1 /* aarch64-opc.c -- AArch64 opcode support.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of the GNU opcodes library.
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
31 #include "aarch64-opc.h"
34 int debug_dump = FALSE;
35 #endif /* DEBUG_AARCH64 */
37 /* Helper functions to determine which operand to be used to encode/decode
38 the size:Q fields for AdvSIMD instructions. */
40 static inline bfd_boolean
41 vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
43 return ((qualifier >= AARCH64_OPND_QLF_V_8B
44 && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
48 static inline bfd_boolean
49 fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
51 return ((qualifier >= AARCH64_OPND_QLF_S_B
52 && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
62 DP_VECTOR_ACROSS_LANES,
65 static const char significant_operand_index [] =
67 0, /* DP_UNKNOWN, by default using operand 0. */
68 0, /* DP_VECTOR_3SAME */
69 1, /* DP_VECTOR_LONG */
70 2, /* DP_VECTOR_WIDE */
71 1, /* DP_VECTOR_ACROSS_LANES */
74 /* Given a sequence of qualifiers in QUALIFIERS, determine and return
76 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
77 corresponds to one of a sequence of operands. */
79 static enum data_pattern
80 get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
82 if (vector_qualifier_p (qualifiers[0]) == TRUE)
84 /* e.g. v.4s, v.4s, v.4s
85 or v.4h, v.4h, v.h[3]. */
86 if (qualifiers[0] == qualifiers[1]
87 && vector_qualifier_p (qualifiers[2]) == TRUE
88 && (aarch64_get_qualifier_esize (qualifiers[0])
89 == aarch64_get_qualifier_esize (qualifiers[1]))
90 && (aarch64_get_qualifier_esize (qualifiers[0])
91 == aarch64_get_qualifier_esize (qualifiers[2])))
92 return DP_VECTOR_3SAME;
93 /* e.g. v.8h, v.8b, v.8b.
94 or v.4s, v.4h, v.h[2].
96 if (vector_qualifier_p (qualifiers[1]) == TRUE
97 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
98 && (aarch64_get_qualifier_esize (qualifiers[0])
99 == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
100 return DP_VECTOR_LONG;
101 /* e.g. v.8h, v.8h, v.8b. */
102 if (qualifiers[0] == qualifiers[1]
103 && vector_qualifier_p (qualifiers[2]) == TRUE
104 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
105 && (aarch64_get_qualifier_esize (qualifiers[0])
106 == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
107 && (aarch64_get_qualifier_esize (qualifiers[0])
108 == aarch64_get_qualifier_esize (qualifiers[1])))
109 return DP_VECTOR_WIDE;
111 else if (fp_qualifier_p (qualifiers[0]) == TRUE)
113 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
114 if (vector_qualifier_p (qualifiers[1]) == TRUE
115 && qualifiers[2] == AARCH64_OPND_QLF_NIL)
116 return DP_VECTOR_ACROSS_LANES;
122 /* Select the operand to do the encoding/decoding of the 'size:Q' fields in
123 the AdvSIMD instructions. */
124 /* N.B. it is possible to do some optimization that doesn't call
125 get_data_pattern each time when we need to select an operand. We can
126 either buffer the caculated the result or statically generate the data,
127 however, it is not obvious that the optimization will bring significant
131 aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
134 significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
137 const aarch64_field fields[] =
140 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
141 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
142 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
143 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
144 { 5, 19 }, /* imm19: e.g. in CBZ. */
145 { 5, 19 }, /* immhi: e.g. in ADRP. */
146 { 29, 2 }, /* immlo: e.g. in ADRP. */
147 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
148 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
149 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
150 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
151 { 0, 5 }, /* Rt: in load/store instructions. */
152 { 0, 5 }, /* Rd: in many integer instructions. */
153 { 5, 5 }, /* Rn: in many integer instructions. */
154 { 10, 5 }, /* Rt2: in load/store pair instructions. */
155 { 10, 5 }, /* Ra: in fp instructions. */
156 { 5, 3 }, /* op2: in the system instructions. */
157 { 8, 4 }, /* CRm: in the system instructions. */
158 { 12, 4 }, /* CRn: in the system instructions. */
159 { 16, 3 }, /* op1: in the system instructions. */
160 { 19, 2 }, /* op0: in the system instructions. */
161 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
162 { 12, 4 }, /* cond: condition flags as a source operand. */
163 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
164 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
165 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
166 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
167 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
168 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
169 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
170 { 12, 1 }, /* S: in load/store reg offset instructions. */
171 { 21, 2 }, /* hw: in move wide constant instructions. */
172 { 22, 2 }, /* opc: in load/store reg offset instructions. */
173 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
174 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
175 { 22, 2 }, /* type: floating point type field in fp data inst. */
176 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
177 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
178 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
179 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
180 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
181 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
182 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
183 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
184 { 5, 14 }, /* imm14: in test bit and branch instructions. */
185 { 5, 16 }, /* imm16: in exception instructions. */
186 { 0, 26 }, /* imm26: in unconditional branch instructions. */
187 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
188 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
189 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
190 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
191 { 22, 1 }, /* N: in logical (immediate) instructions. */
192 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
193 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
194 { 31, 1 }, /* sf: in integer data processing instructions. */
195 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
196 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
197 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
198 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
199 { 31, 1 }, /* b5: in the test bit and branch instructions. */
200 { 19, 5 }, /* b40: in the test bit and branch instructions. */
201 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
204 enum aarch64_operand_class
205 aarch64_get_operand_class (enum aarch64_opnd type)
207 return aarch64_operands[type].op_class;
211 aarch64_get_operand_name (enum aarch64_opnd type)
213 return aarch64_operands[type].name;
216 /* Get operand description string.
217 This is usually for the diagnosis purpose. */
219 aarch64_get_operand_desc (enum aarch64_opnd type)
221 return aarch64_operands[type].desc;
224 /* Table of all conditional affixes. */
225 const aarch64_cond aarch64_conds[16] =
230 {{"cc", "lo", "ul"}, 0x3},
246 get_cond_from_value (aarch64_insn value)
249 return &aarch64_conds[(unsigned int) value];
253 get_inverted_cond (const aarch64_cond *cond)
255 return &aarch64_conds[cond->value ^ 0x1];
258 /* Table describing the operand extension/shifting operators; indexed by
259 enum aarch64_modifier_kind.
261 The value column provides the most common values for encoding modifiers,
262 which enables table-driven encoding/decoding for the modifiers. */
263 const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
282 enum aarch64_modifier_kind
283 aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
285 return desc - aarch64_operand_modifiers;
289 aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
291 return aarch64_operand_modifiers[kind].value;
294 enum aarch64_modifier_kind
295 aarch64_get_operand_modifier_from_value (aarch64_insn value,
296 bfd_boolean extend_p)
298 if (extend_p == TRUE)
299 return AARCH64_MOD_UXTB + value;
301 return AARCH64_MOD_LSL - value;
305 aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
307 return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
311 static inline bfd_boolean
312 aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
314 return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
318 const struct aarch64_name_value_pair aarch64_barrier_options[16] =
338 /* op -> op: load = 0 instruction = 1 store = 2
340 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
341 #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
342 const struct aarch64_name_value_pair aarch64_prfops[32] =
344 { "pldl1keep", B(0, 1, 0) },
345 { "pldl1strm", B(0, 1, 1) },
346 { "pldl2keep", B(0, 2, 0) },
347 { "pldl2strm", B(0, 2, 1) },
348 { "pldl3keep", B(0, 3, 0) },
349 { "pldl3strm", B(0, 3, 1) },
352 { "plil1keep", B(1, 1, 0) },
353 { "plil1strm", B(1, 1, 1) },
354 { "plil2keep", B(1, 2, 0) },
355 { "plil2strm", B(1, 2, 1) },
356 { "plil3keep", B(1, 3, 0) },
357 { "plil3strm", B(1, 3, 1) },
360 { "pstl1keep", B(2, 1, 0) },
361 { "pstl1strm", B(2, 1, 1) },
362 { "pstl2keep", B(2, 2, 0) },
363 { "pstl2strm", B(2, 2, 1) },
364 { "pstl3keep", B(2, 3, 0) },
365 { "pstl3strm", B(2, 3, 1) },
379 /* Utilities on value constraint. */
382 value_in_range_p (int64_t value, int low, int high)
384 return (value >= low && value <= high) ? 1 : 0;
388 value_aligned_p (int64_t value, int align)
390 return ((value & (align - 1)) == 0) ? 1 : 0;
393 /* A signed value fits in a field. */
395 value_fit_signed_field_p (int64_t value, unsigned width)
398 if (width < sizeof (value) * 8)
400 int64_t lim = (int64_t)1 << (width - 1);
401 if (value >= -lim && value < lim)
407 /* An unsigned value fits in a field. */
409 value_fit_unsigned_field_p (int64_t value, unsigned width)
412 if (width < sizeof (value) * 8)
414 int64_t lim = (int64_t)1 << width;
415 if (value >= 0 && value < lim)
421 /* Return 1 if OPERAND is SP or WSP. */
423 aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
425 return ((aarch64_get_operand_class (operand->type)
426 == AARCH64_OPND_CLASS_INT_REG)
427 && operand_maybe_stack_pointer (aarch64_operands + operand->type)
428 && operand->reg.regno == 31);
431 /* Return 1 if OPERAND is XZR or WZP. */
433 aarch64_zero_register_p (const aarch64_opnd_info *operand)
435 return ((aarch64_get_operand_class (operand->type)
436 == AARCH64_OPND_CLASS_INT_REG)
437 && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
438 && operand->reg.regno == 31);
441 /* Return true if the operand *OPERAND that has the operand code
442 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
443 qualified by the qualifier TARGET. */
446 operand_also_qualified_p (const struct aarch64_opnd_info *operand,
447 aarch64_opnd_qualifier_t target)
449 switch (operand->qualifier)
451 case AARCH64_OPND_QLF_W:
452 if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
455 case AARCH64_OPND_QLF_X:
456 if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
459 case AARCH64_OPND_QLF_WSP:
460 if (target == AARCH64_OPND_QLF_W
461 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
464 case AARCH64_OPND_QLF_SP:
465 if (target == AARCH64_OPND_QLF_X
466 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
476 /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
477 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
479 Return NIL if more than one expected qualifiers are found. */
481 aarch64_opnd_qualifier_t
482 aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
484 const aarch64_opnd_qualifier_t known_qlf,
491 When the known qualifier is NIL, we have to assume that there is only
492 one qualifier sequence in the *QSEQ_LIST and return the corresponding
493 qualifier directly. One scenario is that for instruction
494 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
495 which has only one possible valid qualifier sequence
497 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
498 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
500 Because the qualifier NIL has dual roles in the qualifier sequence:
501 it can mean no qualifier for the operand, or the qualifer sequence is
502 not in use (when all qualifiers in the sequence are NILs), we have to
503 handle this special case here. */
504 if (known_qlf == AARCH64_OPND_NIL)
506 assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
507 return qseq_list[0][idx];
510 for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
512 if (qseq_list[i][known_idx] == known_qlf)
515 /* More than one sequences are found to have KNOWN_QLF at
517 return AARCH64_OPND_NIL;
522 return qseq_list[saved_i][idx];
525 enum operand_qualifier_kind
533 /* Operand qualifier description. */
534 struct operand_qualifier_data
536 /* The usage of the three data fields depends on the qualifier kind. */
543 enum operand_qualifier_kind kind;
546 /* Indexed by the operand qualifier enumerators. */
547 struct operand_qualifier_data aarch64_opnd_qualifiers[] =
549 {0, 0, 0, "NIL", OQK_NIL},
551 /* Operand variant qualifiers.
553 element size, number of elements and common value for encoding. */
555 {4, 1, 0x0, "w", OQK_OPD_VARIANT},
556 {8, 1, 0x1, "x", OQK_OPD_VARIANT},
557 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
558 {8, 1, 0x1, "sp", OQK_OPD_VARIANT},
560 {1, 1, 0x0, "b", OQK_OPD_VARIANT},
561 {2, 1, 0x1, "h", OQK_OPD_VARIANT},
562 {4, 1, 0x2, "s", OQK_OPD_VARIANT},
563 {8, 1, 0x3, "d", OQK_OPD_VARIANT},
564 {16, 1, 0x4, "q", OQK_OPD_VARIANT},
566 {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
567 {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
568 {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
569 {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
570 {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
571 {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
572 {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
573 {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
574 {16, 1, 0x8, "1q", OQK_OPD_VARIANT},
576 /* Qualifiers constraining the value range.
