL_sv_undef,
12359 NULL, /* No inversion list */
12362 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
12364 SvREFCNT_dec_NN(swash);
12368 /* Here didn't find it. It could be a user-defined
12369 * property that will be available at run-time. If we
12370 * accept only compile-time properties, is an error;
12371 * otherwise add it to the list for run-time look up */
12373 RExC_parse = e + 1;
12374 vFAIL3("Property '%.*s' is unknown", (int) n, name);
12376 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
12377 (value == 'p' ? '+' : '!'),
12379 has_user_defined_property = TRUE;
12381 /* We don't know yet, so have to assume that the
12382 * property could match something in the Latin1 range,
12383 * hence something that isn't utf8. Note that this
12384 * would cause things in <depends_list> to match
12385 * inappropriately, except that any \p{}, including
12386 * this one forces Unicode semantics, which means there
12387 * is <no depends_list> */
12388 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
12392 /* Here, did get the swash and its inversion list. If
12393 * the swash is from a user-defined property, then this
12394 * whole character class should be regarded as such */
12395 has_user_defined_property =
12397 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
12399 /* Invert if asking for the complement */
12400 if (value == 'P') {
12401 _invlist_union_complement_2nd(properties,
12405 /* The swash can't be used as-is, because we've
12406 * inverted things; delay removing it to here after
12407 * have copied its invlist above */
12408 SvREFCNT_dec_NN(swash);
12412 _invlist_union(properties, invlist, &properties);
12417 RExC_parse = e + 1;
12418 namedclass = ANYOF_UNIPROP; /* no official name, but it's
12421 /* \p means they want Unicode semantics */
12422 RExC_uni_semantics = 1;
12425 case 'n': value = '\n'; break;
12426 case 'r': value = '\r'; break;
12427 case 't': value = '\t'; break;
12428 case 'f': value = '\f'; break;
12429 case 'b': value = '\b'; break;
12430 case 'e': value = ASCII_TO_NATIVE('\033');break;
12431 case 'a': value = ASCII_TO_NATIVE('\007');break;
12433 RExC_parse--; /* function expects to be pointed at the 'o' */
12435 const char* error_msg;
12436 bool valid = grok_bslash_o(&RExC_parse,
12439 SIZE_ONLY, /* warnings in pass
12442 silence_non_portable,
12448 if (PL_encoding && value < 0x100) {
12449 goto recode_encoding;
12453 RExC_parse--; /* function expects to be pointed at the 'x' */
12455 const char* error_msg;
12456 bool valid = grok_bslash_x(&RExC_parse,
12459 TRUE, /* Output warnings */
12461 silence_non_portable,
12467 if (PL_encoding && value < 0x100)
12468 goto recode_encoding;
12471 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
12473 case '0': case '1': case '2': case '3': case '4':
12474 case '5': case '6': case '7':
12476 /* Take 1-3 octal digits */
12477 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12478 numlen = (strict) ? 4 : 3;
12479 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
12480 RExC_parse += numlen;
12483 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12484 vFAIL("Need exactly 3 octal digits");
12486 else if (! SIZE_ONLY /* like \08, \178 */
12488 && RExC_parse < RExC_end
12489 && isDIGIT(*RExC_parse)
12490 && ckWARN(WARN_REGEXP))
12492 SAVEFREESV(RExC_rx_sv);
12493 reg_warn_non_literal_string(
12495 form_short_octal_warning(RExC_parse, numlen));
12496 (void)ReREFCNT_inc(RExC_rx_sv);
12499 if (PL_encoding && value < 0x100)
12500 goto recode_encoding;
12504 if (! RExC_override_recoding) {
12505 SV* enc = PL_encoding;
12506 value = reg_recode((const char)(U8)value, &enc);
12509 vFAIL("Invalid escape in the specified encoding");
12511 else if (SIZE_ONLY) {
12512 ckWARNreg(RExC_parse,
12513 "Invalid escape in the specified encoding");
12519 /* Allow \_ to not give an error */
12520 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
12522 vFAIL2("Unrecognized escape \\%c in character class",
12526 SAVEFREESV(RExC_rx_sv);
12527 ckWARN2reg(RExC_parse,
12528 "Unrecognized escape \\%c in character class passed through",
12530 (void)ReREFCNT_inc(RExC_rx_sv);
12534 } /* End of switch on char following backslash */
12535 } /* end of handling backslash escape sequences */
12538 literal_endpoint++;
12541 /* Here, we have the current token in 'value' */
12543 /* What matches in a locale is not known until runtime. This includes
12544 * what the Posix classes (like \w, [:space:]) match. Room must be
12545 * reserved (one time per class) to store such classes, either if Perl
12546 * is compiled so that locale nodes always should have this space, or
12547 * if there is such class info to be stored. The space will contain a
12548 * bit for each named class that is to be matched against. This isn't
12549 * needed for \p{} and pseudo-classes, as they are not affected by
12550 * locale, and hence are dealt with separately */
12553 && (ANYOF_LOCALE == ANYOF_CLASS
12554 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
12558 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12561 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12562 ANYOF_CLASS_ZERO(ret);
12564 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
12567 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
12569 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
12570 * literal, as is the character that began the false range, i.e.
12571 * the 'a' in the examples */
12574 const int w = (RExC_parse >= rangebegin)
12575 ? RExC_parse - rangebegin
12578 vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin);
12581 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
12582 ckWARN4reg(RExC_parse,
12583 "False [] range \"%*.*s\"",
12585 (void)ReREFCNT_inc(RExC_rx_sv);
12586 cp_list = add_cp_to_invlist(cp_list, '-');
12587 cp_list = add_cp_to_invlist(cp_list, prevvalue);
12591 range = 0; /* this was not a true range */
12592 element_count += 2; /* So counts for three values */
12596 U8 classnum = namedclass_to_classnum(namedclass);
12597 if (namedclass >= ANYOF_MAX) { /* If a special class */
12598 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
12600 /* Here, should be \h, \H, \v, or \V. Neither /d nor
12601 * /l make a difference in what these match. There
12602 * would be problems if these characters had folds
12603 * other than themselves, as cp_list is subject to
12605 if (classnum != _CC_VERTSPACE) {
12606 assert( namedclass == ANYOF_HORIZWS
12607 || namedclass == ANYOF_NHORIZWS);
12609 /* It turns out that \h is just a synonym for
12611 classnum = _CC_BLANK;
12614 _invlist_union_maybe_complement_2nd(
12616 PL_XPosix_ptrs[classnum],
12617 cBOOL(namedclass % 2), /* Complement if odd
12618 (NHORIZWS, NVERTWS)
12623 else if (classnum == _CC_ASCII) {
12626 ANYOF_CLASS_SET(ret, namedclass);
12629 #endif /* Not isascii(); just use the hard-coded definition for it */
12630 _invlist_union_maybe_complement_2nd(
12633 cBOOL(namedclass % 2), /* Complement if odd
12637 else { /* Garden variety class */
12639 /* The ascii range inversion list */
12640 SV* ascii_source = PL_Posix_ptrs[classnum];
12642 /* The full Latin1 range inversion list */
12643 SV* l1_source = PL_L1Posix_ptrs[classnum];
12645 /* This code is structured into two major clauses. The
12646 * first is for classes whose complete definitions may not
12647 * already be known. It not, the Latin1 definition
12648 * (guaranteed to already known) is used plus code is
12649 * generated to load the rest at run-time (only if needed).
12650 * If the complete definition is known, it drops down to
12651 * the second clause, where the complete definition is
12654 if (classnum < _FIRST_NON_SWASH_CC) {
12656 /* Here, the class has a swash, which may or not
12657 * already be loaded */
12659 /* The name of the property to use to match the full
12660 * eXtended Unicode range swash for this character
12662 const char *Xname = swash_property_names[classnum];
12664 /* If returning the inversion list, we can't defer
12665 * getting this until runtime */
12666 if (ret_invlist && ! PL_utf8_swash_ptrs[classnum]) {
12667 PL_utf8_swash_ptrs[classnum] =
12668 _core_swash_init("utf8", Xname, &PL_sv_undef,
12671 NULL, /* No inversion list */
12672 NULL /* No flags */
12674 assert(PL_utf8_swash_ptrs[classnum]);
12676 if ( ! PL_utf8_swash_ptrs[classnum]) {
12677 if (namedclass % 2 == 0) { /* A non-complemented
12679 /* If not /a matching, there are code points we
12680 * don't know at compile time. Arrange for the
12681 * unknown matches to be loaded at run-time, if
12683 if (! AT_LEAST_ASCII_RESTRICTED) {
12684 Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n",
12687 if (LOC) { /* Under locale, set run-time
12689 ANYOF_CLASS_SET(ret, namedclass);
12692 /* Add the current class's code points to
12693 * the running total */
12694 _invlist_union(posixes,
12695 (AT_LEAST_ASCII_RESTRICTED)
12701 else { /* A complemented class */
12702 if (AT_LEAST_ASCII_RESTRICTED) {
12703 /* Under /a should match everything above
12704 * ASCII, plus the complement of the set's
12706 _invlist_union_complement_2nd(posixes,
12711 /* Arrange for the unknown matches to be
12712 * loaded at run-time, if needed */
12713 Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n",
12715 runtime_posix_matches_above_Unicode = TRUE;
12717 ANYOF_CLASS_SET(ret, namedclass);
12721 /* We want to match everything in
12722 * Latin1, except those things that
12723 * l1_source matches */
12724 SV* scratch_list = NULL;
12725 _invlist_subtract(PL_Latin1, l1_source,
12728 /* Add the list from this class to the
12731 posixes = scratch_list;
12734 _invlist_union(posixes,
12737 SvREFCNT_dec_NN(scratch_list);
12739 if (DEPENDS_SEMANTICS) {
12741 |= ANYOF_NON_UTF8_LATIN1_ALL;
12746 goto namedclass_done;
12749 /* Here, there is a swash loaded for the class. If no
12750 * inversion list for it yet, get it */
12751 if (! PL_XPosix_ptrs[classnum]) {
12752 PL_XPosix_ptrs[classnum]
12753 = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]);
12757 /* Here there is an inversion list already loaded for the
12760 if (namedclass % 2 == 0) { /* A non-complemented class,
12761 like ANYOF_PUNCT */
12763 /* For non-locale, just add it to any existing list
12765 _invlist_union(posixes,
12766 (AT_LEAST_ASCII_RESTRICTED)
12768 : PL_XPosix_ptrs[classnum],
12771 else { /* Locale */
12772 SV* scratch_list = NULL;
12774 /* For above Latin1 code points, we use the full
12776 _invlist_intersection(PL_AboveLatin1,
12777 PL_XPosix_ptrs[classnum],
12779 /* And set the output to it, adding instead if
12780 * there already is an output. Checking if
12781 * 'posixes' is NULL first saves an extra clone.
