btrfs-progs: dump-tree: print missing inode_item data
[platform/upstream/btrfs-progs.git] / qgroup-verify.c
1 /*
2  * Copyright (C) 2014 SUSE.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  *
18  * Authors: Mark Fasheh <mfasheh@suse.de>
19  */
20
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <uuid/uuid.h>
24 #include "kerncompat.h"
25 #include "radix-tree.h"
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "print-tree.h"
29 #include "utils.h"
30 #include "ulist.h"
31 #include "rbtree-utils.h"
32 #include "transaction.h"
33 #include "repair.h"
34
35 #include "qgroup-verify.h"
36
37 /*#define QGROUP_VERIFY_DEBUG*/
38 static unsigned long tot_extents_scanned = 0;
39
40 struct qgroup_count;
41 static struct qgroup_count *find_count(u64 qgroupid);
42
43 struct qgroup_info {
44         u64 referenced;
45         u64 referenced_compressed;
46         u64 exclusive;
47         u64 exclusive_compressed;
48 };
49
50 struct qgroup_count {
51         u64 qgroupid;
52         int subvol_exists;
53
54         struct btrfs_disk_key key;
55         struct qgroup_info diskinfo;
56
57         struct qgroup_info info;
58
59         struct rb_node rb_node;
60
61         /* Parents when we are a child group */
62         struct list_head groups;
63
64         /*
65          * Children when we are a parent group (not currently used but
66          * maintained to mirror kernel handling of qgroups)
67          */
68         struct list_head members;
69
70         u64 cur_refcnt;
71
72         struct list_head bad_list;
73 };
74
75 static struct counts_tree {
76         struct rb_root          root;
77         unsigned int            num_groups;
78         unsigned int            rescan_running:1;
79         unsigned int            qgroup_inconsist:1;
80 } counts = { .root = RB_ROOT };
81
82 static LIST_HEAD(bad_qgroups);
83
84 static struct rb_root by_bytenr = RB_ROOT;
85
86 /*
87  * Glue structure to represent the relations between qgroups. Mirrored
88  * from kernel.
89  */
90 struct btrfs_qgroup_list {
91         struct list_head next_group;
92         struct list_head next_member;
93         struct qgroup_count *group; /* Parent group */
94         struct qgroup_count *member;
95 };
96
97 /* Allow us to reset ref counts during accounting without zeroing each group. */
98 static u64 qgroup_seq = 1ULL;
99
100 static inline void update_cur_refcnt(struct qgroup_count *c)
101 {
102         if (c->cur_refcnt < qgroup_seq)
103                 c->cur_refcnt = qgroup_seq;
104         c->cur_refcnt++;
105 }
106
107 static inline u64 group_get_cur_refcnt(struct qgroup_count *c)
108 {
109         if (c->cur_refcnt < qgroup_seq)
110                 return 0;
111         return c->cur_refcnt - qgroup_seq;
112 }
113
114 static void inc_qgroup_seq(int root_count)
115 {
116         qgroup_seq += root_count + 1;
117 }
118
119 /*
120  * List of interior tree blocks. We walk this list after loading the
121  * extent tree to resolve implied refs. For each interior node we'll
122  * place a shared ref in the ref tree against each child object. This
123  * allows the shared ref resolving code to do the actual work later of
124  * finding roots to account against.
125  *
126  * An implied ref is when a tree block has refs on it that may not
127  * exist in any of its child nodes. Even though the refs might not
128  * exist further down the tree, the fact that our interior node has a
129  * ref means we need to account anything below it to all its roots.
130  */
131 static struct ulist *tree_blocks = NULL;        /* unode->val = bytenr, ->aux
132                                                  * = tree_block pointer */
133 struct tree_block {
134         int                     level;
135         u64                     num_bytes;
136 };
137
138 struct ref {
139         u64                     bytenr;
140         u64                     num_bytes;
141         u64                     parent;
142         u64                     root;
143
144         struct rb_node          bytenr_node;
145 };
146
147 #ifdef QGROUP_VERIFY_DEBUG
148 static void print_ref(struct ref *ref)
149 {
150         printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
151                "root: %llu\n", ref->bytenr, ref->num_bytes,
152                ref->parent, ref->root);
153 }
154
155 static void print_all_refs(void)
156 {
157         unsigned long count = 0;
158         struct ref *ref;
159         struct rb_node *node;
160
161         node = rb_first(&by_bytenr);
162         while (node) {
163                 ref = rb_entry(node, struct ref, bytenr_node);
164
165                 print_ref(ref);
166
167                 count++;
168                 node = rb_next(node);
169         }
170
171         printf("%lu extents scanned with %lu refs in total.\n",
172                tot_extents_scanned, count);
173 }
174 #endif
175
176 /*
177  * Store by bytenr in rbtree
178  *
179  * The tree is sorted in ascending order by bytenr, then parent, then
180  * root. Since full refs have a parent == 0, those will come before
181  * shared refs.
182  */
183 static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
184 {
185         if (bytenr < orig->bytenr)
186                 return -1;
187         if (bytenr > orig->bytenr)
188                 return 1;
189
190         if (parent < orig->parent)
191                 return -1;
192         if (parent > orig->parent)
193                 return 1;
194
195         if (root < orig->root)
196                 return -1;
197         if (root > orig->root)
198                 return 1;
199
200         return 0;
201 }
202
203 /*
204  * insert a new ref into the tree.  returns the existing ref entry
205  * if one is already there.
206  */
207 static struct ref *insert_ref(struct ref *ref)
208 {
209         int ret;
210         struct rb_node **p = &by_bytenr.rb_node;
211         struct rb_node *parent = NULL;
212         struct ref *curr;
213
214         while (*p) {
215                 parent = *p;
216                 curr = rb_entry(parent, struct ref, bytenr_node);
217
218                 ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
219                 if (ret < 0)
220                         p = &(*p)->rb_left;
221                 else if (ret > 0)
222                         p = &(*p)->rb_right;
223                 else
224                         return curr;
225         }
226
227         rb_link_node(&ref->bytenr_node, parent, p);
228         rb_insert_color(&ref->bytenr_node, &by_bytenr);
229         return ref;
230 }
231
232 /*
233  * Partial search, returns the first ref with matching bytenr. Caller
234  * can walk forward from there.