578 Lower bound, higher bound, unused. */
580 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
581 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
582 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
583 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
584 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
585 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
587 /* Qualifiers for miscellaneous purpose.
589 unused, unused and unused. */
594 {0, 0, 0, "retrieving", 0},
597 static inline bfd_boolean
598 operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
600 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
604 static inline bfd_boolean
605 qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
607 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
612 aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
614 return aarch64_opnd_qualifiers[qualifier].desc;
617 /* Given an operand qualifier, return the expected data element size
618 of a qualified operand. */
620 aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
622 assert (operand_variant_qualifier_p (qualifier) == TRUE);
623 return aarch64_opnd_qualifiers[qualifier].data0;
627 aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
629 assert (operand_variant_qualifier_p (qualifier) == TRUE);
630 return aarch64_opnd_qualifiers[qualifier].data1;
634 aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
636 assert (operand_variant_qualifier_p (qualifier) == TRUE);
637 return aarch64_opnd_qualifiers[qualifier].data2;
641 get_lower_bound (aarch64_opnd_qualifier_t qualifier)
643 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
644 return aarch64_opnd_qualifiers[qualifier].data0;
648 get_upper_bound (aarch64_opnd_qualifier_t qualifier)
650 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
651 return aarch64_opnd_qualifiers[qualifier].data1;
656 aarch64_verbose (const char *str, ...)
667 dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
671 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
672 printf ("%s,", aarch64_get_qualifier_name (*qualifier));
677 dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
678 const aarch64_opnd_qualifier_t *qualifier)
681 aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
683 aarch64_verbose ("dump_match_qualifiers:");
684 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
685 curr[i] = opnd[i].qualifier;
686 dump_qualifier_sequence (curr);
687 aarch64_verbose ("against");
688 dump_qualifier_sequence (qualifier);
690 #endif /* DEBUG_AARCH64 */
692 /* TODO improve this, we can have an extra field at the runtime to
693 store the number of operands rather than calculating it every time. */
696 aarch64_num_of_operands (const aarch64_opcode *opcode)
699 const enum aarch64_opnd *opnds = opcode->operands;
700 while (opnds[i++] != AARCH64_OPND_NIL)
703 assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
707 /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
708 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
710 N.B. on the entry, it is very likely that only some operands in *INST
711 have had their qualifiers been established.
713 If STOP_AT is not -1, the function will only try to match
714 the qualifier sequence for operands before and including the operand
715 of index STOP_AT; and on success *RET will only be filled with the first
716 (STOP_AT+1) qualifiers.
718 A couple examples of the matching algorithm:
726 Apart from serving the main encoding routine, this can also be called
727 during or after the operand decoding. */
730 aarch64_find_best_match (const aarch64_inst *inst,
731 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
732 int stop_at, aarch64_opnd_qualifier_t *ret)
736 const aarch64_opnd_qualifier_t *qualifiers;
738 num_opnds = aarch64_num_of_operands (inst->opcode);
741 DEBUG_TRACE ("SUCCEED: no operand");
745 if (stop_at < 0 || stop_at >= num_opnds)
746 stop_at = num_opnds - 1;
748 /* For each pattern. */
749 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
752 qualifiers = *qualifiers_list;
754 /* Start as positive. */
757 DEBUG_TRACE ("%d", i);
760 dump_match_qualifiers (inst->operands, qualifiers);
763 /* Most opcodes has much fewer patterns in the list.
764 First NIL qualifier indicates the end in the list. */
765 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
767 DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
773 for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
775 if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
777 /* Either the operand does not have qualifier, or the qualifier
778 for the operand needs to be deduced from the qualifier
780 In the latter case, any constraint checking related with
781 the obtained qualifier should be done later in
782 operand_general_constraint_met_p. */
785 else if (*qualifiers != inst->operands[j].qualifier)
787 /* Unless the target qualifier can also qualify the operand
788 (which has already had a non-nil qualifier), non-equal
789 qualifiers are generally un-matched. */
790 if (operand_also_qualified_p (inst->operands + j, *qualifiers))
799 continue; /* Equal qualifiers are certainly matched. */
802 /* Qualifiers established. */
809 /* Fill the result in *RET. */
811 qualifiers = *qualifiers_list;
813 DEBUG_TRACE ("complete qualifiers using list %d", i);
816 dump_qualifier_sequence (qualifiers);
819 for (j = 0; j <= stop_at; ++j, ++qualifiers)
820 ret[j] = *qualifiers;
821 for (; j < AARCH64_MAX_OPND_NUM; ++j)
822 ret[j] = AARCH64_OPND_QLF_NIL;
824 DEBUG_TRACE ("SUCCESS");
828 DEBUG_TRACE ("FAIL");
832 /* Operand qualifier matching and resolving.
834 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
835 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
837 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
841 match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
844 aarch64_opnd_qualifier_seq_t qualifiers;
846 if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
849 DEBUG_TRACE ("matching FAIL");
853 /* Update the qualifiers. */
854 if (update_p == TRUE)
855 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
857 if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
859 DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
860 "update %s with %s for operand %d",
861 aarch64_get_qualifier_name (inst->operands[i].qualifier),
862 aarch64_get_qualifier_name (qualifiers[i]), i);
863 inst->operands[i].qualifier = qualifiers[i];
866 DEBUG_TRACE ("matching SUCCESS");
870 /* Return TRUE if VALUE is a wide constant that can be moved into a general
873 IS32 indicates whether value is a 32-bit immediate or not.
874 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
875 amount will be returned in *SHIFT_AMOUNT. */
878 aarch64_wide_constant_p (int64_t value, int is32, unsigned int *shift_amount)
882 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
886 /* Allow all zeros or all ones in top 32-bits, so that
887 32-bit constant expressions like ~0x80000000 are
889 uint64_t ext = value;
890 if (ext >> 32 != 0 && ext >> 32 != (uint64_t) 0xffffffff)
891 /* Immediate out of range. */
893 value &= (int64_t) 0xffffffff;
896 /* first, try movz then movn */
898 if ((value & ((int64_t) 0xffff << 0)) == value)
900 else if ((value & ((int64_t) 0xffff << 16)) == value)
902 else if (!is32 && (value & ((int64_t) 0xffff << 32)) == value)
904 else if (!is32 && (value & ((int64_t) 0xffff << 48)) == value)
909 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
913 if (shift_amount != NULL)
914 *shift_amount = amount;
916 DEBUG_TRACE ("exit TRUE with amount %d", amount);
921 /* Build the accepted values for immediate logical SIMD instructions.
923 The standard encodings of the immediate value are:
924 N imms immr SIMD size R S
925 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
926 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
927 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
928 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
929 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
930 0 11110s 00000r 2 UInt(r) UInt(s)
931 where all-ones value of S is reserved.
933 Let's call E the SIMD size.
935 The immediate value is: S+1 bits '1' rotated to the right by R.
937 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
938 (remember S != E - 1). */
940 #define TOTAL_IMM_NB 5334
945 aarch64_insn encoding;
948 static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
951 simd_imm_encoding_cmp(const void *i1, const void *i2)
953 const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
954 const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
956 if (imm1->imm < imm2->imm)
958 if (imm1->imm > imm2->imm)
963 /* immediate bitfield standard encoding
964 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
965 1 ssssss rrrrrr 64 rrrrrr ssssss
966 0 0sssss 0rrrrr 32 rrrrr sssss
967 0 10ssss 00rrrr 16 rrrr ssss
968 0 110sss 000rrr 8 rrr sss
969 0 1110ss 0000rr 4 rr ss
970 0 11110s 00000r 2 r s */
972 encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
974 return (is64 << 12) | (r << 6) | s;
978 build_immediate_table (void)
980 uint32_t log_e, e, s, r, s_mask;
986 for (log_e = 1; log_e <= 6; log_e++)
988 /* Get element size. */
993 mask = 0xffffffffffffffffull;
999 mask = (1ull << e) - 1;
1001 1 ((1 << 4) - 1) << 2 = 111100
1002 2 ((1 << 3) - 1) << 3 = 111000
1003 3 ((1 << 2) - 1) << 4 = 110000
1004 4 ((1 << 1) - 1) << 5 = 100000
1005 5 ((1 << 0) - 1) << 6 = 000000 */
1006 s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
1008 for (s = 0; s < e - 1; s++)
1009 for (r = 0; r < e; r++)
1011 /* s+1 consecutive bits to 1 (s < 63) */
1012 imm = (1ull << (s + 1)) - 1;
1013 /* rotate right by r */
1015 imm = (imm >> r) | ((imm << (e - r)) & mask);
1016 /* replicate the constant depending on SIMD size */
1019 case 1: imm = (imm << 2) | imm;
1020 case 2: imm = (imm << 4) | imm;
1021 case 3: imm = (imm << 8) | imm;
1022 case 4: imm = (imm << 16) | imm;
1023 case 5: imm = (imm << 32) | imm;
1027 simd_immediates[nb_imms].imm = imm;
1028 simd_immediates[nb_imms].encoding =
1029 encode_immediate_bitfield(is64, s | s_mask, r);
1033 assert (nb_imms == TOTAL_IMM_NB);
1034 qsort(simd_immediates, nb_imms,
1035 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1038 /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1039 be accepted by logical (immediate) instructions
1040 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1042 IS32 indicates whether or not VALUE is a 32-bit immediate.
1043 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1044 VALUE will be returned in *ENCODING. */
1047 aarch64_logical_immediate_p (uint64_t value, int is32, aarch64_insn *encoding)
1049 simd_imm_encoding imm_enc;
1050 const simd_imm_encoding *imm_encoding;
1051 static bfd_boolean initialized = FALSE;
1053 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), is32: %d", value,
1056 if (initialized == FALSE)
1058 build_immediate_table ();
1064 /* Allow all zeros or all ones in top 32-bits, so that
1065 constant expressions like ~1 are permitted. */
1066 if (value >> 32 != 0 && value >> 32 != 0xffffffff)
1069 /* Replicate the 32 lower bits to the 32 upper bits. */
1070 value &= 0xffffffff;
1071 value |= value << 32;
1074 imm_enc.imm = value;
1075 imm_encoding = (const simd_imm_encoding *)
1076 bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
1077 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1078 if (imm_encoding == NULL)
1080 DEBUG_TRACE ("exit with FALSE");
1083 if (encoding != NULL)
1084 *encoding = imm_encoding->encoding;
1085 DEBUG_TRACE ("exit with TRUE");
1089 /* If 64-bit immediate IMM is in the format of
1090 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1091 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1092 of value "abcdefgh". Otherwise return -1. */
1094 aarch64_shrink_expanded_imm8 (uint64_t imm)
1100 for (i = 0; i < 8; i++)
1102 byte = (imm >> (8 * i)) & 0xff;
1105 else if (byte != 0x00)
1111 /* Utility inline functions for operand_general_constraint_met_p. */
1114 set_error (aarch64_operand_error *mismatch_detail,
1115 enum aarch64_operand_error_kind kind, int idx,
1118 if (mismatch_detail == NULL)
1120 mismatch_detail->kind = kind;
1121 mismatch_detail->index = idx;
1122 mismatch_detail->error = error;
1126 set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
1129 if (mismatch_detail == NULL)
1131 set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
1135 set_out_of_range_error (aarch64_operand_error *mismatch_detail,
1136 int idx, int lower_bound, int upper_bound,
1139 if (mismatch_detail == NULL)
1141 set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
1142 mismatch_detail->data[0] = lower_bound;
1143 mismatch_detail->data[1] = upper_bound;
1147 set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
1148 int idx, int lower_bound, int upper_bound)
1150 if (mismatch_detail == NULL)
1152 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1153 _("immediate value"));
1157 set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
1158 int idx, int lower_bound, int upper_bound)
1160 if (mismatch_detail == NULL)
1162 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1163 _("immediate offset"));
1167 set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
1168 int idx, int lower_bound, int upper_bound)
1170 if (mismatch_detail == NULL)
1172 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1173 _("register number"));
1177 set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
1178 int idx, int lower_bound, int upper_bound)
1180 if (mismatch_detail == NULL)
1182 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1183 _("register element index"));
1187 set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
1188 int idx, int lower_bound, int upper_bound)
1190 if (mismatch_detail == NULL)
1192 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1197 set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
1200 if (mismatch_detail == NULL)
1202 set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
1203 mismatch_detail->data[0] = alignment;
1207 set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
1210 if (mismatch_detail == NULL)
1212 set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
1213 mismatch_detail->data[0] = expected_num;
1217 set_other_error (aarch64_operand_error *mismatch_detail, int idx,
1220 if (mismatch_detail == NULL)
1222 set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
1225 /* General constraint checking based on operand code.