12782 * Its reference count will be decremented at the
12783 * next union, etc, or if this is the only
12784 * instance, at the end of the routine */
12786 posixes = scratch_list;
12789 _invlist_union(posixes, scratch_list, &posixes);
12790 SvREFCNT_dec_NN(scratch_list);
12793 #ifndef HAS_ISBLANK
12794 if (namedclass != ANYOF_BLANK) {
12796 /* Set this class in the node for runtime
12798 ANYOF_CLASS_SET(ret, namedclass);
12799 #ifndef HAS_ISBLANK
12802 /* No isblank(), use the hard-coded ASCII-range
12803 * blanks, adding them to the running total. */
12805 _invlist_union(posixes, ascii_source, &posixes);
12810 else { /* A complemented class, like ANYOF_NPUNCT */
12812 _invlist_union_complement_2nd(
12814 (AT_LEAST_ASCII_RESTRICTED)
12816 : PL_XPosix_ptrs[classnum],
12818 /* Under /d, everything in the upper half of the
12819 * Latin1 range matches this complement */
12820 if (DEPENDS_SEMANTICS) {
12821 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12824 else { /* Locale */
12825 SV* scratch_list = NULL;
12826 _invlist_subtract(PL_AboveLatin1,
12827 PL_XPosix_ptrs[classnum],
12830 posixes = scratch_list;
12833 _invlist_union(posixes, scratch_list, &posixes);
12834 SvREFCNT_dec_NN(scratch_list);
12836 #ifndef HAS_ISBLANK
12837 if (namedclass != ANYOF_NBLANK) {
12839 ANYOF_CLASS_SET(ret, namedclass);
12840 #ifndef HAS_ISBLANK
12843 /* Get the list of all code points in Latin1
12844 * that are not ASCII blanks, and add them to
12845 * the running total */
12846 _invlist_subtract(PL_Latin1, ascii_source,
12848 _invlist_union(posixes, scratch_list, &posixes);
12849 SvREFCNT_dec_NN(scratch_list);
12856 continue; /* Go get next character */
12858 } /* end of namedclass \blah */
12860 /* Here, we have a single value. If 'range' is set, it is the ending
12861 * of a range--check its validity. Later, we will handle each
12862 * individual code point in the range. If 'range' isn't set, this
12863 * could be the beginning of a range, so check for that by looking
12864 * ahead to see if the next real character to be processed is the range
12865 * indicator--the minus sign */
12868 RExC_parse = regpatws(pRExC_state, RExC_parse,
12869 FALSE /* means don't recognize comments */);
12873 if (prevvalue > value) /* b-a */ {
12874 const int w = RExC_parse - rangebegin;
12875 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12876 range = 0; /* not a valid range */
12880 prevvalue = value; /* save the beginning of the potential range */
12881 if (! stop_at_1 /* Can't be a range if parsing just one thing */
12882 && *RExC_parse == '-')
12884 char* next_char_ptr = RExC_parse + 1;
12885 if (skip_white) { /* Get the next real char after the '-' */
12886 next_char_ptr = regpatws(pRExC_state,
12888 FALSE); /* means don't recognize
12892 /* If the '-' is at the end of the class (just before the ']',
12893 * it is a literal minus; otherwise it is a range */
12894 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
12895 RExC_parse = next_char_ptr;
12897 /* a bad range like \w-, [:word:]- ? */
12898 if (namedclass > OOB_NAMEDCLASS) {
12899 if (strict || ckWARN(WARN_REGEXP)) {
12901 RExC_parse >= rangebegin ?
12902 RExC_parse - rangebegin : 0;
12904 vFAIL4("False [] range \"%*.*s\"",
12909 "False [] range \"%*.*s\"",
12914 cp_list = add_cp_to_invlist(cp_list, '-');
12918 range = 1; /* yeah, it's a range! */
12919 continue; /* but do it the next time */
12924 /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12927 /* non-Latin1 code point implies unicode semantics. Must be set in
12928 * pass1 so is there for the whole of pass 2 */
12930 RExC_uni_semantics = 1;
12933 /* Ready to process either the single value, or the completed range.
12934 * For single-valued non-inverted ranges, we consider the possibility
12935 * of multi-char folds. (We made a conscious decision to not do this
12936 * for the other cases because it can often lead to non-intuitive
12937 * results. For example, you have the peculiar case that:
12938 * "s s" =~ /^[^\xDF]+$/i => Y
12939 * "ss" =~ /^[^\xDF]+$/i => N
12941 * See [perl #89750] */
12942 if (FOLD && allow_multi_folds && value == prevvalue) {
12943 if (value == LATIN_SMALL_LETTER_SHARP_S
12944 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
12947 /* Here <value> is indeed a multi-char fold. Get what it is */
12949 U8 foldbuf[UTF8_MAXBYTES_CASE];
12952 UV folded = _to_uni_fold_flags(
12957 | ((LOC) ? FOLD_FLAGS_LOCALE
12958 : (ASCII_FOLD_RESTRICTED)
12959 ? FOLD_FLAGS_NOMIX_ASCII
12963 /* Here, <folded> should be the first character of the
12964 * multi-char fold of <value>, with <foldbuf> containing the
12965 * whole thing. But, if this fold is not allowed (because of
12966 * the flags), <fold> will be the same as <value>, and should
12967 * be processed like any other character, so skip the special
12969 if (folded != value) {
12971 /* Skip if we are recursed, currently parsing the class
12972 * again. Otherwise add this character to the list of
12973 * multi-char folds. */
12974 if (! RExC_in_multi_char_class) {
12975 AV** this_array_ptr;
12977 STRLEN cp_count = utf8_length(foldbuf,
12978 foldbuf + foldlen);
12979 SV* multi_fold = sv_2mortal(newSVpvn("", 0));
12981 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
12984 if (! multi_char_matches) {
12985 multi_char_matches = newAV();
12988 /* <multi_char_matches> is actually an array of arrays.
12989 * There will be one or two top-level elements: [2],
12990 * and/or [3]. The [2] element is an array, each
12991 * element thereof is a character which folds to two
12992 * characters; likewise for [3]. (Unicode guarantees a
12993 * maximum of 3 characters in any fold.) When we
12994 * rewrite the character class below, we will do so
12995 * such that the longest folds are written first, so
12996 * that it prefers the longest matching strings first.
12997 * This is done even if it turns out that any
12998 * quantifier is non-greedy, out of programmer
12999 * laziness. Tom Christiansen has agreed that this is
13000 * ok. This makes the test for the ligature 'ffi' come
13001 * before the test for 'ff' */
13002 if (av_exists(multi_char_matches, cp_count)) {
13003 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13005 this_array = *this_array_ptr;
13008 this_array = newAV();
13009 av_store(multi_char_matches, cp_count,
13012 av_push(this_array, multi_fold);
13015 /* This element should not be processed further in this
13018 value = save_value;
13019 prevvalue = save_prevvalue;
13025 /* Deal with this element of the class */
13028 cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
13030 SV* this_range = _new_invlist(1);
13031 _append_range_to_invlist(this_range, prevvalue, value);
13033 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
13034 * If this range was specified using something like 'i-j', we want
13035 * to include only the 'i' and the 'j', and not anything in
13036 * between, so exclude non-ASCII, non-alphabetics from it.
13037 * However, if the range was specified with something like
13038 * [\x89-\x91] or [\x89-j], all code points within it should be
13039 * included. literal_endpoint==2 means both ends of the range used
13040 * a literal character, not \x{foo} */
13041 if (literal_endpoint == 2
13042 && (prevvalue >= 'a' && value <= 'z')
13043 || (prevvalue >= 'A' && value <= 'Z'))
13045 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA],
13048 _invlist_union(cp_list, this_range, &cp_list);
13049 literal_endpoint = 0;
13053 range = 0; /* this range (if it was one) is done now */
13054 } /* End of loop through all the text within the brackets */
13056 /* If anything in the class expands to more than one character, we have to
13057 * deal with them by building up a substitute parse string, and recursively
13058 * calling reg() on it, instead of proceeding */
13059 if (multi_char_matches) {
13060 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
13063 char *save_end = RExC_end;
13064 char *save_parse = RExC_parse;
13065 bool first_time = TRUE; /* First multi-char occurrence doesn't get
13070 #if 0 /* Have decided not to deal with multi-char folds in inverted classes,
13071 because too confusing */
13073 sv_catpv(substitute_parse, "(?:");
13077 /* Look at the longest folds first */
13078 for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) {
13080 if (av_exists(multi_char_matches, cp_count)) {
13081 AV** this_array_ptr;
13084 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13086 while ((this_sequence = av_pop(*this_array_ptr)) !=
13089 if (! first_time) {
13090 sv_catpv(substitute_parse, "|");
13092 first_time = FALSE;
13094 sv_catpv(substitute_parse, SvPVX(this_sequence));
13099 /* If the character class contains anything else besides these
13100 * multi-character folds, have to include it in recursive parsing */
13101 if (element_count) {
13102 sv_catpv(substitute_parse, "|[");
13103 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
13104 sv_catpv(substitute_parse, "]");
13107 sv_catpv(substitute_parse, ")");
13110 /* This is a way to get the parse to skip forward a whole named
13111 * sequence instead of matching the 2nd character when it fails the
13113 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
13117 RExC_parse = SvPV(substitute_parse, len);
13118 RExC_end = RExC_parse + len;
13119 RExC_in_multi_char_class = 1;
13120 RExC_emit = (regnode *)orig_emit;
13122 ret = reg(pRExC_state, 1, ®_flags, depth+1);
13124 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
13126 RExC_parse = save_parse;
13127 RExC_end = save_end;
13128 RExC_in_multi_char_class = 0;
13129 SvREFCNT_dec_NN(multi_char_matches);
13133 /* If the character class contains only a single element, it may be
13134 * optimizable into another node type which is smaller and runs faster.