235  *
236  * Leftmost refs will be full refs - this is used to our advantage
237  * when resolving roots.
238  */
239 static struct ref *find_ref_bytenr(u64 bytenr)
240 {
241         struct rb_node *n = by_bytenr.rb_node;
242         struct ref *ref;
243
244         while (n) {
245                 ref = rb_entry(n, struct ref, bytenr_node);
246
247                 if (bytenr < ref->bytenr)
248                         n = n->rb_left;
249                 else if (bytenr > ref->bytenr)
250                         n = n->rb_right;
251                 else {
252                         /* Walk to the left to find the first item */
253                         struct rb_node *node_left = rb_prev(&ref->bytenr_node);
254                         struct ref *ref_left;
255
256                         while (node_left) {
257                                 ref_left = rb_entry(node_left, struct ref,
258                                                     bytenr_node);
259                                 if (ref_left->bytenr != ref->bytenr)
260                                         break;
261                                 ref = ref_left;
262                                 node_left = rb_prev(node_left);
263                         }
264                         return ref;
265                 }
266         }
267         return NULL;
268 }
269
270 static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
271 {
272         struct rb_node *n = by_bytenr.rb_node;
273         struct ref *ref;
274         int ret;
275
276         while (n) {
277                 ref = rb_entry(n, struct ref, bytenr_node);
278
279                 ret = compare_ref(ref, bytenr, root, parent);
280                 if (ret < 0)
281                         n = n->rb_left;
282                 else if (ret > 0)
283                         n = n->rb_right;
284                 else
285                         return ref;
286         }
287         return NULL;
288 }
289
290 static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
291 {
292         struct ref *ref = find_ref(bytenr, root, parent);
293
294         BUG_ON(parent && root);
295
296         if (ref == NULL) {
297                 ref = calloc(1, sizeof(*ref));
298                 if (ref) {
299                         ref->bytenr = bytenr;
300                         ref->root = root;
301                         ref->parent = parent;
302                         ref->num_bytes = num_bytes;
303
304                         insert_ref(ref);
305                 }
306         }
307         return ref;
308 }
309
310 static void free_ref_node(struct rb_node *node)
311 {
312         struct ref *ref = rb_entry(node, struct ref, bytenr_node);
313         free(ref);
314 }
315
316 FREE_RB_BASED_TREE(ref, free_ref_node);
317
318 /*
319  * Resolves all the possible roots for the ref at parent.
320  */
321 static int find_parent_roots(struct ulist *roots, u64 parent)
322 {
323         struct ref *ref;
324         struct rb_node *node;
325         int ret;
326
327         /*
328          * Search the rbtree for the first ref with bytenr == parent.
329          * Walk forward so long as bytenr == parent, adding resolved root ids.
330          * For each unresolved root, we recurse
331          */
332         ref = find_ref_bytenr(parent);
333         if (!ref) {
334                 error("bytenr ref not found for parent %llu",
335                                 (unsigned long long)parent);
336                 return -EIO;
337         }
338         node = &ref->bytenr_node;
339         if (ref->bytenr != parent) {
340                 error("found bytenr ref does not match parent: %llu != %llu",
341                                 (unsigned long long)ref->bytenr,
342                                 (unsigned long long)parent);
343                 return -EIO;
344         }
345
346         {
347                 /*
348                  * Random sanity check, are we actually getting the
349                  * leftmost node?
350                  */
351                 struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
352                 struct ref *prev;
353
354                 if (prev_node) {
355                         prev = rb_entry(prev_node, struct ref, bytenr_node);
356                         if (prev->bytenr == parent) {
357                                 error(
358                                 "unexpected: prev bytenr same as parent: %llu",
359                                                 (unsigned long long)parent);
360                                 return -EIO;
361                         }
362                 }
363         }
364
365         do {
366                 if (ref->root) {
367                         if (is_fstree(ref->root)) {
368                                 ret = ulist_add(roots, ref->root, 0, 0);
369                                 if (ret < 0)
370                                         goto out;
371                         }
372                 } else if (ref->parent == ref->bytenr) {
373                         /*
374                          * Special loop case for tree reloc tree
375                          */
376                         ref->root = BTRFS_TREE_RELOC_OBJECTID;
377                 } else {
378                         ret = find_parent_roots(roots, ref->parent);
379                         if (ret < 0)
380                                 goto out;
381                 }
382
383                 node = rb_next(node);
384                 if (node)
385                         ref = rb_entry(node, struct ref, bytenr_node);
386         } while (node && ref->bytenr == parent);
387
388         ret = 0;
389 out:
390         return ret;
391 }
392
393 static int account_one_extent(struct ulist *roots, u64 bytenr, u64 num_bytes)
394 {
395         int ret;
396         u64 id, nr_roots, nr_refs;
397         struct qgroup_count *count;
398         struct ulist *counts = ulist_alloc(0);
399         struct ulist *tmp = ulist_alloc(0);
400         struct ulist_iterator uiter;
401         struct ulist_iterator tmp_uiter;
402         struct ulist_node *unode;
403         struct ulist_node *tmp_unode;
404         struct btrfs_qgroup_list *glist;
405
406         if (!counts || !tmp) {
407                 ulist_free(counts);
408                 ulist_free(tmp);
409                 return ENOMEM;
410         }
411
412         ULIST_ITER_INIT(&uiter);
413         while ((unode = ulist_next(roots, &uiter))) {
414                 BUG_ON(unode->val == 0ULL);
415
416                 /*
417                  * For each root, find their corresponding tracking group and
418                  * add it to our qgroups list.
419                  */
420                 count = find_count(unode->val);
421                 if (!count)
422                         continue;
423
424                 BUG_ON(!is_fstree(unode->val));
425                 ret = ulist_add(counts, count->qgroupid, ptr_to_u64(count), 0);
426                 if (ret < 0)
427                         goto out;
428
429                 /*
430                  * Now we look for parents (and parents of those...). Use a tmp
431                  * ulist here to avoid re-walking (and re-incrementing) our
432                  * already added items on every loop iteration.
