qemu-img: document 'info --backing-chain'
[sdk/emulator/qemu.git] / qemu-img.texi
1 @example
2 @c man begin SYNOPSIS
3 usage: qemu-img command [command options]
4 @c man end
5 @end example
6
7 @c man begin DESCRIPTION
8 qemu-img allows you to create, convert and modify images offline. It can handle
9 all image formats supported by QEMU.
10
11 @b{Warning:} Never use qemu-img to modify images in use by a running virtual
12 machine or any other process; this may destroy the image. Also, be aware that
13 querying an image that is being modified by another process may encounter
14 inconsistent state.
15 @c man end
16
17 @c man begin OPTIONS
18
19 The following commands are supported:
20
21 @include qemu-img-cmds.texi
22
23 Command parameters:
24 @table @var
25 @item filename
26  is a disk image filename
27 @item fmt
28 is the disk image format. It is guessed automatically in most cases. See below
29 for a description of the supported disk formats.
30
31 @item --backing-chain
32 will enumerate information about backing files in a disk image chain. Refer
33 below for further description.
34
35 @item size
36 is the disk image size in bytes. Optional suffixes @code{k} or @code{K}
37 (kilobyte, 1024) @code{M} (megabyte, 1024k) and @code{G} (gigabyte, 1024M)
38 and T (terabyte, 1024G) are supported.  @code{b} is ignored.
39
40 @item output_filename
41 is the destination disk image filename
42
43 @item output_fmt
44  is the destination format
45 @item options
46 is a comma separated list of format specific options in a
47 name=value format. Use @code{-o ?} for an overview of the options supported
48 by the used format or see the format descriptions below for details.
49
50
51 @item -c
52 indicates that target image must be compressed (qcow format only)
53 @item -h
54 with or without a command shows help and lists the supported formats
55 @item -p
56 display progress bar (convert and rebase commands only)
57 @item -S @var{size}
58 indicates the consecutive number of bytes that must contain only zeros
59 for qemu-img to create a sparse image during conversion. This value is rounded
60 down to the nearest 512 bytes. You may use the common size suffixes like
61 @code{k} for kilobytes.
62 @item -t @var{cache}
63 specifies the cache mode that should be used with the (destination) file. See
64 the documentation of the emulator's @code{-drive cache=...} option for allowed
65 values.
66 @end table
67
68 Parameters to snapshot subcommand:
69
70 @table @option
71
72 @item snapshot
73 is the name of the snapshot to create, apply or delete
74 @item -a
75 applies a snapshot (revert disk to saved state)
76 @item -c
77 creates a snapshot
78 @item -d
79 deletes a snapshot
80 @item -l
81 lists all snapshots in the given image
82 @end table
83
84 Command description:
85
86 @table @option
87 @item check [-f @var{fmt}] [-r [leaks | all]] @var{filename}
88
89 Perform a consistency check on the disk image @var{filename}.
90
91 If @code{-r} is specified, qemu-img tries to repair any inconsistencies found
92 during the check. @code{-r leaks} repairs only cluster leaks, whereas
93 @code{-r all} fixes all kinds of errors, with a higher risk of choosing the
94 wrong fix or hiding corruption that has already occurred.
95
96 Only the formats @code{qcow2}, @code{qed} and @code{vdi} support
97 consistency checks.
98
99 @item create [-f @var{fmt}] [-o @var{options}] @var{filename} [@var{size}]
100
101 Create the new disk image @var{filename} of size @var{size} and format
102 @var{fmt}. Depending on the file format, you can add one or more @var{options}
103 that enable additional features of this format.
104
105 If the option @var{backing_file} is specified, then the image will record
106 only the differences from @var{backing_file}. No size needs to be specified in
107 this case. @var{backing_file} will never be modified unless you use the
108 @code{commit} monitor command (or qemu-img commit).
109
110 The size can also be specified using the @var{size} option with @code{-o},
111 it doesn't need to be specified separately in this case.
112
113 @item commit [-f @var{fmt}] [-t @var{cache}] @var{filename}
114
115 Commit the changes recorded in @var{filename} in its base image.
116
117 @item convert [-c] [-p] [-f @var{fmt}] [-t @var{cache}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_name}] [-S @var{sparse_size}] @var{filename} [@var{filename2} [...]] @var{output_filename}
118
119 Convert the disk image @var{filename} or a snapshot @var{snapshot_name} to disk image @var{output_filename}
120 using format @var{output_fmt}. It can be optionally compressed (@code{-c}
121 option) or use any format specific options like encryption (@code{-o} option).