1227 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1228 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1230 This function has to be called after the qualifiers for all operands
1233 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1234 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1235 of error message during the disassembling where error message is not
1236 wanted. We avoid the dynamic construction of strings of error messages
1237 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1238 use a combination of error code, static string and some integer data to
1239 represent an error. */
1242 operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
1243 enum aarch64_opnd type,
1244 const aarch64_opcode *opcode,
1245 aarch64_operand_error *mismatch_detail)
1250 const aarch64_opnd_info *opnd = opnds + idx;
1251 aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
1253 assert (opcode->operands[idx] == opnd->type && opnd->type == type);
1255 switch (aarch64_operands[type].op_class)
1257 case AARCH64_OPND_CLASS_INT_REG:
1258 /* Check pair reg constraints for cas* instructions. */
1259 if (type == AARCH64_OPND_PAIRREG)
1261 assert (idx == 1 || idx == 3);
1262 if (opnds[idx - 1].reg.regno % 2 != 0)
1264 set_syntax_error (mismatch_detail, idx - 1,
1265 _("reg pair must start from even reg"));
1268 if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
1270 set_syntax_error (mismatch_detail, idx,
1271 _("reg pair must be contiguous"));
1277 /* <Xt> may be optional in some IC and TLBI instructions. */
1278 if (type == AARCH64_OPND_Rt_SYS)
1280 assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
1281 == AARCH64_OPND_CLASS_SYSTEM));
1282 if (opnds[1].present && !opnds[0].sysins_op->has_xt)
1284 set_other_error (mismatch_detail, idx, _("extraneous register"));
1287 if (!opnds[1].present && opnds[0].sysins_op->has_xt)
1289 set_other_error (mismatch_detail, idx, _("missing register"));
1295 case AARCH64_OPND_QLF_WSP:
1296 case AARCH64_OPND_QLF_SP:
1297 if (!aarch64_stack_pointer_p (opnd))
1299 set_other_error (mismatch_detail, idx,
1300 _("stack pointer register expected"));
1309 case AARCH64_OPND_CLASS_COND:
1310 if (type == AARCH64_OPND_COND1
1311 && (opnds[idx].cond->value & 0xe) == 0xe)
1313 /* Not allow AL or NV. */
1314 set_syntax_error (mismatch_detail, idx, NULL);
1318 case AARCH64_OPND_CLASS_ADDRESS:
1319 /* Check writeback. */
1320 switch (opcode->iclass)
1324 case ldstnapair_offs:
1327 if (opnd->addr.writeback == 1)
1329 set_syntax_error (mismatch_detail, idx,
1330 _("unexpected address writeback"));
1335 case ldstpair_indexed:
1338 if (opnd->addr.writeback == 0)
1340 set_syntax_error (mismatch_detail, idx,
1341 _("address writeback expected"));
1346 assert (opnd->addr.writeback == 0);
1351 case AARCH64_OPND_ADDR_SIMM7:
1352 /* Scaled signed 7 bits immediate offset. */
1353 /* Get the size of the data element that is accessed, which may be
1354 different from that of the source register size,
1355 e.g. in strb/ldrb. */
1356 size = aarch64_get_qualifier_esize (opnd->qualifier);
1357 if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
1359 set_offset_out_of_range_error (mismatch_detail, idx,
1360 -64 * size, 63 * size);
1363 if (!value_aligned_p (opnd->addr.offset.imm, size))
1365 set_unaligned_error (mismatch_detail, idx, size);
1369 case AARCH64_OPND_ADDR_SIMM9:
1370 /* Unscaled signed 9 bits immediate offset. */
1371 if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
1373 set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
1378 case AARCH64_OPND_ADDR_SIMM9_2:
1379 /* Unscaled signed 9 bits immediate offset, which has to be negative
1381 size = aarch64_get_qualifier_esize (qualifier);
1382 if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
1383 && !value_aligned_p (opnd->addr.offset.imm, size))
1384 || value_in_range_p (opnd->addr.offset.imm, -256, -1))
1386 set_other_error (mismatch_detail, idx,
1387 _("negative or unaligned offset expected"));
1390 case AARCH64_OPND_SIMD_ADDR_POST:
1391 /* AdvSIMD load/store multiple structures, post-index. */
1393 if (opnd->addr.offset.is_reg)
1395 if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
1399 set_other_error (mismatch_detail, idx,
1400 _("invalid register offset"));
1406 const aarch64_opnd_info *prev = &opnds[idx-1];
1407 unsigned num_bytes; /* total number of bytes transferred. */
1408 /* The opcode dependent area stores the number of elements in
1409 each structure to be loaded/stored. */
1410 int is_ld1r = get_opcode_dependent_value (opcode) == 1;
1411 if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
1412 /* Special handling of loading single structure to all lane. */
1413 num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
1414 * aarch64_get_qualifier_esize (prev->qualifier);
1416 num_bytes = prev->reglist.num_regs
1417 * aarch64_get_qualifier_esize (prev->qualifier)
1418 * aarch64_get_qualifier_nelem (prev->qualifier);
1419 if ((int) num_bytes != opnd->addr.offset.imm)
1421 set_other_error (mismatch_detail, idx,
1422 _("invalid post-increment amount"));
1428 case AARCH64_OPND_ADDR_REGOFF:
1429 /* Get the size of the data element that is accessed, which may be
1430 different from that of the source register size,
1431 e.g. in strb/ldrb. */
1432 size = aarch64_get_qualifier_esize (opnd->qualifier);
1433 /* It is either no shift or shift by the binary logarithm of SIZE. */
1434 if (opnd->shifter.amount != 0
1435 && opnd->shifter.amount != (int)get_logsz (size))
1437 set_other_error (mismatch_detail, idx,
1438 _("invalid shift amount"));
1441 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1443 switch (opnd->shifter.kind)
1445 case AARCH64_MOD_UXTW:
1446 case AARCH64_MOD_LSL:
1447 case AARCH64_MOD_SXTW:
1448 case AARCH64_MOD_SXTX: break;
1450 set_other_error (mismatch_detail, idx,
1451 _("invalid extend/shift operator"));
1456 case AARCH64_OPND_ADDR_UIMM12:
1457 imm = opnd->addr.offset.imm;
1458 /* Get the size of the data element that is accessed, which may be
1459 different from that of the source register size,
1460 e.g. in strb/ldrb. */
1461 size = aarch64_get_qualifier_esize (qualifier);
1462 if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
1464 set_offset_out_of_range_error (mismatch_detail, idx,
1468 if (!value_aligned_p (opnd->addr.offset.imm, size))
1470 set_unaligned_error (mismatch_detail, idx, size);
1475 case AARCH64_OPND_ADDR_PCREL14:
1476 case AARCH64_OPND_ADDR_PCREL19:
1477 case AARCH64_OPND_ADDR_PCREL21:
1478 case AARCH64_OPND_ADDR_PCREL26:
1479 imm = opnd->imm.value;
1480 if (operand_need_shift_by_two (get_operand_from_code (type)))
1482 /* The offset value in a PC-relative branch instruction is alway
1483 4-byte aligned and is encoded without the lowest 2 bits. */
1484 if (!value_aligned_p (imm, 4))
1486 set_unaligned_error (mismatch_detail, idx, 4);
1489 /* Right shift by 2 so that we can carry out the following check
1493 size = get_operand_fields_width (get_operand_from_code (type));
1494 if (!value_fit_signed_field_p (imm, size))
1496 set_other_error (mismatch_detail, idx,
1497 _("immediate out of range"));
1507 case AARCH64_OPND_CLASS_SIMD_REGLIST:
1508 /* The opcode dependent area stores the number of elements in
1509 each structure to be loaded/stored. */
1510 num = get_opcode_dependent_value (opcode);
1513 case AARCH64_OPND_LVt:
1514 assert (num >= 1 && num <= 4);
1515 /* Unless LD1/ST1, the number of registers should be equal to that
1516 of the structure elements. */
1517 if (num != 1 && opnd->reglist.num_regs != num)
1519 set_reg_list_error (mismatch_detail, idx, num);
1523 case AARCH64_OPND_LVt_AL:
1524 case AARCH64_OPND_LEt:
1525 assert (num >= 1 && num <= 4);
1526 /* The number of registers should be equal to that of the structure
1528 if (opnd->reglist.num_regs != num)
1530 set_reg_list_error (mismatch_detail, idx, num);
1539 case AARCH64_OPND_CLASS_IMMEDIATE:
1540 /* Constraint check on immediate operand. */
1541 imm = opnd->imm.value;
1542 /* E.g. imm_0_31 constrains value to be 0..31. */
1543 if (qualifier_value_in_range_constraint_p (qualifier)
1544 && !value_in_range_p (imm, get_lower_bound (qualifier),
1545 get_upper_bound (qualifier)))
1547 set_imm_out_of_range_error (mismatch_detail, idx,
1548 get_lower_bound (qualifier),
1549 get_upper_bound (qualifier));
1555 case AARCH64_OPND_AIMM:
1556 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1558 set_other_error (mismatch_detail, idx,
1559 _("invalid shift operator"));
1562 if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
1564 set_other_error (mismatch_detail, idx,
1565 _("shift amount expected to be 0 or 12"));
1568 if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
1570 set_other_error (mismatch_detail, idx,
1571 _("immediate out of range"));
1576 case AARCH64_OPND_HALF:
1577 assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
1578 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1580 set_other_error (mismatch_detail, idx,
1581 _("invalid shift operator"));
1584 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
1585 if (!value_aligned_p (opnd->shifter.amount, 16))
1587 set_other_error (mismatch_detail, idx,
1588 _("shift amount should be a multiple of 16"));
1591 if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
1593 set_sft_amount_out_of_range_error (mismatch_detail, idx,
1597 if (opnd->imm.value < 0)
1599 set_other_error (mismatch_detail, idx,
1600 _("negative immediate value not allowed"));
1603 if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
1605 set_other_error (mismatch_detail, idx,
1606 _("immediate out of range"));
1611 case AARCH64_OPND_IMM_MOV:
1613 int is32 = aarch64_get_qualifier_esize (opnds[0].qualifier) == 4;
1614 imm = opnd->imm.value;
1618 case OP_MOV_IMM_WIDEN:
1620 /* Fall through... */
1621 case OP_MOV_IMM_WIDE:
1622 if (!aarch64_wide_constant_p (imm, is32, NULL))
1624 set_other_error (mismatch_detail, idx,
1625 _("immediate out of range"));
1629 case OP_MOV_IMM_LOG:
1630 if (!aarch64_logical_immediate_p (imm, is32, NULL))
1632 set_other_error (mismatch_detail, idx,
1633 _("immediate out of range"));
1644 case AARCH64_OPND_NZCV:
1645 case AARCH64_OPND_CCMP_IMM:
1646 case AARCH64_OPND_EXCEPTION:
1647 case AARCH64_OPND_UIMM4:
1648 case AARCH64_OPND_UIMM7:
1649 case AARCH64_OPND_UIMM3_OP1:
1650 case AARCH64_OPND_UIMM3_OP2:
1651 size = get_operand_fields_width (get_operand_from_code (type));
1653 if (!value_fit_unsigned_field_p (opnd->imm.value, size))
1655 set_imm_out_of_range_error (mismatch_detail, idx, 0,
1661 case AARCH64_OPND_WIDTH:
1662 assert (idx == 3 && opnds[idx-1].type == AARCH64_OPND_IMM
1663 && opnds[0].type == AARCH64_OPND_Rd);
1664 size = get_upper_bound (qualifier);
1665 if (opnd->imm.value + opnds[idx-1].imm.value > size)
1666 /* lsb+width <= reg.size */
1668 set_imm_out_of_range_error (mismatch_detail, idx, 1,
1669 size - opnds[idx-1].imm.value);
1674 case AARCH64_OPND_LIMM:
1676 int is32 = opnds[0].qualifier == AARCH64_OPND_QLF_W;
1677 uint64_t uimm = opnd->imm.value;
1678 if (opcode->op == OP_BIC)
1680 if (aarch64_logical_immediate_p (uimm, is32, NULL) == FALSE)
1682 set_other_error (mismatch_detail, idx,
1683 _("immediate out of range"));
1689 case AARCH64_OPND_IMM0:
1690 case AARCH64_OPND_FPIMM0:
1691 if (opnd->imm.value != 0)
1693 set_other_error (mismatch_detail, idx,
1694 _("immediate zero expected"));
1699 case AARCH64_OPND_SHLL_IMM:
1701 size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
1702 if (opnd->imm.value != size)
1704 set_other_error (mismatch_detail, idx,
1705 _("invalid shift amount"));
1710 case AARCH64_OPND_IMM_VLSL:
1711 size = aarch64_get_qualifier_esize (qualifier);
1712 if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
1714 set_imm_out_of_range_error (mismatch_detail, idx, 0,
1720 case AARCH64_OPND_IMM_VLSR:
1721 size = aarch64_get_qualifier_esize (qualifier);
1722 if (!value_in_range_p (opnd->imm.value, 1, size * 8))
1724 set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
1729 case AARCH64_OPND_SIMD_IMM:
1730 case AARCH64_OPND_SIMD_IMM_SFT:
1731 /* Qualifier check. */
1734 case AARCH64_OPND_QLF_LSL:
1735 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1737 set_other_error (mismatch_detail, idx,
1738 _("invalid shift operator"));
1742 case AARCH64_OPND_QLF_MSL:
1743 if (opnd->shifter.kind != AARCH64_MOD_MSL)
1745 set_other_error (mismatch_detail, idx,
1746 _("invalid shift operator"));
1750 case AARCH64_OPND_QLF_NIL:
1751 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1753 set_other_error (mismatch_detail, idx,
1754 _("shift is not permitted"));
1762 /* Is the immediate valid? */
1764 if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
1766 /* uimm8 or simm8 */
1767 if (!value_in_range_p (opnd->imm.value, -128, 255))
1769 set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
1773 else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
1776 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
1777 ffffffffgggggggghhhhhhhh'. */
1778 set_other_error (mismatch_detail, idx,
1779 _("invalid value for immediate"));
1782 /* Is the shift amount valid? */
1783 switch (opnd->shifter.kind)
1785 case AARCH64_MOD_LSL:
1786 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
1787 if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
1789 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
1793 if (!value_aligned_p (opnd->shifter.amount, 8))
1795 set_unaligned_error (mismatch_detail, idx, 8);
1799 case AARCH64_MOD_MSL:
1800 /* Only 8 and 16 are valid shift amount. */
1801 if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
1803 set_other_error (mismatch_detail, idx,
1804 _("shift amount expected to be 0 or 16"));
1809 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1811 set_other_error (mismatch_detail, idx,
1812 _("invalid shift operator"));
1819 case AARCH64_OPND_FPIMM:
1820 case AARCH64_OPND_SIMD_FPIMM:
1821 if (opnd->imm.is_fp == 0)
1823 set_other_error (mismatch_detail, idx,
1824 _("floating-point immediate expected"));
1827 /* The value is expected to be an 8-bit floating-point constant with
1828 sign, 3-bit exponent and normalized 4 bits of precision, encoded
1829 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
1831 if (!value_in_range_p (opnd->imm.value, 0, 255))
1833 set_other_error (mismatch_detail, idx,
1834 _("immediate out of range"));
1837 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1839 set_other_error (mismatch_detail, idx,
1840 _("invalid shift operator"));
1850 case AARCH64_OPND_CLASS_CP_REG:
1851 /* Cn or Cm: 4-bit opcode field named for historical reasons.