433                  */
434                 ulist_reinit(tmp);
435                 ret = ulist_add(tmp, count->qgroupid, ptr_to_u64(count), 0);
436                 if (ret < 0)
437                         goto out;
438
439                 ULIST_ITER_INIT(&tmp_uiter);
440                 while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) {
441                         /* Bump the refcount on a node every time we see it. */
442                         count = u64_to_ptr(tmp_unode->aux);
443                         update_cur_refcnt(count);
444
445                         list_for_each_entry(glist, &count->groups, next_group) {
446                                 struct qgroup_count *parent;
447                                 parent = glist->group;
448                                 id = parent->qgroupid;
449
450                                 BUG_ON(!count);
451
452                                 ret = ulist_add(counts, id, ptr_to_u64(parent),
453                                                 0);
454                                 if (ret < 0)
455                                         goto out;
456                                 ret = ulist_add(tmp, id, ptr_to_u64(parent),
457                                                 0);
458                                 if (ret < 0)
459                                         goto out;
460                         }
461                 }
462         }
463
464         /*
465          * Now that we have gathered up and counted all the groups, we
466          * can add bytes for this ref.
467          */
468         nr_roots = roots->nnodes;
469         ULIST_ITER_INIT(&uiter);
470         while ((unode = ulist_next(counts, &uiter))) {
471                 count = u64_to_ptr(unode->aux);
472
473                 nr_refs = group_get_cur_refcnt(count);
474                 if (nr_refs) {
475                         count->info.referenced += num_bytes;
476                         count->info.referenced_compressed += num_bytes;
477
478                         if (nr_refs == nr_roots) {
479                                 count->info.exclusive += num_bytes;
480                                 count->info.exclusive_compressed += num_bytes;
481                         }
482                 }
483 #ifdef QGROUP_VERIFY_DEBUG
484                 printf("account (%llu, %llu), qgroup %llu/%llu, rfer %llu,"
485                        " excl %llu, refs %llu, roots %llu\n", bytenr, num_bytes,
486                        btrfs_qgroup_level(count->qgroupid),
487                        btrfs_qgroup_subvid(count->qgroupid),
488                        count->info.referenced, count->info.exclusive, nr_refs,
489                        nr_roots);
490 #endif
491         }
492
493         inc_qgroup_seq(roots->nnodes);
494         ret = 0;
495 out:
496         ulist_free(counts);
497         ulist_free(tmp);
498         return ret;
499 }
500
501 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
502                               struct ulist *roots);
503 /*
504  * Account each ref. Walk the refs, for each set of refs in a
505  * given bytenr:
506  *
507  * - add the roots for direct refs to the ref roots ulist
508  *
509  * - resolve all possible roots for shared refs, insert each
510  *   of those into ref_roots ulist (this is a recursive process)
511  *
512  * - With all roots resolved we can account the ref - this is done in
513  *   account_one_extent().
514  */
515 static int account_all_refs(int do_qgroups, u64 search_subvol)
516 {
517         struct ref *ref;
518         struct rb_node *node;
519         u64 bytenr, num_bytes;
520         struct ulist *roots = ulist_alloc(0);
521         int ret;
522
523         node = rb_first(&by_bytenr);
524         while (node) {
525                 ulist_reinit(roots);
526
527                 ref = rb_entry(node, struct ref, bytenr_node);
528                 /*
529                  * Walk forward through the list of refs for this
530                  * bytenr, adding roots to our ulist. If it's a full
531                  * ref, then we have the easy case. Otherwise we need
532                  * to search for roots.
533                  */
534                 bytenr = ref->bytenr;
535                 num_bytes = ref->num_bytes;
536                 do {
537                         BUG_ON(ref->bytenr != bytenr);
538                         BUG_ON(ref->num_bytes != num_bytes);
539                         if (ref->root) {
540                                 if (is_fstree(ref->root)) {
541                                         if (ulist_add(roots, ref->root, 0, 0) < 0)
542                                                 goto enomem;
543                                 }
544                         } else {
545                                 ret = find_parent_roots(roots, ref->parent);
546                                 if (ret < 0)
547                                         goto enomem;
548                         }
549
550                         /*
551                          * When we leave this inner loop, node is set
552                          * to next in our tree and will be turned into
553                          * a ref object up top
554                          */
555                         node = rb_next(node);
556                         if (node)
557                                 ref = rb_entry(node, struct ref, bytenr_node);
558                 } while (node && ref->bytenr == bytenr);
559
560                 if (search_subvol)
561                         print_subvol_info(search_subvol, bytenr, num_bytes,
562                                           roots);
563
564                 if (!do_qgroups)
565                         continue;
566
567                 if (account_one_extent(roots, bytenr, num_bytes))
568                         goto enomem;
569         }
570
571         ulist_free(roots);
572         return 0;
573 enomem:
574         error("Out of memory while accounting refs for qgroups");
575         return -ENOMEM;
576 }
577
578 static u64 resolve_one_root(u64 bytenr)
579 {
580         struct ref *ref = find_ref_bytenr(bytenr);
581
582         BUG_ON(ref == NULL);
583
584         if (ref->root)
585                 return ref->root;
586         if (ref->parent == bytenr)
587                 return BTRFS_TREE_RELOC_OBJECTID;
588         return resolve_one_root(ref->parent);
589 }
590
591 static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
592 {
593         return u64_to_ptr(unode->aux);
594 }
595 static inline u64 unode_bytenr(struct ulist_node *unode)
596 {
597         return unode->val;
598 }
599
600 static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
601 {
602         struct tree_block *block = calloc(1, sizeof(*block));
603
604         if (block) {
605                 block->num_bytes = num_bytes;
606                 block->level = level;
607                 if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
608                         return 0;
609                 free(block);
610         }
611         return -ENOMEM;
612 }
613
614 static void free_tree_blocks(void)
615 {
616         struct ulist_iterator uiter;
617         struct ulist_node *unode;
618
619         if (!tree_blocks)
620                 return;
621
622         ULIST_ITER_INIT(&uiter);
623         while ((unode = ulist_next(tree_blocks, &uiter)))
624                 free(unode_tree_block(unode));
625         ulist_free(tree_blocks);        
626         tree_blocks = NULL;
627 }
628
629 #ifdef QGROUP_VERIFY_DEBUG
630 static void print_tree_block(u64 bytenr, struct tree_block *block)
631 {
632         struct ref *ref;
633         struct rb_node *node;
634
635         printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
636                block->level);
637
638         ref = find_ref_bytenr(bytenr);
639         node = &ref->bytenr_node;
640         do {
641                 print_ref(ref);
642                 node = rb_next(node);
643                 if (node)
644                         ref = rb_entry(node, struct ref, bytenr_node);
645         } while (node && ref->bytenr == bytenr);
646
647         printf("\n");
648 }
649
650 static void print_all_tree_blocks(void)
651 {
652         struct ulist_iterator uiter;
653         struct ulist_node *unode;
654
655         if (!tree_blocks)
656                 return;
657
658         printf("Listing all found interior tree nodes:\n");
659
660         ULIST_ITER_INIT(&uiter);
661         while ((unode = ulist_next(tree_blocks, &uiter)))
662                 print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
663 }
664 #endif
665
666 static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
667 {
668         int nr, i;
669         int extent_type;
670         u64 bytenr, num_bytes;
671         struct btrfs_key key;
672         struct btrfs_disk_key disk_key;
673         struct btrfs_file_extent_item *fi;
674
675         nr = btrfs_header_nritems(eb);
676         for (i = 0; i < nr; i++) {
677                 btrfs_item_key(eb, &disk_key, i);
678                 btrfs_disk_key_to_cpu(&key, &disk_key);
679
680                 if (key.type != BTRFS_EXTENT_DATA_KEY)
681                         continue;
682
683                 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
684                 /* filter out: inline, disk_bytenr == 0, compressed?