13135 * Check if this is the case for this class */
13136 if (element_count == 1 && ! ret_invlist) {
13140 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
13141 [:digit:] or \p{foo} */
13143 /* All named classes are mapped into POSIXish nodes, with its FLAG
13144 * argument giving which class it is */
13145 switch ((I32)namedclass) {
13146 case ANYOF_UNIPROP:
13149 /* These don't depend on the charset modifiers. They always
13150 * match under /u rules */
13151 case ANYOF_NHORIZWS:
13152 case ANYOF_HORIZWS:
13153 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
13156 case ANYOF_NVERTWS:
13161 /* The actual POSIXish node for all the rest depends on the
13162 * charset modifier. The ones in the first set depend only on
13163 * ASCII or, if available on this platform, locale */
13167 op = (LOC) ? POSIXL : POSIXA;
13178 /* under /a could be alpha */
13180 if (ASCII_RESTRICTED) {
13181 namedclass = ANYOF_ALPHA + (namedclass % 2);
13189 /* The rest have more possibilities depending on the charset.
13190 * We take advantage of the enum ordering of the charset
13191 * modifiers to get the exact node type, */
13193 op = POSIXD + get_regex_charset(RExC_flags);
13194 if (op > POSIXA) { /* /aa is same as /a */
13197 #ifndef HAS_ISBLANK
13199 && (namedclass == ANYOF_BLANK
13200 || namedclass == ANYOF_NBLANK))
13207 /* The odd numbered ones are the complements of the
13208 * next-lower even number one */
13209 if (namedclass % 2 == 1) {
13213 arg = namedclass_to_classnum(namedclass);
13217 else if (value == prevvalue) {
13219 /* Here, the class consists of just a single code point */
13222 if (! LOC && value == '\n') {
13223 op = REG_ANY; /* Optimize [^\n] */
13224 *flagp |= HASWIDTH|SIMPLE;
13228 else if (value < 256 || UTF) {
13230 /* Optimize a single value into an EXACTish node, but not if it
13231 * would require converting the pattern to UTF-8. */
13232 op = compute_EXACTish(pRExC_state);
13234 } /* Otherwise is a range */
13235 else if (! LOC) { /* locale could vary these */
13236 if (prevvalue == '0') {
13237 if (value == '9') {
13244 /* Here, we have changed <op> away from its initial value iff we found
13245 * an optimization */
13248 /* Throw away this ANYOF regnode, and emit the calculated one,
13249 * which should correspond to the beginning, not current, state of
13251 const char * cur_parse = RExC_parse;
13252 RExC_parse = (char *)orig_parse;
13256 /* To get locale nodes to not use the full ANYOF size would
13257 * require moving the code above that writes the portions
13258 * of it that aren't in other nodes to after this point.
13259 * e.g. ANYOF_CLASS_SET */
13260 RExC_size = orig_size;
13264 RExC_emit = (regnode *)orig_emit;
13265 if (PL_regkind[op] == POSIXD) {
13267 op += NPOSIXD - POSIXD;
13272 ret = reg_node(pRExC_state, op);
13274 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
13278 *flagp |= HASWIDTH|SIMPLE;
13280 else if (PL_regkind[op] == EXACT) {
13281 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13284 RExC_parse = (char *) cur_parse;
13286 SvREFCNT_dec(posixes);
13287 SvREFCNT_dec(cp_list);
13294 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
13296 /* If folding, we calculate all characters that could fold to or from the
13297 * ones already on the list */
13298 if (FOLD && cp_list) {
13299 UV start, end; /* End points of code point ranges */
13301 SV* fold_intersection = NULL;
13303 /* If the highest code point is within Latin1, we can use the
13304 * compiled-in Alphas list, and not have to go out to disk. This
13305 * yields two false positives, the masculine and feminine ordinal
13306 * indicators, which are weeded out below using the
13307 * IS_IN_SOME_FOLD_L1() macro */
13308 if (invlist_highest(cp_list) < 256) {
13309 _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list,
13310 &fold_intersection);
13314 /* Here, there are non-Latin1 code points, so we will have to go
13315 * fetch the list of all the characters that participate in folds
13317 if (! PL_utf8_foldable) {
13318 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13319 &PL_sv_undef, 1, 0);
13320 PL_utf8_foldable = _get_swash_invlist(swash);
13321 SvREFCNT_dec_NN(swash);
13324 /* This is a hash that for a particular fold gives all characters
13325 * that are involved in it */
13326 if (! PL_utf8_foldclosures) {
13328 /* If we were unable to find any folds, then we likely won't be
13329 * able to find the closures. So just create an empty list.
13330 * Folding will effectively be restricted to the non-Unicode
13331 * rules hard-coded into Perl. (This case happens legitimately
13332 * during compilation of Perl itself before the Unicode tables
13333 * are generated) */
13334 if (_invlist_len(PL_utf8_foldable) == 0) {
13335 PL_utf8_foldclosures = newHV();
13338 /* If the folds haven't been read in, call a fold function
13340 if (! PL_utf8_tofold) {
13341 U8 dummy[UTF8_MAXBYTES+1];
13343 /* This string is just a short named one above \xff */
13344 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
13345 assert(PL_utf8_tofold); /* Verify that worked */
13347 PL_utf8_foldclosures =
13348 _swash_inversion_hash(PL_utf8_tofold);
13352 /* Only the characters in this class that participate in folds need
13353 * be checked. Get the intersection of this class and all the
13354 * possible characters that are foldable. This can quickly narrow
13355 * down a large class */
13356 _invlist_intersection(PL_utf8_foldable, cp_list,
13357 &fold_intersection);
13360 /* Now look at the foldable characters in this class individually */
13361 invlist_iterinit(fold_intersection);
13362 while (invlist_iternext(fold_intersection, &start, &end)) {
13365 /* Locale folding for Latin1 characters is deferred until runtime */
13366 if (LOC && start < 256) {
13370 /* Look at every character in the range */
13371 for (j = start; j <= end; j++) {
13373 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
13379 /* We have the latin1 folding rules hard-coded here so that
13380 * an innocent-looking character class, like /[ks]/i won't
13381 * have to go out to disk to find the possible matches.
13382 * XXX It would be better to generate these via regen, in
13383 * case a new version of the Unicode standard adds new
13384 * mappings, though that is not really likely, and may be
13385 * caught by the default: case of the switch below. */
13387 if (IS_IN_SOME_FOLD_L1(j)) {
13389 /* ASCII is always matched; non-ASCII is matched only
13390 * under Unicode rules */
13391 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
13393 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
13397 add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
13401 if (HAS_NONLATIN1_FOLD_CLOSURE(j)
13402 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
13404 /* Certain Latin1 characters have matches outside
13405 * Latin1. To get here, <j> is one of those
13406 * characters. None of these matches is valid for
13407 * ASCII characters under /aa, which is why the 'if'
13408 * just above excludes those. These matches only
13409 * happen when the target string is utf8. The code
13410 * below adds the single fold closures for <j> to the
13411 * inversion list. */
13416 add_cp_to_invlist(cp_list, KELVIN_SIGN);
13420 cp_list = add_cp_to_invlist(cp_list,
13421 LATIN_SMALL_LETTER_LONG_S);
13424 cp_list = add_cp_to_invlist(cp_list,
13425 GREEK_CAPITAL_LETTER_MU);
13426 cp_list = add_cp_to_invlist(cp_list,
13427 GREEK_SMALL_LETTER_MU);
13429 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
13430 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
13432 add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
13434 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
13435 cp_list = add_cp_to_invlist(cp_list,
13436 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
13438 case LATIN_SMALL_LETTER_SHARP_S:
13439 cp_list = add_cp_to_invlist(cp_list,
13440 LATIN_CAPITAL_LETTER_SHARP_S);
13442 case 'F': case 'f':
13443 case 'I': case 'i':
13444 case 'L': case 'l':
13445 case 'T': case 't':
13446 case 'A': case 'a':
13447 case 'H': case 'h':
13448 case 'J': case 'j':
13449 case 'N': case 'n':
13450 case 'W': case 'w':
13451 case 'Y': case 'y':
13452 /* These all are targets of multi-character
13453 * folds from code points that require UTF8 to
13454 * express, so they can't match unless the
13455 * target string is in UTF-8, so no action here
13456 * is necessary, as regexec.c properly handles
13457 * the general case for UTF-8 matching and
13458 * multi-char folds */
13461 /* Use deprecated warning to increase the
13462 * chances of this being output */
13463 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
13470 /* Here is an above Latin1 character. We don't have the rules
13471 * hard-coded for it. First, get its fold. This is the simple
13472 * fold, as the multi-character folds have been handled earlier
13473 * and separated out */
13474 _to_uni_fold_flags(j, foldbuf, &foldlen,
13476 ? FOLD_FLAGS_LOCALE
13477 : (ASCII_FOLD_RESTRICTED)
13478 ? FOLD_FLAGS_NOMIX_ASCII
13481 /* Single character fold of above Latin1. Add everything in
13482 * its fold closure to the list that this node should match.