1852 valid range: C0 - C15. */
1853 if (opnd->reg.regno > 15)
1855 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
1860 case AARCH64_OPND_CLASS_SYSTEM:
1863 case AARCH64_OPND_PSTATEFIELD:
1864 assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
1865 /* MSR SPSel, #uimm4
1866 Uses uimm4 as a control value to select the stack pointer: if
1867 bit 0 is set it selects the current exception level's stack
1868 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
1869 Bits 1 to 3 of uimm4 are reserved and should be zero. */
1870 if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
1872 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
1881 case AARCH64_OPND_CLASS_SIMD_ELEMENT:
1882 /* Get the upper bound for the element index. */
1883 num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
1884 /* Index out-of-range. */
1885 if (!value_in_range_p (opnd->reglane.index, 0, num))
1887 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
1890 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
1891 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
1892 number is encoded in "size:M:Rm":
1898 if (type == AARCH64_OPND_Em && qualifier == AARCH64_OPND_QLF_S_H
1899 && !value_in_range_p (opnd->reglane.regno, 0, 15))
1901 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
1906 case AARCH64_OPND_CLASS_MODIFIED_REG:
1907 assert (idx == 1 || idx == 2);
1910 case AARCH64_OPND_Rm_EXT:
1911 if (aarch64_extend_operator_p (opnd->shifter.kind) == FALSE
1912 && opnd->shifter.kind != AARCH64_MOD_LSL)
1914 set_other_error (mismatch_detail, idx,
1915 _("extend operator expected"));
1918 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
1919 (i.e. SP), in which case it defaults to LSL. The LSL alias is
1920 only valid when "Rd" or "Rn" is '11111', and is preferred in that
1922 if (!aarch64_stack_pointer_p (opnds + 0)
1923 && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
1925 if (!opnd->shifter.operator_present)
1927 set_other_error (mismatch_detail, idx,
1928 _("missing extend operator"));
1931 else if (opnd->shifter.kind == AARCH64_MOD_LSL)
1933 set_other_error (mismatch_detail, idx,
1934 _("'LSL' operator not allowed"));
1938 assert (opnd->shifter.operator_present /* Default to LSL. */
1939 || opnd->shifter.kind == AARCH64_MOD_LSL);
1940 if (!value_in_range_p (opnd->shifter.amount, 0, 4))
1942 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
1945 /* In the 64-bit form, the final register operand is written as Wm
1946 for all but the (possibly omitted) UXTX/LSL and SXTX
1948 N.B. GAS allows X register to be used with any operator as a
1949 programming convenience. */
1950 if (qualifier == AARCH64_OPND_QLF_X
1951 && opnd->shifter.kind != AARCH64_MOD_LSL
1952 && opnd->shifter.kind != AARCH64_MOD_UXTX
1953 && opnd->shifter.kind != AARCH64_MOD_SXTX)
1955 set_other_error (mismatch_detail, idx, _("W register expected"));
1960 case AARCH64_OPND_Rm_SFT:
1961 /* ROR is not available to the shifted register operand in
1962 arithmetic instructions. */
1963 if (aarch64_shift_operator_p (opnd->shifter.kind) == FALSE)
1965 set_other_error (mismatch_detail, idx,
1966 _("shift operator expected"));
1969 if (opnd->shifter.kind == AARCH64_MOD_ROR
1970 && opcode->iclass != log_shift)
1972 set_other_error (mismatch_detail, idx,
1973 _("'ROR' operator not allowed"));
1976 num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
1977 if (!value_in_range_p (opnd->shifter.amount, 0, num))
1979 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
1996 /* Main entrypoint for the operand constraint checking.
1998 Return 1 if operands of *INST meet the constraint applied by the operand
1999 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2000 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2001 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2002 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2003 error kind when it is notified that an instruction does not pass the check).
2005 Un-determined operand qualifiers may get established during the process. */
2008 aarch64_match_operands_constraint (aarch64_inst *inst,
2009 aarch64_operand_error *mismatch_detail)
2013 DEBUG_TRACE ("enter");
2015 /* Match operands' qualifier.
2016 *INST has already had qualifier establish for some, if not all, of
2017 its operands; we need to find out whether these established
2018 qualifiers match one of the qualifier sequence in
2019 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2020 with the corresponding qualifier in such a sequence.
2021 Only basic operand constraint checking is done here; the more thorough
2022 constraint checking will carried out by operand_general_constraint_met_p,
2023 which has be to called after this in order to get all of the operands'
2024 qualifiers established. */
2025 if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
2027 DEBUG_TRACE ("FAIL on operand qualifier matching");
2028 if (mismatch_detail)
2030 /* Return an error type to indicate that it is the qualifier
2031 matching failure; we don't care about which operand as there
2032 are enough information in the opcode table to reproduce it. */
2033 mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
2034 mismatch_detail->index = -1;
2035 mismatch_detail->error = NULL;
2040 /* Match operands' constraint. */
2041 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2043 enum aarch64_opnd type = inst->opcode->operands[i];
2044 if (type == AARCH64_OPND_NIL)
2046 if (inst->operands[i].skip)
2048 DEBUG_TRACE ("skip the incomplete operand %d", i);
2051 if (operand_general_constraint_met_p (inst->operands, i, type,
2052 inst->opcode, mismatch_detail) == 0)
2054 DEBUG_TRACE ("FAIL on operand %d", i);
2059 DEBUG_TRACE ("PASS");
2064 /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2065 Also updates the TYPE of each INST->OPERANDS with the corresponding
2066 value of OPCODE->OPERANDS.
2068 Note that some operand qualifiers may need to be manually cleared by
2069 the caller before it further calls the aarch64_opcode_encode; by
2070 doing this, it helps the qualifier matching facilities work
2073 const aarch64_opcode*
2074 aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
2077 const aarch64_opcode *old = inst->opcode;
2079 inst->opcode = opcode;
2081 /* Update the operand types. */
2082 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2084 inst->operands[i].type = opcode->operands[i];
2085 if (opcode->operands[i] == AARCH64_OPND_NIL)
2089 DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
2095 aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
2098 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2099 if (operands[i] == operand)
2101 else if (operands[i] == AARCH64_OPND_NIL)
2106 /* [0][0] 32-bit integer regs with sp Wn
2107 [0][1] 64-bit integer regs with sp Xn sf=1
2108 [1][0] 32-bit integer regs with #0 Wn
2109 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2110 static const char *int_reg[2][2][32] = {
2113 { { R32 "0", R32 "1", R32 "2", R32 "3", R32 "4", R32 "5", R32 "6", R32 "7",
2114 R32 "8", R32 "9", R32 "10", R32 "11", R32 "12", R32 "13", R32 "14", R32 "15",
2115 R32 "16", R32 "17", R32 "18", R32 "19", R32 "20", R32 "21", R32 "22", R32 "23",
2116 R32 "24", R32 "25", R32 "26", R32 "27", R32 "28", R32 "29", R32 "30", "wsp" },
2117 { R64 "0", R64 "1", R64 "2", R64 "3", R64 "4", R64 "5", R64 "6", R64 "7",
2118 R64 "8", R64 "9", R64 "10", R64 "11", R64 "12", R64 "13", R64 "14", R64 "15",
2119 R64 "16", R64 "17", R64 "18", R64 "19", R64 "20", R64 "21", R64 "22", R64 "23",
2120 R64 "24", R64 "25", R64 "26", R64 "27", R64 "28", R64 "29", R64 "30", "sp" } },
2121 { { R32 "0", R32 "1", R32 "2", R32 "3", R32 "4", R32 "5", R32 "6", R32 "7",
2122 R32 "8", R32 "9", R32 "10", R32 "11", R32 "12", R32 "13", R32 "14", R32 "15",
2123 R32 "16", R32 "17", R32 "18", R32 "19", R32 "20", R32 "21", R32 "22", R32 "23",
2124 R32 "24", R32 "25", R32 "26", R32 "27", R32 "28", R32 "29", R32 "30", R32 "zr" },
2125 { R64 "0", R64 "1", R64 "2", R64 "3", R64 "4", R64 "5", R64 "6", R64 "7",
2126 R64 "8", R64 "9", R64 "10", R64 "11", R64 "12", R64 "13", R64 "14", R64 "15",
2127 R64 "16", R64 "17", R64 "18", R64 "19", R64 "20", R64 "21", R64 "22", R64 "23",
2128 R64 "24", R64 "25", R64 "26", R64 "27", R64 "28", R64 "29", R64 "30", R64 "zr" } }
2133 /* Return the integer register name.