685                  * not if we can avoid it */
686                 extent_type = btrfs_file_extent_type(eb, fi);
687
688                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
689                         continue;
690
691                 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
692                 if (!bytenr)
693                         continue;
694
695                 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
696                 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
697                         return ENOMEM;
698         }
699
700         return 0;
701 }
702
703 static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
704                        u64 bytenr, u64 num_bytes, u64 ref_parent)
705 {
706         int ret, nr, i;
707         struct extent_buffer *eb;
708         u64 new_bytenr;
709         u64 new_num_bytes;
710
711 //      printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
712 //             bytenr, num_bytes, ref_parent);
713
714         eb = read_tree_block(root, bytenr, num_bytes, 0);
715         if (!extent_buffer_uptodate(eb))
716                 return -EIO;
717
718         ret = 0;
719         /* Don't add a ref for our starting tree block to itself */
720         if (bytenr != ref_parent) {
721                 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
722                         return ENOMEM;
723         }
724
725         if (btrfs_is_leaf(eb)) {
726                 ret = add_refs_for_leaf_items(eb, ref_parent);
727                 goto out;
728         }
729
730         /*
731          * Interior nodes are tuples of (key, bytenr) where key is the
732          * leftmost key in the tree block pointed to by bytenr. We
733          * don't have to care about key here, just follow the bytenr
734          * pointer.
735          */
736         nr = btrfs_header_nritems(eb);
737         for (i = 0; i < nr; i++) {
738                 new_bytenr = btrfs_node_blockptr(eb, i);
739                 new_num_bytes = root->nodesize;
740
741                 ret = travel_tree(info, root, new_bytenr, new_num_bytes,
742                                   ref_parent);
743         }
744
745 out:
746         free_extent_buffer(eb);
747         return ret;
748 }
749
750 static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
751                                 struct tree_block *block)
752 {
753         int ret;
754         u64 root_id = resolve_one_root(bytenr);
755         struct btrfs_root *root;
756         struct btrfs_key key;
757
758         /* Tree reloc tree doesn't contribute qgroup, skip it */
759         if (root_id == BTRFS_TREE_RELOC_OBJECTID)
760                 return 0;
761         key.objectid = root_id;
762         key.type = BTRFS_ROOT_ITEM_KEY;
763         key.offset = (u64)-1;
764
765         /*
766          * XXX: Don't free the root object as we don't know whether it
767          * came off our fs_info struct or not.
768          */
769         root = btrfs_read_fs_root(info, &key);
770         if (!root || IS_ERR(root))
771                 return ENOENT;
772
773         ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
774         if (ret)
775                 return ret;
776
777         return 0;
778 }
779
780 /*
781  * Place shared refs in the ref tree for each child of an interior tree node.
782  */
783 static int map_implied_refs(struct btrfs_fs_info *info)
784 {
785         int ret = 0;
786         struct ulist_iterator uiter;
787         struct ulist_node *unode;
788
789         ULIST_ITER_INIT(&uiter);
790         while ((unode = ulist_next(tree_blocks, &uiter))) {
791                 ret = add_refs_for_implied(info, unode_bytenr(unode),
792                                            unode_tree_block(unode));
793                 if (ret)
794                         goto out;
795         }
796 out:
797         return ret;
798 }
799
800 /*
801  * insert a new root into the tree.  returns the existing root entry
802  * if one is already there.  qgroupid is used
803  * as the key
804  */
805 static int insert_count(struct qgroup_count *qc)
806 {
807         struct rb_node **p = &counts.root.rb_node;
808         struct rb_node *parent = NULL;
809         struct qgroup_count *curr;
810
811         while (*p) {
812                 parent = *p;
813                 curr = rb_entry(parent, struct qgroup_count, rb_node);
814
815                 if (qc->qgroupid < curr->qgroupid)
816                         p = &(*p)->rb_left;
817                 else if (qc->qgroupid > curr->qgroupid)
818                         p = &(*p)->rb_right;
819                 else
820                         return EEXIST;
821         }
822         counts.num_groups++;
823         rb_link_node(&qc->rb_node, parent, p);
824         rb_insert_color(&qc->rb_node, &counts.root);
825         return 0;
826 }
827
828 static struct qgroup_count *find_count(u64 qgroupid)
829 {
830         struct rb_node *n = counts.root.rb_node;
831         struct qgroup_count *count;
832
833         while (n) {
834                 count = rb_entry(n, struct qgroup_count, rb_node);
835
836                 if (qgroupid < count->qgroupid)
837                         n = n->rb_left;
838                 else if (qgroupid > count->qgroupid)
839                         n = n->rb_right;
840                 else
841                         return count;
842         }
843         return NULL;
844 }
845
846 static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
847                                         struct extent_buffer *leaf,
848                                         struct btrfs_qgroup_info_item *disk)
849 {
850         struct qgroup_count *c = calloc(1, sizeof(*c));
851         struct qgroup_info *item;
852
853         if (c) {
854                 c->qgroupid = btrfs_disk_key_offset(key);
855                 c->key = *key;
856
857                 item = &c->diskinfo;
858                 item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
859                 item->referenced_compressed =
860                         btrfs_qgroup_info_referenced_compressed(leaf, disk);
861                 item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
862                 item->exclusive_compressed =
863                         btrfs_qgroup_info_exclusive_compressed(leaf, disk);
864                 INIT_LIST_HEAD(&c->groups);
865                 INIT_LIST_HEAD(&c->members);
866                 INIT_LIST_HEAD(&c->bad_list);
867
868                 if (insert_count(c)) {
869                         free(c);
870                         c = NULL;
871                 }
872         }
873         return c;
874 }
875
876 static int add_qgroup_relation(u64 memberid, u64 parentid)
877 {
878         struct qgroup_count *member;
879         struct qgroup_count *parent;