13483 * The fold closures data structure is a hash with the keys
13484 * being the UTF-8 of every character that is folded to, like
13485 * 'k', and the values each an array of all code points that
13486 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
13487 * Multi-character folds are not included */
13488 if ((listp = hv_fetch(PL_utf8_foldclosures,
13489 (char *) foldbuf, foldlen, FALSE)))
13491 AV* list = (AV*) *listp;
13493 for (k = 0; k <= av_len(list); k++) {
13494 SV** c_p = av_fetch(list, k, FALSE);
13497 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
13501 /* /aa doesn't allow folds between ASCII and non-; /l
13502 * doesn't allow them between above and below 256 */
13503 if ((ASCII_FOLD_RESTRICTED
13504 && (isASCII(c) != isASCII(j)))
13505 || (LOC && ((c < 256) != (j < 256))))
13510 /* Folds involving non-ascii Latin1 characters
13511 * under /d are added to a separate list */
13512 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
13514 cp_list = add_cp_to_invlist(cp_list, c);
13517 depends_list = add_cp_to_invlist(depends_list, c);
13523 SvREFCNT_dec_NN(fold_intersection);
13526 /* And combine the result (if any) with any inversion list from posix
13527 * classes. The lists are kept separate up to now because we don't want to
13528 * fold the classes (folding of those is automatically handled by the swash
13529 * fetching code) */
13531 if (! DEPENDS_SEMANTICS) {
13533 _invlist_union(cp_list, posixes, &cp_list);
13534 SvREFCNT_dec_NN(posixes);
13541 /* Under /d, we put into a separate list the Latin1 things that
13542 * match only when the target string is utf8 */
13543 SV* nonascii_but_latin1_properties = NULL;
13544 _invlist_intersection(posixes, PL_Latin1,
13545 &nonascii_but_latin1_properties);
13546 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
13547 &nonascii_but_latin1_properties);
13548 _invlist_subtract(posixes, nonascii_but_latin1_properties,
13551 _invlist_union(cp_list, posixes, &cp_list);
13552 SvREFCNT_dec_NN(posixes);
13558 if (depends_list) {
13559 _invlist_union(depends_list, nonascii_but_latin1_properties,
13561 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
13564 depends_list = nonascii_but_latin1_properties;
13569 /* And combine the result (if any) with any inversion list from properties.
13570 * The lists are kept separate up to now so that we can distinguish the two
13571 * in regards to matching above-Unicode. A run-time warning is generated
13572 * if a Unicode property is matched against a non-Unicode code point. But,
13573 * we allow user-defined properties to match anything, without any warning,
13574 * and we also suppress the warning if there is a portion of the character
13575 * class that isn't a Unicode property, and which matches above Unicode, \W
13576 * or [\x{110000}] for example.
13577 * (Note that in this case, unlike the Posix one above, there is no
13578 * <depends_list>, because having a Unicode property forces Unicode
13581 bool warn_super = ! has_user_defined_property;
13584 /* If it matters to the final outcome, see if a non-property
13585 * component of the class matches above Unicode. If so, the
13586 * warning gets suppressed. This is true even if just a single
13587 * such code point is specified, as though not strictly correct if
13588 * another such code point is matched against, the fact that they
13589 * are using above-Unicode code points indicates they should know
13590 * the issues involved */
13592 bool non_prop_matches_above_Unicode =
13593 runtime_posix_matches_above_Unicode
13594 | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
13596 non_prop_matches_above_Unicode =
13597 ! non_prop_matches_above_Unicode;
13599 warn_super = ! non_prop_matches_above_Unicode;
13602 _invlist_union(properties, cp_list, &cp_list);
13603 SvREFCNT_dec_NN(properties);
13606 cp_list = properties;
13610 OP(ret) = ANYOF_WARN_SUPER;
13614 /* Here, we have calculated what code points should be in the character
13617 * Now we can see about various optimizations. Fold calculation (which we
13618 * did above) needs to take place before inversion. Otherwise /[^k]/i
13619 * would invert to include K, which under /i would match k, which it
13620 * shouldn't. Therefore we can't invert folded locale now, as it won't be
13621 * folded until runtime */
13623 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
13624 * at compile time. Besides not inverting folded locale now, we can't
13625 * invert if there are things such as \w, which aren't known until runtime
13628 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
13630 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13632 _invlist_invert(cp_list);
13634 /* Any swash can't be used as-is, because we've inverted things */
13636 SvREFCNT_dec_NN(swash);
13640 /* Clear the invert flag since have just done it here */
13645 *ret_invlist = cp_list;
13647 /* Discard the generated node */
13649 RExC_size = orig_size;
13652 RExC_emit = orig_emit;
13657 /* If we didn't do folding, it's because some information isn't available
13658 * until runtime; set the run-time fold flag for these. (We don't have to
13659 * worry about properties folding, as that is taken care of by the swash
13663 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
13666 /* Some character classes are equivalent to other nodes. Such nodes take
13667 * up less room and generally fewer operations to execute than ANYOF nodes.
13668 * Above, we checked for and optimized into some such equivalents for
13669 * certain common classes that are easy to test. Getting to this point in
13670 * the code means that the class didn't get optimized there. Since this
13671 * code is only executed in Pass 2, it is too late to save space--it has
13672 * been allocated in Pass 1, and currently isn't given back. But turning
13673 * things into an EXACTish node can allow the optimizer to join it to any
13674 * adjacent such nodes. And if the class is equivalent to things like /./,
13675 * expensive run-time swashes can be avoided. Now that we have more
13676 * complete information, we can find things necessarily missed by the
13677 * earlier code. I (khw) am not sure how much to look for here. It would
13678 * be easy, but perhaps too slow, to check any candidates against all the
13679 * node types they could possibly match using _invlistEQ(). */
13684 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
13685 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13688 U8 op = END; /* The optimzation node-type */
13689 const char * cur_parse= RExC_parse;
13691 invlist_iterinit(cp_list);
13692 if (! invlist_iternext(cp_list, &start, &end)) {
13694 /* Here, the list is empty. This happens, for example, when a
13695 * Unicode property is the only thing in the character class, and
13696 * it doesn't match anything. (perluniprops.pod notes such
13699 *flagp |= HASWIDTH|SIMPLE;
13701 else if (start == end) { /* The range is a single code point */
13702 if (! invlist_iternext(cp_list, &start, &end)
13704 /* Don't do this optimization if it would require changing
13705 * the pattern to UTF-8 */
13706 && (start < 256 || UTF))
13708 /* Here, the list contains a single code point. Can optimize
13709 * into an EXACT node */
13718 /* A locale node under folding with one code point can be
13719 * an EXACTFL, as its fold won't be calculated until
13725 /* Here, we are generally folding, but there is only one
13726 * code point to match. If we have to, we use an EXACT
13727 * node, but it would be better for joining with adjacent
13728 * nodes in the optimization pass if we used the same
13729 * EXACTFish node that any such are likely to be. We can
13730 * do this iff the code point doesn't participate in any
13731 * folds. For example, an EXACTF of a colon is the same as
13732 * an EXACT one, since nothing folds to or from a colon. */
13734 if (IS_IN_SOME_FOLD_L1(value)) {
13739 if (! PL_utf8_foldable) {
13740 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13741 &PL_sv_undef, 1, 0);
13742 PL_utf8_foldable = _get_swash_invlist(swash);
13743 SvREFCNT_dec_NN(swash);
13745 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
13750 /* If we haven't found the node type, above, it means we
13751 * can use the prevailing one */
13753 op = compute_EXACTish(pRExC_state);
13758 else if (start == 0) {
13759 if (end == UV_MAX) {
13761 *flagp |= HASWIDTH|SIMPLE;
13764 else if (end == '\n' - 1
13765 && invlist_iternext(cp_list, &start, &end)
13766 && start == '\n' + 1 && end == UV_MAX)
13769 *flagp |= HASWIDTH|SIMPLE;
13773 invlist_iterfinish(cp_list);
13776 RExC_parse = (char *)orig_parse;
13777 RExC_emit = (regnode *)orig_emit;
13779 ret = reg_node(pRExC_state, op);
13781 RExC_parse = (char *)cur_parse;
13783 if (PL_regkind[op] == EXACT) {
13784 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13787 SvREFCNT_dec_NN(cp_list);
13792 /* Here, <cp_list> contains all the code points we can determine at
13793 * compile time that match under all conditions. Go through it, and
13794 * for things that belong in the bitmap, put them there, and delete from
13795 * <cp_list>. While we are at it, see if everything above 255 is in the
13796 * list, and if so, set a flag to speed up execution */
13797 ANYOF_BITMAP_ZERO(ret);
13800 /* This gets set if we actually need to modify things */
13801 bool change_invlist = FALSE;
13805 /* Start looking through <cp_list> */
13806 invlist_iterinit(cp_list);
13807 while (invlist_iternext(cp_list, &start, &end)) {
13811 if (end == UV_MAX && start <= 256) {
13812 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
13815 /* Quit if are above what we should change */
13820 change_invlist = TRUE;
13822 /* Set all the bits in the range, up to the max that we are doing */
13823 high = (end < 255) ? end : 255;
13824 for (i = start; i <= (int) high; i++) {
13825 if (! ANYOF_BITMAP_TEST(ret, i)) {
13826 ANYOF_BITMAP_SET(ret, i);
13832 invlist_iterfinish(cp_list);
13834 /* Done with loop; remove any code points that are in the bitmap from
13836 if (change_invlist) {
13837 _invlist_subtract(cp_list, PL_Latin1, &cp_list);
13840 /* If have completely emptied it, remove it completely */
13841 if (_invlist_len(cp_list) == 0) {
13842 SvREFCNT_dec_NN(cp_list);
13848 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
13851 /* Here, the bitmap has been populated with all the Latin1 code points that
13852 * always match. Can now add to the overall list those that match only
13853 * when the target string is UTF-8 (<depends_list>). */
13854 if (depends_list) {
13856 _invlist_union(cp_list, depends_list, &cp_list);
13857 SvREFCNT_dec_NN(depends_list);
13860 cp_list = depends_list;
13864 /* If there is a swash and more than one element, we can't use the swash in
13865 * the optimization below. */
13866 if (swash && element_count > 1) {
13867 SvREFCNT_dec_NN(swash);
13872 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13874 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
13877 /* av[0] stores the character class description in its textual form:
13878 * used later (regexec.c:Perl_regclass_swash()) to initialize the
13879 * appropriate swash, and is also useful for dumping the regnode.
13880 * av[1] if NULL, is a placeholder to later contain the swash computed
13881 * from av[0]. But if no further computation need be done, the
13882 * swash is stored there now.