2134 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2136 static inline const char *
2137 get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
2139 const int has_zr = sp_reg_p ? 0 : 1;
2140 const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
2141 return int_reg[has_zr][is_64][regno];
2144 /* Like get_int_reg_name, but IS_64 is always 1. */
2146 static inline const char *
2147 get_64bit_int_reg_name (int regno, int sp_reg_p)
2149 const int has_zr = sp_reg_p ? 0 : 1;
2150 return int_reg[has_zr][1][regno];
2153 /* Types for expanding an encoded 8-bit value to a floating-point value. */
2167 /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2168 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2169 (depending on the type of the instruction). IMM8 will be expanded to a
2170 single-precision floating-point value (IS_DP == 0) or a double-precision
2171 floating-point value (IS_DP == 1). The expanded value is returned. */
2174 expand_fp_imm (int is_dp, uint32_t imm8)
2177 uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
2179 imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
2180 imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
2181 imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
2182 imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
2183 | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
2186 imm = (imm8_7 << (63-32)) /* imm8<7> */
2187 | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
2188 | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
2189 | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
2190 | (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
2195 imm = (imm8_7 << 31) /* imm8<7> */
2196 | ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
2197 | (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
2198 | (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
2204 /* Produce the string representation of the register list operand *OPND
2205 in the buffer pointed by BUF of size SIZE. */
2207 print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd)
2209 const int num_regs = opnd->reglist.num_regs;
2210 const int first_reg = opnd->reglist.first_regno;
2211 const int last_reg = (first_reg + num_regs - 1) & 0x1f;
2212 const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
2213 char tb[8]; /* Temporary buffer. */
2215 assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
2216 assert (num_regs >= 1 && num_regs <= 4);
2218 /* Prepare the index if any. */
2219 if (opnd->reglist.has_index)
2220 snprintf (tb, 8, "[%d]", opnd->reglist.index);
2224 /* The hyphenated form is preferred for disassembly if there are
2225 more than two registers in the list, and the register numbers
2226 are monotonically increasing in increments of one. */
2227 if (num_regs > 2 && last_reg > first_reg)
2228 snprintf (buf, size, "{v%d.%s-v%d.%s}%s", first_reg, qlf_name,
2229 last_reg, qlf_name, tb);
2232 const int reg0 = first_reg;
2233 const int reg1 = (first_reg + 1) & 0x1f;
2234 const int reg2 = (first_reg + 2) & 0x1f;
2235 const int reg3 = (first_reg + 3) & 0x1f;
2240 snprintf (buf, size, "{v%d.%s}%s", reg0, qlf_name, tb);
2243 snprintf (buf, size, "{v%d.%s, v%d.%s}%s", reg0, qlf_name,
2244 reg1, qlf_name, tb);
2247 snprintf (buf, size, "{v%d.%s, v%d.%s, v%d.%s}%s", reg0, qlf_name,
2248 reg1, qlf_name, reg2, qlf_name, tb);
2251 snprintf (buf, size, "{v%d.%s, v%d.%s, v%d.%s, v%d.%s}%s",
2252 reg0, qlf_name, reg1, qlf_name, reg2, qlf_name,
2253 reg3, qlf_name, tb);
2259 /* Produce the string representation of the register offset address operand
2260 *OPND in the buffer pointed by BUF of size SIZE. */
2262 print_register_offset_address (char *buf, size_t size,
2263 const aarch64_opnd_info *opnd)
2265 const size_t tblen = 16;
2266 char tb[tblen]; /* Temporary buffer. */
2267 bfd_boolean lsl_p = FALSE; /* Is LSL shift operator? */
2268 bfd_boolean wm_p = FALSE; /* Should Rm be Wm? */
2269 bfd_boolean print_extend_p = TRUE;
2270 bfd_boolean print_amount_p = TRUE;
2271 const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
2273 switch (opnd->shifter.kind)
2275 case AARCH64_MOD_UXTW: wm_p = TRUE; break;
2276 case AARCH64_MOD_LSL : lsl_p = TRUE; break;
2277 case AARCH64_MOD_SXTW: wm_p = TRUE; break;
2278 case AARCH64_MOD_SXTX: break;
2279 default: assert (0);
2282 if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
2283 || !opnd->shifter.amount_present))
2285 /* Not print the shift/extend amount when the amount is zero and
2286 when it is not the special case of 8-bit load/store instruction. */
2287 print_amount_p = FALSE;
2288 /* Likewise, no need to print the shift operator LSL in such a
2291 print_extend_p = FALSE;
2294 /* Prepare for the extend/shift. */
2298 snprintf (tb, tblen, ",%s #%d", shift_name, opnd->shifter.amount);
2300 snprintf (tb, tblen, ",%s", shift_name);
2305 snprintf (buf, size, "[%s,%s%s]",
2306 get_64bit_int_reg_name (opnd->addr.base_regno, 1),
2307 get_int_reg_name (opnd->addr.offset.regno,
2308 wm_p ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X,
2313 /* Generate the string representation of the operand OPNDS[IDX] for OPCODE
2314 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
2315 PC, PCREL_P and ADDRESS are used to pass in and return information about
2316 the PC-relative address calculation, where the PC value is passed in
2317 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
2318 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
2319 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
2321 The function serves both the disassembler and the assembler diagnostics
2322 issuer, which is the reason why it lives in this file. */
2325 aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
2326 const aarch64_opcode *opcode,
2327 const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
2331 const char *name = NULL;
2332 const aarch64_opnd_info *opnd = opnds + idx;
2333 enum aarch64_modifier_kind kind;
2342 case AARCH64_OPND_Rd:
2343 case AARCH64_OPND_Rn:
2344 case AARCH64_OPND_Rm:
2345 case AARCH64_OPND_Rt:
2346 case AARCH64_OPND_Rt2:
2347 case AARCH64_OPND_Rs:
2348 case AARCH64_OPND_Ra:
2349 case AARCH64_OPND_Rt_SYS:
2350 case AARCH64_OPND_PAIRREG:
2351 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
2352 the <ic_op>, therefore we we use opnd->present to override the
2353 generic optional-ness information. */
2354 if (opnd->type == AARCH64_OPND_Rt_SYS && !opnd->present)
2356 /* Omit the operand, e.g. RET. */
2357 if (optional_operand_p (opcode, idx)
2358 && opnd->reg.regno == get_optional_operand_default_value (opcode))
2360 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2361 || opnd->qualifier == AARCH64_OPND_QLF_X);
2362 snprintf (buf, size, "%s",
2363 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2366 case AARCH64_OPND_Rd_SP:
2367 case AARCH64_OPND_Rn_SP:
2368 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2369 || opnd->qualifier == AARCH64_OPND_QLF_WSP
2370 || opnd->qualifier == AARCH64_OPND_QLF_X
2371 || opnd->qualifier == AARCH64_OPND_QLF_SP);
2372 snprintf (buf, size, "%s",
2373 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
2376 case AARCH64_OPND_Rm_EXT:
2377 kind = opnd->shifter.kind;
2378 assert (idx == 1 || idx == 2);
2379 if ((aarch64_stack_pointer_p (opnds)
2380 || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
2381 && ((opnd->qualifier == AARCH64_OPND_QLF_W
2382 && opnds[0].qualifier == AARCH64_OPND_QLF_W
2383 && kind == AARCH64_MOD_UXTW)
2384 || (opnd->qualifier == AARCH64_OPND_QLF_X
2385 && kind == AARCH64_MOD_UXTX)))
2387 /* 'LSL' is the preferred form in this case. */
2388 kind = AARCH64_MOD_LSL;
2389 if (opnd->shifter.amount == 0)
2391 /* Shifter omitted. */
2392 snprintf (buf, size, "%s",
2393 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2397 if (opnd->shifter.amount)
2398 snprintf (buf, size, "%s, %s #%d",
2399 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2400 aarch64_operand_modifiers[kind].name,
2401 opnd->shifter.amount);
2403 snprintf (buf, size, "%s, %s",
2404 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2405 aarch64_operand_modifiers[kind].name);
2408 case AARCH64_OPND_Rm_SFT:
2409 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2410 || opnd->qualifier == AARCH64_OPND_QLF_X);
2411 if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
2412 snprintf (buf, size, "%s",
2413 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2415 snprintf (buf, size, "%s, %s #%d",
2416 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2417 aarch64_operand_modifiers[opnd->shifter.kind].name,
2418 opnd->shifter.amount);
2421 case AARCH64_OPND_Fd:
2422 case AARCH64_OPND_Fn:
2423 case AARCH64_OPND_Fm:
2424 case AARCH64_OPND_Fa:
2425 case AARCH64_OPND_Ft:
2426 case AARCH64_OPND_Ft2:
2427 case AARCH64_OPND_Sd:
2428 case AARCH64_OPND_Sn:
2429 case AARCH64_OPND_Sm:
2430 snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