880         struct btrfs_qgroup_list *list;
881
882         if (memberid > parentid)
883                 return 0;
884
885         member = find_count(memberid);
886         parent = find_count(parentid);
887         if (!member || !parent)
888                 return -ENOENT;
889
890         list = calloc(1, sizeof(*list));
891         if (!list)
892                 return -ENOMEM;
893
894         list->group = parent;
895         list->member = member;
896         list_add_tail(&list->next_group, &member->groups);
897         list_add_tail(&list->next_member, &parent->members);
898
899         return 0;
900 }
901
902 static void read_qgroup_status(struct extent_buffer *eb, int slot,
903                               struct counts_tree *counts)
904 {
905         struct btrfs_qgroup_status_item *status_item;
906         u64 flags;
907
908         status_item = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item);
909         flags = btrfs_qgroup_status_flags(eb, status_item);
910         /*
911          * Since qgroup_inconsist/rescan_running is just one bit,
912          * assign value directly won't work.
913          */
914         counts->qgroup_inconsist = !!(flags &
915                         BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
916         counts->rescan_running = !!(flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN);
917 }
918
919 static int load_quota_info(struct btrfs_fs_info *info)
920 {
921         int ret;
922         struct btrfs_root *root = info->quota_root;
923         struct btrfs_root *tmproot;
924         struct btrfs_path path;
925         struct btrfs_key key;
926         struct btrfs_key root_key;
927         struct btrfs_disk_key disk_key;
928         struct extent_buffer *leaf;
929         struct btrfs_qgroup_info_item *item;
930         struct qgroup_count *count;
931         int i, nr;
932         int search_relations = 0;
933
934 loop:
935         /*
936          * Do 2 passes, the first allocates group counts and reads status
937          * items. The 2nd pass picks up relation items and glues them to their
938          * respective count structures.
939          */
940         btrfs_init_path(&path);
941
942         key.offset = 0;
943         key.objectid = search_relations ? 0 : BTRFS_QGROUP_RELATION_KEY;
944         key.type = 0;
945
946         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
947         if (ret < 0) {
948                 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
949                 goto out;
950         }
951
952         while (1) {
953                 leaf = path.nodes[0];
954
955                 nr = btrfs_header_nritems(leaf);
956                 for(i = 0; i < nr; i++) {
957                         btrfs_item_key(leaf, &disk_key, i);
958                         btrfs_disk_key_to_cpu(&key, &disk_key);
959
960                         if (search_relations) {
961                                 if (key.type == BTRFS_QGROUP_RELATION_KEY) {
962                                         ret = add_qgroup_relation(key.objectid,
963                                                                   key.offset);
964                                         if (ret) {
965                                                 error("out of memory");
966                                                 goto out;
967                                         }
968                                 }
969                                 continue;
970                         }
971
972                         if (key.type == BTRFS_QGROUP_STATUS_KEY) {
973                                 read_qgroup_status(leaf, i, &counts);
974                                 continue;
975                         }
976
977                         /*
978                          * At this point, we can ignore anything that
979                          * isn't a qgroup info.
980                          */
981                         if (key.type != BTRFS_QGROUP_INFO_KEY)
982                                 continue;
983
984                         item = btrfs_item_ptr(leaf, i,
985                                               struct btrfs_qgroup_info_item);
986
987                         count = alloc_count(&disk_key, leaf, item);
988                         if (!count) {
989                                 ret = ENOMEM;
990                                 fprintf(stderr, "ERROR: out of memory\n");
991                                 goto out;
992                         }
993
994                         root_key.objectid = key.offset;
995                         root_key.type = BTRFS_ROOT_ITEM_KEY;
996                         root_key.offset = (u64)-1;
997                         tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
998                         if (tmproot && !IS_ERR(tmproot)) {
999                                 count->subvol_exists = 1;
1000                                 btrfs_free_fs_root(tmproot);
1001                         }
1002                 }
1003
1004                 ret = btrfs_next_leaf(root, &path);
1005                 if (ret != 0)
1006                         break;
1007         }
1008
1009         ret = 0;
1010         btrfs_release_path(&path);
1011
1012         if (!search_relations) {
1013                 search_relations = 1;
1014                 goto loop;
1015         }
1016
1017 out:
1018         return ret;
1019 }
1020
1021 static int add_inline_refs(struct btrfs_fs_info *info,
1022                            struct extent_buffer *ei_leaf, int slot,
1023                            u64 bytenr, u64 num_bytes, int meta_item)
1024 {
1025         struct btrfs_extent_item *ei;
1026         struct btrfs_extent_inline_ref *iref;
1027         struct btrfs_extent_data_ref *dref;
1028         u64 flags, root_obj, offset, parent;
1029         u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
1030         int type;
1031         unsigned long end;
1032         unsigned long ptr;
1033
1034         ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
1035         flags = btrfs_extent_flags(ei_leaf, ei);
1036
1037         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
1038                 struct btrfs_tree_block_info *tbinfo;
1039                 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
1040                 iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
1041         } else {
1042                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
1043         }
1044
1045         ptr = (unsigned long)iref;
1046         end = (unsigned long)ei + item_size;
1047         while (ptr < end) {
1048                 iref = (struct btrfs_extent_inline_ref *)ptr;
1049
1050                 parent = root_obj = 0;
1051                 offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