13883 * av[2] stores the cp_list inversion list for use in addition or
13884 * instead of av[0]; used only if av[1] is NULL
13885 * av[3] is set if any component of the class is from a user-defined
13886 * property; used only if av[1] is NULL */
13887 AV * const av = newAV();
13890 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13891 ? SvREFCNT_inc(listsv) : &PL_sv_undef);
13893 av_store(av, 1, swash);
13894 SvREFCNT_dec_NN(cp_list);
13897 av_store(av, 1, NULL);
13899 av_store(av, 2, cp_list);
13900 av_store(av, 3, newSVuv(has_user_defined_property));
13904 rv = newRV_noinc(MUTABLE_SV(av));
13905 n = add_data(pRExC_state, 1, "s");
13906 RExC_rxi->data->data[n] = (void*)rv;
13910 *flagp |= HASWIDTH|SIMPLE;
13913 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13916 /* reg_skipcomment()
13918 Absorbs an /x style # comments from the input stream.
13919 Returns true if there is more text remaining in the stream.
13920 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13921 terminates the pattern without including a newline.
13923 Note its the callers responsibility to ensure that we are
13924 actually in /x mode
13929 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
13933 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
13935 while (RExC_parse < RExC_end)
13936 if (*RExC_parse++ == '\n') {
13941 /* we ran off the end of the pattern without ending
13942 the comment, so we have to add an \n when wrapping */
13943 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
13951 Advances the parse position, and optionally absorbs
13952 "whitespace" from the inputstream.
13954 Without /x "whitespace" means (?#...) style comments only,
13955 with /x this means (?#...) and # comments and whitespace proper.
13957 Returns the RExC_parse point from BEFORE the scan occurs.
13959 This is the /x friendly way of saying RExC_parse++.
13963 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
13965 char* const retval = RExC_parse++;
13967 PERL_ARGS_ASSERT_NEXTCHAR;
13970 if (RExC_end - RExC_parse >= 3
13971 && *RExC_parse == '('
13972 && RExC_parse[1] == '?'
13973 && RExC_parse[2] == '#')
13975 while (*RExC_parse != ')') {
13976 if (RExC_parse == RExC_end)
13977 FAIL("Sequence (?#... not terminated");
13983 if (RExC_flags & RXf_PMf_EXTENDED) {
13984 if (isSPACE(*RExC_parse)) {
13988 else if (*RExC_parse == '#') {
13989 if ( reg_skipcomment( pRExC_state ) )
13998 - reg_node - emit a node
14000 STATIC regnode * /* Location. */
14001 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
14005 regnode * const ret = RExC_emit;
14006 GET_RE_DEBUG_FLAGS_DECL;
14008 PERL_ARGS_ASSERT_REG_NODE;
14011 SIZE_ALIGN(RExC_size);
14015 if (RExC_emit >= RExC_emit_bound)
14016 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14017 op, RExC_emit, RExC_emit_bound);
14019 NODE_ALIGN_FILL(ret);
14021 FILL_ADVANCE_NODE(ptr, op);
14022 #ifdef RE_TRACK_PATTERN_OFFSETS
14023 if (RExC_offsets) { /* MJD */
14024 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
14025 "reg_node", __LINE__,
14027 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
14028 ? "Overwriting end of array!\n" : "OK",
14029 (UV)(RExC_emit - RExC_emit_start),
14030 (UV)(RExC_parse - RExC_start),
14031 (UV)RExC_offsets[0]));
14032 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
14040 - reganode - emit a node with an argument
14042 STATIC regnode * /* Location. */
14043 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
14047 regnode * const ret = RExC_emit;
14048 GET_RE_DEBUG_FLAGS_DECL;
14050 PERL_ARGS_ASSERT_REGANODE;
14053 SIZE_ALIGN(RExC_size);
14058 assert(2==regarglen[op]+1);
14060 Anything larger than this has to allocate the extra amount.
14061 If we changed this to be:
14063 RExC_size += (1 + regarglen[op]);
14065 then it wouldn't matter. Its not clear what side effect
14066 might come from that so its not done so far.
14071 if (RExC_emit >= RExC_emit_bound)
14072 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14073 op, RExC_emit, RExC_emit_bound);
14075 NODE_ALIGN_FILL(ret);
14077 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
14078 #ifdef RE_TRACK_PATTERN_OFFSETS
14079 if (RExC_offsets) { /* MJD */
14080 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14084 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
14085 "Overwriting end of array!\n" : "OK",
14086 (UV)(RExC_emit - RExC_emit_start),
14087 (UV)(RExC_parse - RExC_start),
14088 (UV)RExC_offsets[0]));
14089 Set_Cur_Node_Offset;
14097 - reguni - emit (if appropriate) a Unicode character
14100 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
14104 PERL_ARGS_ASSERT_REGUNI;
14106 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
14110 - reginsert - insert an operator in front of already-emitted operand
14112 * Means relocating the operand.
14115 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
14121 const int offset = regarglen[(U8)op];
14122 const int size = NODE_STEP_REGNODE + offset;
14123 GET_RE_DEBUG_FLAGS_DECL;
14125 PERL_ARGS_ASSERT_REGINSERT;
14126 PERL_UNUSED_ARG(depth);
14127 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
14128 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
14137 if (RExC_open_parens) {
14139 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
14140 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
14141 if ( RExC_open_parens[paren] >= opnd ) {
14142 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
14143 RExC_open_parens[paren] += size;
14145 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
14147 if ( RExC_close_parens[paren] >= opnd ) {
14148 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
14149 RExC_close_parens[paren] += size;
14151 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
14156 while (src > opnd) {
14157 StructCopy(--src, --dst, regnode);
14158 #ifdef RE_TRACK_PATTERN_OFFSETS
14159 if (RExC_offsets) { /* MJD 20010112 */
14160 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
14164 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
14165 ? "Overwriting end of array!\n" : "OK",
14166 (UV)(src - RExC_emit_start),
14167 (UV)(dst - RExC_emit_start),
14168 (UV)RExC_offsets[0]));
14169 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
14170 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
14176 place = opnd; /* Op node, where operand used to be. */
14177 #ifdef RE_TRACK_PATTERN_OFFSETS
14178 if (RExC_offsets) { /* MJD */
14179 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14183 (UV)(place - RExC_emit_start) > RExC_offsets[0]
14184 ? "Overwriting end of array!\n" : "OK",
14185 (UV)(place - RExC_emit_start),
14186 (UV)(RExC_parse - RExC_start),
14187 (UV)RExC_offsets[0]));
14188 Set_Node_Offset(place, RExC_parse);
14189 Set_Node_Length(place, 1);
14192 src = NEXTOPER(place);
14193 FILL_ADVANCE_NODE(place, op);
14194 Zero(src, offset, regnode);
14198 - regtail - set the next-pointer at the end of a node chain of p to val.
14199 - SEE ALSO: regtail_study
14201 /* TODO: All three parms should be const */
14203 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14207 GET_RE_DEBUG_FLAGS_DECL;
14209 PERL_ARGS_ASSERT_REGTAIL;
14211 PERL_UNUSED_ARG(depth);
14217 /* Find last node. */
14220 regnode * const temp = regnext(scan);
14222 SV * const mysv=sv_newmortal();
14223 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
14224 regprop(RExC_rx, mysv, scan);
14225 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
14226 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
14227 (temp == NULL ? "->" : ""),
14228 (temp == NULL ? PL_reg_name[OP(val)] : "")
14236 if (reg_off_by_arg[OP(scan)]) {
14237 ARG_SET(scan, val - scan);
14240 NEXT_OFF(scan) = val - scan;
14246 - regtail_study - set the next-pointer at the end of a node chain of p to val.
14247 - Look for optimizable sequences at the same time.
14248 - currently only looks for EXACT chains.
14250 This is experimental code. The idea is to use this routine to perform
14251 in place optimizations on branches and groups as they are constructed,
14252 with the long term intention of removing optimization from study_chunk so
14253 that it is purely analytical.
14255 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
14256 to control which is which.