2434 case AARCH64_OPND_Vd:
2435 case AARCH64_OPND_Vn:
2436 case AARCH64_OPND_Vm:
2437 snprintf (buf, size, "v%d.%s", opnd->reg.regno,
2438 aarch64_get_qualifier_name (opnd->qualifier));
2441 case AARCH64_OPND_Ed:
2442 case AARCH64_OPND_En:
2443 case AARCH64_OPND_Em:
2444 snprintf (buf, size, "v%d.%s[%d]", opnd->reglane.regno,
2445 aarch64_get_qualifier_name (opnd->qualifier),
2446 opnd->reglane.index);
2449 case AARCH64_OPND_VdD1:
2450 case AARCH64_OPND_VnD1:
2451 snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
2454 case AARCH64_OPND_LVn:
2455 case AARCH64_OPND_LVt:
2456 case AARCH64_OPND_LVt_AL:
2457 case AARCH64_OPND_LEt:
2458 print_register_list (buf, size, opnd);
2461 case AARCH64_OPND_Cn:
2462 case AARCH64_OPND_Cm:
2463 snprintf (buf, size, "C%d", opnd->reg.regno);
2466 case AARCH64_OPND_IDX:
2467 case AARCH64_OPND_IMM:
2468 case AARCH64_OPND_WIDTH:
2469 case AARCH64_OPND_UIMM3_OP1:
2470 case AARCH64_OPND_UIMM3_OP2:
2471 case AARCH64_OPND_BIT_NUM:
2472 case AARCH64_OPND_IMM_VLSL:
2473 case AARCH64_OPND_IMM_VLSR:
2474 case AARCH64_OPND_SHLL_IMM:
2475 case AARCH64_OPND_IMM0:
2476 case AARCH64_OPND_IMMR:
2477 case AARCH64_OPND_IMMS:
2478 case AARCH64_OPND_FBITS:
2479 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
2482 case AARCH64_OPND_IMM_MOV:
2483 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
2485 case 4: /* e.g. MOV Wd, #<imm32>. */
2487 int imm32 = opnd->imm.value;
2488 snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
2491 case 8: /* e.g. MOV Xd, #<imm64>. */
2492 snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
2493 opnd->imm.value, opnd->imm.value);
2495 default: assert (0);
2499 case AARCH64_OPND_FPIMM0:
2500 snprintf (buf, size, "#0.0");
2503 case AARCH64_OPND_LIMM:
2504 case AARCH64_OPND_AIMM:
2505 case AARCH64_OPND_HALF:
2506 if (opnd->shifter.amount)
2507 snprintf (buf, size, "#0x%" PRIx64 ", lsl #%d", opnd->imm.value,
2508 opnd->shifter.amount);
2510 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
2513 case AARCH64_OPND_SIMD_IMM:
2514 case AARCH64_OPND_SIMD_IMM_SFT:
2515 if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
2516 || opnd->shifter.kind == AARCH64_MOD_NONE)
2517 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
2519 snprintf (buf, size, "#0x%" PRIx64 ", %s #%d", opnd->imm.value,
2520 aarch64_operand_modifiers[opnd->shifter.kind].name,
2521 opnd->shifter.amount);
2524 case AARCH64_OPND_FPIMM:
2525 case AARCH64_OPND_SIMD_FPIMM:
2526 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
2528 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
2531 c.i = expand_fp_imm (0, opnd->imm.value);
2532 snprintf (buf, size, "#%.18e", c.f);
2535 case 8: /* e.g. FMOV <Sd>, #<imm>. */
2538 c.i = expand_fp_imm (1, opnd->imm.value);
2539 snprintf (buf, size, "#%.18e", c.d);
2542 default: assert (0);
2546 case AARCH64_OPND_CCMP_IMM:
2547 case AARCH64_OPND_NZCV:
2548 case AARCH64_OPND_EXCEPTION:
2549 case AARCH64_OPND_UIMM4:
2550 case AARCH64_OPND_UIMM7:
2551 if (optional_operand_p (opcode, idx) == TRUE
2552 && (opnd->imm.value ==
2553 (int64_t) get_optional_operand_default_value (opcode)))
2554 /* Omit the operand, e.g. DCPS1. */
2556 snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
2559 case AARCH64_OPND_COND:
2560 case AARCH64_OPND_COND1:
2561 snprintf (buf, size, "%s", opnd->cond->names[0]);
2564 case AARCH64_OPND_ADDR_ADRP:
2565 addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
2571 /* This is not necessary during the disassembling, as print_address_func
2572 in the disassemble_info will take care of the printing. But some
2573 other callers may be still interested in getting the string in *STR,
2574 so here we do snprintf regardless. */
2575 snprintf (buf, size, "#0x%" PRIx64, addr);
2578 case AARCH64_OPND_ADDR_PCREL14:
2579 case AARCH64_OPND_ADDR_PCREL19:
2580 case AARCH64_OPND_ADDR_PCREL21:
2581 case AARCH64_OPND_ADDR_PCREL26:
2582 addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
2587 /* This is not necessary during the disassembling, as print_address_func
2588 in the disassemble_info will take care of the printing. But some
2589 other callers may be still interested in getting the string in *STR,
2590 so here we do snprintf regardless. */
2591 snprintf (buf, size, "#0x%" PRIx64, addr);
2594 case AARCH64_OPND_ADDR_SIMPLE:
2595 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
2596 case AARCH64_OPND_SIMD_ADDR_POST:
2597 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2598 if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
2600 if (opnd->addr.offset.is_reg)
2601 snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
2603 snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
2606 snprintf (buf, size, "[%s]", name);
2609 case AARCH64_OPND_ADDR_REGOFF:
2610 print_register_offset_address (buf, size, opnd);
2613 case AARCH64_OPND_ADDR_SIMM7:
2614 case AARCH64_OPND_ADDR_SIMM9:
2615 case AARCH64_OPND_ADDR_SIMM9_2:
2616 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2617 if (opnd->addr.writeback)
2619 if (opnd->addr.preind)
2620 snprintf (buf, size, "[%s,#%d]!", name, opnd->addr.offset.imm);
2622 snprintf (buf, size, "[%s],#%d", name, opnd->addr.offset.imm);
2626 if (opnd->addr.offset.imm)
2627 snprintf (buf, size, "[%s,#%d]", name, opnd->addr.offset.imm);
2629 snprintf (buf, size, "[%s]", name);
2633 case AARCH64_OPND_ADDR_UIMM12:
2634 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2635 if (opnd->addr.offset.imm)
2636 snprintf (buf, size, "[%s,#%d]", name, opnd->addr.offset.imm);
2638 snprintf (buf, size, "[%s]", name);
2641 case AARCH64_OPND_SYSREG:
2642 for (i = 0; aarch64_sys_regs[i].name; ++i)
2643 if (aarch64_sys_regs[i].value == opnd->sysreg
2644 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs[i]))
2646 if (aarch64_sys_regs[i].name)
2647 snprintf (buf, size, "%s", aarch64_sys_regs[i].name);
2650 /* Implementation defined system register. */
2651 unsigned int value = opnd->sysreg;
2652 snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
2653 (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
2658 case AARCH64_OPND_PSTATEFIELD:
2659 for (i = 0; aarch64_pstatefields[i].name; ++i)
2660 if (aarch64_pstatefields[i].value == opnd->pstatefield)
2662 assert (aarch64_pstatefields[i].name);
2663 snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
2666 case AARCH64_OPND_SYSREG_AT:
2667 case AARCH64_OPND_SYSREG_DC:
2668 case AARCH64_OPND_SYSREG_IC:
2669 case AARCH64_OPND_SYSREG_TLBI:
2670 snprintf (buf, size, "%s", opnd->sysins_op->template);
2673 case AARCH64_OPND_BARRIER:
2674 snprintf (buf, size, "%s", opnd->barrier->name);
2677 case AARCH64_OPND_BARRIER_ISB:
2678 /* Operand can be omitted, e.g. in DCPS1. */
2679 if (! optional_operand_p (opcode, idx)
2680 || (opnd->barrier->value
2681 != get_optional_operand_default_value (opcode)))
2682 snprintf (buf, size, "#0x%x", opnd->barrier->value);
2685 case AARCH64_OPND_PRFOP:
2686 if (opnd->prfop->name != NULL)
2687 snprintf (buf, size, "%s", opnd->prfop->name);
2689 snprintf (buf, size, "#0x%02x", opnd->prfop->value);
2697 #define CPENC(op0,op1,crn,crm,op2) \
2698 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
2699 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
2700 #define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
2701 /* for 3.9.10 System Instructions */
2702 #define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
2724 #define F_DEPRECATED 0x1 /* Deprecated system register. */
2729 #define F_ARCHEXT 0x2 /* Architecture dependent system register. */
2732 /* TODO there are two more issues need to be resolved
2733 1. handle read-only and write-only system registers
2734 2. handle cpu-implementation-defined system registers. */
2735 const aarch64_sys_reg aarch64_sys_regs [] =
2737 { "spsr_el1", CPEN_(0,C0,0), 0 }, /* = spsr_svc */
2738 { "elr_el1", CPEN_(0,C0,1), 0 },
2739 { "sp_el0", CPEN_(0,C1,0), 0 },
2740 { "spsel", CPEN_(0,C2,0), 0 },
2741 { "daif", CPEN_(3,C2,1), 0 },
2742 { "currentel", CPEN_(0,C2,2), 0 }, /* RO */
2743 { "pan", CPEN_(0,C2,3), F_ARCHEXT },
2744 { "nzcv", CPEN_(3,C2,0), 0 },
2745 { "fpcr", CPEN_(3,C4,0), 0 },
2746 { "fpsr", CPEN_(3,C4,1), 0 },
2747 { "dspsr_el0", CPEN_(3,C5,0), 0 },
2748 { "dlr_el0", CPEN_(3,C5,1), 0 },
2749 { "spsr_el2", CPEN_(4,C0,0), 0 }, /* = spsr_hyp */
2750 { "elr_el2", CPEN_(4,C0,1), 0 },
2751 { "sp_el1", CPEN_(4,C1,0), 0 },
2752 { "spsr_irq", CPEN_(4,C3,0), 0 },
2753 { "spsr_abt", CPEN_(4,C3,1), 0 },
2754 { "spsr_und", CPEN_(4,C3,2), 0 },
2755 { "spsr_fiq", CPEN_(4,C3,3), 0 },
2756 { "spsr_el3", CPEN_(6,C0,0), 0 },
2757 { "elr_el3", CPEN_(6,C0,1), 0 },
2758 { "sp_el2", CPEN_(6,C1,0), 0 },
2759 { "spsr_svc", CPEN_(0,C0,0), F_DEPRECATED }, /* = spsr_el1 */
2760 { "spsr_hyp", CPEN_(4,C0,0), F_DEPRECATED }, /* = spsr_el2 */
2761 { "midr_el1", CPENC(3,0,C0,C0,0), 0 }, /* RO */
2762 { "ctr_el0", CPENC(3,3,C0,C0,1), 0 }, /* RO */
2763 { "mpidr_el1", CPENC(3,0,C0,C0,5), 0 }, /* RO */