1052                 type = btrfs_extent_inline_ref_type(ei_leaf, iref);
1053                 switch (type) {
1054                 case BTRFS_TREE_BLOCK_REF_KEY:
1055                         root_obj = offset;
1056                         break;
1057                 case BTRFS_EXTENT_DATA_REF_KEY:
1058                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1059                         root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
1060                         break;
1061                 case BTRFS_SHARED_DATA_REF_KEY:
1062                 case BTRFS_SHARED_BLOCK_REF_KEY:
1063                         parent = offset;
1064                         break;
1065                 default:
1066                         return 1;
1067                 }
1068
1069                 if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
1070                         return ENOMEM;
1071
1072                 ptr += btrfs_extent_inline_ref_size(type);
1073         }
1074
1075         return 0;
1076 }
1077
1078 static int add_keyed_ref(struct btrfs_fs_info *info,
1079                          struct btrfs_key *key,
1080                          struct extent_buffer *leaf, int slot,
1081                          u64 bytenr, u64 num_bytes)
1082 {
1083         u64 root_obj = 0, parent = 0;
1084         struct btrfs_extent_data_ref *dref;
1085
1086         switch(key->type) {
1087         case BTRFS_TREE_BLOCK_REF_KEY:
1088                 root_obj = key->offset;
1089                 break;
1090         case BTRFS_EXTENT_DATA_REF_KEY:
1091                 dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
1092                 root_obj = btrfs_extent_data_ref_root(leaf, dref);
1093                 break;
1094         case BTRFS_SHARED_DATA_REF_KEY:
1095         case BTRFS_SHARED_BLOCK_REF_KEY:
1096                 parent = key->offset;
1097                 break;
1098         default:
1099                 return 1;
1100         }
1101
1102         if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
1103                 return ENOMEM;
1104
1105         return 0;
1106 }
1107
1108 /*
1109  * return value of 0 indicates leaf or not meta data. The code that
1110  * calls this does not need to make a distinction between the two as
1111  * it is only concerned with intermediate blocks which will always
1112  * have level > 0.
1113  */
1114 static int get_tree_block_level(struct btrfs_key *key,
1115                                 struct extent_buffer *ei_leaf,
1116                                 int slot)
1117 {
1118         int level = 0;
1119         int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
1120         u64 flags;
1121         struct btrfs_extent_item *ei;
1122
1123         ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
1124         flags = btrfs_extent_flags(ei_leaf, ei);
1125
1126         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
1127                 struct btrfs_tree_block_info *tbinfo;
1128                 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
1129                 level = btrfs_tree_block_level(ei_leaf, tbinfo);
1130         } else if (meta_key) {
1131                 /* skinny metadata */
1132                 level = (int)key->offset;
1133         }
1134         return level;
1135 }
1136
1137 /*
1138  * Walk the extent tree, allocating a ref item for every ref and
1139  * storing it in the bytenr tree.
1140  */
1141 static int scan_extents(struct btrfs_fs_info *info,
1142                         u64 start, u64 end)
1143 {
1144         int ret, i, nr, level;
1145         struct btrfs_root *root = info->extent_root;
1146         struct btrfs_key key;
1147         struct btrfs_path path;
1148         struct btrfs_disk_key disk_key;
1149         struct extent_buffer *leaf;
1150         u64 bytenr = 0, num_bytes = 0;
1151
1152         btrfs_init_path(&path);
1153
1154         key.objectid = start;
1155         key.type = 0;
1156         key.offset = 0;
1157
1158         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1159         if (ret < 0) {
1160                 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
1161                 goto out;
1162         }
1163         path.reada = 1;
1164
1165         while (1) {
1166                 leaf = path.nodes[0];
1167
1168                 nr = btrfs_header_nritems(leaf);
1169                 for(i = 0; i < nr; i++) {
1170                         btrfs_item_key(leaf, &disk_key, i);
1171                         btrfs_disk_key_to_cpu(&key, &disk_key);
1172
1173                         if (key.objectid < start)
1174                                 continue;
1175
1176                         if (key.objectid > end)
1177                                 goto done;
1178
1179                         if (key.type == BTRFS_EXTENT_ITEM_KEY ||
1180                             key.type == BTRFS_METADATA_ITEM_KEY) {
1181                                 int meta = 0;
1182
1183                                 tot_extents_scanned++;
1184
1185                                 bytenr = key.objectid;
1186                                 num_bytes = key.offset;
1187                                 if (key.type == BTRFS_METADATA_ITEM_KEY) {
1188                                         num_bytes = info->extent_root->nodesize;
1189                                         meta = 1;
1190                                 }
1191
1192                                 ret = add_inline_refs(info, leaf, i, bytenr,
1193                                                       num_bytes, meta);
1194                                 if (ret)
1195                                         goto out;
1196
1197                                 level = get_tree_block_level(&key, leaf, i);
1198                                 if (level) {
1199                                         if (alloc_tree_block(bytenr, num_bytes,
1200                                                              level))
1201                                                 return ENOMEM;
1202                                 }
1203
1204                                 continue;
1205                         }
1206
1207                         if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1208                                 continue;
1209                         if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1210                                 continue;
1211
1212                         /*
1213                          * Keyed refs should come after their extent
1214                          * item in the tree. As a result, the value of
1215                          * bytenr and num_bytes should be unchanged
1216                          * from the above block that catches the
1217                          * original extent item.