14259 /* TODO: All four parms should be const */
14262 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14267 #ifdef EXPERIMENTAL_INPLACESCAN
14270 GET_RE_DEBUG_FLAGS_DECL;
14272 PERL_ARGS_ASSERT_REGTAIL_STUDY;
14278 /* Find last node. */
14282 regnode * const temp = regnext(scan);
14283 #ifdef EXPERIMENTAL_INPLACESCAN
14284 if (PL_regkind[OP(scan)] == EXACT) {
14285 bool has_exactf_sharp_s; /* Unexamined in this routine */
14286 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
14291 switch (OP(scan)) {
14297 case EXACTFU_TRICKYFOLD:
14299 if( exact == PSEUDO )
14301 else if ( exact != OP(scan) )
14310 SV * const mysv=sv_newmortal();
14311 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
14312 regprop(RExC_rx, mysv, scan);
14313 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
14314 SvPV_nolen_const(mysv),
14315 REG_NODE_NUM(scan),
14316 PL_reg_name[exact]);
14323 SV * const mysv_val=sv_newmortal();
14324 DEBUG_PARSE_MSG("");
14325 regprop(RExC_rx, mysv_val, val);
14326 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
14327 SvPV_nolen_const(mysv_val),
14328 (IV)REG_NODE_NUM(val),
14332 if (reg_off_by_arg[OP(scan)]) {
14333 ARG_SET(scan, val - scan);
14336 NEXT_OFF(scan) = val - scan;
14344 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
14348 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
14354 for (bit=0; bit<32; bit++) {
14355 if (flags & (1<<bit)) {
14356 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
14359 if (!set++ && lead)
14360 PerlIO_printf(Perl_debug_log, "%s",lead);
14361 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
14364 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
14365 if (!set++ && lead) {
14366 PerlIO_printf(Perl_debug_log, "%s",lead);
14369 case REGEX_UNICODE_CHARSET:
14370 PerlIO_printf(Perl_debug_log, "UNICODE");
14372 case REGEX_LOCALE_CHARSET:
14373 PerlIO_printf(Perl_debug_log, "LOCALE");
14375 case REGEX_ASCII_RESTRICTED_CHARSET:
14376 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
14378 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
14379 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
14382 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
14388 PerlIO_printf(Perl_debug_log, "\n");
14390 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
14396 Perl_regdump(pTHX_ const regexp *r)
14400 SV * const sv = sv_newmortal();
14401 SV *dsv= sv_newmortal();
14402 RXi_GET_DECL(r,ri);
14403 GET_RE_DEBUG_FLAGS_DECL;
14405 PERL_ARGS_ASSERT_REGDUMP;
14407 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
14409 /* Header fields of interest. */
14410 if (r->anchored_substr) {
14411 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
14412 RE_SV_DUMPLEN(r->anchored_substr), 30);
14413 PerlIO_printf(Perl_debug_log,
14414 "anchored %s%s at %"IVdf" ",
14415 s, RE_SV_TAIL(r->anchored_substr),
14416 (IV)r->anchored_offset);
14417 } else if (r->anchored_utf8) {
14418 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
14419 RE_SV_DUMPLEN(r->anchored_utf8), 30);
14420 PerlIO_printf(Perl_debug_log,
14421 "anchored utf8 %s%s at %"IVdf" ",
14422 s, RE_SV_TAIL(r->anchored_utf8),
14423 (IV)r->anchored_offset);
14425 if (r->float_substr) {
14426 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
14427 RE_SV_DUMPLEN(r->float_substr), 30);
14428 PerlIO_printf(Perl_debug_log,
14429 "floating %s%s at %"IVdf"..%"UVuf" ",
14430 s, RE_SV_TAIL(r->float_substr),
14431 (IV)r->float_min_offset, (UV)r->float_max_offset);
14432 } else if (r->float_utf8) {
14433 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
14434 RE_SV_DUMPLEN(r->float_utf8), 30);
14435 PerlIO_printf(Perl_debug_log,
14436 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
14437 s, RE_SV_TAIL(r->float_utf8),
14438 (IV)r->float_min_offset, (UV)r->float_max_offset);
14440 if (r->check_substr || r->check_utf8)
14441 PerlIO_printf(Perl_debug_log,
14443 (r->check_substr == r->float_substr
14444 && r->check_utf8 == r->float_utf8
14445 ? "(checking floating" : "(checking anchored"));
14446 if (r->extflags & RXf_NOSCAN)
14447 PerlIO_printf(Perl_debug_log, " noscan");
14448 if (r->extflags & RXf_CHECK_ALL)
14449 PerlIO_printf(Perl_debug_log, " isall");
14450 if (r->check_substr || r->check_utf8)
14451 PerlIO_printf(Perl_debug_log, ") ");
14453 if (ri->regstclass) {
14454 regprop(r, sv, ri->regstclass);
14455 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
14457 if (r->extflags & RXf_ANCH) {
14458 PerlIO_printf(Perl_debug_log, "anchored");
14459 if (r->extflags & RXf_ANCH_BOL)
14460 PerlIO_printf(Perl_debug_log, "(BOL)");
14461 if (r->extflags & RXf_ANCH_MBOL)
14462 PerlIO_printf(Perl_debug_log, "(MBOL)");
14463 if (r->extflags & RXf_ANCH_SBOL)
14464 PerlIO_printf(Perl_debug_log, "(SBOL)");
14465 if (r->extflags & RXf_ANCH_GPOS)
14466 PerlIO_printf(Perl_debug_log, "(GPOS)");
14467 PerlIO_putc(Perl_debug_log, ' ');
14469 if (r->extflags & RXf_GPOS_SEEN)
14470 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
14471 if (r->intflags & PREGf_SKIP)
14472 PerlIO_printf(Perl_debug_log, "plus ");
14473 if (r->intflags & PREGf_IMPLICIT)
14474 PerlIO_printf(Perl_debug_log, "implicit ");
14475 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
14476 if (r->extflags & RXf_EVAL_SEEN)
14477 PerlIO_printf(Perl_debug_log, "with eval ");
14478 PerlIO_printf(Perl_debug_log, "\n");
14479 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
14481 PERL_ARGS_ASSERT_REGDUMP;
14482 PERL_UNUSED_CONTEXT;
14483 PERL_UNUSED_ARG(r);
14484 #endif /* DEBUGGING */
14488 - regprop - printable representation of opcode
14490 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
14493 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
14494 if (flags & ANYOF_INVERT) \
14495 /*make sure the invert info is in each */ \
14496 sv_catpvs(sv, "^"); \
14502 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
14508 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
14509 static const char * const anyofs[] = {
14510 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
14511 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
14512 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
14513 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
14514 || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \
14515 || _CC_VERTSPACE != 16
14516 #error Need to adjust order of anyofs[]
14553 RXi_GET_DECL(prog,progi);
14554 GET_RE_DEBUG_FLAGS_DECL;
14556 PERL_ARGS_ASSERT_REGPROP;
14560 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
14561 /* It would be nice to FAIL() here, but this may be called from
14562 regexec.c, and it would be hard to supply pRExC_state. */
14563 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
14564 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
14566 k = PL_regkind[OP(o)];
14569 sv_catpvs(sv, " ");
14570 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
14571 * is a crude hack but it may be the best for now since
14572 * we have no flag "this EXACTish node was UTF-8"
14574 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
14575 PERL_PV_ESCAPE_UNI_DETECT |
14576 PERL_PV_ESCAPE_NONASCII |
14577 PERL_PV_PRETTY_ELLIPSES |
14578 PERL_PV_PRETTY_LTGT |
14579 PERL_PV_PRETTY_NOCLEAR
14581 } else if (k == TRIE) {
14582 /* print the details of the trie in dumpuntil instead, as
14583 * progi->data isn't available here */
14584 const char op = OP(o);
14585 const U32 n = ARG(o);
14586 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
14587 (reg_ac_data *)progi->data->data[n] :
14589 const reg_trie_data * const trie
14590 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
14592 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
14593 DEBUG_TRIE_COMPILE_r(
14594 Perl_sv_catpvf(aTHX_ sv,
14595 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
14596 (UV)trie->startstate,
14597 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
14598 (UV)trie->wordcount,
14601 (UV)TRIE_CHARCOUNT(trie),
14602 (UV)trie->uniquecharcount
14605 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
14607 int rangestart = -1;
14608 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
14609 sv_catpvs(sv, "[");
14610 for (i = 0; i <= 256; i++) {
14611 if (i < 256 && BITMAP_TEST(bitmap,i)) {
14612 if (rangestart == -1)
14614 } else if (rangestart != -1) {
14615 if (i <= rangestart + 3)
14616 for (; rangestart < i; rangestart++)
14617 put_byte(sv, rangestart);
14619 put_byte(sv, rangestart);
14620 sv_catpvs(sv, "-");
14621 put_byte(sv, i - 1);
14626 sv_catpvs(sv, "]");
14629 } else if (k == CURLY) {
14630 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
14631 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
14632 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
14634 else if (k == WHILEM && o->flags) /* Ordinal/of */
14635 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
14636 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
14637 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
14638 if ( RXp_PAREN_NAMES(prog) ) {
14639 if ( k != REF || (OP(o) < NREF)) {
14640 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
14641 SV **name= av_fetch(list, ARG(o), 0 );
14643 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14646 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
14647 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
14648 I32 *nums=(I32*)SvPVX(sv_dat);
14649 SV **name= av_fetch(list, nums[0], 0 );
14652 for ( n=0; n<SvIVX(sv_dat); n++ ) {
14653 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
14654 (n ? "," : ""), (IV)nums[n]);
14656 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14660 } else if (k == GOSUB)
14661 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
14662 else if (k == VERB) {
14664 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
14665 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
14666 } else if (k == LOGICAL)
14667 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
14668 else if (k == ANYOF) {
14669 int i, rangestart = -1;
14670 const U8 flags = ANYOF_FLAGS(o);
14674 if (flags & ANYOF_LOCALE)
14675 sv_catpvs(sv, "{loc}");
14676 if (flags & ANYOF_LOC_FOLD)
14677 sv_catpvs(sv, "{i}");
14678 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
14679 if (flags & ANYOF_INVERT)
14680 sv_catpvs(sv, "^");
14682 /* output what the standard cp 0-255 bitmap matches */
14683 for (i = 0; i <= 256; i++) {
14684 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
14685 if (rangestart == -1)
14687 } else if (rangestart != -1) {
14688 if (i <= rangestart + 3)
14689 for (; rangestart < i; rangestart++)
14690 put_byte(sv, rangestart);
14692 put_byte(sv, rangestart);
14693 sv_catpvs(sv, "-");
14694 put_byte(sv, i - 1);
14701 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14702 /* output any special charclass tests (used entirely under use locale) */
14703 if (ANYOF_CLASS_TEST_ANY_SET(o))
14704 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
14705 if (ANYOF_CLASS_TEST(o,i)) {
14706 sv_catpv(sv, anyofs[i]);
14710 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14712 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
14713 sv_catpvs(sv, "{non-utf8-latin1-all}");
14716 /* output information about the unicode matching */
14717 if (flags & ANYOF_UNICODE_ALL)
14718 sv_catpvs(sv, "{unicode_all}");
14719 else if (ANYOF_NONBITMAP(o))
14720 sv_catpvs(sv, "{unicode}");
14721 if (flags & ANYOF_NONBITMAP_NON_UTF8)
14722 sv_catpvs(sv, "{outside bitmap}");
14724 if (ANYOF_NONBITMAP(o)) {
14725 SV *lv; /* Set if there is something outside the bit map */
14726 SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL);
14727 bool byte_output = FALSE; /* If something in the bitmap has been
14730 if (lv && lv != &PL_sv_undef) {
14732 U8 s[UTF8_MAXBYTES_CASE+1];
14734 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
14735 uvchr_to_utf8(s, i);
14738 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
14742 && swash_fetch(sw, s, TRUE))
14744 if (rangestart == -1)
14746 } else if (rangestart != -1) {
14747 byte_output = TRUE;
14748 if (i <= rangestart + 3)
14749 for (; rangestart < i; rangestart++) {
14750 put_byte(sv, rangestart);
14753 put_byte(sv, rangestart);
14754 sv_catpvs(sv, "-");
14763 char *s = savesvpv(lv);
14764 char * const origs = s;
14766 while (*s && *s != '\n')
14770 const char * const t = ++s;
14773 sv_catpvs(sv, " ");
14779 /* Truncate very long output */
14780 if (s - origs > 256) {
14781 Perl_sv_catpvf(aTHX_ sv,
14783 (int) (s - origs - 1),
14789 else if (*s == '\t') {
14804 SvREFCNT_dec_NN(lv);
14808 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
14810 else if (k == POSIXD || k == NPOSIXD) {
14811 U8 index = FLAGS(o) * 2;
14812 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
14813 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
14816 sv_catpv(sv, anyofs[index]);
14819 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
14820 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
14822 PERL_UNUSED_CONTEXT;
14823 PERL_UNUSED_ARG(sv);
14824 PERL_UNUSED_ARG(o);
14825 PERL_UNUSED_ARG(prog);
14826 #endif /* DEBUGGING */
14830 Perl_re_intuit_string(pTHX_ REGEXP * const r)
14831 { /* Assume that RE_INTUIT is set */
14833 struct regexp *const prog = ReANY(r);
14834 GET_RE_DEBUG_FLAGS_DECL;
14836 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
14837 PERL_UNUSED_CONTEXT;
14841 const char * const s = SvPV_nolen_const(prog->check_substr
14842 ? prog->check_substr : prog->check_utf8);
14844 if (!PL_colorset) reginitcolors();
14845 PerlIO_printf(Perl_debug_log,
14846 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
14848 prog->check_substr ? "" : "utf8 ",
14849 PL_colors[5],PL_colors[0],
14852 (strlen(s) > 60 ? "..." : ""));
14855 return prog->check_substr ? prog->check_substr : prog->check_utf8;
14861 handles refcounting and freeing the perl core regexp structure. When
14862 it is necessary to actually free the structure the first thing it
14863 does is call the 'free' method of the regexp_engine associated to
14864 the regexp, allowing the handling of the void *pprivate; member
14865 first. (This routine is not overridable by extensions, which is why
14866 the extensions free is called first.)