2764 { "revidr_el1", CPENC(3,0,C0,C0,6), 0 }, /* RO */
2765 { "aidr_el1", CPENC(3,1,C0,C0,7), 0 }, /* RO */
2766 { "dczid_el0", CPENC(3,3,C0,C0,7), 0 }, /* RO */
2767 { "id_dfr0_el1", CPENC(3,0,C0,C1,2), 0 }, /* RO */
2768 { "id_pfr0_el1", CPENC(3,0,C0,C1,0), 0 }, /* RO */
2769 { "id_pfr1_el1", CPENC(3,0,C0,C1,1), 0 }, /* RO */
2770 { "id_afr0_el1", CPENC(3,0,C0,C1,3), 0 }, /* RO */
2771 { "id_mmfr0_el1", CPENC(3,0,C0,C1,4), 0 }, /* RO */
2772 { "id_mmfr1_el1", CPENC(3,0,C0,C1,5), 0 }, /* RO */
2773 { "id_mmfr2_el1", CPENC(3,0,C0,C1,6), 0 }, /* RO */
2774 { "id_mmfr3_el1", CPENC(3,0,C0,C1,7), 0 }, /* RO */
2775 { "id_isar0_el1", CPENC(3,0,C0,C2,0), 0 }, /* RO */
2776 { "id_isar1_el1", CPENC(3,0,C0,C2,1), 0 }, /* RO */
2777 { "id_isar2_el1", CPENC(3,0,C0,C2,2), 0 }, /* RO */
2778 { "id_isar3_el1", CPENC(3,0,C0,C2,3), 0 }, /* RO */
2779 { "id_isar4_el1", CPENC(3,0,C0,C2,4), 0 }, /* RO */
2780 { "id_isar5_el1", CPENC(3,0,C0,C2,5), 0 }, /* RO */
2781 { "mvfr0_el1", CPENC(3,0,C0,C3,0), 0 }, /* RO */
2782 { "mvfr1_el1", CPENC(3,0,C0,C3,1), 0 }, /* RO */
2783 { "mvfr2_el1", CPENC(3,0,C0,C3,2), 0 }, /* RO */
2784 { "ccsidr_el1", CPENC(3,1,C0,C0,0), 0 }, /* RO */
2785 { "id_aa64pfr0_el1", CPENC(3,0,C0,C4,0), 0 }, /* RO */
2786 { "id_aa64pfr1_el1", CPENC(3,0,C0,C4,1), 0 }, /* RO */
2787 { "id_aa64dfr0_el1", CPENC(3,0,C0,C5,0), 0 }, /* RO */
2788 { "id_aa64dfr1_el1", CPENC(3,0,C0,C5,1), 0 }, /* RO */
2789 { "id_aa64isar0_el1", CPENC(3,0,C0,C6,0), 0 }, /* RO */
2790 { "id_aa64isar1_el1", CPENC(3,0,C0,C6,1), 0 }, /* RO */
2791 { "id_aa64mmfr0_el1", CPENC(3,0,C0,C7,0), 0 }, /* RO */
2792 { "id_aa64mmfr1_el1", CPENC(3,0,C0,C7,1), 0 }, /* RO */
2793 { "id_aa64afr0_el1", CPENC(3,0,C0,C5,4), 0 }, /* RO */
2794 { "id_aa64afr1_el1", CPENC(3,0,C0,C5,5), 0 }, /* RO */
2795 { "clidr_el1", CPENC(3,1,C0,C0,1), 0 }, /* RO */
2796 { "csselr_el1", CPENC(3,2,C0,C0,0), 0 }, /* RO */
2797 { "vpidr_el2", CPENC(3,4,C0,C0,0), 0 },
2798 { "vmpidr_el2", CPENC(3,4,C0,C0,5), 0 },
2799 { "sctlr_el1", CPENC(3,0,C1,C0,0), 0 },
2800 { "sctlr_el2", CPENC(3,4,C1,C0,0), 0 },
2801 { "sctlr_el3", CPENC(3,6,C1,C0,0), 0 },
2802 { "actlr_el1", CPENC(3,0,C1,C0,1), 0 },
2803 { "actlr_el2", CPENC(3,4,C1,C0,1), 0 },
2804 { "actlr_el3", CPENC(3,6,C1,C0,1), 0 },
2805 { "cpacr_el1", CPENC(3,0,C1,C0,2), 0 },
2806 { "cptr_el2", CPENC(3,4,C1,C1,2), 0 },
2807 { "cptr_el3", CPENC(3,6,C1,C1,2), 0 },
2808 { "scr_el3", CPENC(3,6,C1,C1,0), 0 },
2809 { "hcr_el2", CPENC(3,4,C1,C1,0), 0 },
2810 { "mdcr_el2", CPENC(3,4,C1,C1,1), 0 },
2811 { "mdcr_el3", CPENC(3,6,C1,C3,1), 0 },
2812 { "hstr_el2", CPENC(3,4,C1,C1,3), 0 },
2813 { "hacr_el2", CPENC(3,4,C1,C1,7), 0 },
2814 { "ttbr0_el1", CPENC(3,0,C2,C0,0), 0 },
2815 { "ttbr1_el1", CPENC(3,0,C2,C0,1), 0 },
2816 { "ttbr0_el2", CPENC(3,4,C2,C0,0), 0 },
2817 { "ttbr0_el3", CPENC(3,6,C2,C0,0), 0 },
2818 { "vttbr_el2", CPENC(3,4,C2,C1,0), 0 },
2819 { "tcr_el1", CPENC(3,0,C2,C0,2), 0 },
2820 { "tcr_el2", CPENC(3,4,C2,C0,2), 0 },
2821 { "tcr_el3", CPENC(3,6,C2,C0,2), 0 },
2822 { "vtcr_el2", CPENC(3,4,C2,C1,2), 0 },
2823 { "afsr0_el1", CPENC(3,0,C5,C1,0), 0 },
2824 { "afsr1_el1", CPENC(3,0,C5,C1,1), 0 },
2825 { "afsr0_el2", CPENC(3,4,C5,C1,0), 0 },
2826 { "afsr1_el2", CPENC(3,4,C5,C1,1), 0 },
2827 { "afsr0_el3", CPENC(3,6,C5,C1,0), 0 },
2828 { "afsr1_el3", CPENC(3,6,C5,C1,1), 0 },
2829 { "esr_el1", CPENC(3,0,C5,C2,0), 0 },
2830 { "esr_el2", CPENC(3,4,C5,C2,0), 0 },
2831 { "esr_el3", CPENC(3,6,C5,C2,0), 0 },
2832 { "fpexc32_el2", CPENC(3,4,C5,C3,0), 0 },
2833 { "far_el1", CPENC(3,0,C6,C0,0), 0 },
2834 { "far_el2", CPENC(3,4,C6,C0,0), 0 },
2835 { "far_el3", CPENC(3,6,C6,C0,0), 0 },
2836 { "hpfar_el2", CPENC(3,4,C6,C0,4), 0 },
2837 { "par_el1", CPENC(3,0,C7,C4,0), 0 },
2838 { "mair_el1", CPENC(3,0,C10,C2,0), 0 },
2839 { "mair_el2", CPENC(3,4,C10,C2,0), 0 },
2840 { "mair_el3", CPENC(3,6,C10,C2,0), 0 },
2841 { "amair_el1", CPENC(3,0,C10,C3,0), 0 },
2842 { "amair_el2", CPENC(3,4,C10,C3,0), 0 },
2843 { "amair_el3", CPENC(3,6,C10,C3,0), 0 },
2844 { "vbar_el1", CPENC(3,0,C12,C0,0), 0 },
2845 { "vbar_el2", CPENC(3,4,C12,C0,0), 0 },
2846 { "vbar_el3", CPENC(3,6,C12,C0,0), 0 },
2847 { "rvbar_el1", CPENC(3,0,C12,C0,1), 0 }, /* RO */
2848 { "rvbar_el2", CPENC(3,4,C12,C0,1), 0 }, /* RO */
2849 { "rvbar_el3", CPENC(3,6,C12,C0,1), 0 }, /* RO */
2850 { "rmr_el1", CPENC(3,0,C12,C0,2), 0 },
2851 { "rmr_el2", CPENC(3,4,C12,C0,2), 0 },
2852 { "rmr_el3", CPENC(3,6,C12,C0,2), 0 },
2853 { "isr_el1", CPENC(3,0,C12,C1,0), 0 }, /* RO */
2854 { "contextidr_el1", CPENC(3,0,C13,C0,1), 0 },
2855 { "tpidr_el0", CPENC(3,3,C13,C0,2), 0 },
2856 { "tpidrro_el0", CPENC(3,3,C13,C0,3), 0 }, /* RO */
2857 { "tpidr_el1", CPENC(3,0,C13,C0,4), 0 },
2858 { "tpidr_el2", CPENC(3,4,C13,C0,2), 0 },
2859 { "tpidr_el3", CPENC(3,6,C13,C0,2), 0 },
2860 { "teecr32_el1", CPENC(2,2,C0, C0,0), 0 }, /* See section 3.9.7.1 */
2861 { "cntfrq_el0", CPENC(3,3,C14,C0,0), 0 }, /* RO */
2862 { "cntpct_el0", CPENC(3,3,C14,C0,1), 0 }, /* RO */
2863 { "cntvct_el0", CPENC(3,3,C14,C0,2), 0 }, /* RO */
2864 { "cntvoff_el2", CPENC(3,4,C14,C0,3), 0 },
2865 { "cntkctl_el1", CPENC(3,0,C14,C1,0), 0 },
2866 { "cnthctl_el2", CPENC(3,4,C14,C1,0), 0 },
2867 { "cntp_tval_el0", CPENC(3,3,C14,C2,0), 0 },
2868 { "cntp_ctl_el0", CPENC(3,3,C14,C2,1), 0 },
2869 { "cntp_cval_el0", CPENC(3,3,C14,C2,2), 0 },
2870 { "cntv_tval_el0", CPENC(3,3,C14,C3,0), 0 },
2871 { "cntv_ctl_el0", CPENC(3,3,C14,C3,1), 0 },
2872 { "cntv_cval_el0", CPENC(3,3,C14,C3,2), 0 },
2873 { "cnthp_tval_el2", CPENC(3,4,C14,C2,0), 0 },
2874 { "cnthp_ctl_el2", CPENC(3,4,C14,C2,1), 0 },
2875 { "cnthp_cval_el2", CPENC(3,4,C14,C2,2), 0 },
2876 { "cntps_tval_el1", CPENC(3,7,C14,C2,0), 0 },
2877 { "cntps_ctl_el1", CPENC(3,7,C14,C2,1), 0 },
2878 { "cntps_cval_el1", CPENC(3,7,C14,C2,2), 0 },
2879 { "dacr32_el2", CPENC(3,4,C3,C0,0), 0 },
2880 { "ifsr32_el2", CPENC(3,4,C5,C0,1), 0 },
2881 { "teehbr32_el1", CPENC(2,2,C1,C0,0), 0 },
2882 { "sder32_el3", CPENC(3,6,C1,C1,1), 0 },
2883 { "mdscr_el1", CPENC(2,0,C0, C2, 2), 0 },
2884 { "mdccsr_el0", CPENC(2,3,C0, C1, 0), 0 }, /* r */
2885 { "mdccint_el1", CPENC(2,0,C0, C2, 0), 0 },
2886 { "dbgdtr_el0", CPENC(2,3,C0, C4, 0), 0 },
2887 { "dbgdtrrx_el0", CPENC(2,3,C0, C5, 0), 0 }, /* r */
2888 { "dbgdtrtx_el0", CPENC(2,3,C0, C5, 0), 0 }, /* w */
2889 { "osdtrrx_el1", CPENC(2,0,C0, C0, 2), 0 }, /* r */
2890 { "osdtrtx_el1", CPENC(2,0,C0, C3, 2), 0 }, /* w */
2891 { "oseccr_el1", CPENC(2,0,C0, C6, 2), 0 },
2892 { "dbgvcr32_el2", CPENC(2,4,C0, C7, 0), 0 },
2893 { "dbgbvr0_el1", CPENC(2,0,C0, C0, 4), 0 },
2894 { "dbgbvr1_el1", CPENC(2,0,C0, C1, 4), 0 },
2895 { "dbgbvr2_el1", CPENC(2,0,C0, C2, 4), 0 },
2896 { "dbgbvr3_el1", CPENC(2,0,C0, C3, 4), 0 },
2897 { "dbgbvr4_el1", CPENC(2,0,C0, C4, 4), 0 },
2898 { "dbgbvr5_el1", CPENC(2,0,C0, C5, 4), 0 },
2899 { "dbgbvr6_el1", CPENC(2,0,C0, C6, 4), 0 },
2900 { "dbgbvr7_el1", CPENC(2,0,C0, C7, 4), 0 },
2901 { "dbgbvr8_el1", CPENC(2,0,C0, C8, 4), 0 },
2902 { "dbgbvr9_el1", CPENC(2,0,C0, C9, 4), 0 },
2903 { "dbgbvr10_el1", CPENC(2,0,C0, C10,4), 0 },
2904 { "dbgbvr11_el1", CPENC(2,0,C0, C11,4), 0 },
2905 { "dbgbvr12_el1", CPENC(2,0,C0, C12,4), 0 },
2906 { "dbgbvr13_el1", CPENC(2,0,C0, C13,4), 0 },
2907 { "dbgbvr14_el1", CPENC(2,0,C0, C14,4), 0 },
2908 { "dbgbvr15_el1", CPENC(2,0,C0, C15,4), 0 },
2909 { "dbgbcr0_el1", CPENC(2,0,C0, C0, 5), 0 },
2910 { "dbgbcr1_el1", CPENC(2,0,C0, C1, 5), 0 },
2911 { "dbgbcr2_el1", CPENC(2,0,C0, C2, 5), 0 },
2912 { "dbgbcr3_el1", CPENC(2,0,C0, C3, 5), 0 },
2913 { "dbgbcr4_el1", CPENC(2,0,C0, C4, 5), 0 },
2914 { "dbgbcr5_el1", CPENC(2,0,C0, C5, 5), 0 },
2915 { "dbgbcr6_el1", CPENC(2,0,C0, C6, 5), 0 },
2916 { "dbgbcr7_el1", CPENC(2,0,C0, C7, 5), 0 },
2917 { "dbgbcr8_el1", CPENC(2,0,C0, C8, 5), 0 },
2918 { "dbgbcr9_el1", CPENC(2,0,C0, C9, 5), 0 },
2919 { "dbgbcr10_el1", CPENC(2,0,C0, C10,5), 0 },
2920 { "dbgbcr11_el1", CPENC(2,0,C0, C11,5), 0 },
2921 { "dbgbcr12_el1", CPENC(2,0,C0, C12,5), 0 },
2922 { "dbgbcr13_el1", CPENC(2,0,C0, C13,5), 0 },
2923 { "dbgbcr14_el1", CPENC(2,0,C0, C14,5), 0 },
2924 { "dbgbcr15_el1", CPENC(2,0,C0, C15,5), 0 },
2925 { "dbgwvr0_el1", CPENC(2,0,C0, C0, 6), 0 },
2926 { "dbgwvr1_el1", CPENC(2,0,C0, C1, 6), 0 },
2927 { "dbgwvr2_el1", CPENC(2,0,C0, C2, 6), 0 },
2928 { "dbgwvr3_el1", CPENC(2,0,C0, C3, 6), 0 },
2929 { "dbgwvr4_el1", CPENC(2,0,C0, C4, 6), 0 },
2930 { "dbgwvr5_el1", CPENC(2,0,C0, C5, 6), 0 },
2931 { "dbgwvr6_el1", CPENC(2,0,C0, C6, 6), 0 },
2932 { "dbgwvr7_el1", CPENC(2,0,C0, C7, 6), 0 },
2933 { "dbgwvr8_el1", CPENC(2,0,C0, C8, 6), 0 },
2934 { "dbgwvr9_el1", CPENC(2,0,C0, C9, 6), 0 },
2935 { "dbgwvr10_el1", CPENC(2,0,C0, C10,6), 0 },
2936 { "dbgwvr11_el1", CPENC(2,0,C0, C11,6), 0 },
2937 { "dbgwvr12_el1", CPENC(2,0,C0, C12,6), 0 },
2938 { "dbgwvr13_el1", CPENC(2,0,C0, C13,6), 0 },
2939 { "dbgwvr14_el1", CPENC(2,0,C0, C14,6), 0 },
2940 { "dbgwvr15_el1", CPENC(2,0,C0, C15,6), 0 },
2941 { "dbgwcr0_el1", CPENC(2,0,C0, C0, 7), 0 },
2942 { "dbgwcr1_el1", CPENC(2,0,C0, C1, 7), 0 },
2943 { "dbgwcr2_el1", CPENC(2,0,C0, C2, 7), 0 },
2944 { "dbgwcr3_el1", CPENC(2,0,C0, C3, 7), 0 },
2945 { "dbgwcr4_el1", CPENC(2,0,C0, C4, 7), 0 },
2946 { "dbgwcr5_el1", CPENC(2,0,C0, C5, 7), 0 },
2947 { "dbgwcr6_el1", CPENC(2,0,C0, C6, 7), 0 },
2948 { "dbgwcr7_el1", CPENC(2,0,C0, C7, 7), 0 },
2949 { "dbgwcr8_el1", CPENC(2,0,C0, C8, 7), 0 },
2950 { "dbgwcr9_el1", CPENC(2,0,C0, C9, 7), 0 },
2951 { "dbgwcr10_el1", CPENC(2,0,C0, C10,7), 0 },
2952 { "dbgwcr11_el1", CPENC(2,0,C0, C11,7), 0 },
2953 { "dbgwcr12_el1", CPENC(2,0,C0, C12,7), 0 },
2954 { "dbgwcr13_el1", CPENC(2,0,C0, C13,7), 0 },
2955 { "dbgwcr14_el1", CPENC(2,0,C0, C14,7), 0 },
2956 { "dbgwcr15_el1", CPENC(2,0,C0, C15,7), 0 },
2957 { "mdrar_el1", CPENC(2,0,C1, C0, 0), 0 }, /* r */
2958 { "oslar_el1", CPENC(2,0,C1, C0, 4), 0 }, /* w */
2959 { "oslsr_el1", CPENC(2,0,C1, C1, 4), 0 }, /* r */
2960 { "osdlr_el1", CPENC(2,0,C1, C3, 4), 0 },
2961 { "dbgprcr_el1", CPENC(2,0,C1, C4, 4), 0 },
2962 { "dbgclaimset_el1", CPENC(2,0,C7, C8, 6), 0 },
2963 { "dbgclaimclr_el1", CPENC(2,0,C7, C9, 6), 0 },
2964 { "dbgauthstatus_el1", CPENC(2,0,C7, C14,6), 0 }, /* r */
2966 { "pmcr_el0", CPENC(3,3,C9,C12, 0), 0 },
2967 { "pmcntenset_el0", CPENC(3,3,C9,C12, 1), 0 },
2968 { "pmcntenclr_el0", CPENC(3,3,C9,C12, 2), 0 },
2969 { "pmovsclr_el0", CPENC(3,3,C9,C12, 3), 0 },
2970 { "pmswinc_el0", CPENC(3,3,C9,C12, 4), 0 }, /* w */
2971 { "pmselr_el0", CPENC(3,3,C9,C12, 5), 0 },
2972 { "pmceid0_el0", CPENC(3,3,C9,C12, 6), 0 }, /* r */
2973 { "pmceid1_el0", CPENC(3,3,C9,C12, 7), 0 }, /* r */
2974 { "pmccntr_el0", CPENC(3,3,C9,C13, 0), 0 },
2975 { "pmxevtyper_el0", CPENC(3,3,C9,C13, 1), 0 },
2976 { "pmxevcntr_el0", CPENC(3,3,C9,C13, 2), 0 },
2977 { "pmuserenr_el0", CPENC(3,3,C9,C14, 0), 0 },
2978 { "pmintenset_el1", CPENC(3,0,C9,C14, 1), 0 },
2979 { "pmintenclr_el1", CPENC(3,0,C9,C14, 2), 0 },
2980 { "pmovsset_el0", CPENC(3,3,C9,C14, 3), 0 },
2981 { "pmevcntr0_el0", CPENC(3,3,C14,C8, 0), 0 },
2982 { "pmevcntr1_el0", CPENC(3,3,C14,C8, 1), 0 },
2983 { "pmevcntr2_el0", CPENC(3,3,C14,C8, 2), 0 },
2984 { "pmevcntr3_el0", CPENC(3,3,C14,C8, 3), 0 },
2985 { "pmevcntr4_el0", CPENC(3,3,C14,C8, 4), 0 },
2986 { "pmevcntr5_el0", CPENC(3,3,C14,C8, 5), 0 },
2987 { "pmevcntr6_el0", CPENC(3,3,C14,C8, 6), 0 },
2988 { "pmevcntr7_el0", CPENC(3,3,C14,C8, 7), 0 },
2989 { "pmevcntr8_el0", CPENC(3,3,C14,C9, 0), 0 },
2990 { "pmevcntr9_el0", CPENC(3,3,C14,C9, 1), 0 },
2991 { "pmevcntr10_el0", CPENC(3,3,C14,C9, 2), 0 },
2992 { "pmevcntr11_el0", CPENC(3,3,C14,C9, 3), 0 },
2993 { "pmevcntr12_el0", CPENC(3,3,C14,C9, 4), 0 },
2994 { "pmevcntr13_el0", CPENC(3,3,C14,C9, 5), 0 },
2995 { "pmevcntr14_el0", CPENC(3,3,C14,C9, 6), 0 },
2996 { "pmevcntr15_el0", CPENC(3,3,C14,C9, 7), 0 },
2997 { "pmevcntr16_el0", CPENC(3,3,C14,C10,0), 0 },
2998 { "pmevcntr17_el0", CPENC(3,3,C14,C10,1), 0 },
2999 { "pmevcntr18_el0", CPENC(3,3,C14,C10,2), 0 },
3000 { "pmevcntr19_el0", CPENC(3,3,C14,C10,3), 0 },
3001 { "pmevcntr20_el0", CPENC(3,3,C14,C10,4), 0 },
3002 { "pmevcntr21_el0", CPENC(3,3,C14,C10,5), 0 },
3003 { "pmevcntr22_el0", CPENC(3,3,C14,C10,6), 0 },
3004 { "pmevcntr23_el0", CPENC(3,3,C14,C10,7), 0 },
3005 { "pmevcntr24_el0", CPENC(3,3,C14,C11,0), 0 },
3006 { "pmevcntr25_el0", CPENC(3,3,C14,C11,1), 0 },
3007 { "pmevcntr26_el0", CPENC(3,3,C14,C11,2), 0 },
3008 { "pmevcntr27_el0", CPENC(3,3,C14,C11,3), 0 },
3009 { "pmevcntr28_el0", CPENC(3,3,C14,C11,4), 0 },
3010 { "pmevcntr29_el0", CPENC(3,3,C14,C11,5), 0 },
3011 { "pmevcntr30_el0", CPENC(3,3,C14,C11,6), 0 },
3012 { "pmevtyper0_el0", CPENC(3,3,C14,C12,0), 0 },
3013 { "pmevtyper1_el0", CPENC(3,3,C14,C12,1), 0 },
3014 { "pmevtyper2_el0", CPENC(3,3,C14,C12,2), 0 },
3015 { "pmevtyper3_el0", CPENC(3,3,C14,C12,3), 0 },
3016 { "pmevtyper4_el0", CPENC(3,3,C14,C12,4), 0 },
3017 { "pmevtyper5_el0", CPENC(3,3,C14,C12,5), 0 },
3018 { "pmevtyper6_el0", CPENC(3,3,C14,C12,6), 0 },
3019 { "pmevtyper7_el0", CPENC(3,3,C14,C12,7), 0 },
3020 { "pmevtyper8_el0", CPENC(3,3,C14,C13,0), 0 },
3021 { "pmevtyper9_el0", CPENC(3,3,C14,C13,1), 0 },
3022 { "pmevtyper10_el0", CPENC(3,3,C14,C13,2), 0 },
3023 { "pmevtyper11_el0", CPENC(3,3,C14,C13,3), 0 },
3024 { "pmevtyper12_el0", CPENC(3,3,C14,C13,4), 0 },
3025 { "pmevtyper13_el0", CPENC(3,3,C14,C13,5), 0 },
3026 { "pmevtyper14_el0", CPENC(3,3,C14,C13,6), 0 },
3027 { "pmevtyper15_el0", CPENC(3,3,C14,C13,7), 0 },
3028 { "pmevtyper16_el0", CPENC(3,3,C14,C14,0), 0 },
3029 { "pmevtyper17_el0", CPENC(3,3,C14,C14,1), 0 },
3030 { "pmevtyper18_el0", CPENC(3,3,C14,C14,2), 0 },
3031 { "pmevtyper19_el0", CPENC(3,3,C14,C14,3), 0 },
3032 { "pmevtyper20_el0", CPENC(3,3,C14,C14,4), 0 },
3033 { "pmevtyper21_el0", CPENC(3,3,C14,C14,5), 0 },
3034 { "pmevtyper22_el0", CPENC(3,3,C14,C14,6), 0 },
3035 { "pmevtyper23_el0", CPENC(3,3,C14,C14,7), 0 },
3036 { "pmevtyper24_el0", CPENC(3,3,C14,C15,0), 0 },
3037 { "pmevtyper25_el0", CPENC(3,3,C14,C15,1), 0 },
3038 { "pmevtyper26_el0", CPENC(3,3,C14,C15,2), 0 },
3039 { "pmevtyper27_el0", CPENC(3,3,C14,C15,3), 0 },
3040 { "pmevtyper28_el0", CPENC(3,3,C14,C15,4), 0 },
3041 { "pmevtyper29_el0", CPENC(3,3,C14,C15,5), 0 },
3042 { "pmevtyper30_el0", CPENC(3,3,C14,C15,6), 0 },
3043 { "pmccfiltr_el0", CPENC(3,3,C14,C15,7), 0 },
3044 { 0, CPENC(0,0,0,0,0), 0 },
3048 aarch64_sys_reg_deprecated_p (const aarch64_sys_reg *reg)
3050 return (reg->flags & F_DEPRECATED) != 0;
3054 aarch64_sys_reg_supported_p (const aarch64_feature_set features,
3055 const aarch64_sys_reg *reg)
3057 if (!(reg->flags & F_ARCHEXT))
3060 /* PAN. Values are from aarch64_sys_regs. */
3061 if (reg->value == CPEN_(0,C2,3)
3062 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
3068 const aarch64_sys_reg aarch64_pstatefields [] =
3070 { "spsel", 0x05, 0 },
3071 { "daifset", 0x1e, 0 },
3072 { "daifclr", 0x1f, 0 },
3073 { "pan", 0x04, F_ARCHEXT },
3074 { 0, CPENC(0,0,0,0,0), 0 },
3078 aarch64_pstatefield_supported_p (const aarch64_feature_set features,
3079 const aarch64_sys_reg *reg)
3081 if (!(reg->flags & F_ARCHEXT))
3084 /* PAN. Values are from aarch64_pstatefields. */
3085 if (reg->value == 0x04
3086 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
3092 const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
3094 { "ialluis", CPENS(0,C7,C1,0), 0 },
3095 { "iallu", CPENS(0,C7,C5,0), 0 },
3096 { "ivau", CPENS(3,C7,C5,1), 1 },
3097 { 0, CPENS(0,0,0,0), 0 }
3100 const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
3102 { "zva", CPENS(3,C7,C4,1), 1 },
3103 { "ivac", CPENS(0,C7,C6,1), 1 },
3104 { "isw", CPENS(0,C7,C6,2), 1 },
3105 { "cvac", CPENS(3,C7,C10,1), 1 },
3106 { "csw", CPENS(0,C7,C10,2), 1 },
3107 { "cvau", CPENS(3,C7,C11,1), 1 },
3108 { "civac", CPENS(3,C7,C14,1), 1 },
3109 { "cisw", CPENS(0,C7,C14,2), 1 },
3110 { 0, CPENS(0,0,0,0), 0 }
3113 const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
3115 { "s1e1r", CPENS(0,C7,C8,0), 1 },
3116 { "s1e1w", CPENS(0,C7,C8,1), 1 },
3117 { "s1e0r", CPENS(0,C7,C8,2), 1 },
3118 { "s1e0w", CPENS(0,C7,C8,3), 1 },
3119 { "s12e1r", CPENS(4,C7,C8,4), 1 },
3120 { "s12e1w", CPENS(4,C7,C8,5), 1 },
3121 { "s12e0r", CPENS(4,C7,C8,6), 1 },
3122 { "s12e0w", CPENS(4,C7,C8,7), 1 },
3123 { "s1e2r", CPENS(4,C7,C8,0), 1 },
3124 { "s1e2w", CPENS(4,C7,C8,1), 1 },
3125 { "s1e3r", CPENS(6,C7,C8,0), 1 },
3126 { "s1e3w", CPENS(6,C7,C8,1), 1 },
3127 { 0, CPENS(0,0,0,0), 0 }
3130 const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
3132 { "vmalle1", CPENS(0,C8,C7,0), 0 },
3133 { "vae1", CPENS(0,C8,C7,1), 1 },
3134 { "aside1", CPENS(0,C8,C7,2), 1 },
3135 { "vaae1", CPENS(0,C8,C7,3), 1 },
3136 { "vmalle1is", CPENS(0,C8,C3,0), 0 },
3137 { "vae1is", CPENS(0,C8,C3,1), 1 },
3138 { "aside1is", CPENS(0,C8,C3,2), 1 },
3139 { "vaae1is", CPENS(0,C8,C3,3), 1 },
3140 { "ipas2e1is", CPENS(4,C8,C0,1), 1 },
3141 { "ipas2le1is",CPENS(4,C8,C0,5), 1 },
3142 { "ipas2e1", CPENS(4,C8,C4,1), 1 },
3143 { "ipas2le1", CPENS(4,C8,C4,5), 1 },
3144 { "vae2", CPENS(4,C8,C7,1), 1 },
3145 { "vae2is", CPENS(4,C8,C3,1), 1 },
3146 { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
3147 { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
3148 { "vae3", CPENS(6,C8,C7,1), 1 },
3149 { "vae3is", CPENS(6,C8,C3,1), 1 },
3150 { "alle2", CPENS(4,C8,C7,0), 0 },
3151 { "alle2is", CPENS(4,C8,C3,0), 0 },
3152 { "alle1", CPENS(4,C8,C7,4), 0 },
3153 { "alle1is", CPENS(4,C8,C3,4), 0 },
3154 { "alle3", CPENS(6,C8,C7,0), 0 },
3155 { "alle3is", CPENS(6,C8,C3,0), 0 },
3156 { "vale1is", CPENS(0,C8,C3,5), 1 },
3157 { "vale2is", CPENS(4,C8,C3,5), 1 },
3158 { "vale3is", CPENS(6,C8,C3,5), 1 },
3159 { "vaale1is", CPENS(0,C8,C3,7), 1 },
3160 { "vale1", CPENS(0,C8,C7,5), 1 },
3161 { "vale2", CPENS(4,C8,C7,5), 1 },
3162 { "vale3", CPENS(6,C8,C7,5), 1 },
3163 { "vaale1", CPENS(0,C8,C7,7), 1 },
3164 { 0, CPENS(0,0,0,0), 0 }
3184 /* Include the opcode description table as well as the operand description
3186 #include "aarch64-tbl.h"