1218                          */
1219                         BUG_ON(key.objectid != bytenr);
1220
1221                         ret = add_keyed_ref(info, &key, leaf, i, bytenr,
1222                                             num_bytes);
1223                         if (ret)
1224                                 goto out;
1225                 }
1226
1227                 ret = btrfs_next_leaf(root, &path);
1228                 if (ret != 0) {
1229                         if (ret < 0) {
1230                                 fprintf(stderr,
1231                                         "ERROR: Next leaf failed: %d\n", ret);
1232                                 goto out;
1233                         }
1234                         break;
1235                 }
1236         }
1237 done:
1238         ret = 0;
1239 out:
1240         btrfs_release_path(&path);
1241
1242         return ret;
1243 }
1244
1245 static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
1246                          char *type)
1247 {
1248         printf("%s\t\t%s %llu %s compressed %llu\n",
1249                prefix, type, (unsigned long long)bytes, type,
1250                (unsigned long long)bytes_compressed);
1251 }
1252
1253 static void print_fields_signed(long long bytes,
1254                                 long long bytes_compressed,
1255                                 char *prefix, char *type)
1256 {
1257         printf("%s\t\t%s %lld %s compressed %lld\n",
1258                prefix, type, bytes, type, bytes_compressed);
1259 }
1260
1261 static inline int qgroup_printable(struct qgroup_count *c)
1262 {
1263         return !!(c->subvol_exists || btrfs_qgroup_level(c->qgroupid));
1264 }
1265
1266 static int report_qgroup_difference(struct qgroup_count *count, int verbose)
1267 {
1268         int is_different;
1269         struct qgroup_info *info = &count->info;
1270         struct qgroup_info *disk = &count->diskinfo;
1271         long long excl_diff = info->exclusive - disk->exclusive;
1272         long long ref_diff = info->referenced - disk->referenced;
1273
1274         is_different = excl_diff || ref_diff;
1275
1276         if (verbose || (is_different && qgroup_printable(count))) {
1277                 printf("Counts for qgroup id: %llu/%llu %s\n",
1278                        btrfs_qgroup_level(count->qgroupid),
1279                        btrfs_qgroup_subvid(count->qgroupid),
1280                        is_different ? "are different" : "");
1281
1282                 print_fields(info->referenced, info->referenced_compressed,
1283                              "our:", "referenced");
1284                 print_fields(disk->referenced, disk->referenced_compressed,
1285                              "disk:", "referenced");
1286                 if (ref_diff)
1287                         print_fields_signed(ref_diff, ref_diff,
1288                                             "diff:", "referenced");
1289                 print_fields(info->exclusive, info->exclusive_compressed,
1290                              "our:", "exclusive");
1291                 print_fields(disk->exclusive, disk->exclusive_compressed,
1292                              "disk:", "exclusive");
1293                 if (excl_diff)
1294                         print_fields_signed(excl_diff, excl_diff,
1295                                             "diff:", "exclusive");
1296         }
1297
1298         return is_different;
1299 }
1300
1301 void report_qgroups(int all)
1302 {
1303         struct rb_node *node;
1304         struct qgroup_count *c;
1305
1306         if (!repair && counts.rescan_running) {
1307                 if (all) {
1308                         printf(
1309         "Qgroup rescan is running, a difference in qgroup counts is expected\n");
1310                 } else {
1311                         printf(
1312         "Qgroup rescan is running, qgroups will not be printed.\n");
1313                         return;
1314                 }
1315         }
1316         if (counts.qgroup_inconsist && !counts.rescan_running)
1317                 fprintf(stderr, "Qgroup are marked as inconsistent.\n");
1318         node = rb_first(&counts.root);
1319         while (node) {
1320                 c = rb_entry(node, struct qgroup_count, rb_node);
1321
1322                 if (report_qgroup_difference(c, all))
1323                         list_add_tail(&c->bad_list, &bad_qgroups);
1324
1325                 node = rb_next(node);
1326         }
1327 }
1328
1329 void free_qgroup_counts(void)
1330 {
1331         struct rb_node *node;
1332         struct qgroup_count *c;
1333         struct btrfs_qgroup_list *glist, *tmpglist;
1334
1335         node = rb_first(&counts.root);
1336         while (node) {
1337                 c = rb_entry(node, struct qgroup_count, rb_node);
1338
1339                 list_del(&c->bad_list);
1340
1341                 list_for_each_entry_safe(glist, tmpglist, &c->groups,
1342                                          next_group) {
1343                         list_del(&glist->next_group);
1344                         list_del(&glist->next_member);
1345                         free(glist);
1346                 }
1347                 list_for_each_entry_safe(glist, tmpglist, &c->members,
1348                                          next_group) {
1349                         list_del(&glist->next_group);
1350                         list_del(&glist->next_member);
1351                         free(glist);
1352                 }
1353
1354                 node = rb_next(node);
1355
1356                 rb_erase(&c->rb_node, &counts.root);
1357                 free(c);
1358         }
1359 }
1360
1361 int qgroup_verify_all(struct btrfs_fs_info *info)
1362 {
1363         int ret;
1364
1365         if (!info->quota_enabled)
1366                 return 0;
1367
1368         tree_blocks = ulist_alloc(0);
1369         if (!tree_blocks) {
1370                 fprintf(stderr,
1371                         "ERROR: Out of memory while allocating ulist.\n");
1372                 return ENOMEM;
1373         }
1374
1375         ret = load_quota_info(info);
1376         if (ret) {
1377                 fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
1378                 goto out;
1379         }
1380
1381         /*
1382          * Put all extent refs into our rbtree
1383          */
1384         ret = scan_extents(info, 0, ~0ULL);
1385         if (ret) {
1386                 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1387                 goto out;
1388         }
1389
1390         ret = map_implied_refs(info);
1391         if (ret) {
1392                 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1393                 goto out;
1394         }
1395
1396         ret = account_all_refs(1, 0);
1397
1398 out:
1399         /*
1400          * Don't free the qgroup count records as they will be walked
1401          * later via the print function.