14868 See regdupe and regdupe_internal if you change anything here.
14870 #ifndef PERL_IN_XSUB_RE
14872 Perl_pregfree(pTHX_ REGEXP *r)
14878 Perl_pregfree2(pTHX_ REGEXP *rx)
14881 struct regexp *const r = ReANY(rx);
14882 GET_RE_DEBUG_FLAGS_DECL;
14884 PERL_ARGS_ASSERT_PREGFREE2;
14886 if (r->mother_re) {
14887 ReREFCNT_dec(r->mother_re);
14889 CALLREGFREE_PVT(rx); /* free the private data */
14890 SvREFCNT_dec(RXp_PAREN_NAMES(r));
14891 Safefree(r->xpv_len_u.xpvlenu_pv);
14894 SvREFCNT_dec(r->anchored_substr);
14895 SvREFCNT_dec(r->anchored_utf8);
14896 SvREFCNT_dec(r->float_substr);
14897 SvREFCNT_dec(r->float_utf8);
14898 Safefree(r->substrs);
14900 RX_MATCH_COPY_FREE(rx);
14901 #ifdef PERL_ANY_COW
14902 SvREFCNT_dec(r->saved_copy);
14905 SvREFCNT_dec(r->qr_anoncv);
14906 rx->sv_u.svu_rx = 0;
14911 This is a hacky workaround to the structural issue of match results
14912 being stored in the regexp structure which is in turn stored in
14913 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
14914 could be PL_curpm in multiple contexts, and could require multiple
14915 result sets being associated with the pattern simultaneously, such
14916 as when doing a recursive match with (??{$qr})
14918 The solution is to make a lightweight copy of the regexp structure
14919 when a qr// is returned from the code executed by (??{$qr}) this
14920 lightweight copy doesn't actually own any of its data except for
14921 the starp/end and the actual regexp structure itself.
14927 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14929 struct regexp *ret;
14930 struct regexp *const r = ReANY(rx);
14931 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
14933 PERL_ARGS_ASSERT_REG_TEMP_COPY;
14936 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
14938 SvOK_off((SV *)ret_x);
14940 /* For PVLVs, SvANY points to the xpvlv body while sv_u points
14941 to the regexp. (For SVt_REGEXPs, sv_upgrade has already
14942 made both spots point to the same regexp body.) */
14943 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
14944 assert(!SvPVX(ret_x));
14945 ret_x->sv_u.svu_rx = temp->sv_any;
14946 temp->sv_any = NULL;
14947 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
14948 SvREFCNT_dec_NN(temp);
14949 /* SvCUR still resides in the xpvlv struct, so the regexp copy-
14950 ing below will not set it. */
14951 SvCUR_set(ret_x, SvCUR(rx));
14954 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
14955 sv_force_normal(sv) is called. */
14957 ret = ReANY(ret_x);
14959 SvFLAGS(ret_x) |= SvUTF8(rx);
14960 /* We share the same string buffer as the original regexp, on which we
14961 hold a reference count, incremented when mother_re is set below.
14962 The string pointer is copied here, being part of the regexp struct.
14964 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
14965 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
14967 const I32 npar = r->nparens+1;
14968 Newx(ret->offs, npar, regexp_paren_pair);
14969 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
14972 Newx(ret->substrs, 1, struct reg_substr_data);
14973 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
14975 SvREFCNT_inc_void(ret->anchored_substr);
14976 SvREFCNT_inc_void(ret->anchored_utf8);
14977 SvREFCNT_inc_void(ret->float_substr);
14978 SvREFCNT_inc_void(ret->float_utf8);
14980 /* check_substr and check_utf8, if non-NULL, point to either their
14981 anchored or float namesakes, and don't hold a second reference. */
14983 RX_MATCH_COPIED_off(ret_x);
14984 #ifdef PERL_ANY_COW
14985 ret->saved_copy = NULL;
14987 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
14988 SvREFCNT_inc_void(ret->qr_anoncv);
14994 /* regfree_internal()
14996 Free the private data in a regexp. This is overloadable by
14997 extensions. Perl takes care of the regexp structure in pregfree(),
14998 this covers the *pprivate pointer which technically perl doesn't
14999 know about, however of course we have to handle the
15000 regexp_internal structure when no extension is in use.
15002 Note this is called before freeing anything in the regexp
15007 Perl_regfree_internal(pTHX_ REGEXP * const rx)
15010 struct regexp *const r = ReANY(rx);
15011 RXi_GET_DECL(r,ri);
15012 GET_RE_DEBUG_FLAGS_DECL;
15014 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
15020 SV *dsv= sv_newmortal();
15021 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
15022 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
15023 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
15024 PL_colors[4],PL_colors[5],s);
15027 #ifdef RE_TRACK_PATTERN_OFFSETS
15029 Safefree(ri->u.offsets); /* 20010421 MJD */
15031 if (ri->code_blocks) {
15033 for (n = 0; n < ri->num_code_blocks; n++)
15034 SvREFCNT_dec(ri->code_blocks[n].src_regex);
15035 Safefree(ri->code_blocks);
15039 int n = ri->data->count;
15042 /* If you add a ->what type here, update the comment in regcomp.h */
15043 switch (ri->data->what[n]) {
15049 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
15052 Safefree(ri->data->data[n]);
15058 { /* Aho Corasick add-on structure for a trie node.
15059 Used in stclass optimization only */
15061 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
15063 refcount = --aho->refcount;
15066 PerlMemShared_free(aho->states);
15067 PerlMemShared_free(aho->fail);
15068 /* do this last!!!! */
15069 PerlMemShared_free(ri->data->data[n]);
15070 PerlMemShared_free(ri->regstclass);
15076 /* trie structure. */
15078 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
15080 refcount = --trie->refcount;
15083 PerlMemShared_free(trie->charmap);
15084 PerlMemShared_free(trie->states);
15085 PerlMemShared_free(trie->trans);
15087 PerlMemShared_free(trie->bitmap);
15089 PerlMemShared_free(trie->jump);
15090 PerlMemShared_free(trie->wordinfo);
15091 /* do this last!!!! */
15092 PerlMemShared_free(ri->data->data[n]);
15097 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
15100 Safefree(ri->data->what);
15101 Safefree(ri->data);
15107 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
15108 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
15109 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
15112 re_dup - duplicate a regexp.
15114 This routine is expected to clone a given regexp structure. It is only
15115 compiled under USE_ITHREADS.
15117 After all of the core data stored in struct regexp is duplicated
15118 the regexp_engine.dupe method is used to copy any private data
15119 stored in the *pprivate pointer. This allows extensions to handle
15120 any duplication it needs to do.
15122 See pregfree() and regfree_internal() if you change anything here.
15124 #if defined(USE_ITHREADS)
15125 #ifndef PERL_IN_XSUB_RE
15127 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
15131 const struct regexp *r = ReANY(sstr);
15132 struct regexp *ret = ReANY(dstr);
15134 PERL_ARGS_ASSERT_RE_DUP_GUTS;
15136 npar = r->nparens+1;
15137 Newx(ret->offs, npar, regexp_paren_pair);
15138 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15140 if (ret->substrs) {
15141 /* Do it this way to avoid reading from *r after the StructCopy().
15142 That way, if any of the sv_dup_inc()s dislodge *r from the L1
15143 cache, it doesn't matter. */
15144 const bool anchored = r->check_substr
15145 ? r->check_substr == r->anchored_substr
15146 : r->check_utf8 == r->anchored_utf8;
15147 Newx(ret->substrs, 1, struct reg_substr_data);
15148 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15150 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
15151 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
15152 ret->float_substr = sv_dup_inc(ret->float_substr, param);
15153 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
15155 /* check_substr and check_utf8, if non-NULL, point to either their
15156 anchored or float namesakes, and don't hold a second reference. */
15158 if (ret->check_substr) {
15160 assert(r->check_utf8 == r->anchored_utf8);
15161 ret->check_substr = ret->anchored_substr;
15162 ret->check_utf8 = ret->anchored_utf8;
15164 assert(r->check_substr == r->float_substr);
15165 assert(r->check_utf8 == r->float_utf8);
15166 ret->check_substr = ret->float_substr;
15167 ret->check_utf8 = ret->float_utf8;
15169 } else if (ret->check_utf8) {
15171 ret->check_utf8 = ret->anchored_utf8;
15173 ret->check_utf8 = ret->float_utf8;
15178 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
15179 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
15182 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
15184 if (RX_MATCH_COPIED(dstr))
15185 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
15187 ret->subbeg = NULL;
15188 #ifdef PERL_ANY_COW
15189 ret->saved_copy = NULL;
15192 /* Whether mother_re be set or no, we need to copy the string. We
15193 cannot refrain from copying it when the storage points directly to
15194 our mother regexp, because that's
15195 1: a buffer in a different thread
15196 2: something we no longer hold a reference on
15197 so we need to copy it locally. */
15198 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
15199 ret->mother_re = NULL;
15202 #endif /* PERL_IN_XSUB_RE */
15207 This is the internal complement to regdupe() which is used to copy
15208 the structure pointed to by the *pprivate pointer in the regexp.