122
123 Only the formats @code{qcow} and @code{qcow2} support compression. The
124 compression is read-only. It means that if a compressed sector is
125 rewritten, then it is rewritten as uncompressed data.
126
127 Image conversion is also useful to get smaller image when using a
128 growable format such as @code{qcow} or @code{cow}: the empty sectors
129 are detected and suppressed from the destination image.
130
131 You can use the @var{backing_file} option to force the output image to be
132 created as a copy on write image of the specified base image; the
133 @var{backing_file} should have the same content as the input's base image,
134 however the path, image format, etc may differ.
135
136 @item info [-f @var{fmt}] [--output=@var{ofmt}] [--backing-chain] @var{filename}
137
138 Give information about the disk image @var{filename}. Use it in
139 particular to know the size reserved on disk which can be different
140 from the displayed size. If VM snapshots are stored in the disk image,
141 they are displayed too. The command can output in the format @var{ofmt}
142 which is either @code{human} or @code{json}.
143
144 If a disk image has a backing file chain, information about each disk image in
145 the chain can be recursively enumerated by using the option @code{--backing-chain}.
146
147 For instance, if you have an image chain like:
148
149 @example
150 base.qcow2 <- snap1.qcow2 <- snap2.qcow2
151 @end example
152
153 To enumerate information about each disk image in the above chain, starting from top to base, do:
154
155 @example
156 qemu-img info --backing-chain snap2.qcow2
157 @end example
158
159 @item snapshot [-l | -a @var{snapshot} | -c @var{snapshot} | -d @var{snapshot} ] @var{filename}
160
161 List, apply, create or delete snapshots in image @var{filename}.
162
163 @item rebase [-f @var{fmt}] [-t @var{cache}] [-p] [-u] -b @var{backing_file} [-F @var{backing_fmt}] @var{filename}
164
165 Changes the backing file of an image. Only the formats @code{qcow2} and
166 @code{qed} support changing the backing file.
167
168 The backing file is changed to @var{backing_file} and (if the image format of
169 @var{filename} supports this) the backing file format is changed to
170 @var{backing_fmt}. If @var{backing_file} is specified as ``'' (the empty
171 string), then the image is rebased onto no backing file (i.e. it will exist
172 independently of any backing file).
173
174 There are two different modes in which @code{rebase} can operate:
175 @table @option
176 @item Safe mode
177 This is the default mode and performs a real rebase operation. The new backing
178 file may differ from the old one and qemu-img rebase will take care of keeping
179 the guest-visible content of @var{filename} unchanged.
180
181 In order to achieve this, any clusters that differ between @var{backing_file}
182 and the old backing file of @var{filename} are merged into @var{filename}
183 before actually changing the backing file.
184
185 Note that the safe mode is an expensive operation, comparable to converting
186 an image. It only works if the old backing file still exists.
187
188 @item Unsafe mode
189 qemu-img uses the unsafe mode if @code{-u} is specified. In this mode, only the
190 backing file name and format of @var{filename} is changed without any checks
191 on the file contents. The user must take care of specifying the correct new
192 backing file, or the guest-visible content of the image will be corrupted.
193
194 This mode is useful for renaming or moving the backing file to somewhere else.
195 It can be used without an accessible old backing file, i.e. you can use it to
196 fix an image whose backing file has already been moved/renamed.
197 @end table
198
199 You can use @code{rebase} to perform a ``diff'' operation on two
200 disk images.  This can be useful when you have copied or cloned
201 a guest, and you want to get back to a thin image on top of a
202 template or base image.
203
204 Say that @code{base.img} has been cloned as @code{modified.img} by
205 copying it, and that the @code{modified.img} guest has run so there
206 are now some changes compared to @code{base.img}.  To construct a thin
207 image called @code{diff.qcow2} that contains just the differences, do:
208
209 @example
210 qemu-img create -f qcow2 -b modified.img diff.qcow2
211 qemu-img rebase -b base.img diff.qcow2
212 @end example
213
214 At this point, @code{modified.img} can be discarded, since
215 @code{base.img + diff.qcow2} contains the same information.
216
217 @item resize @var{filename} [+ | -]@var{size}
218
219 Change the disk image as if it had been created with @var{size}.
220
221 Before using this command to shrink a disk image, you MUST use file system and
222 partitioning tools inside the VM to reduce allocated file systems and partition
223 sizes accordingly.  Failure to do so will result in data loss!
224
225 After using this command to grow a disk image, you must use file system and
226 partitioning tools inside the VM to actually begin using the new space on the
227 device.
228 @end table
229
230 Supported image file formats:
231
232 @table @option
233 @item raw
234
235 Raw disk image format (default). This format has the advantage of
236 being simple and easily exportable to all other emulators. If your
237 file system supports @emph{holes} (for example in ext2 or ext3 on
238 Linux or NTFS on Windows), then only the written sectors will reserve
239 space. Use @code{qemu-img info} to know the real size used by the
240 image or @code{ls -ls} on Unix/Linux.
241
242 @item qcow2
243 QEMU image format, the most versatile format. Use it to have smaller
244 images (useful if your filesystem does not supports holes, for example
245 on Windows), optional AES encryption, zlib based compression and
246 support of multiple VM snapshots.
247
248 Supported options:
249 @table @code
250 @item backing_file
251 File name of a base image (see @option{create} subcommand)
252 @item backing_fmt
253 Image format of the base image
254 @item encryption
255 If this option is set to @code{on}, the image is encrypted.
256
257 Encryption uses the AES format which is very secure (128 bit keys). Use
258 a long password (16 characters) to get maximum protection.
259
260 @item cluster_size
261 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
262 sizes can improve the image file size whereas larger cluster sizes generally
263 provide better performance.
264
265 @item preallocation
266 Preallocation mode (allowed values: off, metadata). An image with preallocated
267 metadata is initially larger but can improve performance when the image needs
268 to grow.
269
270 @end table
271
272 @item qed
273 Image format with support for backing files and compact image files (when your
274 filesystem or transport medium does not support holes).  Good performance due
275 to less metadata than the more featureful qcow2 format, especially with
276 cache=writethrough or cache=directsync.  Consider using qcow2 which will soon
277 have a similar optimization and is most actively developed.
278
279 Supported options:
280 @table @code
281 @item backing_file
282 File name of a base image (see @option{create} subcommand).
283 @item backing_fmt
284 Image file format of backing file (optional).  Useful if the format cannot be
285 autodetected because it has no header, like some vhd/vpc files.
286 @item cluster_size
287 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
288 cluster sizes can improve the image file size whereas larger cluster sizes
289 generally provide better performance.
290 @item table_size
291 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
292 and 16).  There is normally no need to change this value but this option can be
293 used for performance benchmarking.
294 @end table
295
296 @item qcow
297 Old QEMU image format. Left for compatibility.
298
299 Supported options:
300 @table @code
301 @item backing_file
302 File name of a base image (see @option{create} subcommand)
303 @item encryption
304 If this option is set to @code{on}, the image is encrypted.
305 @end table
306
307 @item cow
308 User Mode Linux Copy On Write image format. Used to be the only growable
309 image format in QEMU. It is supported only for compatibility with
310 previous versions. It does not work on win32.
311 @item vdi
312 VirtualBox 1.1 compatible image format.
313 @item vmdk
314 VMware 3 and 4 compatible image format.
315
316 Supported options:
317 @table @code
318 @item backing_fmt
319 Image format of the base image
320 @item compat6
321 Create a VMDK version 6 image (instead of version 4)
322 @end table
323
324 @item vpc
325 VirtualPC compatible image format (VHD).
326
327 @item cloop
328 Linux Compressed Loop image, useful only to reuse directly compressed
329 CD-ROM images present for example in the Knoppix CD-ROMs.
330 @end table
331
332
333 @c man end
334
335 @ignore
336
337 @setfilename qemu-img
338 @settitle QEMU disk image utility
339
340 @c man begin SEEALSO
341 The HTML documentation of QEMU for more precise information and Linux
342 user mode emulator invocation.
343 @c man end
344
345 @c man begin AUTHOR
346 Fabrice Bellard
347 @c man end
348
349 @end ignore