1402          */
1403         free_tree_blocks();
1404         free_ref_tree(&by_bytenr);
1405         return ret;
1406 }
1407
1408 static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
1409 {
1410         int n = roots->nnodes;
1411         struct ulist_iterator uiter;
1412         struct ulist_node *unode;
1413
1414         printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
1415
1416         ULIST_ITER_INIT(&uiter);
1417         while ((unode = ulist_next(roots, &uiter))) {
1418                 printf("%llu ", unode->val);
1419         }
1420         printf("\n");
1421 }
1422
1423 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
1424                               struct ulist *roots)
1425 {
1426         struct ulist_iterator uiter;
1427         struct ulist_node *unode;
1428
1429         ULIST_ITER_INIT(&uiter);
1430         while ((unode = ulist_next(roots, &uiter))) {
1431                 BUG_ON(unode->val == 0ULL);
1432                 if (unode->val == subvolid) {
1433                         __print_subvol_info(bytenr, num_bytes, roots);
1434                         return;
1435                 }
1436         }
1437
1438
1439 }
1440
1441 int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
1442 {
1443         int ret;
1444
1445         tree_blocks = ulist_alloc(0);
1446         if (!tree_blocks) {
1447                 fprintf(stderr,
1448                         "ERROR: Out of memory while allocating ulist.\n");
1449                 return ENOMEM;
1450         }
1451
1452         /*
1453          * Put all extent refs into our rbtree
1454          */
1455         ret = scan_extents(info, 0, ~0ULL);
1456         if (ret) {
1457                 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1458                 goto out;
1459         }
1460
1461         ret = map_implied_refs(info);
1462         if (ret) {
1463                 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1464                 goto out;
1465         }
1466
1467         printf("Offset\t\tLen\tRoot Refs\tRoots\n");
1468         ret = account_all_refs(0, subvol);
1469
1470 out:
1471         free_tree_blocks();
1472         free_ref_tree(&by_bytenr);
1473         return ret;
1474 }
1475
1476 static int repair_qgroup_info(struct btrfs_fs_info *info,
1477                               struct qgroup_count *count)
1478 {
1479         int ret;
1480         struct btrfs_root *root = info->quota_root;
1481         struct btrfs_trans_handle *trans;
1482         struct btrfs_path *path;
1483         struct btrfs_qgroup_info_item *info_item;
1484         struct btrfs_key key;
1485
1486         printf("Repair qgroup %llu/%llu\n", btrfs_qgroup_level(count->qgroupid),
1487                btrfs_qgroup_subvid(count->qgroupid));
1488
1489         path = btrfs_alloc_path();
1490         if (!path)
1491                 return -ENOMEM;
1492
1493         trans = btrfs_start_transaction(root, 1);
1494         if (IS_ERR(trans)) {
1495                 btrfs_free_path(path);
1496                 return PTR_ERR(trans);
1497         }
1498
1499         key.objectid = 0;
1500         key.type = BTRFS_QGROUP_INFO_KEY;
1501         key.offset = count->qgroupid;
1502         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1503         if (ret) {
1504                 error("Could not find disk item for qgroup %llu/%llu.\n",
1505                       btrfs_qgroup_level(count->qgroupid),
1506                       btrfs_qgroup_subvid(count->qgroupid));
1507                 if (ret > 0)
1508                         ret = -ENOENT;
1509                 goto out;
1510         }
1511
1512         info_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1513                                    struct btrfs_qgroup_info_item);
1514
1515         btrfs_set_qgroup_info_generation(path->nodes[0], info_item,
1516                                          trans->transid);
1517
1518         btrfs_set_qgroup_info_referenced(path->nodes[0], info_item,
1519                                          count->info.referenced);
1520         btrfs_set_qgroup_info_referenced_compressed(path->nodes[0], info_item,
1521                                             count->info.referenced_compressed);
1522
1523         btrfs_set_qgroup_info_exclusive(path->nodes[0], info_item,
1524                                         count->info.exclusive);
1525         btrfs_set_qgroup_info_exclusive_compressed(path->nodes[0], info_item,
1526                                            count->info.exclusive_compressed);
1527
1528         btrfs_mark_buffer_dirty(path->nodes[0]);
1529
1530 out:
1531         btrfs_commit_transaction(trans, root);
1532         btrfs_free_path(path);
1533
1534         return ret;
1535 }
1536
1537 static int repair_qgroup_status(struct btrfs_fs_info *info)
1538 {
1539         int ret;
1540         struct btrfs_root *root = info->quota_root;
1541         struct btrfs_trans_handle *trans;
1542         struct btrfs_path *path;
1543         struct btrfs_key key;
1544         struct btrfs_qgroup_status_item *status_item;
1545
1546         printf("Repair qgroup status item\n");
1547
1548         path = btrfs_alloc_path();
1549         if (!path)
1550                 return -ENOMEM;
1551
1552         trans = btrfs_start_transaction(root, 1);
1553         if (IS_ERR(trans)) {
1554                 btrfs_free_path(path);
1555                 return PTR_ERR(trans);
1556         }
1557
1558         key.objectid = 0;
1559         key.type = BTRFS_QGROUP_STATUS_KEY;
1560         key.offset = 0;
1561         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1562         if (ret) {
1563                 error("Could not find qgroup status item\n");
1564                 if (ret > 0)
1565                         ret = -ENOENT;
1566                 goto out;
1567         }
1568
1569         status_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1570                                      struct btrfs_qgroup_status_item);
1571         btrfs_set_qgroup_status_flags(path->nodes[0], status_item,
1572                                       BTRFS_QGROUP_STATUS_FLAG_ON);
1573         btrfs_set_qgroup_status_rescan(path->nodes[0], status_item, 0);
1574         btrfs_set_qgroup_status_generation(path->nodes[0], status_item,
1575                                            trans->transid);
1576
1577         btrfs_mark_buffer_dirty(path->nodes[0]);
1578
1579 out:
1580         btrfs_commit_transaction(trans, root);
1581         btrfs_free_path(path);
1582
1583         return ret;
1584 }
1585
1586 int repair_qgroups(struct btrfs_fs_info *info, int *repaired)
1587 {
1588         int ret;
1589         struct qgroup_count *count, *tmpcount;
1590
1591         *repaired = 0;
1592
1593         if (!repair)
1594                 return 0;
1595
1596         list_for_each_entry_safe(count, tmpcount, &bad_qgroups, bad_list) {
1597                 ret = repair_qgroup_info(info, count);
1598                 if (ret) {
1599                         goto out;
1600                 }
1601
1602                 (*repaired)++;
1603
1604                 list_del_init(&count->bad_list);
1605         }
1606
1607         /*
1608          * Do this step last as we want the latest transaction id on
1609          * our qgroup status to avoid a (useless) warning after
1610          * mount.
1611          */
1612         if (*repaired || counts.qgroup_inconsist || counts.rescan_running) {
1613                 ret = repair_qgroup_status(info);
1614                 if (ret)
1615                         goto out;
1616
1617                 (*repaired)++;
1618         }
1619
1620 out:
1621         return ret;
1622 }