15209 This is the core version of the extension overridable cloning hook.
15210 The regexp structure being duplicated will be copied by perl prior
15211 to this and will be provided as the regexp *r argument, however
15212 with the /old/ structures pprivate pointer value. Thus this routine
15213 may override any copying normally done by perl.
15215 It returns a pointer to the new regexp_internal structure.
15219 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
15222 struct regexp *const r = ReANY(rx);
15223 regexp_internal *reti;
15225 RXi_GET_DECL(r,ri);
15227 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
15231 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
15232 Copy(ri->program, reti->program, len+1, regnode);
15234 reti->num_code_blocks = ri->num_code_blocks;
15235 if (ri->code_blocks) {
15237 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
15238 struct reg_code_block);
15239 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
15240 struct reg_code_block);
15241 for (n = 0; n < ri->num_code_blocks; n++)
15242 reti->code_blocks[n].src_regex = (REGEXP*)
15243 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
15246 reti->code_blocks = NULL;
15248 reti->regstclass = NULL;
15251 struct reg_data *d;
15252 const int count = ri->data->count;
15255 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
15256 char, struct reg_data);
15257 Newx(d->what, count, U8);
15260 for (i = 0; i < count; i++) {
15261 d->what[i] = ri->data->what[i];
15262 switch (d->what[i]) {
15263 /* see also regcomp.h and regfree_internal() */
15264 case 'a': /* actually an AV, but the dup function is identical. */
15268 case 'u': /* actually an HV, but the dup function is identical. */
15269 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
15272 /* This is cheating. */
15273 Newx(d->data[i], 1, struct regnode_charclass_class);
15274 StructCopy(ri->data->data[i], d->data[i],
15275 struct regnode_charclass_class);
15276 reti->regstclass = (regnode*)d->data[i];
15279 /* Trie stclasses are readonly and can thus be shared
15280 * without duplication. We free the stclass in pregfree
15281 * when the corresponding reg_ac_data struct is freed.
15283 reti->regstclass= ri->regstclass;
15287 ((reg_trie_data*)ri->data->data[i])->refcount++;
15292 d->data[i] = ri->data->data[i];
15295 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
15304 reti->name_list_idx = ri->name_list_idx;
15306 #ifdef RE_TRACK_PATTERN_OFFSETS
15307 if (ri->u.offsets) {
15308 Newx(reti->u.offsets, 2*len+1, U32);
15309 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
15312 SetProgLen(reti,len);
15315 return (void*)reti;
15318 #endif /* USE_ITHREADS */
15320 #ifndef PERL_IN_XSUB_RE
15323 - regnext - dig the "next" pointer out of a node
15326 Perl_regnext(pTHX_ regnode *p)
15334 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
15335 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
15338 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
15347 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
15350 STRLEN l1 = strlen(pat1);
15351 STRLEN l2 = strlen(pat2);
15354 const char *message;
15356 PERL_ARGS_ASSERT_RE_CROAK2;
15362 Copy(pat1, buf, l1 , char);
15363 Copy(pat2, buf + l1, l2 , char);
15364 buf[l1 + l2] = '\n';
15365 buf[l1 + l2 + 1] = '\0';
15367 /* ANSI variant takes additional second argument */
15368 va_start(args, pat2);
15372 msv = vmess(buf, &args);
15374 message = SvPV_const(msv,l1);
15377 Copy(message, buf, l1 , char);
15378 buf[l1-1] = '\0'; /* Overwrite \n */
15379 Perl_croak(aTHX_ "%s", buf);
15382 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
15384 #ifndef PERL_IN_XSUB_RE
15386 Perl_save_re_context(pTHX)
15390 struct re_save_state *state;
15392 SAVEVPTR(PL_curcop);
15393 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
15395 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
15396 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
15397 SSPUSHUV(SAVEt_RE_STATE);
15399 Copy(&PL_reg_state, state, 1, struct re_save_state);
15401 PL_reg_oldsaved = NULL;
15402 PL_reg_oldsavedlen = 0;
15403 PL_reg_oldsavedoffset = 0;
15404 PL_reg_oldsavedcoffset = 0;
15405 PL_reg_maxiter = 0;
15406 PL_reg_leftiter = 0;
15407 PL_reg_poscache = NULL;
15408 PL_reg_poscache_size = 0;
15409 #ifdef PERL_ANY_COW
15413 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
15415 const REGEXP * const rx = PM_GETRE(PL_curpm);
15418 for (i = 1; i <= RX_NPARENS(rx); i++) {
15419 char digits[TYPE_CHARS(long)];
15420 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
15421 GV *const *const gvp
15422 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
15425 GV * const gv = *gvp;
15426 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
15438 S_put_byte(pTHX_ SV *sv, int c)
15440 PERL_ARGS_ASSERT_PUT_BYTE;
15442 /* Our definition of isPRINT() ignores locales, so only bytes that are
15443 not part of UTF-8 are considered printable. I assume that the same
15444 holds for UTF-EBCDIC.
15445 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
15446 which Wikipedia says:
15448 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
15449 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
15450 identical, to the ASCII delete (DEL) or rubout control character. ...
15451 it is typically mapped to hexadecimal code 9F, in order to provide a
15452 unique character mapping in both directions)
15454 So the old condition can be simplified to !isPRINT(c) */
15457 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
15460 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
15464 const char string = c;
15465 if (c == '-' || c == ']' || c == '\\' || c == '^')
15466 sv_catpvs(sv, "\\");
15467 sv_catpvn(sv, &string, 1);
15472 #define CLEAR_OPTSTART \
15473 if (optstart) STMT_START { \
15474 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
15478 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
15480 STATIC const regnode *
15481 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
15482 const regnode *last, const regnode *plast,
15483 SV* sv, I32 indent, U32 depth)
15486 U8 op = PSEUDO; /* Arbitrary non-END op. */
15487 const regnode *next;
15488 const regnode *optstart= NULL;
15490 RXi_GET_DECL(r,ri);
15491 GET_RE_DEBUG_FLAGS_DECL;
15493 PERL_ARGS_ASSERT_DUMPUNTIL;
15495 #ifdef DEBUG_DUMPUNTIL
15496 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
15497 last ? last-start : 0,plast ? plast-start : 0);
15500 if (plast && plast < last)
15503 while (PL_regkind[op] != END && (!last || node < last)) {
15504 /* While that wasn't END last time... */
15507 if (op == CLOSE || op == WHILEM)
15509 next = regnext((regnode *)node);
15512 if (OP(node) == OPTIMIZED) {
15513 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
15520 regprop(r, sv, node);
15521 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
15522 (int)(2*indent + 1), "", SvPVX_const(sv));
15524 if (OP(node) != OPTIMIZED) {
15525 if (next == NULL) /* Next ptr. */
15526 PerlIO_printf(Perl_debug_log, " (0)");
15527 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
15528 PerlIO_printf(Perl_debug_log, " (FAIL)");
15530 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
15531 (void)PerlIO_putc(Perl_debug_log, '\n');
15535 if (PL_regkind[(U8)op] == BRANCHJ) {
15538 const regnode *nnode = (OP(next) == LONGJMP
15539 ? regnext((regnode *)next)
15541 if (last && nnode > last)
15543 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
15546 else if (PL_regkind[(U8)op] == BRANCH) {
15548 DUMPUNTIL(NEXTOPER(node), next);
15550 else if ( PL_regkind[(U8)op] == TRIE ) {
15551 const regnode *this_trie = node;
15552 const char op = OP(node);
15553 const U32 n = ARG(node);
15554 const reg_ac_data * const ac = op>=AHOCORASICK ?
15555 (reg_ac_data *)ri->data->data[n] :
15557 const reg_trie_data * const trie =
15558 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
15560 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
15562 const regnode *nextbranch= NULL;
15565 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
15566 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
15568 PerlIO_printf(Perl_debug_log, "%*s%s ",
15569 (int)(2*(indent+3)), "",
15570 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
15571 PL_colors[0], PL_colors[1],
15572 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
15573 PERL_PV_PRETTY_ELLIPSES |
15574 PERL_PV_PRETTY_LTGT
15579 U16 dist= trie->jump[word_idx+1];
15580 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
15581 (UV)((dist ? this_trie + dist : next) - start));
15584 nextbranch= this_trie + trie->jump[0];
15585 DUMPUNTIL(this_trie + dist, nextbranch);
15587 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
15588 nextbranch= regnext((regnode *)nextbranch);
15590 PerlIO_printf(Perl_debug_log, "\n");
15593 if (last && next > last)
15598 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
15599 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
15600 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
15602 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
15604 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
15606 else if ( op == PLUS || op == STAR) {
15607 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
15609 else if (PL_regkind[(U8)op] == ANYOF) {
15610 /* arglen 1 + class block */
15611 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
15612 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
15613 node = NEXTOPER(node);
15615 else if (PL_regkind[(U8)op] == EXACT) {
15616 /* Literal string, where present. */
15617 node += NODE_SZ_STR(node) - 1;
15618 node = NEXTOPER(node);
15621 node = NEXTOPER(node);
15622 node += regarglen[(U8)op];
15624 if (op == CURLYX || op == OPEN)
15628 #ifdef DEBUG_DUMPUNTIL
15629 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
15634 #endif /* DEBUGGING */
15638 * c-indentation-style: bsd
15639 * c-basic-offset: 4
15640 * indent-tabs-mode: nil
15643 * ex: set ts=8 sts=4 sw=4 et: