1 /* aarch64-opc.c -- AArch64 opcode support.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of the GNU opcodes library.
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
30 #include "libiberty.h"
32 #include "aarch64-opc.h"
35 int debug_dump = FALSE;
36 #endif /* DEBUG_AARCH64 */
38 /* The enumeration strings associated with each value of a 5-bit SVE
39 pattern operand. A null entry indicates a reserved meaning. */
40 const char *const aarch64_sve_pattern_array[32] = {
79 /* The enumeration strings associated with each value of a 4-bit SVE
80 prefetch operand. A null entry indicates a reserved meaning. */
81 const char *const aarch64_sve_prfop_array[16] = {
102 /* Helper functions to determine which operand to be used to encode/decode
103 the size:Q fields for AdvSIMD instructions. */
105 static inline bfd_boolean
106 vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
108 return ((qualifier >= AARCH64_OPND_QLF_V_8B
109 && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
113 static inline bfd_boolean
114 fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
116 return ((qualifier >= AARCH64_OPND_QLF_S_B
117 && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
127 DP_VECTOR_ACROSS_LANES,
130 static const char significant_operand_index [] =
132 0, /* DP_UNKNOWN, by default using operand 0. */
133 0, /* DP_VECTOR_3SAME */
134 1, /* DP_VECTOR_LONG */
135 2, /* DP_VECTOR_WIDE */
136 1, /* DP_VECTOR_ACROSS_LANES */
139 /* Given a sequence of qualifiers in QUALIFIERS, determine and return
141 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
142 corresponds to one of a sequence of operands. */
144 static enum data_pattern
145 get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
147 if (vector_qualifier_p (qualifiers[0]) == TRUE)
149 /* e.g. v.4s, v.4s, v.4s
150 or v.4h, v.4h, v.h[3]. */
151 if (qualifiers[0] == qualifiers[1]
152 && vector_qualifier_p (qualifiers[2]) == TRUE
153 && (aarch64_get_qualifier_esize (qualifiers[0])
154 == aarch64_get_qualifier_esize (qualifiers[1]))
155 && (aarch64_get_qualifier_esize (qualifiers[0])
156 == aarch64_get_qualifier_esize (qualifiers[2])))
157 return DP_VECTOR_3SAME;
158 /* e.g. v.8h, v.8b, v.8b.
159 or v.4s, v.4h, v.h[2].
161 if (vector_qualifier_p (qualifiers[1]) == TRUE
162 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
163 && (aarch64_get_qualifier_esize (qualifiers[0])
164 == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
165 return DP_VECTOR_LONG;
166 /* e.g. v.8h, v.8h, v.8b. */
167 if (qualifiers[0] == qualifiers[1]
168 && vector_qualifier_p (qualifiers[2]) == TRUE
169 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
170 && (aarch64_get_qualifier_esize (qualifiers[0])
171 == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
172 && (aarch64_get_qualifier_esize (qualifiers[0])
173 == aarch64_get_qualifier_esize (qualifiers[1])))
174 return DP_VECTOR_WIDE;
176 else if (fp_qualifier_p (qualifiers[0]) == TRUE)
178 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
179 if (vector_qualifier_p (qualifiers[1]) == TRUE
180 && qualifiers[2] == AARCH64_OPND_QLF_NIL)
181 return DP_VECTOR_ACROSS_LANES;
187 /* Select the operand to do the encoding/decoding of the 'size:Q' fields in
188 the AdvSIMD instructions. */
189 /* N.B. it is possible to do some optimization that doesn't call
190 get_data_pattern each time when we need to select an operand. We can
191 either buffer the caculated the result or statically generate the data,
192 however, it is not obvious that the optimization will bring significant
196 aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
199 significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
202 const aarch64_field fields[] =
205 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
206 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
207 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
208 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
209 { 5, 19 }, /* imm19: e.g. in CBZ. */
210 { 5, 19 }, /* immhi: e.g. in ADRP. */
211 { 29, 2 }, /* immlo: e.g. in ADRP. */
212 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
213 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
214 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
215 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
216 { 0, 5 }, /* Rt: in load/store instructions. */
217 { 0, 5 }, /* Rd: in many integer instructions. */
218 { 5, 5 }, /* Rn: in many integer instructions. */
219 { 10, 5 }, /* Rt2: in load/store pair instructions. */
220 { 10, 5 }, /* Ra: in fp instructions. */
221 { 5, 3 }, /* op2: in the system instructions. */
222 { 8, 4 }, /* CRm: in the system instructions. */
223 { 12, 4 }, /* CRn: in the system instructions. */
224 { 16, 3 }, /* op1: in the system instructions. */
225 { 19, 2 }, /* op0: in the system instructions. */
226 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
227 { 12, 4 }, /* cond: condition flags as a source operand. */
228 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
229 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
230 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
231 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
232 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
233 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
234 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
235 { 12, 1 }, /* S: in load/store reg offset instructions. */
236 { 21, 2 }, /* hw: in move wide constant instructions. */
237 { 22, 2 }, /* opc: in load/store reg offset instructions. */
238 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
239 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
240 { 22, 2 }, /* type: floating point type field in fp data inst. */
241 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
242 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
243 { 15, 6 }, /* imm6_2: in rmif instructions. */
244 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
245 { 0, 4 }, /* imm4_2: in rmif instructions. */
246 { 10, 4 }, /* imm4_3: in adddg/subg instructions. */
247 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
248 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
249 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
250 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
251 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
252 { 5, 14 }, /* imm14: in test bit and branch instructions. */
253 { 5, 16 }, /* imm16: in exception instructions. */
254 { 0, 26 }, /* imm26: in unconditional branch instructions. */
255 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
256 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
257 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
258 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
259 { 22, 1 }, /* S: in LDRAA and LDRAB instructions. */
260 { 22, 1 }, /* N: in logical (immediate) instructions. */
261 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
262 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
263 { 31, 1 }, /* sf: in integer data processing instructions. */
264 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
265 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
266 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
267 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
268 { 31, 1 }, /* b5: in the test bit and branch instructions. */
269 { 19, 5 }, /* b40: in the test bit and branch instructions. */
270 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
271 { 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */
272 { 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */
273 { 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */
274 { 17, 1 }, /* SVE_N: SVE equivalent of N. */
275 { 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */
276 { 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */
277 { 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */
278 { 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */
279 { 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */
280 { 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */
281 { 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */
282 { 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */
283 { 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */
284 { 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */
285 { 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */
286 { 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */
287 { 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */
288 { 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */
289 { 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */
290 { 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */
291 { 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */
292 { 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
293 { 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */
294 { 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */
295 { 5, 1 }, /* SVE_i1: single-bit immediate. */
296 { 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */
297 { 16, 3 }, /* SVE_imm3: 3-bit immediate field. */
298 { 16, 4 }, /* SVE_imm4: 4-bit immediate field. */
299 { 5, 5 }, /* SVE_imm5: 5-bit immediate field. */
300 { 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */
301 { 16, 6 }, /* SVE_imm6: 6-bit immediate field. */
302 { 14, 7 }, /* SVE_imm7: 7-bit immediate field. */
303 { 5, 8 }, /* SVE_imm8: 8-bit immediate field. */
304 { 5, 9 }, /* SVE_imm9: 9-bit immediate field. */
305 { 11, 6 }, /* SVE_immr: SVE equivalent of immr. */
306 { 5, 6 }, /* SVE_imms: SVE equivalent of imms. */
307 { 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */
308 { 5, 5 }, /* SVE_pattern: vector pattern enumeration. */
309 { 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */
310 { 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */
311 { 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */
312 { 22, 1 }, /* SVE_sz: 1-bit element size select. */
313 { 16, 4 }, /* SVE_tsz: triangular size select. */
314 { 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */
315 { 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */
316 { 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */
317 { 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */
318 { 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */
319 { 11, 2 }, /* rotate1: FCMLA immediate rotate. */
320 { 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */
321 { 12, 1 }, /* rotate3: FCADD immediate rotate. */
322 { 12, 2 }, /* SM3: Indexed element SM3 2 bits index immediate. */
325 enum aarch64_operand_class
326 aarch64_get_operand_class (enum aarch64_opnd type)
328 return aarch64_operands[type].op_class;
332 aarch64_get_operand_name (enum aarch64_opnd type)
334 return aarch64_operands[type].name;
337 /* Get operand description string.
338 This is usually for the diagnosis purpose. */
340 aarch64_get_operand_desc (enum aarch64_opnd type)
342 return aarch64_operands[type].desc;
345 /* Table of all conditional affixes. */
346 const aarch64_cond aarch64_conds[16] =
348 {{"eq", "none"}, 0x0},
349 {{"ne", "any"}, 0x1},
350 {{"cs", "hs", "nlast"}, 0x2},
351 {{"cc", "lo", "ul", "last"}, 0x3},
352 {{"mi", "first"}, 0x4},
353 {{"pl", "nfrst"}, 0x5},
356 {{"hi", "pmore"}, 0x8},
357 {{"ls", "plast"}, 0x9},
358 {{"ge", "tcont"}, 0xa},
359 {{"lt", "tstop"}, 0xb},
367 get_cond_from_value (aarch64_insn value)
370 return &aarch64_conds[(unsigned int) value];
374 get_inverted_cond (const aarch64_cond *cond)
376 return &aarch64_conds[cond->value ^ 0x1];
379 /* Table describing the operand extension/shifting operators; indexed by
380 enum aarch64_modifier_kind.
382 The value column provides the most common values for encoding modifiers,
383 which enables table-driven encoding/decoding for the modifiers. */
384 const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
405 enum aarch64_modifier_kind
406 aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
408 return desc - aarch64_operand_modifiers;
412 aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
414 return aarch64_operand_modifiers[kind].value;
417 enum aarch64_modifier_kind
418 aarch64_get_operand_modifier_from_value (aarch64_insn value,
419 bfd_boolean extend_p)
421 if (extend_p == TRUE)
422 return AARCH64_MOD_UXTB + value;
424 return AARCH64_MOD_LSL - value;
428 aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
430 return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
434 static inline bfd_boolean
435 aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
437 return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
441 const struct aarch64_name_value_pair aarch64_barrier_options[16] =
461 /* Table describing the operands supported by the aliases of the HINT
464 The name column is the operand that is accepted for the alias. The value
465 column is the hint number of the alias. The list of operands is terminated
466 by NULL in the name column. */
468 const struct aarch64_name_value_pair aarch64_hint_options[] =
470 /* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */
471 { " ", HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) },
472 { "csync", HINT_OPD_CSYNC }, /* PSB CSYNC. */
473 { "c", HINT_OPD_C }, /* BTI C. */
474 { "j", HINT_OPD_J }, /* BTI J. */
475 { "jc", HINT_OPD_JC }, /* BTI JC. */
476 { NULL, HINT_OPD_NULL },
479 /* op -> op: load = 0 instruction = 1 store = 2
481 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
482 #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
483 const struct aarch64_name_value_pair aarch64_prfops[32] =
485 { "pldl1keep", B(0, 1, 0) },
486 { "pldl1strm", B(0, 1, 1) },
487 { "pldl2keep", B(0, 2, 0) },
488 { "pldl2strm", B(0, 2, 1) },
489 { "pldl3keep", B(0, 3, 0) },
490 { "pldl3strm", B(0, 3, 1) },
493 { "plil1keep", B(1, 1, 0) },
494 { "plil1strm", B(1, 1, 1) },
495 { "plil2keep", B(1, 2, 0) },
496 { "plil2strm", B(1, 2, 1) },
497 { "plil3keep", B(1, 3, 0) },
498 { "plil3strm", B(1, 3, 1) },
501 { "pstl1keep", B(2, 1, 0) },
502 { "pstl1strm", B(2, 1, 1) },
503 { "pstl2keep", B(2, 2, 0) },
504 { "pstl2strm", B(2, 2, 1) },
505 { "pstl3keep", B(2, 3, 0) },
506 { "pstl3strm", B(2, 3, 1) },
520 /* Utilities on value constraint. */
523 value_in_range_p (int64_t value, int low, int high)
525 return (value >= low && value <= high) ? 1 : 0;
528 /* Return true if VALUE is a multiple of ALIGN. */
530 value_aligned_p (int64_t value, int align)
532 return (value % align) == 0;
535 /* A signed value fits in a field. */
537 value_fit_signed_field_p (int64_t value, unsigned width)
540 if (width < sizeof (value) * 8)
542 int64_t lim = (int64_t)1 << (width - 1);
543 if (value >= -lim && value < lim)
549 /* An unsigned value fits in a field. */
551 value_fit_unsigned_field_p (int64_t value, unsigned width)
554 if (width < sizeof (value) * 8)
556 int64_t lim = (int64_t)1 << width;
557 if (value >= 0 && value < lim)
563 /* Return 1 if OPERAND is SP or WSP. */
565 aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
567 return ((aarch64_get_operand_class (operand->type)
568 == AARCH64_OPND_CLASS_INT_REG)
569 && operand_maybe_stack_pointer (aarch64_operands + operand->type)
570 && operand->reg.regno == 31);
573 /* Return 1 if OPERAND is XZR or WZP. */
575 aarch64_zero_register_p (const aarch64_opnd_info *operand)
577 return ((aarch64_get_operand_class (operand->type)
578 == AARCH64_OPND_CLASS_INT_REG)
579 && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
580 && operand->reg.regno == 31);
583 /* Return true if the operand *OPERAND that has the operand code
584 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
585 qualified by the qualifier TARGET. */
588 operand_also_qualified_p (const struct aarch64_opnd_info *operand,
589 aarch64_opnd_qualifier_t target)
591 switch (operand->qualifier)
593 case AARCH64_OPND_QLF_W:
594 if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
597 case AARCH64_OPND_QLF_X:
598 if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
601 case AARCH64_OPND_QLF_WSP:
602 if (target == AARCH64_OPND_QLF_W
603 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
606 case AARCH64_OPND_QLF_SP:
607 if (target == AARCH64_OPND_QLF_X
608 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
618 /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
619 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
621 Return NIL if more than one expected qualifiers are found. */
623 aarch64_opnd_qualifier_t
624 aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
626 const aarch64_opnd_qualifier_t known_qlf,
633 When the known qualifier is NIL, we have to assume that there is only
634 one qualifier sequence in the *QSEQ_LIST and return the corresponding
635 qualifier directly. One scenario is that for instruction
636 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
637 which has only one possible valid qualifier sequence
639 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
640 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
642 Because the qualifier NIL has dual roles in the qualifier sequence:
643 it can mean no qualifier for the operand, or the qualifer sequence is
644 not in use (when all qualifiers in the sequence are NILs), we have to
645 handle this special case here. */
646 if (known_qlf == AARCH64_OPND_NIL)
648 assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
649 return qseq_list[0][idx];
652 for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
654 if (qseq_list[i][known_idx] == known_qlf)
657 /* More than one sequences are found to have KNOWN_QLF at
659 return AARCH64_OPND_NIL;
664 return qseq_list[saved_i][idx];
667 enum operand_qualifier_kind
675 /* Operand qualifier description. */
676 struct operand_qualifier_data
678 /* The usage of the three data fields depends on the qualifier kind. */
685 enum operand_qualifier_kind kind;
688 /* Indexed by the operand qualifier enumerators. */
689 struct operand_qualifier_data aarch64_opnd_qualifiers[] =
691 {0, 0, 0, "NIL", OQK_NIL},
693 /* Operand variant qualifiers.
695 element size, number of elements and common value for encoding. */
697 {4, 1, 0x0, "w", OQK_OPD_VARIANT},
698 {8, 1, 0x1, "x", OQK_OPD_VARIANT},
699 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
700 {8, 1, 0x1, "sp", OQK_OPD_VARIANT},
702 {1, 1, 0x0, "b", OQK_OPD_VARIANT},
703 {2, 1, 0x1, "h", OQK_OPD_VARIANT},
704 {4, 1, 0x2, "s", OQK_OPD_VARIANT},
705 {8, 1, 0x3, "d", OQK_OPD_VARIANT},
706 {16, 1, 0x4, "q", OQK_OPD_VARIANT},
707 {4, 1, 0x0, "4b", OQK_OPD_VARIANT},
709 {1, 4, 0x0, "4b", OQK_OPD_VARIANT},
710 {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
711 {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
712 {2, 2, 0x0, "2h", OQK_OPD_VARIANT},
713 {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
714 {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
715 {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
716 {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
717 {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
718 {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
719 {16, 1, 0x8, "1q", OQK_OPD_VARIANT},
721 {0, 0, 0, "z", OQK_OPD_VARIANT},
722 {0, 0, 0, "m", OQK_OPD_VARIANT},
724 /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */
725 {16, 0, 0, "tag", OQK_OPD_VARIANT},
727 /* Qualifiers constraining the value range.
729 Lower bound, higher bound, unused. */
731 {0, 15, 0, "CR", OQK_VALUE_IN_RANGE},
732 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
733 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
734 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
735 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
736 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
737 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
739 /* Qualifiers for miscellaneous purpose.
741 unused, unused and unused. */
746 {0, 0, 0, "retrieving", 0},
749 static inline bfd_boolean
750 operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
752 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
756 static inline bfd_boolean
757 qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
759 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
764 aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
766 return aarch64_opnd_qualifiers[qualifier].desc;
769 /* Given an operand qualifier, return the expected data element size
770 of a qualified operand. */
772 aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
774 assert (operand_variant_qualifier_p (qualifier) == TRUE);
775 return aarch64_opnd_qualifiers[qualifier].data0;
779 aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
781 assert (operand_variant_qualifier_p (qualifier) == TRUE);
782 return aarch64_opnd_qualifiers[qualifier].data1;
786 aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
788 assert (operand_variant_qualifier_p (qualifier) == TRUE);
789 return aarch64_opnd_qualifiers[qualifier].data2;
793 get_lower_bound (aarch64_opnd_qualifier_t qualifier)
795 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
796 return aarch64_opnd_qualifiers[qualifier].data0;
800 get_upper_bound (aarch64_opnd_qualifier_t qualifier)
802 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
803 return aarch64_opnd_qualifiers[qualifier].data1;
808 aarch64_verbose (const char *str, ...)
819 dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
823 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
824 printf ("%s,", aarch64_get_qualifier_name (*qualifier));
829 dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
830 const aarch64_opnd_qualifier_t *qualifier)
833 aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
835 aarch64_verbose ("dump_match_qualifiers:");
836 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
837 curr[i] = opnd[i].qualifier;
838 dump_qualifier_sequence (curr);
839 aarch64_verbose ("against");
840 dump_qualifier_sequence (qualifier);
842 #endif /* DEBUG_AARCH64 */
844 /* This function checks if the given instruction INSN is a destructive
845 instruction based on the usage of the registers. It does not recognize
846 unary destructive instructions. */
848 aarch64_is_destructive_by_operands (const aarch64_opcode *opcode)
851 const enum aarch64_opnd *opnds = opcode->operands;
853 if (opnds[0] == AARCH64_OPND_NIL)
856 while (opnds[++i] != AARCH64_OPND_NIL)
857 if (opnds[i] == opnds[0])
863 /* TODO improve this, we can have an extra field at the runtime to
864 store the number of operands rather than calculating it every time. */
867 aarch64_num_of_operands (const aarch64_opcode *opcode)
870 const enum aarch64_opnd *opnds = opcode->operands;
871 while (opnds[i++] != AARCH64_OPND_NIL)
874 assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
878 /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
879 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
881 N.B. on the entry, it is very likely that only some operands in *INST
882 have had their qualifiers been established.
884 If STOP_AT is not -1, the function will only try to match
885 the qualifier sequence for operands before and including the operand
886 of index STOP_AT; and on success *RET will only be filled with the first
887 (STOP_AT+1) qualifiers.
889 A couple examples of the matching algorithm:
897 Apart from serving the main encoding routine, this can also be called
898 during or after the operand decoding. */
901 aarch64_find_best_match (const aarch64_inst *inst,
902 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
903 int stop_at, aarch64_opnd_qualifier_t *ret)
907 const aarch64_opnd_qualifier_t *qualifiers;
909 num_opnds = aarch64_num_of_operands (inst->opcode);
912 DEBUG_TRACE ("SUCCEED: no operand");
916 if (stop_at < 0 || stop_at >= num_opnds)
917 stop_at = num_opnds - 1;
919 /* For each pattern. */
920 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
923 qualifiers = *qualifiers_list;
925 /* Start as positive. */
928 DEBUG_TRACE ("%d", i);
931 dump_match_qualifiers (inst->operands, qualifiers);
934 /* Most opcodes has much fewer patterns in the list.
935 First NIL qualifier indicates the end in the list. */
936 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
938 DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
944 for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
946 if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
948 /* Either the operand does not have qualifier, or the qualifier
949 for the operand needs to be deduced from the qualifier
951 In the latter case, any constraint checking related with
952 the obtained qualifier should be done later in
953 operand_general_constraint_met_p. */
956 else if (*qualifiers != inst->operands[j].qualifier)
958 /* Unless the target qualifier can also qualify the operand
959 (which has already had a non-nil qualifier), non-equal
960 qualifiers are generally un-matched. */
961 if (operand_also_qualified_p (inst->operands + j, *qualifiers))
970 continue; /* Equal qualifiers are certainly matched. */
973 /* Qualifiers established. */
980 /* Fill the result in *RET. */
982 qualifiers = *qualifiers_list;
984 DEBUG_TRACE ("complete qualifiers using list %d", i);
987 dump_qualifier_sequence (qualifiers);
990 for (j = 0; j <= stop_at; ++j, ++qualifiers)
991 ret[j] = *qualifiers;
992 for (; j < AARCH64_MAX_OPND_NUM; ++j)
993 ret[j] = AARCH64_OPND_QLF_NIL;
995 DEBUG_TRACE ("SUCCESS");
999 DEBUG_TRACE ("FAIL");
1003 /* Operand qualifier matching and resolving.
1005 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
1006 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
1008 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
1012 match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
1015 aarch64_opnd_qualifier_seq_t qualifiers;
1017 if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
1020 DEBUG_TRACE ("matching FAIL");
1024 if (inst->opcode->flags & F_STRICT)
1026 /* Require an exact qualifier match, even for NIL qualifiers. */
1027 nops = aarch64_num_of_operands (inst->opcode);
1028 for (i = 0; i < nops; ++i)
1029 if (inst->operands[i].qualifier != qualifiers[i])
1033 /* Update the qualifiers. */
1034 if (update_p == TRUE)
1035 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1037 if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
1039 DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
1040 "update %s with %s for operand %d",
1041 aarch64_get_qualifier_name (inst->operands[i].qualifier),
1042 aarch64_get_qualifier_name (qualifiers[i]), i);
1043 inst->operands[i].qualifier = qualifiers[i];
1046 DEBUG_TRACE ("matching SUCCESS");
1050 /* Return TRUE if VALUE is a wide constant that can be moved into a general
1053 IS32 indicates whether value is a 32-bit immediate or not.
1054 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
1055 amount will be returned in *SHIFT_AMOUNT. */
1058 aarch64_wide_constant_p (int64_t value, int is32, unsigned int *shift_amount)
1062 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1066 /* Allow all zeros or all ones in top 32-bits, so that
1067 32-bit constant expressions like ~0x80000000 are
1069 uint64_t ext = value;
1070 if (ext >> 32 != 0 && ext >> 32 != (uint64_t) 0xffffffff)
1071 /* Immediate out of range. */
1073 value &= (int64_t) 0xffffffff;
1076 /* first, try movz then movn */
1078 if ((value & ((int64_t) 0xffff << 0)) == value)
1080 else if ((value & ((int64_t) 0xffff << 16)) == value)
1082 else if (!is32 && (value & ((int64_t) 0xffff << 32)) == value)
1084 else if (!is32 && (value & ((int64_t) 0xffff << 48)) == value)
1089 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1093 if (shift_amount != NULL)
1094 *shift_amount = amount;
1096 DEBUG_TRACE ("exit TRUE with amount %d", amount);
1101 /* Build the accepted values for immediate logical SIMD instructions.
1103 The standard encodings of the immediate value are:
1104 N imms immr SIMD size R S
1105 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
1106 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
1107 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
1108 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
1109 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
1110 0 11110s 00000r 2 UInt(r) UInt(s)
1111 where all-ones value of S is reserved.
1113 Let's call E the SIMD size.
1115 The immediate value is: S+1 bits '1' rotated to the right by R.
1117 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
1118 (remember S != E - 1). */
1120 #define TOTAL_IMM_NB 5334
1125 aarch64_insn encoding;
1126 } simd_imm_encoding;
1128 static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
1131 simd_imm_encoding_cmp(const void *i1, const void *i2)
1133 const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
1134 const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
1136 if (imm1->imm < imm2->imm)
1138 if (imm1->imm > imm2->imm)
1143 /* immediate bitfield standard encoding
1144 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
1145 1 ssssss rrrrrr 64 rrrrrr ssssss
1146 0 0sssss 0rrrrr 32 rrrrr sssss
1147 0 10ssss 00rrrr 16 rrrr ssss
1148 0 110sss 000rrr 8 rrr sss
1149 0 1110ss 0000rr 4 rr ss
1150 0 11110s 00000r 2 r s */
1152 encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
1154 return (is64 << 12) | (r << 6) | s;
1158 build_immediate_table (void)
1160 uint32_t log_e, e, s, r, s_mask;
1166 for (log_e = 1; log_e <= 6; log_e++)
1168 /* Get element size. */
1173 mask = 0xffffffffffffffffull;
1179 mask = (1ull << e) - 1;
1181 1 ((1 << 4) - 1) << 2 = 111100
1182 2 ((1 << 3) - 1) << 3 = 111000
1183 3 ((1 << 2) - 1) << 4 = 110000
1184 4 ((1 << 1) - 1) << 5 = 100000
1185 5 ((1 << 0) - 1) << 6 = 000000 */
1186 s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
1188 for (s = 0; s < e - 1; s++)
1189 for (r = 0; r < e; r++)
1191 /* s+1 consecutive bits to 1 (s < 63) */
1192 imm = (1ull << (s + 1)) - 1;
1193 /* rotate right by r */
1195 imm = (imm >> r) | ((imm << (e - r)) & mask);
1196 /* replicate the constant depending on SIMD size */
1199 case 1: imm = (imm << 2) | imm;
1201 case 2: imm = (imm << 4) | imm;
1203 case 3: imm = (imm << 8) | imm;
1205 case 4: imm = (imm << 16) | imm;
1207 case 5: imm = (imm << 32) | imm;
1212 simd_immediates[nb_imms].imm = imm;
1213 simd_immediates[nb_imms].encoding =
1214 encode_immediate_bitfield(is64, s | s_mask, r);
1218 assert (nb_imms == TOTAL_IMM_NB);
1219 qsort(simd_immediates, nb_imms,
1220 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1223 /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1224 be accepted by logical (immediate) instructions
1225 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1227 ESIZE is the number of bytes in the decoded immediate value.
1228 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1229 VALUE will be returned in *ENCODING. */
1232 aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding)
1234 simd_imm_encoding imm_enc;
1235 const simd_imm_encoding *imm_encoding;
1236 static bfd_boolean initialized = FALSE;
1240 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value,
1245 build_immediate_table ();
1249 /* Allow all zeros or all ones in top bits, so that
1250 constant expressions like ~1 are permitted. */
1251 upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
1252 if ((value & ~upper) != value && (value | upper) != value)
1255 /* Replicate to a full 64-bit value. */
1257 for (i = esize * 8; i < 64; i *= 2)
1258 value |= (value << i);
1260 imm_enc.imm = value;
1261 imm_encoding = (const simd_imm_encoding *)
1262 bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
1263 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1264 if (imm_encoding == NULL)
1266 DEBUG_TRACE ("exit with FALSE");
1269 if (encoding != NULL)
1270 *encoding = imm_encoding->encoding;
1271 DEBUG_TRACE ("exit with TRUE");
1275 /* If 64-bit immediate IMM is in the format of
1276 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1277 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1278 of value "abcdefgh". Otherwise return -1. */
1280 aarch64_shrink_expanded_imm8 (uint64_t imm)
1286 for (i = 0; i < 8; i++)
1288 byte = (imm >> (8 * i)) & 0xff;
1291 else if (byte != 0x00)
1297 /* Utility inline functions for operand_general_constraint_met_p. */
1300 set_error (aarch64_operand_error *mismatch_detail,
1301 enum aarch64_operand_error_kind kind, int idx,
1304 if (mismatch_detail == NULL)
1306 mismatch_detail->kind = kind;
1307 mismatch_detail->index = idx;
1308 mismatch_detail->error = error;
1312 set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
1315 if (mismatch_detail == NULL)
1317 set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
1321 set_out_of_range_error (aarch64_operand_error *mismatch_detail,
1322 int idx, int lower_bound, int upper_bound,
1325 if (mismatch_detail == NULL)
1327 set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
1328 mismatch_detail->data[0] = lower_bound;
1329 mismatch_detail->data[1] = upper_bound;
1333 set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
1334 int idx, int lower_bound, int upper_bound)
1336 if (mismatch_detail == NULL)
1338 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1339 _("immediate value"));
1343 set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
1344 int idx, int lower_bound, int upper_bound)
1346 if (mismatch_detail == NULL)
1348 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1349 _("immediate offset"));
1353 set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
1354 int idx, int lower_bound, int upper_bound)
1356 if (mismatch_detail == NULL)
1358 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1359 _("register number"));
1363 set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
1364 int idx, int lower_bound, int upper_bound)
1366 if (mismatch_detail == NULL)
1368 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1369 _("register element index"));
1373 set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
1374 int idx, int lower_bound, int upper_bound)
1376 if (mismatch_detail == NULL)
1378 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1382 /* Report that the MUL modifier in operand IDX should be in the range
1383 [LOWER_BOUND, UPPER_BOUND]. */
1385 set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail,
1386 int idx, int lower_bound, int upper_bound)
1388 if (mismatch_detail == NULL)
1390 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1395 set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
1398 if (mismatch_detail == NULL)
1400 set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
1401 mismatch_detail->data[0] = alignment;
1405 set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
1408 if (mismatch_detail == NULL)
1410 set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
1411 mismatch_detail->data[0] = expected_num;
1415 set_other_error (aarch64_operand_error *mismatch_detail, int idx,
1418 if (mismatch_detail == NULL)
1420 set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
1423 /* General constraint checking based on operand code.
1425 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1426 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1428 This function has to be called after the qualifiers for all operands
1431 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1432 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1433 of error message during the disassembling where error message is not
1434 wanted. We avoid the dynamic construction of strings of error messages
1435 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1436 use a combination of error code, static string and some integer data to
1437 represent an error. */
1440 operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
1441 enum aarch64_opnd type,
1442 const aarch64_opcode *opcode,
1443 aarch64_operand_error *mismatch_detail)
1445 unsigned num, modifiers, shift;
1447 int64_t imm, min_value, max_value;
1448 uint64_t uvalue, mask;
1449 const aarch64_opnd_info *opnd = opnds + idx;
1450 aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
1452 assert (opcode->operands[idx] == opnd->type && opnd->type == type);
1454 switch (aarch64_operands[type].op_class)
1456 case AARCH64_OPND_CLASS_INT_REG:
1457 /* Check pair reg constraints for cas* instructions. */
1458 if (type == AARCH64_OPND_PAIRREG)
1460 assert (idx == 1 || idx == 3);
1461 if (opnds[idx - 1].reg.regno % 2 != 0)
1463 set_syntax_error (mismatch_detail, idx - 1,
1464 _("reg pair must start from even reg"));
1467 if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
1469 set_syntax_error (mismatch_detail, idx,
1470 _("reg pair must be contiguous"));
1476 /* <Xt> may be optional in some IC and TLBI instructions. */
1477 if (type == AARCH64_OPND_Rt_SYS)
1479 assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
1480 == AARCH64_OPND_CLASS_SYSTEM));
1481 if (opnds[1].present
1482 && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1484 set_other_error (mismatch_detail, idx, _("extraneous register"));
1487 if (!opnds[1].present
1488 && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1490 set_other_error (mismatch_detail, idx, _("missing register"));
1496 case AARCH64_OPND_QLF_WSP:
1497 case AARCH64_OPND_QLF_SP:
1498 if (!aarch64_stack_pointer_p (opnd))
1500 set_other_error (mismatch_detail, idx,
1501 _("stack pointer register expected"));
1510 case AARCH64_OPND_CLASS_SVE_REG:
1513 case AARCH64_OPND_SVE_Zm3_INDEX:
1514 case AARCH64_OPND_SVE_Zm3_22_INDEX:
1515 case AARCH64_OPND_SVE_Zm4_INDEX:
1516 size = get_operand_fields_width (get_operand_from_code (type));
1517 shift = get_operand_specific_data (&aarch64_operands[type]);
1518 mask = (1 << shift) - 1;
1519 if (opnd->reg.regno > mask)
1521 assert (mask == 7 || mask == 15);
1522 set_other_error (mismatch_detail, idx,
1524 ? _("z0-z15 expected")
1525 : _("z0-z7 expected"));
1528 mask = (1 << (size - shift)) - 1;
1529 if (!value_in_range_p (opnd->reglane.index, 0, mask))
1531 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, mask);
1536 case AARCH64_OPND_SVE_Zn_INDEX:
1537 size = aarch64_get_qualifier_esize (opnd->qualifier);
1538 if (!value_in_range_p (opnd->reglane.index, 0, 64 / size - 1))
1540 set_elem_idx_out_of_range_error (mismatch_detail, idx,
1546 case AARCH64_OPND_SVE_ZnxN:
1547 case AARCH64_OPND_SVE_ZtxN:
1548 if (opnd->reglist.num_regs != get_opcode_dependent_value (opcode))
1550 set_other_error (mismatch_detail, idx,
1551 _("invalid register list"));
1561 case AARCH64_OPND_CLASS_PRED_REG:
1562 if (opnd->reg.regno >= 8
1563 && get_operand_fields_width (get_operand_from_code (type)) == 3)
1565 set_other_error (mismatch_detail, idx, _("p0-p7 expected"));
1570 case AARCH64_OPND_CLASS_COND:
1571 if (type == AARCH64_OPND_COND1
1572 && (opnds[idx].cond->value & 0xe) == 0xe)
1574 /* Not allow AL or NV. */
1575 set_syntax_error (mismatch_detail, idx, NULL);
1579 case AARCH64_OPND_CLASS_ADDRESS:
1580 /* Check writeback. */
1581 switch (opcode->iclass)
1585 case ldstnapair_offs:
1588 if (opnd->addr.writeback == 1)
1590 set_syntax_error (mismatch_detail, idx,
1591 _("unexpected address writeback"));
1596 if (opnd->addr.writeback == 1 && opnd->addr.preind != 1)
1598 set_syntax_error (mismatch_detail, idx,
1599 _("unexpected address writeback"));
1604 case ldstpair_indexed:
1605 case ldstgv_indexed:
1608 if (opnd->addr.writeback == 0)
1610 set_syntax_error (mismatch_detail, idx,
1611 _("address writeback expected"));
1616 assert (opnd->addr.writeback == 0);
1621 case AARCH64_OPND_ADDR_SIMM7:
1622 /* Scaled signed 7 bits immediate offset. */
1623 /* Get the size of the data element that is accessed, which may be
1624 different from that of the source register size,
1625 e.g. in strb/ldrb. */
1626 size = aarch64_get_qualifier_esize (opnd->qualifier);
1627 if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
1629 set_offset_out_of_range_error (mismatch_detail, idx,
1630 -64 * size, 63 * size);
1633 if (!value_aligned_p (opnd->addr.offset.imm, size))
1635 set_unaligned_error (mismatch_detail, idx, size);
1639 case AARCH64_OPND_ADDR_OFFSET:
1640 case AARCH64_OPND_ADDR_SIMM9:
1641 /* Unscaled signed 9 bits immediate offset. */
1642 if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
1644 set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
1649 case AARCH64_OPND_ADDR_SIMM9_2:
1650 /* Unscaled signed 9 bits immediate offset, which has to be negative
1652 size = aarch64_get_qualifier_esize (qualifier);
1653 if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
1654 && !value_aligned_p (opnd->addr.offset.imm, size))
1655 || value_in_range_p (opnd->addr.offset.imm, -256, -1))
1657 set_other_error (mismatch_detail, idx,
1658 _("negative or unaligned offset expected"));
1661 case AARCH64_OPND_ADDR_SIMM10:
1662 /* Scaled signed 10 bits immediate offset. */
1663 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088))
1665 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088);
1668 if (!value_aligned_p (opnd->addr.offset.imm, 8))
1670 set_unaligned_error (mismatch_detail, idx, 8);
1675 case AARCH64_OPND_ADDR_SIMM11:
1676 /* Signed 11 bits immediate offset (multiple of 16). */
1677 if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008))
1679 set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008);
1683 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1685 set_unaligned_error (mismatch_detail, idx, 16);
1690 case AARCH64_OPND_ADDR_SIMM13:
1691 /* Signed 13 bits immediate offset (multiple of 16). */
1692 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080))
1694 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080);
1698 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1700 set_unaligned_error (mismatch_detail, idx, 16);
1705 case AARCH64_OPND_SIMD_ADDR_POST:
1706 /* AdvSIMD load/store multiple structures, post-index. */
1708 if (opnd->addr.offset.is_reg)
1710 if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
1714 set_other_error (mismatch_detail, idx,
1715 _("invalid register offset"));
1721 const aarch64_opnd_info *prev = &opnds[idx-1];
1722 unsigned num_bytes; /* total number of bytes transferred. */
1723 /* The opcode dependent area stores the number of elements in
1724 each structure to be loaded/stored. */
1725 int is_ld1r = get_opcode_dependent_value (opcode) == 1;
1726 if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
1727 /* Special handling of loading single structure to all lane. */
1728 num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
1729 * aarch64_get_qualifier_esize (prev->qualifier);
1731 num_bytes = prev->reglist.num_regs
1732 * aarch64_get_qualifier_esize (prev->qualifier)
1733 * aarch64_get_qualifier_nelem (prev->qualifier);
1734 if ((int) num_bytes != opnd->addr.offset.imm)
1736 set_other_error (mismatch_detail, idx,
1737 _("invalid post-increment amount"));
1743 case AARCH64_OPND_ADDR_REGOFF:
1744 /* Get the size of the data element that is accessed, which may be
1745 different from that of the source register size,
1746 e.g. in strb/ldrb. */
1747 size = aarch64_get_qualifier_esize (opnd->qualifier);
1748 /* It is either no shift or shift by the binary logarithm of SIZE. */
1749 if (opnd->shifter.amount != 0
1750 && opnd->shifter.amount != (int)get_logsz (size))
1752 set_other_error (mismatch_detail, idx,
1753 _("invalid shift amount"));
1756 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1758 switch (opnd->shifter.kind)
1760 case AARCH64_MOD_UXTW:
1761 case AARCH64_MOD_LSL:
1762 case AARCH64_MOD_SXTW:
1763 case AARCH64_MOD_SXTX: break;
1765 set_other_error (mismatch_detail, idx,
1766 _("invalid extend/shift operator"));
1771 case AARCH64_OPND_ADDR_UIMM12:
1772 imm = opnd->addr.offset.imm;
1773 /* Get the size of the data element that is accessed, which may be
1774 different from that of the source register size,
1775 e.g. in strb/ldrb. */
1776 size = aarch64_get_qualifier_esize (qualifier);
1777 if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
1779 set_offset_out_of_range_error (mismatch_detail, idx,
1783 if (!value_aligned_p (opnd->addr.offset.imm, size))
1785 set_unaligned_error (mismatch_detail, idx, size);
1790 case AARCH64_OPND_ADDR_PCREL14:
1791 case AARCH64_OPND_ADDR_PCREL19:
1792 case AARCH64_OPND_ADDR_PCREL21:
1793 case AARCH64_OPND_ADDR_PCREL26:
1794 imm = opnd->imm.value;
1795 if (operand_need_shift_by_two (get_operand_from_code (type)))
1797 /* The offset value in a PC-relative branch instruction is alway
1798 4-byte aligned and is encoded without the lowest 2 bits. */
1799 if (!value_aligned_p (imm, 4))
1801 set_unaligned_error (mismatch_detail, idx, 4);
1804 /* Right shift by 2 so that we can carry out the following check
1808 size = get_operand_fields_width (get_operand_from_code (type));
1809 if (!value_fit_signed_field_p (imm, size))
1811 set_other_error (mismatch_detail, idx,
1812 _("immediate out of range"));
1817 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
1818 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
1819 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
1820 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
1824 assert (!opnd->addr.offset.is_reg);
1825 assert (opnd->addr.preind);
1826 num = 1 + get_operand_specific_data (&aarch64_operands[type]);
1829 if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present)
1830 || (opnd->shifter.operator_present
1831 && opnd->shifter.kind != AARCH64_MOD_MUL_VL))
1833 set_other_error (mismatch_detail, idx,
1834 _("invalid addressing mode"));
1837 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1839 set_offset_out_of_range_error (mismatch_detail, idx,
1840 min_value, max_value);
1843 if (!value_aligned_p (opnd->addr.offset.imm, num))
1845 set_unaligned_error (mismatch_detail, idx, num);
1850 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
1853 goto sve_imm_offset_vl;
1855 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
1858 goto sve_imm_offset_vl;
1860 case AARCH64_OPND_SVE_ADDR_RI_U6:
1861 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
1862 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
1863 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
1867 assert (!opnd->addr.offset.is_reg);
1868 assert (opnd->addr.preind);
1869 num = 1 << get_operand_specific_data (&aarch64_operands[type]);
1872 if (opnd->shifter.operator_present
1873 || opnd->shifter.amount_present)
1875 set_other_error (mismatch_detail, idx,
1876 _("invalid addressing mode"));
1879 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1881 set_offset_out_of_range_error (mismatch_detail, idx,
1882 min_value, max_value);
1885 if (!value_aligned_p (opnd->addr.offset.imm, num))
1887 set_unaligned_error (mismatch_detail, idx, num);
1892 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
1895 goto sve_imm_offset;
1897 case AARCH64_OPND_SVE_ADDR_R:
1898 case AARCH64_OPND_SVE_ADDR_RR:
1899 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
1900 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
1901 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
1902 case AARCH64_OPND_SVE_ADDR_RX:
1903 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
1904 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
1905 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
1906 case AARCH64_OPND_SVE_ADDR_RZ:
1907 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
1908 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
1909 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
1910 modifiers = 1 << AARCH64_MOD_LSL;
1912 assert (opnd->addr.offset.is_reg);
1913 assert (opnd->addr.preind);
1914 if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0
1915 && opnd->addr.offset.regno == 31)
1917 set_other_error (mismatch_detail, idx,
1918 _("index register xzr is not allowed"));
1921 if (((1 << opnd->shifter.kind) & modifiers) == 0
1922 || (opnd->shifter.amount
1923 != get_operand_specific_data (&aarch64_operands[type])))
1925 set_other_error (mismatch_detail, idx,
1926 _("invalid addressing mode"));
1931 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
1932 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
1933 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
1934 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
1935 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
1936 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
1937 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
1938 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
1939 modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW);
1940 goto sve_rr_operand;
1942 case AARCH64_OPND_SVE_ADDR_ZI_U5:
1943 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
1944 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
1945 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
1948 goto sve_imm_offset;
1950 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
1951 modifiers = 1 << AARCH64_MOD_LSL;
1953 assert (opnd->addr.offset.is_reg);
1954 assert (opnd->addr.preind);
1955 if (((1 << opnd->shifter.kind) & modifiers) == 0
1956 || opnd->shifter.amount < 0
1957 || opnd->shifter.amount > 3)
1959 set_other_error (mismatch_detail, idx,
1960 _("invalid addressing mode"));
1965 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
1966 modifiers = (1 << AARCH64_MOD_SXTW);
1967 goto sve_zz_operand;
1969 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
1970 modifiers = 1 << AARCH64_MOD_UXTW;
1971 goto sve_zz_operand;
1978 case AARCH64_OPND_CLASS_SIMD_REGLIST:
1979 if (type == AARCH64_OPND_LEt)
1981 /* Get the upper bound for the element index. */
1982 num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
1983 if (!value_in_range_p (opnd->reglist.index, 0, num))
1985 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
1989 /* The opcode dependent area stores the number of elements in
1990 each structure to be loaded/stored. */
1991 num = get_opcode_dependent_value (opcode);
1994 case AARCH64_OPND_LVt:
1995 assert (num >= 1 && num <= 4);
1996 /* Unless LD1/ST1, the number of registers should be equal to that
1997 of the structure elements. */
1998 if (num != 1 && opnd->reglist.num_regs != num)
2000 set_reg_list_error (mismatch_detail, idx, num);
2004 case AARCH64_OPND_LVt_AL:
2005 case AARCH64_OPND_LEt:
2006 assert (num >= 1 && num <= 4);
2007 /* The number of registers should be equal to that of the structure
2009 if (opnd->reglist.num_regs != num)
2011 set_reg_list_error (mismatch_detail, idx, num);
2020 case AARCH64_OPND_CLASS_IMMEDIATE:
2021 /* Constraint check on immediate operand. */
2022 imm = opnd->imm.value;
2023 /* E.g. imm_0_31 constrains value to be 0..31. */
2024 if (qualifier_value_in_range_constraint_p (qualifier)
2025 && !value_in_range_p (imm, get_lower_bound (qualifier),
2026 get_upper_bound (qualifier)))
2028 set_imm_out_of_range_error (mismatch_detail, idx,
2029 get_lower_bound (qualifier),
2030 get_upper_bound (qualifier));
2036 case AARCH64_OPND_AIMM:
2037 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2039 set_other_error (mismatch_detail, idx,
2040 _("invalid shift operator"));
2043 if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
2045 set_other_error (mismatch_detail, idx,
2046 _("shift amount must be 0 or 12"));
2049 if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
2051 set_other_error (mismatch_detail, idx,
2052 _("immediate out of range"));
2057 case AARCH64_OPND_HALF:
2058 assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
2059 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2061 set_other_error (mismatch_detail, idx,
2062 _("invalid shift operator"));
2065 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2066 if (!value_aligned_p (opnd->shifter.amount, 16))
2068 set_other_error (mismatch_detail, idx,
2069 _("shift amount must be a multiple of 16"));
2072 if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
2074 set_sft_amount_out_of_range_error (mismatch_detail, idx,
2078 if (opnd->imm.value < 0)
2080 set_other_error (mismatch_detail, idx,
2081 _("negative immediate value not allowed"));
2084 if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
2086 set_other_error (mismatch_detail, idx,
2087 _("immediate out of range"));
2092 case AARCH64_OPND_IMM_MOV:
2094 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2095 imm = opnd->imm.value;
2099 case OP_MOV_IMM_WIDEN:
2102 case OP_MOV_IMM_WIDE:
2103 if (!aarch64_wide_constant_p (imm, esize == 4, NULL))
2105 set_other_error (mismatch_detail, idx,
2106 _("immediate out of range"));
2110 case OP_MOV_IMM_LOG:
2111 if (!aarch64_logical_immediate_p (imm, esize, NULL))
2113 set_other_error (mismatch_detail, idx,
2114 _("immediate out of range"));
2125 case AARCH64_OPND_NZCV:
2126 case AARCH64_OPND_CCMP_IMM:
2127 case AARCH64_OPND_EXCEPTION:
2128 case AARCH64_OPND_UIMM4:
2129 case AARCH64_OPND_UIMM4_ADDG:
2130 case AARCH64_OPND_UIMM7:
2131 case AARCH64_OPND_UIMM3_OP1:
2132 case AARCH64_OPND_UIMM3_OP2:
2133 case AARCH64_OPND_SVE_UIMM3:
2134 case AARCH64_OPND_SVE_UIMM7:
2135 case AARCH64_OPND_SVE_UIMM8:
2136 case AARCH64_OPND_SVE_UIMM8_53:
2137 size = get_operand_fields_width (get_operand_from_code (type));
2139 if (!value_fit_unsigned_field_p (opnd->imm.value, size))
2141 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2147 case AARCH64_OPND_UIMM10:
2148 /* Scaled unsigned 10 bits immediate offset. */
2149 if (!value_in_range_p (opnd->imm.value, 0, 1008))
2151 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008);
2155 if (!value_aligned_p (opnd->imm.value, 16))
2157 set_unaligned_error (mismatch_detail, idx, 16);
2162 case AARCH64_OPND_SIMM5:
2163 case AARCH64_OPND_SVE_SIMM5:
2164 case AARCH64_OPND_SVE_SIMM5B:
2165 case AARCH64_OPND_SVE_SIMM6:
2166 case AARCH64_OPND_SVE_SIMM8:
2167 size = get_operand_fields_width (get_operand_from_code (type));
2169 if (!value_fit_signed_field_p (opnd->imm.value, size))
2171 set_imm_out_of_range_error (mismatch_detail, idx,
2173 (1 << (size - 1)) - 1);
2178 case AARCH64_OPND_WIDTH:
2179 assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
2180 && opnds[0].type == AARCH64_OPND_Rd);
2181 size = get_upper_bound (qualifier);
2182 if (opnd->imm.value + opnds[idx-1].imm.value > size)
2183 /* lsb+width <= reg.size */
2185 set_imm_out_of_range_error (mismatch_detail, idx, 1,
2186 size - opnds[idx-1].imm.value);
2191 case AARCH64_OPND_LIMM:
2192 case AARCH64_OPND_SVE_LIMM:
2194 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2195 uint64_t uimm = opnd->imm.value;
2196 if (opcode->op == OP_BIC)
2198 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2200 set_other_error (mismatch_detail, idx,
2201 _("immediate out of range"));
2207 case AARCH64_OPND_IMM0:
2208 case AARCH64_OPND_FPIMM0:
2209 if (opnd->imm.value != 0)
2211 set_other_error (mismatch_detail, idx,
2212 _("immediate zero expected"));
2217 case AARCH64_OPND_IMM_ROT1:
2218 case AARCH64_OPND_IMM_ROT2:
2219 case AARCH64_OPND_SVE_IMM_ROT2:
2220 if (opnd->imm.value != 0
2221 && opnd->imm.value != 90
2222 && opnd->imm.value != 180
2223 && opnd->imm.value != 270)
2225 set_other_error (mismatch_detail, idx,
2226 _("rotate expected to be 0, 90, 180 or 270"));
2231 case AARCH64_OPND_IMM_ROT3:
2232 case AARCH64_OPND_SVE_IMM_ROT1:
2233 if (opnd->imm.value != 90 && opnd->imm.value != 270)
2235 set_other_error (mismatch_detail, idx,
2236 _("rotate expected to be 90 or 270"));
2241 case AARCH64_OPND_SHLL_IMM:
2243 size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2244 if (opnd->imm.value != size)
2246 set_other_error (mismatch_detail, idx,
2247 _("invalid shift amount"));
2252 case AARCH64_OPND_IMM_VLSL:
2253 size = aarch64_get_qualifier_esize (qualifier);
2254 if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
2256 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2262 case AARCH64_OPND_IMM_VLSR:
2263 size = aarch64_get_qualifier_esize (qualifier);
2264 if (!value_in_range_p (opnd->imm.value, 1, size * 8))
2266 set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
2271 case AARCH64_OPND_SIMD_IMM:
2272 case AARCH64_OPND_SIMD_IMM_SFT:
2273 /* Qualifier check. */
2276 case AARCH64_OPND_QLF_LSL:
2277 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2279 set_other_error (mismatch_detail, idx,
2280 _("invalid shift operator"));
2284 case AARCH64_OPND_QLF_MSL:
2285 if (opnd->shifter.kind != AARCH64_MOD_MSL)
2287 set_other_error (mismatch_detail, idx,
2288 _("invalid shift operator"));
2292 case AARCH64_OPND_QLF_NIL:
2293 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2295 set_other_error (mismatch_detail, idx,
2296 _("shift is not permitted"));
2304 /* Is the immediate valid? */
2306 if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
2308 /* uimm8 or simm8 */
2309 if (!value_in_range_p (opnd->imm.value, -128, 255))
2311 set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
2315 else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
2318 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
2319 ffffffffgggggggghhhhhhhh'. */
2320 set_other_error (mismatch_detail, idx,
2321 _("invalid value for immediate"));
2324 /* Is the shift amount valid? */
2325 switch (opnd->shifter.kind)
2327 case AARCH64_MOD_LSL:
2328 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2329 if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
2331 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
2335 if (!value_aligned_p (opnd->shifter.amount, 8))
2337 set_unaligned_error (mismatch_detail, idx, 8);
2341 case AARCH64_MOD_MSL:
2342 /* Only 8 and 16 are valid shift amount. */
2343 if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
2345 set_other_error (mismatch_detail, idx,
2346 _("shift amount must be 0 or 16"));
2351 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2353 set_other_error (mismatch_detail, idx,
2354 _("invalid shift operator"));
2361 case AARCH64_OPND_FPIMM:
2362 case AARCH64_OPND_SIMD_FPIMM:
2363 case AARCH64_OPND_SVE_FPIMM8:
2364 if (opnd->imm.is_fp == 0)
2366 set_other_error (mismatch_detail, idx,
2367 _("floating-point immediate expected"));
2370 /* The value is expected to be an 8-bit floating-point constant with
2371 sign, 3-bit exponent and normalized 4 bits of precision, encoded
2372 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
2374 if (!value_in_range_p (opnd->imm.value, 0, 255))
2376 set_other_error (mismatch_detail, idx,
2377 _("immediate out of range"));
2380 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2382 set_other_error (mismatch_detail, idx,
2383 _("invalid shift operator"));
2388 case AARCH64_OPND_SVE_AIMM:
2391 assert (opnd->shifter.kind == AARCH64_MOD_LSL);
2392 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2393 mask = ~((uint64_t) -1 << (size * 4) << (size * 4));
2394 uvalue = opnd->imm.value;
2395 shift = opnd->shifter.amount;
2400 set_other_error (mismatch_detail, idx,
2401 _("no shift amount allowed for"
2402 " 8-bit constants"));
2408 if (shift != 0 && shift != 8)
2410 set_other_error (mismatch_detail, idx,
2411 _("shift amount must be 0 or 8"));
2414 if (shift == 0 && (uvalue & 0xff) == 0)
2417 uvalue = (int64_t) uvalue / 256;
2421 if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue)
2423 set_other_error (mismatch_detail, idx,
2424 _("immediate too big for element size"));
2427 uvalue = (uvalue - min_value) & mask;
2430 set_other_error (mismatch_detail, idx,
2431 _("invalid arithmetic immediate"));
2436 case AARCH64_OPND_SVE_ASIMM:
2440 case AARCH64_OPND_SVE_I1_HALF_ONE:
2441 assert (opnd->imm.is_fp);
2442 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000)
2444 set_other_error (mismatch_detail, idx,
2445 _("floating-point value must be 0.5 or 1.0"));
2450 case AARCH64_OPND_SVE_I1_HALF_TWO:
2451 assert (opnd->imm.is_fp);
2452 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000)
2454 set_other_error (mismatch_detail, idx,
2455 _("floating-point value must be 0.5 or 2.0"));
2460 case AARCH64_OPND_SVE_I1_ZERO_ONE:
2461 assert (opnd->imm.is_fp);
2462 if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000)
2464 set_other_error (mismatch_detail, idx,
2465 _("floating-point value must be 0.0 or 1.0"));
2470 case AARCH64_OPND_SVE_INV_LIMM:
2472 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2473 uint64_t uimm = ~opnd->imm.value;
2474 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2476 set_other_error (mismatch_detail, idx,
2477 _("immediate out of range"));
2483 case AARCH64_OPND_SVE_LIMM_MOV:
2485 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2486 uint64_t uimm = opnd->imm.value;
2487 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2489 set_other_error (mismatch_detail, idx,
2490 _("immediate out of range"));
2493 if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize))
2495 set_other_error (mismatch_detail, idx,
2496 _("invalid replicated MOV immediate"));
2502 case AARCH64_OPND_SVE_PATTERN_SCALED:
2503 assert (opnd->shifter.kind == AARCH64_MOD_MUL);
2504 if (!value_in_range_p (opnd->shifter.amount, 1, 16))
2506 set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16);
2511 case AARCH64_OPND_SVE_SHLIMM_PRED:
2512 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
2513 size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2514 if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1))
2516 set_imm_out_of_range_error (mismatch_detail, idx,
2522 case AARCH64_OPND_SVE_SHRIMM_PRED:
2523 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
2524 size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2525 if (!value_in_range_p (opnd->imm.value, 1, 8 * size))
2527 set_imm_out_of_range_error (mismatch_detail, idx, 1, 8 * size);
2537 case AARCH64_OPND_CLASS_SYSTEM:
2540 case AARCH64_OPND_PSTATEFIELD:
2541 assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
2545 The immediate must be #0 or #1. */
2546 if ((opnd->pstatefield == 0x03 /* UAO. */
2547 || opnd->pstatefield == 0x04 /* PAN. */
2548 || opnd->pstatefield == 0x19 /* SSBS. */
2549 || opnd->pstatefield == 0x1a) /* DIT. */
2550 && opnds[1].imm.value > 1)
2552 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2555 /* MSR SPSel, #uimm4
2556 Uses uimm4 as a control value to select the stack pointer: if
2557 bit 0 is set it selects the current exception level's stack
2558 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
2559 Bits 1 to 3 of uimm4 are reserved and should be zero. */
2560 if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
2562 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2571 case AARCH64_OPND_CLASS_SIMD_ELEMENT:
2572 /* Get the upper bound for the element index. */
2573 if (opcode->op == OP_FCMLA_ELEM)
2574 /* FCMLA index range depends on the vector size of other operands
2575 and is halfed because complex numbers take two elements. */
2576 num = aarch64_get_qualifier_nelem (opnds[0].qualifier)
2577 * aarch64_get_qualifier_esize (opnds[0].qualifier) / 2;
2580 num = num / aarch64_get_qualifier_esize (qualifier) - 1;
2581 assert (aarch64_get_qualifier_nelem (qualifier) == 1);
2583 /* Index out-of-range. */
2584 if (!value_in_range_p (opnd->reglane.index, 0, num))
2586 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
2589 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
2590 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
2591 number is encoded in "size:M:Rm":
2597 if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H
2598 && !value_in_range_p (opnd->reglane.regno, 0, 15))
2600 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
2605 case AARCH64_OPND_CLASS_MODIFIED_REG:
2606 assert (idx == 1 || idx == 2);
2609 case AARCH64_OPND_Rm_EXT:
2610 if (!aarch64_extend_operator_p (opnd->shifter.kind)
2611 && opnd->shifter.kind != AARCH64_MOD_LSL)
2613 set_other_error (mismatch_detail, idx,
2614 _("extend operator expected"));
2617 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
2618 (i.e. SP), in which case it defaults to LSL. The LSL alias is
2619 only valid when "Rd" or "Rn" is '11111', and is preferred in that
2621 if (!aarch64_stack_pointer_p (opnds + 0)
2622 && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
2624 if (!opnd->shifter.operator_present)
2626 set_other_error (mismatch_detail, idx,
2627 _("missing extend operator"));
2630 else if (opnd->shifter.kind == AARCH64_MOD_LSL)
2632 set_other_error (mismatch_detail, idx,
2633 _("'LSL' operator not allowed"));
2637 assert (opnd->shifter.operator_present /* Default to LSL. */
2638 || opnd->shifter.kind == AARCH64_MOD_LSL);
2639 if (!value_in_range_p (opnd->shifter.amount, 0, 4))
2641 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
2644 /* In the 64-bit form, the final register operand is written as Wm
2645 for all but the (possibly omitted) UXTX/LSL and SXTX
2647 N.B. GAS allows X register to be used with any operator as a
2648 programming convenience. */
2649 if (qualifier == AARCH64_OPND_QLF_X
2650 && opnd->shifter.kind != AARCH64_MOD_LSL
2651 && opnd->shifter.kind != AARCH64_MOD_UXTX
2652 && opnd->shifter.kind != AARCH64_MOD_SXTX)
2654 set_other_error (mismatch_detail, idx, _("W register expected"));
2659 case AARCH64_OPND_Rm_SFT:
2660 /* ROR is not available to the shifted register operand in
2661 arithmetic instructions. */
2662 if (!aarch64_shift_operator_p (opnd->shifter.kind))
2664 set_other_error (mismatch_detail, idx,
2665 _("shift operator expected"));
2668 if (opnd->shifter.kind == AARCH64_MOD_ROR
2669 && opcode->iclass != log_shift)
2671 set_other_error (mismatch_detail, idx,
2672 _("'ROR' operator not allowed"));
2675 num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
2676 if (!value_in_range_p (opnd->shifter.amount, 0, num))
2678 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
2695 /* Main entrypoint for the operand constraint checking.
2697 Return 1 if operands of *INST meet the constraint applied by the operand
2698 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2699 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2700 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2701 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2702 error kind when it is notified that an instruction does not pass the check).
2704 Un-determined operand qualifiers may get established during the process. */
2707 aarch64_match_operands_constraint (aarch64_inst *inst,
2708 aarch64_operand_error *mismatch_detail)
2712 DEBUG_TRACE ("enter");
2714 /* Check for cases where a source register needs to be the same as the
2715 destination register. Do this before matching qualifiers since if
2716 an instruction has both invalid tying and invalid qualifiers,
2717 the error about qualifiers would suggest several alternative
2718 instructions that also have invalid tying. */
2719 i = inst->opcode->tied_operand;
2720 if (i > 0 && (inst->operands[0].reg.regno != inst->operands[i].reg.regno))
2722 if (mismatch_detail)
2724 mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND;
2725 mismatch_detail->index = i;
2726 mismatch_detail->error = NULL;
2731 /* Match operands' qualifier.
2732 *INST has already had qualifier establish for some, if not all, of
2733 its operands; we need to find out whether these established
2734 qualifiers match one of the qualifier sequence in
2735 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2736 with the corresponding qualifier in such a sequence.
2737 Only basic operand constraint checking is done here; the more thorough
2738 constraint checking will carried out by operand_general_constraint_met_p,
2739 which has be to called after this in order to get all of the operands'
2740 qualifiers established. */
2741 if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
2743 DEBUG_TRACE ("FAIL on operand qualifier matching");
2744 if (mismatch_detail)
2746 /* Return an error type to indicate that it is the qualifier
2747 matching failure; we don't care about which operand as there
2748 are enough information in the opcode table to reproduce it. */
2749 mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
2750 mismatch_detail->index = -1;
2751 mismatch_detail->error = NULL;
2756 /* Match operands' constraint. */
2757 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2759 enum aarch64_opnd type = inst->opcode->operands[i];
2760 if (type == AARCH64_OPND_NIL)
2762 if (inst->operands[i].skip)
2764 DEBUG_TRACE ("skip the incomplete operand %d", i);
2767 if (operand_general_constraint_met_p (inst->operands, i, type,
2768 inst->opcode, mismatch_detail) == 0)
2770 DEBUG_TRACE ("FAIL on operand %d", i);
2775 DEBUG_TRACE ("PASS");
2780 /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2781 Also updates the TYPE of each INST->OPERANDS with the corresponding
2782 value of OPCODE->OPERANDS.
2784 Note that some operand qualifiers may need to be manually cleared by
2785 the caller before it further calls the aarch64_opcode_encode; by
2786 doing this, it helps the qualifier matching facilities work
2789 const aarch64_opcode*
2790 aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
2793 const aarch64_opcode *old = inst->opcode;
2795 inst->opcode = opcode;
2797 /* Update the operand types. */
2798 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2800 inst->operands[i].type = opcode->operands[i];
2801 if (opcode->operands[i] == AARCH64_OPND_NIL)
2805 DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
2811 aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
2814 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2815 if (operands[i] == operand)
2817 else if (operands[i] == AARCH64_OPND_NIL)
2822 /* R0...R30, followed by FOR31. */
2823 #define BANK(R, FOR31) \
2824 { R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \
2825 R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \
2826 R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
2827 R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 }
2828 /* [0][0] 32-bit integer regs with sp Wn
2829 [0][1] 64-bit integer regs with sp Xn sf=1
2830 [1][0] 32-bit integer regs with #0 Wn
2831 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2832 static const char *int_reg[2][2][32] = {
2833 #define R32(X) "w" #X
2834 #define R64(X) "x" #X
2835 { BANK (R32, "wsp"), BANK (R64, "sp") },
2836 { BANK (R32, "wzr"), BANK (R64, "xzr") }
2841 /* Names of the SVE vector registers, first with .S suffixes,
2842 then with .D suffixes. */
2844 static const char *sve_reg[2][32] = {
2845 #define ZS(X) "z" #X ".s"
2846 #define ZD(X) "z" #X ".d"
2847 BANK (ZS, ZS (31)), BANK (ZD, ZD (31))
2853 /* Return the integer register name.
2854 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2856 static inline const char *
2857 get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
2859 const int has_zr = sp_reg_p ? 0 : 1;
2860 const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
2861 return int_reg[has_zr][is_64][regno];
2864 /* Like get_int_reg_name, but IS_64 is always 1. */
2866 static inline const char *
2867 get_64bit_int_reg_name (int regno, int sp_reg_p)
2869 const int has_zr = sp_reg_p ? 0 : 1;
2870 return int_reg[has_zr][1][regno];
2873 /* Get the name of the integer offset register in OPND, using the shift type
2874 to decide whether it's a word or doubleword. */
2876 static inline const char *
2877 get_offset_int_reg_name (const aarch64_opnd_info *opnd)
2879 switch (opnd->shifter.kind)
2881 case AARCH64_MOD_UXTW:
2882 case AARCH64_MOD_SXTW:
2883 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0);
2885 case AARCH64_MOD_LSL:
2886 case AARCH64_MOD_SXTX:
2887 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0);
2894 /* Get the name of the SVE vector offset register in OPND, using the operand
2895 qualifier to decide whether the suffix should be .S or .D. */
2897 static inline const char *
2898 get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier)
2900 assert (qualifier == AARCH64_OPND_QLF_S_S
2901 || qualifier == AARCH64_OPND_QLF_S_D);
2902 return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno];
2905 /* Types for expanding an encoded 8-bit value to a floating-point value. */
2925 /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2926 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2927 (depending on the type of the instruction). IMM8 will be expanded to a
2928 single-precision floating-point value (SIZE == 4) or a double-precision
2929 floating-point value (SIZE == 8). A half-precision floating-point value
2930 (SIZE == 2) is expanded to a single-precision floating-point value. The
2931 expanded value is returned. */
2934 expand_fp_imm (int size, uint32_t imm8)
2937 uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
2939 imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
2940 imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
2941 imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
2942 imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
2943 | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
2946 imm = (imm8_7 << (63-32)) /* imm8<7> */
2947 | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
2948 | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
2949 | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
2950 | (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
2953 else if (size == 4 || size == 2)
2955 imm = (imm8_7 << 31) /* imm8<7> */
2956 | ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
2957 | (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
2958 | (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
2962 /* An unsupported size. */
2969 /* Produce the string representation of the register list operand *OPND
2970 in the buffer pointed by BUF of size SIZE. PREFIX is the part of
2971 the register name that comes before the register number, such as "v". */
2973 print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd,
2976 const int num_regs = opnd->reglist.num_regs;
2977 const int first_reg = opnd->reglist.first_regno;
2978 const int last_reg = (first_reg + num_regs - 1) & 0x1f;
2979 const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
2980 char tb[8]; /* Temporary buffer. */
2982 assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
2983 assert (num_regs >= 1 && num_regs <= 4);
2985 /* Prepare the index if any. */
2986 if (opnd->reglist.has_index)
2987 /* PR 21096: The %100 is to silence a warning about possible truncation. */
2988 snprintf (tb, 8, "[%" PRIi64 "]", (opnd->reglist.index % 100));
2992 /* The hyphenated form is preferred for disassembly if there are
2993 more than two registers in the list, and the register numbers
2994 are monotonically increasing in increments of one. */
2995 if (num_regs > 2 && last_reg > first_reg)
2996 snprintf (buf, size, "{%s%d.%s-%s%d.%s}%s", prefix, first_reg, qlf_name,
2997 prefix, last_reg, qlf_name, tb);
3000 const int reg0 = first_reg;
3001 const int reg1 = (first_reg + 1) & 0x1f;
3002 const int reg2 = (first_reg + 2) & 0x1f;
3003 const int reg3 = (first_reg + 3) & 0x1f;
3008 snprintf (buf, size, "{%s%d.%s}%s", prefix, reg0, qlf_name, tb);
3011 snprintf (buf, size, "{%s%d.%s, %s%d.%s}%s", prefix, reg0, qlf_name,
3012 prefix, reg1, qlf_name, tb);
3015 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s}%s",
3016 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3017 prefix, reg2, qlf_name, tb);
3020 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s, %s%d.%s}%s",
3021 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3022 prefix, reg2, qlf_name, prefix, reg3, qlf_name, tb);
3028 /* Print the register+immediate address in OPND to BUF, which has SIZE
3029 characters. BASE is the name of the base register. */
3032 print_immediate_offset_address (char *buf, size_t size,
3033 const aarch64_opnd_info *opnd,
3036 if (opnd->addr.writeback)
3038 if (opnd->addr.preind)
3039 snprintf (buf, size, "[%s, #%d]!", base, opnd->addr.offset.imm);
3041 snprintf (buf, size, "[%s], #%d", base, opnd->addr.offset.imm);
3045 if (opnd->shifter.operator_present)
3047 assert (opnd->shifter.kind == AARCH64_MOD_MUL_VL);
3048 snprintf (buf, size, "[%s, #%d, mul vl]",
3049 base, opnd->addr.offset.imm);
3051 else if (opnd->addr.offset.imm)
3052 snprintf (buf, size, "[%s, #%d]", base, opnd->addr.offset.imm);
3054 snprintf (buf, size, "[%s]", base);
3058 /* Produce the string representation of the register offset address operand
3059 *OPND in the buffer pointed by BUF of size SIZE. BASE and OFFSET are
3060 the names of the base and offset registers. */
3062 print_register_offset_address (char *buf, size_t size,
3063 const aarch64_opnd_info *opnd,
3064 const char *base, const char *offset)
3066 char tb[16]; /* Temporary buffer. */
3067 bfd_boolean print_extend_p = TRUE;
3068 bfd_boolean print_amount_p = TRUE;
3069 const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
3071 if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
3072 || !opnd->shifter.amount_present))
3074 /* Not print the shift/extend amount when the amount is zero and
3075 when it is not the special case of 8-bit load/store instruction. */
3076 print_amount_p = FALSE;
3077 /* Likewise, no need to print the shift operator LSL in such a
3079 if (opnd->shifter.kind == AARCH64_MOD_LSL)
3080 print_extend_p = FALSE;
3083 /* Prepare for the extend/shift. */
3087 snprintf (tb, sizeof (tb), ", %s #%" PRIi64, shift_name,
3088 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3089 (opnd->shifter.amount % 100));
3091 snprintf (tb, sizeof (tb), ", %s", shift_name);
3096 snprintf (buf, size, "[%s, %s%s]", base, offset, tb);
3099 /* Generate the string representation of the operand OPNDS[IDX] for OPCODE
3100 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
3101 PC, PCREL_P and ADDRESS are used to pass in and return information about
3102 the PC-relative address calculation, where the PC value is passed in
3103 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
3104 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
3105 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
3107 The function serves both the disassembler and the assembler diagnostics
3108 issuer, which is the reason why it lives in this file. */
3111 aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
3112 const aarch64_opcode *opcode,
3113 const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
3114 bfd_vma *address, char** notes)
3116 unsigned int i, num_conds;
3117 const char *name = NULL;
3118 const aarch64_opnd_info *opnd = opnds + idx;
3119 enum aarch64_modifier_kind kind;
3120 uint64_t addr, enum_value;
3128 case AARCH64_OPND_Rd:
3129 case AARCH64_OPND_Rn:
3130 case AARCH64_OPND_Rm:
3131 case AARCH64_OPND_Rt:
3132 case AARCH64_OPND_Rt2:
3133 case AARCH64_OPND_Rs:
3134 case AARCH64_OPND_Ra:
3135 case AARCH64_OPND_Rt_SYS:
3136 case AARCH64_OPND_PAIRREG:
3137 case AARCH64_OPND_SVE_Rm:
3138 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
3139 the <ic_op>, therefore we use opnd->present to override the
3140 generic optional-ness information. */
3141 if (opnd->type == AARCH64_OPND_Rt_SYS)
3146 /* Omit the operand, e.g. RET. */
3147 else if (optional_operand_p (opcode, idx)
3149 == get_optional_operand_default_value (opcode)))
3151 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3152 || opnd->qualifier == AARCH64_OPND_QLF_X);
3153 snprintf (buf, size, "%s",
3154 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3157 case AARCH64_OPND_Rd_SP:
3158 case AARCH64_OPND_Rn_SP:
3159 case AARCH64_OPND_SVE_Rn_SP:
3160 case AARCH64_OPND_Rm_SP:
3161 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3162 || opnd->qualifier == AARCH64_OPND_QLF_WSP
3163 || opnd->qualifier == AARCH64_OPND_QLF_X
3164 || opnd->qualifier == AARCH64_OPND_QLF_SP);
3165 snprintf (buf, size, "%s",
3166 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
3169 case AARCH64_OPND_Rm_EXT:
3170 kind = opnd->shifter.kind;
3171 assert (idx == 1 || idx == 2);
3172 if ((aarch64_stack_pointer_p (opnds)
3173 || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
3174 && ((opnd->qualifier == AARCH64_OPND_QLF_W
3175 && opnds[0].qualifier == AARCH64_OPND_QLF_W
3176 && kind == AARCH64_MOD_UXTW)
3177 || (opnd->qualifier == AARCH64_OPND_QLF_X
3178 && kind == AARCH64_MOD_UXTX)))
3180 /* 'LSL' is the preferred form in this case. */
3181 kind = AARCH64_MOD_LSL;
3182 if (opnd->shifter.amount == 0)
3184 /* Shifter omitted. */
3185 snprintf (buf, size, "%s",
3186 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3190 if (opnd->shifter.amount)
3191 snprintf (buf, size, "%s, %s #%" PRIi64,
3192 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3193 aarch64_operand_modifiers[kind].name,
3194 opnd->shifter.amount);
3196 snprintf (buf, size, "%s, %s",
3197 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3198 aarch64_operand_modifiers[kind].name);
3201 case AARCH64_OPND_Rm_SFT:
3202 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3203 || opnd->qualifier == AARCH64_OPND_QLF_X);
3204 if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
3205 snprintf (buf, size, "%s",
3206 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3208 snprintf (buf, size, "%s, %s #%" PRIi64,
3209 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3210 aarch64_operand_modifiers[opnd->shifter.kind].name,
3211 opnd->shifter.amount);
3214 case AARCH64_OPND_Fd:
3215 case AARCH64_OPND_Fn:
3216 case AARCH64_OPND_Fm:
3217 case AARCH64_OPND_Fa:
3218 case AARCH64_OPND_Ft:
3219 case AARCH64_OPND_Ft2:
3220 case AARCH64_OPND_Sd:
3221 case AARCH64_OPND_Sn:
3222 case AARCH64_OPND_Sm:
3223 case AARCH64_OPND_SVE_VZn:
3224 case AARCH64_OPND_SVE_Vd:
3225 case AARCH64_OPND_SVE_Vm:
3226 case AARCH64_OPND_SVE_Vn:
3227 snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
3231 case AARCH64_OPND_Va:
3232 case AARCH64_OPND_Vd:
3233 case AARCH64_OPND_Vn:
3234 case AARCH64_OPND_Vm:
3235 snprintf (buf, size, "v%d.%s", opnd->reg.regno,
3236 aarch64_get_qualifier_name (opnd->qualifier));
3239 case AARCH64_OPND_Ed:
3240 case AARCH64_OPND_En:
3241 case AARCH64_OPND_Em:
3242 case AARCH64_OPND_Em16:
3243 case AARCH64_OPND_SM3_IMM2:
3244 snprintf (buf, size, "v%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3245 aarch64_get_qualifier_name (opnd->qualifier),
3246 opnd->reglane.index);
3249 case AARCH64_OPND_VdD1:
3250 case AARCH64_OPND_VnD1:
3251 snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
3254 case AARCH64_OPND_LVn:
3255 case AARCH64_OPND_LVt:
3256 case AARCH64_OPND_LVt_AL:
3257 case AARCH64_OPND_LEt:
3258 print_register_list (buf, size, opnd, "v");
3261 case AARCH64_OPND_SVE_Pd:
3262 case AARCH64_OPND_SVE_Pg3:
3263 case AARCH64_OPND_SVE_Pg4_5:
3264 case AARCH64_OPND_SVE_Pg4_10:
3265 case AARCH64_OPND_SVE_Pg4_16:
3266 case AARCH64_OPND_SVE_Pm:
3267 case AARCH64_OPND_SVE_Pn:
3268 case AARCH64_OPND_SVE_Pt:
3269 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3270 snprintf (buf, size, "p%d", opnd->reg.regno);
3271 else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
3272 || opnd->qualifier == AARCH64_OPND_QLF_P_M)
3273 snprintf (buf, size, "p%d/%s", opnd->reg.regno,
3274 aarch64_get_qualifier_name (opnd->qualifier));
3276 snprintf (buf, size, "p%d.%s", opnd->reg.regno,
3277 aarch64_get_qualifier_name (opnd->qualifier));
3280 case AARCH64_OPND_SVE_Za_5:
3281 case AARCH64_OPND_SVE_Za_16:
3282 case AARCH64_OPND_SVE_Zd:
3283 case AARCH64_OPND_SVE_Zm_5:
3284 case AARCH64_OPND_SVE_Zm_16:
3285 case AARCH64_OPND_SVE_Zn:
3286 case AARCH64_OPND_SVE_Zt:
3287 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3288 snprintf (buf, size, "z%d", opnd->reg.regno);
3290 snprintf (buf, size, "z%d.%s", opnd->reg.regno,
3291 aarch64_get_qualifier_name (opnd->qualifier));
3294 case AARCH64_OPND_SVE_ZnxN:
3295 case AARCH64_OPND_SVE_ZtxN:
3296 print_register_list (buf, size, opnd, "z");
3299 case AARCH64_OPND_SVE_Zm3_INDEX:
3300 case AARCH64_OPND_SVE_Zm3_22_INDEX:
3301 case AARCH64_OPND_SVE_Zm4_INDEX:
3302 case AARCH64_OPND_SVE_Zn_INDEX:
3303 snprintf (buf, size, "z%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3304 aarch64_get_qualifier_name (opnd->qualifier),
3305 opnd->reglane.index);
3308 case AARCH64_OPND_CRn:
3309 case AARCH64_OPND_CRm:
3310 snprintf (buf, size, "C%" PRIi64, opnd->imm.value);
3313 case AARCH64_OPND_IDX:
3314 case AARCH64_OPND_MASK:
3315 case AARCH64_OPND_IMM:
3316 case AARCH64_OPND_IMM_2:
3317 case AARCH64_OPND_WIDTH:
3318 case AARCH64_OPND_UIMM3_OP1:
3319 case AARCH64_OPND_UIMM3_OP2:
3320 case AARCH64_OPND_BIT_NUM:
3321 case AARCH64_OPND_IMM_VLSL:
3322 case AARCH64_OPND_IMM_VLSR:
3323 case AARCH64_OPND_SHLL_IMM:
3324 case AARCH64_OPND_IMM0:
3325 case AARCH64_OPND_IMMR:
3326 case AARCH64_OPND_IMMS:
3327 case AARCH64_OPND_FBITS:
3328 case AARCH64_OPND_SIMM5:
3329 case AARCH64_OPND_SVE_SHLIMM_PRED:
3330 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
3331 case AARCH64_OPND_SVE_SHRIMM_PRED:
3332 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3333 case AARCH64_OPND_SVE_SIMM5:
3334 case AARCH64_OPND_SVE_SIMM5B:
3335 case AARCH64_OPND_SVE_SIMM6:
3336 case AARCH64_OPND_SVE_SIMM8:
3337 case AARCH64_OPND_SVE_UIMM3:
3338 case AARCH64_OPND_SVE_UIMM7:
3339 case AARCH64_OPND_SVE_UIMM8:
3340 case AARCH64_OPND_SVE_UIMM8_53:
3341 case AARCH64_OPND_IMM_ROT1:
3342 case AARCH64_OPND_IMM_ROT2:
3343 case AARCH64_OPND_IMM_ROT3:
3344 case AARCH64_OPND_SVE_IMM_ROT1:
3345 case AARCH64_OPND_SVE_IMM_ROT2:
3346 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3349 case AARCH64_OPND_SVE_I1_HALF_ONE:
3350 case AARCH64_OPND_SVE_I1_HALF_TWO:
3351 case AARCH64_OPND_SVE_I1_ZERO_ONE:
3354 c.i = opnd->imm.value;
3355 snprintf (buf, size, "#%.1f", c.f);
3359 case AARCH64_OPND_SVE_PATTERN:
3360 if (optional_operand_p (opcode, idx)
3361 && opnd->imm.value == get_optional_operand_default_value (opcode))
3363 enum_value = opnd->imm.value;
3364 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3365 if (aarch64_sve_pattern_array[enum_value])
3366 snprintf (buf, size, "%s", aarch64_sve_pattern_array[enum_value]);
3368 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3371 case AARCH64_OPND_SVE_PATTERN_SCALED:
3372 if (optional_operand_p (opcode, idx)
3373 && !opnd->shifter.operator_present
3374 && opnd->imm.value == get_optional_operand_default_value (opcode))
3376 enum_value = opnd->imm.value;
3377 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3378 if (aarch64_sve_pattern_array[opnd->imm.value])
3379 snprintf (buf, size, "%s", aarch64_sve_pattern_array[opnd->imm.value]);
3381 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3382 if (opnd->shifter.operator_present)
3384 size_t len = strlen (buf);
3385 snprintf (buf + len, size - len, ", %s #%" PRIi64,
3386 aarch64_operand_modifiers[opnd->shifter.kind].name,
3387 opnd->shifter.amount);
3391 case AARCH64_OPND_SVE_PRFOP:
3392 enum_value = opnd->imm.value;
3393 assert (enum_value < ARRAY_SIZE (aarch64_sve_prfop_array));
3394 if (aarch64_sve_prfop_array[enum_value])
3395 snprintf (buf, size, "%s", aarch64_sve_prfop_array[enum_value]);
3397 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3400 case AARCH64_OPND_IMM_MOV:
3401 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3403 case 4: /* e.g. MOV Wd, #<imm32>. */
3405 int imm32 = opnd->imm.value;
3406 snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
3409 case 8: /* e.g. MOV Xd, #<imm64>. */
3410 snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
3411 opnd->imm.value, opnd->imm.value);
3413 default: assert (0);
3417 case AARCH64_OPND_FPIMM0:
3418 snprintf (buf, size, "#0.0");
3421 case AARCH64_OPND_LIMM:
3422 case AARCH64_OPND_AIMM:
3423 case AARCH64_OPND_HALF:
3424 case AARCH64_OPND_SVE_INV_LIMM:
3425 case AARCH64_OPND_SVE_LIMM:
3426 case AARCH64_OPND_SVE_LIMM_MOV:
3427 if (opnd->shifter.amount)
3428 snprintf (buf, size, "#0x%" PRIx64 ", lsl #%" PRIi64, opnd->imm.value,
3429 opnd->shifter.amount);
3431 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3434 case AARCH64_OPND_SIMD_IMM:
3435 case AARCH64_OPND_SIMD_IMM_SFT:
3436 if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
3437 || opnd->shifter.kind == AARCH64_MOD_NONE)
3438 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3440 snprintf (buf, size, "#0x%" PRIx64 ", %s #%" PRIi64, opnd->imm.value,
3441 aarch64_operand_modifiers[opnd->shifter.kind].name,
3442 opnd->shifter.amount);
3445 case AARCH64_OPND_SVE_AIMM:
3446 case AARCH64_OPND_SVE_ASIMM:
3447 if (opnd->shifter.amount)
3448 snprintf (buf, size, "#%" PRIi64 ", lsl #%" PRIi64, opnd->imm.value,
3449 opnd->shifter.amount);
3451 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3454 case AARCH64_OPND_FPIMM:
3455 case AARCH64_OPND_SIMD_FPIMM:
3456 case AARCH64_OPND_SVE_FPIMM8:
3457 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3459 case 2: /* e.g. FMOV <Hd>, #<imm>. */
3462 c.i = expand_fp_imm (2, opnd->imm.value);
3463 snprintf (buf, size, "#%.18e", c.f);
3466 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
3469 c.i = expand_fp_imm (4, opnd->imm.value);
3470 snprintf (buf, size, "#%.18e", c.f);
3473 case 8: /* e.g. FMOV <Sd>, #<imm>. */
3476 c.i = expand_fp_imm (8, opnd->imm.value);
3477 snprintf (buf, size, "#%.18e", c.d);
3480 default: assert (0);
3484 case AARCH64_OPND_CCMP_IMM:
3485 case AARCH64_OPND_NZCV:
3486 case AARCH64_OPND_EXCEPTION:
3487 case AARCH64_OPND_UIMM4:
3488 case AARCH64_OPND_UIMM4_ADDG:
3489 case AARCH64_OPND_UIMM7:
3490 case AARCH64_OPND_UIMM10:
3491 if (optional_operand_p (opcode, idx) == TRUE
3492 && (opnd->imm.value ==
3493 (int64_t) get_optional_operand_default_value (opcode)))
3494 /* Omit the operand, e.g. DCPS1. */
3496 snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
3499 case AARCH64_OPND_COND:
3500 case AARCH64_OPND_COND1:
3501 snprintf (buf, size, "%s", opnd->cond->names[0]);
3502 num_conds = ARRAY_SIZE (opnd->cond->names);
3503 for (i = 1; i < num_conds && opnd->cond->names[i]; ++i)
3505 size_t len = strlen (buf);
3507 snprintf (buf + len, size - len, " // %s = %s",
3508 opnd->cond->names[0], opnd->cond->names[i]);
3510 snprintf (buf + len, size - len, ", %s",
3511 opnd->cond->names[i]);
3515 case AARCH64_OPND_ADDR_ADRP:
3516 addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
3522 /* This is not necessary during the disassembling, as print_address_func
3523 in the disassemble_info will take care of the printing. But some
3524 other callers may be still interested in getting the string in *STR,
3525 so here we do snprintf regardless. */
3526 snprintf (buf, size, "#0x%" PRIx64, addr);
3529 case AARCH64_OPND_ADDR_PCREL14:
3530 case AARCH64_OPND_ADDR_PCREL19:
3531 case AARCH64_OPND_ADDR_PCREL21:
3532 case AARCH64_OPND_ADDR_PCREL26:
3533 addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
3538 /* This is not necessary during the disassembling, as print_address_func
3539 in the disassemble_info will take care of the printing. But some
3540 other callers may be still interested in getting the string in *STR,
3541 so here we do snprintf regardless. */
3542 snprintf (buf, size, "#0x%" PRIx64, addr);
3545 case AARCH64_OPND_ADDR_SIMPLE:
3546 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
3547 case AARCH64_OPND_SIMD_ADDR_POST:
3548 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3549 if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
3551 if (opnd->addr.offset.is_reg)
3552 snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
3554 snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
3557 snprintf (buf, size, "[%s]", name);
3560 case AARCH64_OPND_ADDR_SIMPLE_2:
3561 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3562 snprintf (buf, size, "[%s]!", name);
3565 case AARCH64_OPND_ADDR_REGOFF:
3566 case AARCH64_OPND_SVE_ADDR_R:
3567 case AARCH64_OPND_SVE_ADDR_RR:
3568 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
3569 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
3570 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
3571 case AARCH64_OPND_SVE_ADDR_RX:
3572 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
3573 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
3574 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
3575 print_register_offset_address
3576 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3577 get_offset_int_reg_name (opnd));
3580 case AARCH64_OPND_SVE_ADDR_RZ:
3581 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
3582 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
3583 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
3584 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
3585 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
3586 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
3587 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
3588 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
3589 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
3590 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
3591 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
3592 print_register_offset_address
3593 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3594 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3597 case AARCH64_OPND_ADDR_SIMM7:
3598 case AARCH64_OPND_ADDR_SIMM9:
3599 case AARCH64_OPND_ADDR_SIMM9_2:
3600 case AARCH64_OPND_ADDR_SIMM10:
3601 case AARCH64_OPND_ADDR_SIMM11:
3602 case AARCH64_OPND_ADDR_SIMM13:
3603 case AARCH64_OPND_ADDR_OFFSET:
3604 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
3605 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
3606 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
3607 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
3608 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
3609 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
3610 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
3611 case AARCH64_OPND_SVE_ADDR_RI_U6:
3612 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
3613 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
3614 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
3615 print_immediate_offset_address
3616 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1));
3619 case AARCH64_OPND_SVE_ADDR_ZI_U5:
3620 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
3621 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
3622 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
3623 print_immediate_offset_address
3625 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier));
3628 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
3629 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
3630 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
3631 print_register_offset_address
3633 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
3634 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3637 case AARCH64_OPND_ADDR_UIMM12:
3638 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3639 if (opnd->addr.offset.imm)
3640 snprintf (buf, size, "[%s, #%d]", name, opnd->addr.offset.imm);
3642 snprintf (buf, size, "[%s]", name);
3645 case AARCH64_OPND_SYSREG:
3646 for (i = 0; aarch64_sys_regs[i].name; ++i)
3648 bfd_boolean exact_match
3649 = (aarch64_sys_regs[i].flags & opnd->sysreg.flags)
3650 == opnd->sysreg.flags;
3652 /* Try and find an exact match, But if that fails, return the first
3653 partial match that was found. */
3654 if (aarch64_sys_regs[i].value == opnd->sysreg.value
3655 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs[i])
3656 && (name == NULL || exact_match))
3658 name = aarch64_sys_regs[i].name;
3666 /* If we didn't match exactly, that means the presense of a flag
3667 indicates what we didn't want for this instruction. e.g. If
3668 F_REG_READ is there, that means we were looking for a write
3669 register. See aarch64_ext_sysreg. */
3670 if (aarch64_sys_regs[i].flags & F_REG_WRITE)
3671 *notes = _("reading from a write-only register");
3672 else if (aarch64_sys_regs[i].flags & F_REG_READ)
3673 *notes = _("writing to a read-only register");
3678 snprintf (buf, size, "%s", name);
3681 /* Implementation defined system register. */
3682 unsigned int value = opnd->sysreg.value;
3683 snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
3684 (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
3689 case AARCH64_OPND_PSTATEFIELD:
3690 for (i = 0; aarch64_pstatefields[i].name; ++i)
3691 if (aarch64_pstatefields[i].value == opnd->pstatefield)
3693 assert (aarch64_pstatefields[i].name);
3694 snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
3697 case AARCH64_OPND_SYSREG_AT:
3698 case AARCH64_OPND_SYSREG_DC:
3699 case AARCH64_OPND_SYSREG_IC:
3700 case AARCH64_OPND_SYSREG_TLBI:
3701 case AARCH64_OPND_SYSREG_SR:
3702 snprintf (buf, size, "%s", opnd->sysins_op->name);
3705 case AARCH64_OPND_BARRIER:
3706 snprintf (buf, size, "%s", opnd->barrier->name);
3709 case AARCH64_OPND_BARRIER_ISB:
3710 /* Operand can be omitted, e.g. in DCPS1. */
3711 if (! optional_operand_p (opcode, idx)
3712 || (opnd->barrier->value
3713 != get_optional_operand_default_value (opcode)))
3714 snprintf (buf, size, "#0x%x", opnd->barrier->value);
3717 case AARCH64_OPND_PRFOP:
3718 if (opnd->prfop->name != NULL)
3719 snprintf (buf, size, "%s", opnd->prfop->name);
3721 snprintf (buf, size, "#0x%02x", opnd->prfop->value);
3724 case AARCH64_OPND_BARRIER_PSB:
3725 case AARCH64_OPND_BTI_TARGET:
3726 if ((HINT_FLAG (opnd->hint_option->value) & HINT_OPD_F_NOPRINT) == 0)
3727 snprintf (buf, size, "%s", opnd->hint_option->name);
3735 #define CPENC(op0,op1,crn,crm,op2) \
3736 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
3737 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
3738 #define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
3739 /* for 3.9.10 System Instructions */
3740 #define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
3759 /* TODO there is one more issues need to be resolved
3760 1. handle cpu-implementation-defined system registers. */
3761 const aarch64_sys_reg aarch64_sys_regs [] =
3763 { "spsr_el1", CPEN_(0,C0,0), 0 }, /* = spsr_svc */
3764 { "spsr_el12", CPEN_ (5, C0, 0), F_ARCHEXT },
3765 { "elr_el1", CPEN_(0,C0,1), 0 },
3766 { "elr_el12", CPEN_ (5, C0, 1), F_ARCHEXT },
3767 { "sp_el0", CPEN_(0,C1,0), 0 },
3768 { "spsel", CPEN_(0,C2,0), 0 },
3769 { "daif", CPEN_(3,C2,1), 0 },
3770 { "currentel", CPEN_(0,C2,2), F_REG_READ }, /* RO */
3771 { "pan", CPEN_(0,C2,3), F_ARCHEXT },
3772 { "uao", CPEN_ (0, C2, 4), F_ARCHEXT },
3773 { "nzcv", CPEN_(3,C2,0), 0 },
3774 { "ssbs", CPEN_(3,C2,6), F_ARCHEXT },
3775 { "fpcr", CPEN_(3,C4,0), 0 },
3776 { "fpsr", CPEN_(3,C4,1), 0 },
3777 { "dspsr_el0", CPEN_(3,C5,0), 0 },
3778 { "dlr_el0", CPEN_(3,C5,1), 0 },
3779 { "spsr_el2", CPEN_(4,C0,0), 0 }, /* = spsr_hyp */
3780 { "elr_el2", CPEN_(4,C0,1), 0 },
3781 { "sp_el1", CPEN_(4,C1,0), 0 },
3782 { "spsr_irq", CPEN_(4,C3,0), 0 },
3783 { "spsr_abt", CPEN_(4,C3,1), 0 },
3784 { "spsr_und", CPEN_(4,C3,2), 0 },
3785 { "spsr_fiq", CPEN_(4,C3,3), 0 },
3786 { "spsr_el3", CPEN_(6,C0,0), 0 },
3787 { "elr_el3", CPEN_(6,C0,1), 0 },
3788 { "sp_el2", CPEN_(6,C1,0), 0 },
3789 { "spsr_svc", CPEN_(0,C0,0), F_DEPRECATED }, /* = spsr_el1 */
3790 { "spsr_hyp", CPEN_(4,C0,0), F_DEPRECATED }, /* = spsr_el2 */
3791 { "midr_el1", CPENC(3,0,C0,C0,0), F_REG_READ }, /* RO */
3792 { "ctr_el0", CPENC(3,3,C0,C0,1), F_REG_READ }, /* RO */
3793 { "mpidr_el1", CPENC(3,0,C0,C0,5), F_REG_READ }, /* RO */
3794 { "revidr_el1", CPENC(3,0,C0,C0,6), F_REG_READ }, /* RO */
3795 { "aidr_el1", CPENC(3,1,C0,C0,7), F_REG_READ }, /* RO */
3796 { "dczid_el0", CPENC(3,3,C0,C0,7), F_REG_READ }, /* RO */
3797 { "id_dfr0_el1", CPENC(3,0,C0,C1,2), F_REG_READ }, /* RO */
3798 { "id_pfr0_el1", CPENC(3,0,C0,C1,0), F_REG_READ }, /* RO */
3799 { "id_pfr1_el1", CPENC(3,0,C0,C1,1), F_REG_READ }, /* RO */
3800 { "id_pfr2_el1", CPENC(3,0,C0,C3,4), F_ARCHEXT | F_REG_READ}, /* RO */
3801 { "id_afr0_el1", CPENC(3,0,C0,C1,3), F_REG_READ }, /* RO */
3802 { "id_mmfr0_el1", CPENC(3,0,C0,C1,4), F_REG_READ }, /* RO */
3803 { "id_mmfr1_el1", CPENC(3,0,C0,C1,5), F_REG_READ }, /* RO */
3804 { "id_mmfr2_el1", CPENC(3,0,C0,C1,6), F_REG_READ }, /* RO */
3805 { "id_mmfr3_el1", CPENC(3,0,C0,C1,7), F_REG_READ }, /* RO */
3806 { "id_mmfr4_el1", CPENC(3,0,C0,C2,6), F_REG_READ }, /* RO */
3807 { "id_isar0_el1", CPENC(3,0,C0,C2,0), F_REG_READ }, /* RO */
3808 { "id_isar1_el1", CPENC(3,0,C0,C2,1), F_REG_READ }, /* RO */
3809 { "id_isar2_el1", CPENC(3,0,C0,C2,2), F_REG_READ }, /* RO */
3810 { "id_isar3_el1", CPENC(3,0,C0,C2,3), F_REG_READ }, /* RO */
3811 { "id_isar4_el1", CPENC(3,0,C0,C2,4), F_REG_READ }, /* RO */
3812 { "id_isar5_el1", CPENC(3,0,C0,C2,5), F_REG_READ }, /* RO */
3813 { "mvfr0_el1", CPENC(3,0,C0,C3,0), F_REG_READ }, /* RO */
3814 { "mvfr1_el1", CPENC(3,0,C0,C3,1), F_REG_READ }, /* RO */
3815 { "mvfr2_el1", CPENC(3,0,C0,C3,2), F_REG_READ }, /* RO */
3816 { "ccsidr_el1", CPENC(3,1,C0,C0,0), F_REG_READ }, /* RO */
3817 { "id_aa64pfr0_el1", CPENC(3,0,C0,C4,0), F_REG_READ }, /* RO */
3818 { "id_aa64pfr1_el1", CPENC(3,0,C0,C4,1), F_REG_READ }, /* RO */
3819 { "id_aa64dfr0_el1", CPENC(3,0,C0,C5,0), F_REG_READ }, /* RO */
3820 { "id_aa64dfr1_el1", CPENC(3,0,C0,C5,1), F_REG_READ }, /* RO */
3821 { "id_aa64isar0_el1", CPENC(3,0,C0,C6,0), F_REG_READ }, /* RO */
3822 { "id_aa64isar1_el1", CPENC(3,0,C0,C6,1), F_REG_READ }, /* RO */
3823 { "id_aa64mmfr0_el1", CPENC(3,0,C0,C7,0), F_REG_READ }, /* RO */
3824 { "id_aa64mmfr1_el1", CPENC(3,0,C0,C7,1), F_REG_READ }, /* RO */
3825 { "id_aa64mmfr2_el1", CPENC (3, 0, C0, C7, 2), F_ARCHEXT | F_REG_READ }, /* RO */
3826 { "id_aa64afr0_el1", CPENC(3,0,C0,C5,4), F_REG_READ }, /* RO */
3827 { "id_aa64afr1_el1", CPENC(3,0,C0,C5,5), F_REG_READ }, /* RO */
3828 { "id_aa64zfr0_el1", CPENC (3, 0, C0, C4, 4), F_ARCHEXT | F_REG_READ }, /* RO */
3829 { "clidr_el1", CPENC(3,1,C0,C0,1), F_REG_READ }, /* RO */
3830 { "csselr_el1", CPENC(3,2,C0,C0,0), 0 },
3831 { "vpidr_el2", CPENC(3,4,C0,C0,0), 0 },
3832 { "vmpidr_el2", CPENC(3,4,C0,C0,5), 0 },
3833 { "sctlr_el1", CPENC(3,0,C1,C0,0), 0 },
3834 { "sctlr_el2", CPENC(3,4,C1,C0,0), 0 },
3835 { "sctlr_el3", CPENC(3,6,C1,C0,0), 0 },
3836 { "sctlr_el12", CPENC (3, 5, C1, C0, 0), F_ARCHEXT },
3837 { "actlr_el1", CPENC(3,0,C1,C0,1), 0 },
3838 { "actlr_el2", CPENC(3,4,C1,C0,1), 0 },
3839 { "actlr_el3", CPENC(3,6,C1,C0,1), 0 },
3840 { "cpacr_el1", CPENC(3,0,C1,C0,2), 0 },
3841 { "cpacr_el12", CPENC (3, 5, C1, C0, 2), F_ARCHEXT },
3842 { "cptr_el2", CPENC(3,4,C1,C1,2), 0 },
3843 { "cptr_el3", CPENC(3,6,C1,C1,2), 0 },
3844 { "scr_el3", CPENC(3,6,C1,C1,0), 0 },
3845 { "hcr_el2", CPENC(3,4,C1,C1,0), 0 },
3846 { "mdcr_el2", CPENC(3,4,C1,C1,1), 0 },
3847 { "mdcr_el3", CPENC(3,6,C1,C3,1), 0 },
3848 { "hstr_el2", CPENC(3,4,C1,C1,3), 0 },
3849 { "hacr_el2", CPENC(3,4,C1,C1,7), 0 },
3850 { "zcr_el1", CPENC (3, 0, C1, C2, 0), F_ARCHEXT },
3851 { "zcr_el12", CPENC (3, 5, C1, C2, 0), F_ARCHEXT },
3852 { "zcr_el2", CPENC (3, 4, C1, C2, 0), F_ARCHEXT },
3853 { "zcr_el3", CPENC (3, 6, C1, C2, 0), F_ARCHEXT },
3854 { "zidr_el1", CPENC (3, 0, C0, C0, 7), F_ARCHEXT },
3855 { "ttbr0_el1", CPENC(3,0,C2,C0,0), 0 },
3856 { "ttbr1_el1", CPENC(3,0,C2,C0,1), 0 },
3857 { "ttbr0_el2", CPENC(3,4,C2,C0,0), 0 },
3858 { "ttbr1_el2", CPENC (3, 4, C2, C0, 1), F_ARCHEXT },
3859 { "ttbr0_el3", CPENC(3,6,C2,C0,0), 0 },
3860 { "ttbr0_el12", CPENC (3, 5, C2, C0, 0), F_ARCHEXT },
3861 { "ttbr1_el12", CPENC (3, 5, C2, C0, 1), F_ARCHEXT },
3862 { "vttbr_el2", CPENC(3,4,C2,C1,0), 0 },
3863 { "tcr_el1", CPENC(3,0,C2,C0,2), 0 },
3864 { "tcr_el2", CPENC(3,4,C2,C0,2), 0 },
3865 { "tcr_el3", CPENC(3,6,C2,C0,2), 0 },
3866 { "tcr_el12", CPENC (3, 5, C2, C0, 2), F_ARCHEXT },
3867 { "vtcr_el2", CPENC(3,4,C2,C1,2), 0 },
3868 { "apiakeylo_el1", CPENC (3, 0, C2, C1, 0), F_ARCHEXT },
3869 { "apiakeyhi_el1", CPENC (3, 0, C2, C1, 1), F_ARCHEXT },
3870 { "apibkeylo_el1", CPENC (3, 0, C2, C1, 2), F_ARCHEXT },
3871 { "apibkeyhi_el1", CPENC (3, 0, C2, C1, 3), F_ARCHEXT },
3872 { "apdakeylo_el1", CPENC (3, 0, C2, C2, 0), F_ARCHEXT },
3873 { "apdakeyhi_el1", CPENC (3, 0, C2, C2, 1), F_ARCHEXT },
3874 { "apdbkeylo_el1", CPENC (3, 0, C2, C2, 2), F_ARCHEXT },
3875 { "apdbkeyhi_el1", CPENC (3, 0, C2, C2, 3), F_ARCHEXT },
3876 { "apgakeylo_el1", CPENC (3, 0, C2, C3, 0), F_ARCHEXT },
3877 { "apgakeyhi_el1", CPENC (3, 0, C2, C3, 1), F_ARCHEXT },
3878 { "afsr0_el1", CPENC(3,0,C5,C1,0), 0 },
3879 { "afsr1_el1", CPENC(3,0,C5,C1,1), 0 },
3880 { "afsr0_el2", CPENC(3,4,C5,C1,0), 0 },
3881 { "afsr1_el2", CPENC(3,4,C5,C1,1), 0 },
3882 { "afsr0_el3", CPENC(3,6,C5,C1,0), 0 },
3883 { "afsr0_el12", CPENC (3, 5, C5, C1, 0), F_ARCHEXT },
3884 { "afsr1_el3", CPENC(3,6,C5,C1,1), 0 },
3885 { "afsr1_el12", CPENC (3, 5, C5, C1, 1), F_ARCHEXT },
3886 { "esr_el1", CPENC(3,0,C5,C2,0), 0 },
3887 { "esr_el2", CPENC(3,4,C5,C2,0), 0 },
3888 { "esr_el3", CPENC(3,6,C5,C2,0), 0 },
3889 { "esr_el12", CPENC (3, 5, C5, C2, 0), F_ARCHEXT },
3890 { "vsesr_el2", CPENC (3, 4, C5, C2, 3), F_ARCHEXT },
3891 { "fpexc32_el2", CPENC(3,4,C5,C3,0), 0 },
3892 { "erridr_el1", CPENC (3, 0, C5, C3, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3893 { "errselr_el1", CPENC (3, 0, C5, C3, 1), F_ARCHEXT },
3894 { "erxfr_el1", CPENC (3, 0, C5, C4, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3895 { "erxctlr_el1", CPENC (3, 0, C5, C4, 1), F_ARCHEXT },
3896 { "erxstatus_el1", CPENC (3, 0, C5, C4, 2), F_ARCHEXT },
3897 { "erxaddr_el1", CPENC (3, 0, C5, C4, 3), F_ARCHEXT },
3898 { "erxmisc0_el1", CPENC (3, 0, C5, C5, 0), F_ARCHEXT },
3899 { "erxmisc1_el1", CPENC (3, 0, C5, C5, 1), F_ARCHEXT },
3900 { "far_el1", CPENC(3,0,C6,C0,0), 0 },
3901 { "far_el2", CPENC(3,4,C6,C0,0), 0 },
3902 { "far_el3", CPENC(3,6,C6,C0,0), 0 },
3903 { "far_el12", CPENC (3, 5, C6, C0, 0), F_ARCHEXT },
3904 { "hpfar_el2", CPENC(3,4,C6,C0,4), 0 },
3905 { "par_el1", CPENC(3,0,C7,C4,0), 0 },
3906 { "mair_el1", CPENC(3,0,C10,C2,0), 0 },
3907 { "mair_el2", CPENC(3,4,C10,C2,0), 0 },
3908 { "mair_el3", CPENC(3,6,C10,C2,0), 0 },
3909 { "mair_el12", CPENC (3, 5, C10, C2, 0), F_ARCHEXT },
3910 { "amair_el1", CPENC(3,0,C10,C3,0), 0 },
3911 { "amair_el2", CPENC(3,4,C10,C3,0), 0 },
3912 { "amair_el3", CPENC(3,6,C10,C3,0), 0 },
3913 { "amair_el12", CPENC (3, 5, C10, C3, 0), F_ARCHEXT },
3914 { "vbar_el1", CPENC(3,0,C12,C0,0), 0 },
3915 { "vbar_el2", CPENC(3,4,C12,C0,0), 0 },
3916 { "vbar_el3", CPENC(3,6,C12,C0,0), 0 },
3917 { "vbar_el12", CPENC (3, 5, C12, C0, 0), F_ARCHEXT },
3918 { "rvbar_el1", CPENC(3,0,C12,C0,1), F_REG_READ }, /* RO */
3919 { "rvbar_el2", CPENC(3,4,C12,C0,1), F_REG_READ }, /* RO */
3920 { "rvbar_el3", CPENC(3,6,C12,C0,1), F_REG_READ }, /* RO */
3921 { "rmr_el1", CPENC(3,0,C12,C0,2), 0 },
3922 { "rmr_el2", CPENC(3,4,C12,C0,2), 0 },
3923 { "rmr_el3", CPENC(3,6,C12,C0,2), 0 },
3924 { "isr_el1", CPENC(3,0,C12,C1,0), F_REG_READ }, /* RO */
3925 { "disr_el1", CPENC (3, 0, C12, C1, 1), F_ARCHEXT },
3926 { "vdisr_el2", CPENC (3, 4, C12, C1, 1), F_ARCHEXT },
3927 { "contextidr_el1", CPENC(3,0,C13,C0,1), 0 },
3928 { "contextidr_el2", CPENC (3, 4, C13, C0, 1), F_ARCHEXT },
3929 { "contextidr_el12", CPENC (3, 5, C13, C0, 1), F_ARCHEXT },
3930 { "rndr", CPENC(3,3,C2,C4,0), F_ARCHEXT | F_REG_READ }, /* RO */
3931 { "rndrrs", CPENC(3,3,C2,C4,1), F_ARCHEXT | F_REG_READ }, /* RO */
3932 { "tco", CPENC(3,3,C4,C2,7), F_ARCHEXT },
3933 { "tfsre0_el1", CPENC(3,0,C6,C6,1), F_ARCHEXT },
3934 { "tfsr_el1", CPENC(3,0,C6,C5,0), F_ARCHEXT },
3935 { "tfsr_el2", CPENC(3,4,C6,C5,0), F_ARCHEXT },
3936 { "tfsr_el3", CPENC(3,6,C6,C6,0), F_ARCHEXT },
3937 { "tfsr_el12", CPENC(3,5,C6,C6,0), F_ARCHEXT },
3938 { "rgsr_el1", CPENC(3,0,C1,C0,5), F_ARCHEXT },
3939 { "gcr_el1", CPENC(3,0,C1,C0,6), F_ARCHEXT },
3940 { "tpidr_el0", CPENC(3,3,C13,C0,2), 0 },
3941 { "tpidrro_el0", CPENC(3,3,C13,C0,3), 0 }, /* RW */
3942 { "tpidr_el1", CPENC(3,0,C13,C0,4), 0 },
3943 { "tpidr_el2", CPENC(3,4,C13,C0,2), 0 },
3944 { "tpidr_el3", CPENC(3,6,C13,C0,2), 0 },
3945 { "scxtnum_el0", CPENC(3,3,C13,C0,7), F_ARCHEXT },
3946 { "scxtnum_el1", CPENC(3,0,C13,C0,7), F_ARCHEXT },
3947 { "scxtnum_el2", CPENC(3,4,C13,C0,7), F_ARCHEXT },
3948 { "scxtnum_el12", CPENC(3,5,C13,C0,7), F_ARCHEXT },
3949 { "scxtnum_el3", CPENC(3,6,C13,C0,7), F_ARCHEXT },
3950 { "teecr32_el1", CPENC(2,2,C0, C0,0), 0 }, /* See section 3.9.7.1 */
3951 { "cntfrq_el0", CPENC(3,3,C14,C0,0), 0 }, /* RW */
3952 { "cntpct_el0", CPENC(3,3,C14,C0,1), F_REG_READ }, /* RO */
3953 { "cntvct_el0", CPENC(3,3,C14,C0,2), F_REG_READ }, /* RO */
3954 { "cntvoff_el2", CPENC(3,4,C14,C0,3), 0 },
3955 { "cntkctl_el1", CPENC(3,0,C14,C1,0), 0 },
3956 { "cntkctl_el12", CPENC (3, 5, C14, C1, 0), F_ARCHEXT },
3957 { "cnthctl_el2", CPENC(3,4,C14,C1,0), 0 },
3958 { "cntp_tval_el0", CPENC(3,3,C14,C2,0), 0 },
3959 { "cntp_tval_el02", CPENC (3, 5, C14, C2, 0), F_ARCHEXT },
3960 { "cntp_ctl_el0", CPENC(3,3,C14,C2,1), 0 },
3961 { "cntp_ctl_el02", CPENC (3, 5, C14, C2, 1), F_ARCHEXT },
3962 { "cntp_cval_el0", CPENC(3,3,C14,C2,2), 0 },
3963 { "cntp_cval_el02", CPENC (3, 5, C14, C2, 2), F_ARCHEXT },
3964 { "cntv_tval_el0", CPENC(3,3,C14,C3,0), 0 },
3965 { "cntv_tval_el02", CPENC (3, 5, C14, C3, 0), F_ARCHEXT },
3966 { "cntv_ctl_el0", CPENC(3,3,C14,C3,1), 0 },
3967 { "cntv_ctl_el02", CPENC (3, 5, C14, C3, 1), F_ARCHEXT },
3968 { "cntv_cval_el0", CPENC(3,3,C14,C3,2), 0 },
3969 { "cntv_cval_el02", CPENC (3, 5, C14, C3, 2), F_ARCHEXT },
3970 { "cnthp_tval_el2", CPENC(3,4,C14,C2,0), 0 },
3971 { "cnthp_ctl_el2", CPENC(3,4,C14,C2,1), 0 },
3972 { "cnthp_cval_el2", CPENC(3,4,C14,C2,2), 0 },
3973 { "cntps_tval_el1", CPENC(3,7,C14,C2,0), 0 },
3974 { "cntps_ctl_el1", CPENC(3,7,C14,C2,1), 0 },
3975 { "cntps_cval_el1", CPENC(3,7,C14,C2,2), 0 },
3976 { "cnthv_tval_el2", CPENC (3, 4, C14, C3, 0), F_ARCHEXT },
3977 { "cnthv_ctl_el2", CPENC (3, 4, C14, C3, 1), F_ARCHEXT },
3978 { "cnthv_cval_el2", CPENC (3, 4, C14, C3, 2), F_ARCHEXT },
3979 { "dacr32_el2", CPENC(3,4,C3,C0,0), 0 },
3980 { "ifsr32_el2", CPENC(3,4,C5,C0,1), 0 },
3981 { "teehbr32_el1", CPENC(2,2,C1,C0,0), 0 },
3982 { "sder32_el3", CPENC(3,6,C1,C1,1), 0 },
3983 { "mdscr_el1", CPENC(2,0,C0, C2, 2), 0 },
3984 { "mdccsr_el0", CPENC(2,3,C0, C1, 0), F_REG_READ }, /* r */
3985 { "mdccint_el1", CPENC(2,0,C0, C2, 0), 0 },
3986 { "dbgdtr_el0", CPENC(2,3,C0, C4, 0), 0 },
3987 { "dbgdtrrx_el0", CPENC(2,3,C0, C5, 0), F_REG_READ }, /* r */
3988 { "dbgdtrtx_el0", CPENC(2,3,C0, C5, 0), F_REG_WRITE }, /* w */
3989 { "osdtrrx_el1", CPENC(2,0,C0, C0, 2), 0 },
3990 { "osdtrtx_el1", CPENC(2,0,C0, C3, 2), 0 },
3991 { "oseccr_el1", CPENC(2,0,C0, C6, 2), 0 },
3992 { "dbgvcr32_el2", CPENC(2,4,C0, C7, 0), 0 },
3993 { "dbgbvr0_el1", CPENC(2,0,C0, C0, 4), 0 },
3994 { "dbgbvr1_el1", CPENC(2,0,C0, C1, 4), 0 },
3995 { "dbgbvr2_el1", CPENC(2,0,C0, C2, 4), 0 },
3996 { "dbgbvr3_el1", CPENC(2,0,C0, C3, 4), 0 },
3997 { "dbgbvr4_el1", CPENC(2,0,C0, C4, 4), 0 },
3998 { "dbgbvr5_el1", CPENC(2,0,C0, C5, 4), 0 },
3999 { "dbgbvr6_el1", CPENC(2,0,C0, C6, 4), 0 },
4000 { "dbgbvr7_el1", CPENC(2,0,C0, C7, 4), 0 },
4001 { "dbgbvr8_el1", CPENC(2,0,C0, C8, 4), 0 },
4002 { "dbgbvr9_el1", CPENC(2,0,C0, C9, 4), 0 },
4003 { "dbgbvr10_el1", CPENC(2,0,C0, C10,4), 0 },
4004 { "dbgbvr11_el1", CPENC(2,0,C0, C11,4), 0 },
4005 { "dbgbvr12_el1", CPENC(2,0,C0, C12,4), 0 },
4006 { "dbgbvr13_el1", CPENC(2,0,C0, C13,4), 0 },
4007 { "dbgbvr14_el1", CPENC(2,0,C0, C14,4), 0 },
4008 { "dbgbvr15_el1", CPENC(2,0,C0, C15,4), 0 },
4009 { "dbgbcr0_el1", CPENC(2,0,C0, C0, 5), 0 },
4010 { "dbgbcr1_el1", CPENC(2,0,C0, C1, 5), 0 },
4011 { "dbgbcr2_el1", CPENC(2,0,C0, C2, 5), 0 },
4012 { "dbgbcr3_el1", CPENC(2,0,C0, C3, 5), 0 },
4013 { "dbgbcr4_el1", CPENC(2,0,C0, C4, 5), 0 },
4014 { "dbgbcr5_el1", CPENC(2,0,C0, C5, 5), 0 },
4015 { "dbgbcr6_el1", CPENC(2,0,C0, C6, 5), 0 },
4016 { "dbgbcr7_el1", CPENC(2,0,C0, C7, 5), 0 },
4017 { "dbgbcr8_el1", CPENC(2,0,C0, C8, 5), 0 },
4018 { "dbgbcr9_el1", CPENC(2,0,C0, C9, 5), 0 },
4019 { "dbgbcr10_el1", CPENC(2,0,C0, C10,5), 0 },
4020 { "dbgbcr11_el1", CPENC(2,0,C0, C11,5), 0 },
4021 { "dbgbcr12_el1", CPENC(2,0,C0, C12,5), 0 },
4022 { "dbgbcr13_el1", CPENC(2,0,C0, C13,5), 0 },
4023 { "dbgbcr14_el1", CPENC(2,0,C0, C14,5), 0 },
4024 { "dbgbcr15_el1", CPENC(2,0,C0, C15,5), 0 },
4025 { "dbgwvr0_el1", CPENC(2,0,C0, C0, 6), 0 },
4026 { "dbgwvr1_el1", CPENC(2,0,C0, C1, 6), 0 },
4027 { "dbgwvr2_el1", CPENC(2,0,C0, C2, 6), 0 },
4028 { "dbgwvr3_el1", CPENC(2,0,C0, C3, 6), 0 },
4029 { "dbgwvr4_el1", CPENC(2,0,C0, C4, 6), 0 },
4030 { "dbgwvr5_el1", CPENC(2,0,C0, C5, 6), 0 },
4031 { "dbgwvr6_el1", CPENC(2,0,C0, C6, 6), 0 },
4032 { "dbgwvr7_el1", CPENC(2,0,C0, C7, 6), 0 },
4033 { "dbgwvr8_el1", CPENC(2,0,C0, C8, 6), 0 },
4034 { "dbgwvr9_el1", CPENC(2,0,C0, C9, 6), 0 },
4035 { "dbgwvr10_el1", CPENC(2,0,C0, C10,6), 0 },
4036 { "dbgwvr11_el1", CPENC(2,0,C0, C11,6), 0 },
4037 { "dbgwvr12_el1", CPENC(2,0,C0, C12,6), 0 },
4038 { "dbgwvr13_el1", CPENC(2,0,C0, C13,6), 0 },
4039 { "dbgwvr14_el1", CPENC(2,0,C0, C14,6), 0 },
4040 { "dbgwvr15_el1", CPENC(2,0,C0, C15,6), 0 },
4041 { "dbgwcr0_el1", CPENC(2,0,C0, C0, 7), 0 },
4042 { "dbgwcr1_el1", CPENC(2,0,C0, C1, 7), 0 },
4043 { "dbgwcr2_el1", CPENC(2,0,C0, C2, 7), 0 },
4044 { "dbgwcr3_el1", CPENC(2,0,C0, C3, 7), 0 },
4045 { "dbgwcr4_el1", CPENC(2,0,C0, C4, 7), 0 },
4046 { "dbgwcr5_el1", CPENC(2,0,C0, C5, 7), 0 },
4047 { "dbgwcr6_el1", CPENC(2,0,C0, C6, 7), 0 },
4048 { "dbgwcr7_el1", CPENC(2,0,C0, C7, 7), 0 },
4049 { "dbgwcr8_el1", CPENC(2,0,C0, C8, 7), 0 },
4050 { "dbgwcr9_el1", CPENC(2,0,C0, C9, 7), 0 },
4051 { "dbgwcr10_el1", CPENC(2,0,C0, C10,7), 0 },
4052 { "dbgwcr11_el1", CPENC(2,0,C0, C11,7), 0 },
4053 { "dbgwcr12_el1", CPENC(2,0,C0, C12,7), 0 },
4054 { "dbgwcr13_el1", CPENC(2,0,C0, C13,7), 0 },
4055 { "dbgwcr14_el1", CPENC(2,0,C0, C14,7), 0 },
4056 { "dbgwcr15_el1", CPENC(2,0,C0, C15,7), 0 },
4057 { "mdrar_el1", CPENC(2,0,C1, C0, 0), F_REG_READ }, /* r */
4058 { "oslar_el1", CPENC(2,0,C1, C0, 4), F_REG_WRITE }, /* w */
4059 { "oslsr_el1", CPENC(2,0,C1, C1, 4), F_REG_READ }, /* r */
4060 { "osdlr_el1", CPENC(2,0,C1, C3, 4), 0 },
4061 { "dbgprcr_el1", CPENC(2,0,C1, C4, 4), 0 },
4062 { "dbgclaimset_el1", CPENC(2,0,C7, C8, 6), 0 },
4063 { "dbgclaimclr_el1", CPENC(2,0,C7, C9, 6), 0 },
4064 { "dbgauthstatus_el1", CPENC(2,0,C7, C14,6), F_REG_READ }, /* r */
4065 { "pmblimitr_el1", CPENC (3, 0, C9, C10, 0), F_ARCHEXT }, /* rw */
4066 { "pmbptr_el1", CPENC (3, 0, C9, C10, 1), F_ARCHEXT }, /* rw */
4067 { "pmbsr_el1", CPENC (3, 0, C9, C10, 3), F_ARCHEXT }, /* rw */
4068 { "pmbidr_el1", CPENC (3, 0, C9, C10, 7), F_ARCHEXT | F_REG_READ }, /* ro */
4069 { "pmscr_el1", CPENC (3, 0, C9, C9, 0), F_ARCHEXT }, /* rw */
4070 { "pmsicr_el1", CPENC (3, 0, C9, C9, 2), F_ARCHEXT }, /* rw */
4071 { "pmsirr_el1", CPENC (3, 0, C9, C9, 3), F_ARCHEXT }, /* rw */
4072 { "pmsfcr_el1", CPENC (3, 0, C9, C9, 4), F_ARCHEXT }, /* rw */
4073 { "pmsevfr_el1", CPENC (3, 0, C9, C9, 5), F_ARCHEXT }, /* rw */
4074 { "pmslatfr_el1", CPENC (3, 0, C9, C9, 6), F_ARCHEXT }, /* rw */
4075 { "pmsidr_el1", CPENC (3, 0, C9, C9, 7), F_ARCHEXT }, /* rw */
4076 { "pmscr_el2", CPENC (3, 4, C9, C9, 0), F_ARCHEXT }, /* rw */
4077 { "pmscr_el12", CPENC (3, 5, C9, C9, 0), F_ARCHEXT }, /* rw */
4078 { "pmcr_el0", CPENC(3,3,C9,C12, 0), 0 },
4079 { "pmcntenset_el0", CPENC(3,3,C9,C12, 1), 0 },
4080 { "pmcntenclr_el0", CPENC(3,3,C9,C12, 2), 0 },
4081 { "pmovsclr_el0", CPENC(3,3,C9,C12, 3), 0 },
4082 { "pmswinc_el0", CPENC(3,3,C9,C12, 4), F_REG_WRITE }, /* w */
4083 { "pmselr_el0", CPENC(3,3,C9,C12, 5), 0 },
4084 { "pmceid0_el0", CPENC(3,3,C9,C12, 6), F_REG_READ }, /* r */
4085 { "pmceid1_el0", CPENC(3,3,C9,C12, 7), F_REG_READ }, /* r */
4086 { "pmccntr_el0", CPENC(3,3,C9,C13, 0), 0 },
4087 { "pmxevtyper_el0", CPENC(3,3,C9,C13, 1), 0 },
4088 { "pmxevcntr_el0", CPENC(3,3,C9,C13, 2), 0 },
4089 { "pmuserenr_el0", CPENC(3,3,C9,C14, 0), 0 },
4090 { "pmintenset_el1", CPENC(3,0,C9,C14, 1), 0 },
4091 { "pmintenclr_el1", CPENC(3,0,C9,C14, 2), 0 },
4092 { "pmovsset_el0", CPENC(3,3,C9,C14, 3), 0 },
4093 { "pmevcntr0_el0", CPENC(3,3,C14,C8, 0), 0 },
4094 { "pmevcntr1_el0", CPENC(3,3,C14,C8, 1), 0 },
4095 { "pmevcntr2_el0", CPENC(3,3,C14,C8, 2), 0 },
4096 { "pmevcntr3_el0", CPENC(3,3,C14,C8, 3), 0 },
4097 { "pmevcntr4_el0", CPENC(3,3,C14,C8, 4), 0 },
4098 { "pmevcntr5_el0", CPENC(3,3,C14,C8, 5), 0 },
4099 { "pmevcntr6_el0", CPENC(3,3,C14,C8, 6), 0 },
4100 { "pmevcntr7_el0", CPENC(3,3,C14,C8, 7), 0 },
4101 { "pmevcntr8_el0", CPENC(3,3,C14,C9, 0), 0 },
4102 { "pmevcntr9_el0", CPENC(3,3,C14,C9, 1), 0 },
4103 { "pmevcntr10_el0", CPENC(3,3,C14,C9, 2), 0 },
4104 { "pmevcntr11_el0", CPENC(3,3,C14,C9, 3), 0 },
4105 { "pmevcntr12_el0", CPENC(3,3,C14,C9, 4), 0 },
4106 { "pmevcntr13_el0", CPENC(3,3,C14,C9, 5), 0 },
4107 { "pmevcntr14_el0", CPENC(3,3,C14,C9, 6), 0 },
4108 { "pmevcntr15_el0", CPENC(3,3,C14,C9, 7), 0 },
4109 { "pmevcntr16_el0", CPENC(3,3,C14,C10,0), 0 },
4110 { "pmevcntr17_el0", CPENC(3,3,C14,C10,1), 0 },
4111 { "pmevcntr18_el0", CPENC(3,3,C14,C10,2), 0 },
4112 { "pmevcntr19_el0", CPENC(3,3,C14,C10,3), 0 },
4113 { "pmevcntr20_el0", CPENC(3,3,C14,C10,4), 0 },
4114 { "pmevcntr21_el0", CPENC(3,3,C14,C10,5), 0 },
4115 { "pmevcntr22_el0", CPENC(3,3,C14,C10,6), 0 },
4116 { "pmevcntr23_el0", CPENC(3,3,C14,C10,7), 0 },
4117 { "pmevcntr24_el0", CPENC(3,3,C14,C11,0), 0 },
4118 { "pmevcntr25_el0", CPENC(3,3,C14,C11,1), 0 },
4119 { "pmevcntr26_el0", CPENC(3,3,C14,C11,2), 0 },
4120 { "pmevcntr27_el0", CPENC(3,3,C14,C11,3), 0 },
4121 { "pmevcntr28_el0", CPENC(3,3,C14,C11,4), 0 },
4122 { "pmevcntr29_el0", CPENC(3,3,C14,C11,5), 0 },
4123 { "pmevcntr30_el0", CPENC(3,3,C14,C11,6), 0 },
4124 { "pmevtyper0_el0", CPENC(3,3,C14,C12,0), 0 },
4125 { "pmevtyper1_el0", CPENC(3,3,C14,C12,1), 0 },
4126 { "pmevtyper2_el0", CPENC(3,3,C14,C12,2), 0 },
4127 { "pmevtyper3_el0", CPENC(3,3,C14,C12,3), 0 },
4128 { "pmevtyper4_el0", CPENC(3,3,C14,C12,4), 0 },
4129 { "pmevtyper5_el0", CPENC(3,3,C14,C12,5), 0 },
4130 { "pmevtyper6_el0", CPENC(3,3,C14,C12,6), 0 },
4131 { "pmevtyper7_el0", CPENC(3,3,C14,C12,7), 0 },
4132 { "pmevtyper8_el0", CPENC(3,3,C14,C13,0), 0 },
4133 { "pmevtyper9_el0", CPENC(3,3,C14,C13,1), 0 },
4134 { "pmevtyper10_el0", CPENC(3,3,C14,C13,2), 0 },
4135 { "pmevtyper11_el0", CPENC(3,3,C14,C13,3), 0 },
4136 { "pmevtyper12_el0", CPENC(3,3,C14,C13,4), 0 },
4137 { "pmevtyper13_el0", CPENC(3,3,C14,C13,5), 0 },
4138 { "pmevtyper14_el0", CPENC(3,3,C14,C13,6), 0 },
4139 { "pmevtyper15_el0", CPENC(3,3,C14,C13,7), 0 },
4140 { "pmevtyper16_el0", CPENC(3,3,C14,C14,0), 0 },
4141 { "pmevtyper17_el0", CPENC(3,3,C14,C14,1), 0 },
4142 { "pmevtyper18_el0", CPENC(3,3,C14,C14,2), 0 },
4143 { "pmevtyper19_el0", CPENC(3,3,C14,C14,3), 0 },
4144 { "pmevtyper20_el0", CPENC(3,3,C14,C14,4), 0 },
4145 { "pmevtyper21_el0", CPENC(3,3,C14,C14,5), 0 },
4146 { "pmevtyper22_el0", CPENC(3,3,C14,C14,6), 0 },
4147 { "pmevtyper23_el0", CPENC(3,3,C14,C14,7), 0 },
4148 { "pmevtyper24_el0", CPENC(3,3,C14,C15,0), 0 },
4149 { "pmevtyper25_el0", CPENC(3,3,C14,C15,1), 0 },
4150 { "pmevtyper26_el0", CPENC(3,3,C14,C15,2), 0 },
4151 { "pmevtyper27_el0", CPENC(3,3,C14,C15,3), 0 },
4152 { "pmevtyper28_el0", CPENC(3,3,C14,C15,4), 0 },
4153 { "pmevtyper29_el0", CPENC(3,3,C14,C15,5), 0 },
4154 { "pmevtyper30_el0", CPENC(3,3,C14,C15,6), 0 },
4155 { "pmccfiltr_el0", CPENC(3,3,C14,C15,7), 0 },
4157 { "dit", CPEN_ (3, C2, 5), F_ARCHEXT },
4158 { "vstcr_el2", CPENC(3, 4, C2, C6, 2), F_ARCHEXT },
4159 { "vsttbr_el2", CPENC(3, 4, C2, C6, 0), F_ARCHEXT },
4160 { "cnthvs_tval_el2", CPENC(3, 4, C14, C4, 0), F_ARCHEXT },
4161 { "cnthvs_cval_el2", CPENC(3, 4, C14, C4, 2), F_ARCHEXT },
4162 { "cnthvs_ctl_el2", CPENC(3, 4, C14, C4, 1), F_ARCHEXT },
4163 { "cnthps_tval_el2", CPENC(3, 4, C14, C5, 0), F_ARCHEXT },
4164 { "cnthps_cval_el2", CPENC(3, 4, C14, C5, 2), F_ARCHEXT },
4165 { "cnthps_ctl_el2", CPENC(3, 4, C14, C5, 1), F_ARCHEXT },
4166 { "sder32_el2", CPENC(3, 4, C1, C3, 1), F_ARCHEXT },
4167 { "vncr_el2", CPENC(3, 4, C2, C2, 0), F_ARCHEXT },
4168 { 0, CPENC(0,0,0,0,0), 0 },
4172 aarch64_sys_reg_deprecated_p (const aarch64_sys_reg *reg)
4174 return (reg->flags & F_DEPRECATED) != 0;
4178 aarch64_sys_reg_supported_p (const aarch64_feature_set features,
4179 const aarch64_sys_reg *reg)
4181 if (!(reg->flags & F_ARCHEXT))
4184 /* PAN. Values are from aarch64_sys_regs. */
4185 if (reg->value == CPEN_(0,C2,3)
4186 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4189 /* SCXTNUM_ELx registers. */
4190 if ((reg->value == CPENC (3, 3, C13, C0, 7)
4191 || reg->value == CPENC (3, 0, C13, C0, 7)
4192 || reg->value == CPENC (3, 4, C13, C0, 7)
4193 || reg->value == CPENC (3, 6, C13, C0, 7)
4194 || reg->value == CPENC (3, 5, C13, C0, 7))
4195 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SCXTNUM))
4198 /* ID_PFR2_EL1 register. */
4199 if (reg->value == CPENC(3, 0, C0, C3, 4)
4200 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_ID_PFR2))
4203 /* SSBS. Values are from aarch64_sys_regs. */
4204 if (reg->value == CPEN_(3,C2,6)
4205 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4208 /* Virtualization host extensions: system registers. */
4209 if ((reg->value == CPENC (3, 4, C2, C0, 1)
4210 || reg->value == CPENC (3, 4, C13, C0, 1)
4211 || reg->value == CPENC (3, 4, C14, C3, 0)
4212 || reg->value == CPENC (3, 4, C14, C3, 1)
4213 || reg->value == CPENC (3, 4, C14, C3, 2))
4214 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4217 /* Virtualization host extensions: *_el12 names of *_el1 registers. */
4218 if ((reg->value == CPEN_ (5, C0, 0)
4219 || reg->value == CPEN_ (5, C0, 1)
4220 || reg->value == CPENC (3, 5, C1, C0, 0)
4221 || reg->value == CPENC (3, 5, C1, C0, 2)
4222 || reg->value == CPENC (3, 5, C2, C0, 0)
4223 || reg->value == CPENC (3, 5, C2, C0, 1)
4224 || reg->value == CPENC (3, 5, C2, C0, 2)
4225 || reg->value == CPENC (3, 5, C5, C1, 0)
4226 || reg->value == CPENC (3, 5, C5, C1, 1)
4227 || reg->value == CPENC (3, 5, C5, C2, 0)
4228 || reg->value == CPENC (3, 5, C6, C0, 0)
4229 || reg->value == CPENC (3, 5, C10, C2, 0)
4230 || reg->value == CPENC (3, 5, C10, C3, 0)
4231 || reg->value == CPENC (3, 5, C12, C0, 0)
4232 || reg->value == CPENC (3, 5, C13, C0, 1)
4233 || reg->value == CPENC (3, 5, C14, C1, 0))
4234 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4237 /* Virtualization host extensions: *_el02 names of *_el0 registers. */
4238 if ((reg->value == CPENC (3, 5, C14, C2, 0)
4239 || reg->value == CPENC (3, 5, C14, C2, 1)
4240 || reg->value == CPENC (3, 5, C14, C2, 2)
4241 || reg->value == CPENC (3, 5, C14, C3, 0)
4242 || reg->value == CPENC (3, 5, C14, C3, 1)
4243 || reg->value == CPENC (3, 5, C14, C3, 2))
4244 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4247 /* ARMv8.2 features. */
4249 /* ID_AA64MMFR2_EL1. */
4250 if (reg->value == CPENC (3, 0, C0, C7, 2)
4251 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4255 if (reg->value == CPEN_ (0, C2, 4)
4256 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4259 /* RAS extension. */
4261 /* ERRIDR_EL1, ERRSELR_EL1, ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL, ERXADDR_EL1,
4262 ERXMISC0_EL1 AND ERXMISC1_EL1. */
4263 if ((reg->value == CPENC (3, 0, C5, C3, 0)
4264 || reg->value == CPENC (3, 0, C5, C3, 1)
4265 || reg->value == CPENC (3, 0, C5, C3, 2)
4266 || reg->value == CPENC (3, 0, C5, C3, 3)
4267 || reg->value == CPENC (3, 0, C5, C4, 0)
4268 || reg->value == CPENC (3, 0, C5, C4, 1)
4269 || reg->value == CPENC (3, 0, C5, C4, 2)
4270 || reg->value == CPENC (3, 0, C5, C4, 3)
4271 || reg->value == CPENC (3, 0, C5, C5, 0)
4272 || reg->value == CPENC (3, 0, C5, C5, 1))
4273 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4276 /* VSESR_EL2, DISR_EL1 and VDISR_EL2. */
4277 if ((reg->value == CPENC (3, 4, C5, C2, 3)
4278 || reg->value == CPENC (3, 0, C12, C1, 1)
4279 || reg->value == CPENC (3, 4, C12, C1, 1))
4280 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4283 /* Statistical Profiling extension. */
4284 if ((reg->value == CPENC (3, 0, C9, C10, 0)
4285 || reg->value == CPENC (3, 0, C9, C10, 1)
4286 || reg->value == CPENC (3, 0, C9, C10, 3)
4287 || reg->value == CPENC (3, 0, C9, C10, 7)
4288 || reg->value == CPENC (3, 0, C9, C9, 0)
4289 || reg->value == CPENC (3, 0, C9, C9, 2)
4290 || reg->value == CPENC (3, 0, C9, C9, 3)
4291 || reg->value == CPENC (3, 0, C9, C9, 4)
4292 || reg->value == CPENC (3, 0, C9, C9, 5)
4293 || reg->value == CPENC (3, 0, C9, C9, 6)
4294 || reg->value == CPENC (3, 0, C9, C9, 7)
4295 || reg->value == CPENC (3, 4, C9, C9, 0)
4296 || reg->value == CPENC (3, 5, C9, C9, 0))
4297 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PROFILE))
4300 /* ARMv8.3 Pointer authentication keys. */
4301 if ((reg->value == CPENC (3, 0, C2, C1, 0)
4302 || reg->value == CPENC (3, 0, C2, C1, 1)
4303 || reg->value == CPENC (3, 0, C2, C1, 2)
4304 || reg->value == CPENC (3, 0, C2, C1, 3)
4305 || reg->value == CPENC (3, 0, C2, C2, 0)
4306 || reg->value == CPENC (3, 0, C2, C2, 1)
4307 || reg->value == CPENC (3, 0, C2, C2, 2)
4308 || reg->value == CPENC (3, 0, C2, C2, 3)
4309 || reg->value == CPENC (3, 0, C2, C3, 0)
4310 || reg->value == CPENC (3, 0, C2, C3, 1))
4311 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_3))
4315 if ((reg->value == CPENC (3, 0, C0, C4, 4)
4316 || reg->value == CPENC (3, 0, C1, C2, 0)
4317 || reg->value == CPENC (3, 4, C1, C2, 0)
4318 || reg->value == CPENC (3, 6, C1, C2, 0)
4319 || reg->value == CPENC (3, 5, C1, C2, 0)
4320 || reg->value == CPENC (3, 0, C0, C0, 7))
4321 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SVE))
4324 /* ARMv8.4 features. */
4327 if (reg->value == CPEN_ (3, C2, 5)
4328 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4331 /* Virtualization extensions. */
4332 if ((reg->value == CPENC(3, 4, C2, C6, 2)
4333 || reg->value == CPENC(3, 4, C2, C6, 0)
4334 || reg->value == CPENC(3, 4, C14, C4, 0)
4335 || reg->value == CPENC(3, 4, C14, C4, 2)
4336 || reg->value == CPENC(3, 4, C14, C4, 1)
4337 || reg->value == CPENC(3, 4, C14, C5, 0)
4338 || reg->value == CPENC(3, 4, C14, C5, 2)
4339 || reg->value == CPENC(3, 4, C14, C5, 1)
4340 || reg->value == CPENC(3, 4, C1, C3, 1)
4341 || reg->value == CPENC(3, 4, C2, C2, 0))
4342 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4345 /* ARMv8.4 TLB instructions. */
4346 if ((reg->value == CPENS (0, C8, C1, 0)
4347 || reg->value == CPENS (0, C8, C1, 1)
4348 || reg->value == CPENS (0, C8, C1, 2)
4349 || reg->value == CPENS (0, C8, C1, 3)
4350 || reg->value == CPENS (0, C8, C1, 5)
4351 || reg->value == CPENS (0, C8, C1, 7)
4352 || reg->value == CPENS (4, C8, C4, 0)
4353 || reg->value == CPENS (4, C8, C4, 4)
4354 || reg->value == CPENS (4, C8, C1, 1)
4355 || reg->value == CPENS (4, C8, C1, 5)
4356 || reg->value == CPENS (4, C8, C1, 6)
4357 || reg->value == CPENS (6, C8, C1, 1)
4358 || reg->value == CPENS (6, C8, C1, 5)
4359 || reg->value == CPENS (4, C8, C1, 0)
4360 || reg->value == CPENS (4, C8, C1, 4)
4361 || reg->value == CPENS (6, C8, C1, 0)
4362 || reg->value == CPENS (0, C8, C6, 1)
4363 || reg->value == CPENS (0, C8, C6, 3)
4364 || reg->value == CPENS (0, C8, C6, 5)
4365 || reg->value == CPENS (0, C8, C6, 7)
4366 || reg->value == CPENS (0, C8, C2, 1)
4367 || reg->value == CPENS (0, C8, C2, 3)
4368 || reg->value == CPENS (0, C8, C2, 5)
4369 || reg->value == CPENS (0, C8, C2, 7)
4370 || reg->value == CPENS (0, C8, C5, 1)
4371 || reg->value == CPENS (0, C8, C5, 3)
4372 || reg->value == CPENS (0, C8, C5, 5)
4373 || reg->value == CPENS (0, C8, C5, 7)
4374 || reg->value == CPENS (4, C8, C0, 2)
4375 || reg->value == CPENS (4, C8, C0, 6)
4376 || reg->value == CPENS (4, C8, C4, 2)
4377 || reg->value == CPENS (4, C8, C4, 6)
4378 || reg->value == CPENS (4, C8, C4, 3)
4379 || reg->value == CPENS (4, C8, C4, 7)
4380 || reg->value == CPENS (4, C8, C6, 1)
4381 || reg->value == CPENS (4, C8, C6, 5)
4382 || reg->value == CPENS (4, C8, C2, 1)
4383 || reg->value == CPENS (4, C8, C2, 5)
4384 || reg->value == CPENS (4, C8, C5, 1)
4385 || reg->value == CPENS (4, C8, C5, 5)
4386 || reg->value == CPENS (6, C8, C6, 1)
4387 || reg->value == CPENS (6, C8, C6, 5)
4388 || reg->value == CPENS (6, C8, C2, 1)
4389 || reg->value == CPENS (6, C8, C2, 5)
4390 || reg->value == CPENS (6, C8, C5, 1)
4391 || reg->value == CPENS (6, C8, C5, 5))
4392 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4395 /* Random Number Instructions. For now they are available
4396 (and optional) only with ARMv8.5-A. */
4397 if ((reg->value == CPENC (3, 3, C2, C4, 0)
4398 || reg->value == CPENC (3, 3, C2, C4, 1))
4399 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RNG)
4400 && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_5)))
4403 /* System Registers in ARMv8.5-A with AARCH64_FEATURE_MEMTAG. */
4404 if ((reg->value == CPENC (3, 3, C4, C2, 7)
4405 || reg->value == CPENC (3, 0, C6, C6, 1)
4406 || reg->value == CPENC (3, 0, C6, C5, 0)
4407 || reg->value == CPENC (3, 4, C6, C5, 0)
4408 || reg->value == CPENC (3, 6, C6, C6, 0)
4409 || reg->value == CPENC (3, 5, C6, C6, 0)
4410 || reg->value == CPENC (3, 0, C1, C0, 5)
4411 || reg->value == CPENC (3, 0, C1, C0, 6))
4412 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG)))
4418 /* The CPENC below is fairly misleading, the fields
4419 here are not in CPENC form. They are in op2op1 form. The fields are encoded
4420 by ins_pstatefield, which just shifts the value by the width of the fields
4421 in a loop. So if you CPENC them only the first value will be set, the rest
4422 are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
4423 value of 0b110000000001000000 (0x30040) while what you want is
4425 const aarch64_sys_reg aarch64_pstatefields [] =
4427 { "spsel", 0x05, 0 },
4428 { "daifset", 0x1e, 0 },
4429 { "daifclr", 0x1f, 0 },
4430 { "pan", 0x04, F_ARCHEXT },
4431 { "uao", 0x03, F_ARCHEXT },
4432 { "ssbs", 0x19, F_ARCHEXT },
4433 { "dit", 0x1a, F_ARCHEXT },
4434 { "tco", 0x1c, F_ARCHEXT },
4435 { 0, CPENC(0,0,0,0,0), 0 },
4439 aarch64_pstatefield_supported_p (const aarch64_feature_set features,
4440 const aarch64_sys_reg *reg)
4442 if (!(reg->flags & F_ARCHEXT))
4445 /* PAN. Values are from aarch64_pstatefields. */
4446 if (reg->value == 0x04
4447 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4450 /* UAO. Values are from aarch64_pstatefields. */
4451 if (reg->value == 0x03
4452 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4455 /* SSBS. Values are from aarch64_pstatefields. */
4456 if (reg->value == 0x19
4457 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4460 /* DIT. Values are from aarch64_pstatefields. */
4461 if (reg->value == 0x1a
4462 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4465 /* TCO. Values are from aarch64_pstatefields. */
4466 if (reg->value == 0x1c
4467 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4473 const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
4475 { "ialluis", CPENS(0,C7,C1,0), 0 },
4476 { "iallu", CPENS(0,C7,C5,0), 0 },
4477 { "ivau", CPENS (3, C7, C5, 1), F_HASXT },
4478 { 0, CPENS(0,0,0,0), 0 }
4481 const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
4483 { "zva", CPENS (3, C7, C4, 1), F_HASXT },
4484 { "gva", CPENS (3, C7, C4, 3), F_HASXT | F_ARCHEXT },
4485 { "gzva", CPENS (3, C7, C4, 4), F_HASXT | F_ARCHEXT },
4486 { "ivac", CPENS (0, C7, C6, 1), F_HASXT },
4487 { "igvac", CPENS (0, C7, C6, 3), F_HASXT | F_ARCHEXT },
4488 { "igsw", CPENS (0, C7, C6, 4), F_HASXT | F_ARCHEXT },
4489 { "isw", CPENS (0, C7, C6, 2), F_HASXT },
4490 { "igdvac", CPENS (0, C7, C6, 5), F_HASXT | F_ARCHEXT },
4491 { "igdsw", CPENS (0, C7, C6, 6), F_HASXT | F_ARCHEXT },
4492 { "cvac", CPENS (3, C7, C10, 1), F_HASXT },
4493 { "cgvac", CPENS (3, C7, C10, 3), F_HASXT | F_ARCHEXT },
4494 { "cgdvac", CPENS (3, C7, C10, 5), F_HASXT | F_ARCHEXT },
4495 { "csw", CPENS (0, C7, C10, 2), F_HASXT },
4496 { "cgsw", CPENS (0, C7, C10, 4), F_HASXT | F_ARCHEXT },
4497 { "cgdsw", CPENS (0, C7, C10, 6), F_HASXT | F_ARCHEXT },
4498 { "cvau", CPENS (3, C7, C11, 1), F_HASXT },
4499 { "cvap", CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT },
4500 { "cgvap", CPENS (3, C7, C12, 3), F_HASXT | F_ARCHEXT },
4501 { "cgdvap", CPENS (3, C7, C12, 5), F_HASXT | F_ARCHEXT },
4502 { "cvadp", CPENS (3, C7, C13, 1), F_HASXT | F_ARCHEXT },
4503 { "cgvadp", CPENS (3, C7, C13, 3), F_HASXT | F_ARCHEXT },
4504 { "cgdvadp", CPENS (3, C7, C13, 5), F_HASXT | F_ARCHEXT },
4505 { "civac", CPENS (3, C7, C14, 1), F_HASXT },
4506 { "cigvac", CPENS (3, C7, C14, 3), F_HASXT | F_ARCHEXT },
4507 { "cigdvac", CPENS (3, C7, C14, 5), F_HASXT | F_ARCHEXT },
4508 { "cisw", CPENS (0, C7, C14, 2), F_HASXT },
4509 { "cigsw", CPENS (0, C7, C14, 4), F_HASXT | F_ARCHEXT },
4510 { "cigdsw", CPENS (0, C7, C14, 6), F_HASXT | F_ARCHEXT },
4511 { 0, CPENS(0,0,0,0), 0 }
4514 const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
4516 { "s1e1r", CPENS (0, C7, C8, 0), F_HASXT },
4517 { "s1e1w", CPENS (0, C7, C8, 1), F_HASXT },
4518 { "s1e0r", CPENS (0, C7, C8, 2), F_HASXT },
4519 { "s1e0w", CPENS (0, C7, C8, 3), F_HASXT },
4520 { "s12e1r", CPENS (4, C7, C8, 4), F_HASXT },
4521 { "s12e1w", CPENS (4, C7, C8, 5), F_HASXT },
4522 { "s12e0r", CPENS (4, C7, C8, 6), F_HASXT },
4523 { "s12e0w", CPENS (4, C7, C8, 7), F_HASXT },
4524 { "s1e2r", CPENS (4, C7, C8, 0), F_HASXT },
4525 { "s1e2w", CPENS (4, C7, C8, 1), F_HASXT },
4526 { "s1e3r", CPENS (6, C7, C8, 0), F_HASXT },
4527 { "s1e3w", CPENS (6, C7, C8, 1), F_HASXT },
4528 { "s1e1rp", CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT },
4529 { "s1e1wp", CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT },
4530 { 0, CPENS(0,0,0,0), 0 }
4533 const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
4535 { "vmalle1", CPENS(0,C8,C7,0), 0 },
4536 { "vae1", CPENS (0, C8, C7, 1), F_HASXT },
4537 { "aside1", CPENS (0, C8, C7, 2), F_HASXT },
4538 { "vaae1", CPENS (0, C8, C7, 3), F_HASXT },
4539 { "vmalle1is", CPENS(0,C8,C3,0), 0 },
4540 { "vae1is", CPENS (0, C8, C3, 1), F_HASXT },
4541 { "aside1is", CPENS (0, C8, C3, 2), F_HASXT },
4542 { "vaae1is", CPENS (0, C8, C3, 3), F_HASXT },
4543 { "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT },
4544 { "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT },
4545 { "ipas2e1", CPENS (4, C8, C4, 1), F_HASXT },
4546 { "ipas2le1", CPENS (4, C8, C4, 5), F_HASXT },
4547 { "vae2", CPENS (4, C8, C7, 1), F_HASXT },
4548 { "vae2is", CPENS (4, C8, C3, 1), F_HASXT },
4549 { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
4550 { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
4551 { "vae3", CPENS (6, C8, C7, 1), F_HASXT },
4552 { "vae3is", CPENS (6, C8, C3, 1), F_HASXT },
4553 { "alle2", CPENS(4,C8,C7,0), 0 },
4554 { "alle2is", CPENS(4,C8,C3,0), 0 },
4555 { "alle1", CPENS(4,C8,C7,4), 0 },
4556 { "alle1is", CPENS(4,C8,C3,4), 0 },
4557 { "alle3", CPENS(6,C8,C7,0), 0 },
4558 { "alle3is", CPENS(6,C8,C3,0), 0 },
4559 { "vale1is", CPENS (0, C8, C3, 5), F_HASXT },
4560 { "vale2is", CPENS (4, C8, C3, 5), F_HASXT },
4561 { "vale3is", CPENS (6, C8, C3, 5), F_HASXT },
4562 { "vaale1is", CPENS (0, C8, C3, 7), F_HASXT },
4563 { "vale1", CPENS (0, C8, C7, 5), F_HASXT },
4564 { "vale2", CPENS (4, C8, C7, 5), F_HASXT },
4565 { "vale3", CPENS (6, C8, C7, 5), F_HASXT },
4566 { "vaale1", CPENS (0, C8, C7, 7), F_HASXT },
4568 { "vmalle1os", CPENS (0, C8, C1, 0), F_ARCHEXT },
4569 { "vae1os", CPENS (0, C8, C1, 1), F_HASXT | F_ARCHEXT },
4570 { "aside1os", CPENS (0, C8, C1, 2), F_HASXT | F_ARCHEXT },
4571 { "vaae1os", CPENS (0, C8, C1, 3), F_HASXT | F_ARCHEXT },
4572 { "vale1os", CPENS (0, C8, C1, 5), F_HASXT | F_ARCHEXT },
4573 { "vaale1os", CPENS (0, C8, C1, 7), F_HASXT | F_ARCHEXT },
4574 { "ipas2e1os", CPENS (4, C8, C4, 0), F_HASXT | F_ARCHEXT },
4575 { "ipas2le1os", CPENS (4, C8, C4, 4), F_HASXT | F_ARCHEXT },
4576 { "vae2os", CPENS (4, C8, C1, 1), F_HASXT | F_ARCHEXT },
4577 { "vale2os", CPENS (4, C8, C1, 5), F_HASXT | F_ARCHEXT },
4578 { "vmalls12e1os", CPENS (4, C8, C1, 6), F_ARCHEXT },
4579 { "vae3os", CPENS (6, C8, C1, 1), F_HASXT | F_ARCHEXT },
4580 { "vale3os", CPENS (6, C8, C1, 5), F_HASXT | F_ARCHEXT },
4581 { "alle2os", CPENS (4, C8, C1, 0), F_ARCHEXT },
4582 { "alle1os", CPENS (4, C8, C1, 4), F_ARCHEXT },
4583 { "alle3os", CPENS (6, C8, C1, 0), F_ARCHEXT },
4585 { "rvae1", CPENS (0, C8, C6, 1), F_HASXT | F_ARCHEXT },
4586 { "rvaae1", CPENS (0, C8, C6, 3), F_HASXT | F_ARCHEXT },
4587 { "rvale1", CPENS (0, C8, C6, 5), F_HASXT | F_ARCHEXT },
4588 { "rvaale1", CPENS (0, C8, C6, 7), F_HASXT | F_ARCHEXT },
4589 { "rvae1is", CPENS (0, C8, C2, 1), F_HASXT | F_ARCHEXT },
4590 { "rvaae1is", CPENS (0, C8, C2, 3), F_HASXT | F_ARCHEXT },
4591 { "rvale1is", CPENS (0, C8, C2, 5), F_HASXT | F_ARCHEXT },
4592 { "rvaale1is", CPENS (0, C8, C2, 7), F_HASXT | F_ARCHEXT },
4593 { "rvae1os", CPENS (0, C8, C5, 1), F_HASXT | F_ARCHEXT },
4594 { "rvaae1os", CPENS (0, C8, C5, 3), F_HASXT | F_ARCHEXT },
4595 { "rvale1os", CPENS (0, C8, C5, 5), F_HASXT | F_ARCHEXT },
4596 { "rvaale1os", CPENS (0, C8, C5, 7), F_HASXT | F_ARCHEXT },
4597 { "ripas2e1is", CPENS (4, C8, C0, 2), F_HASXT | F_ARCHEXT },
4598 { "ripas2le1is",CPENS (4, C8, C0, 6), F_HASXT | F_ARCHEXT },
4599 { "ripas2e1", CPENS (4, C8, C4, 2), F_HASXT | F_ARCHEXT },
4600 { "ripas2le1", CPENS (4, C8, C4, 6), F_HASXT | F_ARCHEXT },
4601 { "ripas2e1os", CPENS (4, C8, C4, 3), F_HASXT | F_ARCHEXT },
4602 { "ripas2le1os",CPENS (4, C8, C4, 7), F_HASXT | F_ARCHEXT },
4603 { "rvae2", CPENS (4, C8, C6, 1), F_HASXT | F_ARCHEXT },
4604 { "rvale2", CPENS (4, C8, C6, 5), F_HASXT | F_ARCHEXT },
4605 { "rvae2is", CPENS (4, C8, C2, 1), F_HASXT | F_ARCHEXT },
4606 { "rvale2is", CPENS (4, C8, C2, 5), F_HASXT | F_ARCHEXT },
4607 { "rvae2os", CPENS (4, C8, C5, 1), F_HASXT | F_ARCHEXT },
4608 { "rvale2os", CPENS (4, C8, C5, 5), F_HASXT | F_ARCHEXT },
4609 { "rvae3", CPENS (6, C8, C6, 1), F_HASXT | F_ARCHEXT },
4610 { "rvale3", CPENS (6, C8, C6, 5), F_HASXT | F_ARCHEXT },
4611 { "rvae3is", CPENS (6, C8, C2, 1), F_HASXT | F_ARCHEXT },
4612 { "rvale3is", CPENS (6, C8, C2, 5), F_HASXT | F_ARCHEXT },
4613 { "rvae3os", CPENS (6, C8, C5, 1), F_HASXT | F_ARCHEXT },
4614 { "rvale3os", CPENS (6, C8, C5, 5), F_HASXT | F_ARCHEXT },
4616 { 0, CPENS(0,0,0,0), 0 }
4619 const aarch64_sys_ins_reg aarch64_sys_regs_sr[] =
4621 /* RCTX is somewhat unique in a way that it has different values
4622 (op2) based on the instruction in which it is used (cfp/dvp/cpp).
4623 Thus op2 is masked out and instead encoded directly in the
4624 aarch64_opcode_table entries for the respective instructions. */
4625 { "rctx", CPENS(3,C7,C3,0), F_HASXT | F_ARCHEXT | F_REG_WRITE}, /* WO */
4627 { 0, CPENS(0,0,0,0), 0 }
4631 aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
4633 return (sys_ins_reg->flags & F_HASXT) != 0;
4637 aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
4638 const aarch64_sys_ins_reg *reg)
4640 if (!(reg->flags & F_ARCHEXT))
4643 /* DC CVAP. Values are from aarch64_sys_regs_dc. */
4644 if (reg->value == CPENS (3, C7, C12, 1)
4645 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4648 /* DC CVADP. Values are from aarch64_sys_regs_dc. */
4649 if (reg->value == CPENS (3, C7, C13, 1)
4650 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_CVADP))
4653 /* DC <dc_op> for ARMv8.5-A Memory Tagging Extension. */
4654 if ((reg->value == CPENS (0, C7, C6, 3)
4655 || reg->value == CPENS (0, C7, C6, 4)
4656 || reg->value == CPENS (0, C7, C10, 4)
4657 || reg->value == CPENS (0, C7, C14, 4)
4658 || reg->value == CPENS (3, C7, C10, 3)
4659 || reg->value == CPENS (3, C7, C12, 3)
4660 || reg->value == CPENS (3, C7, C13, 3)
4661 || reg->value == CPENS (3, C7, C14, 3)
4662 || reg->value == CPENS (3, C7, C4, 3)
4663 || reg->value == CPENS (0, C7, C6, 5)
4664 || reg->value == CPENS (0, C7, C6, 6)
4665 || reg->value == CPENS (0, C7, C10, 6)
4666 || reg->value == CPENS (0, C7, C14, 6)
4667 || reg->value == CPENS (3, C7, C10, 5)
4668 || reg->value == CPENS (3, C7, C12, 5)
4669 || reg->value == CPENS (3, C7, C13, 5)
4670 || reg->value == CPENS (3, C7, C14, 5)
4671 || reg->value == CPENS (3, C7, C4, 4))
4672 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4675 /* AT S1E1RP, AT S1E1WP. Values are from aarch64_sys_regs_at. */
4676 if ((reg->value == CPENS (0, C7, C9, 0)
4677 || reg->value == CPENS (0, C7, C9, 1))
4678 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4681 /* CFP/DVP/CPP RCTX : Value are from aarch64_sys_regs_sr. */
4682 if (reg->value == CPENS (3, C7, C3, 0)
4683 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PREDRES))
4706 #define BIT(INSN,BT) (((INSN) >> (BT)) & 1)
4707 #define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))
4709 static enum err_type
4710 verify_ldpsw (const struct aarch64_inst *inst ATTRIBUTE_UNUSED,
4711 const aarch64_insn insn, bfd_vma pc ATTRIBUTE_UNUSED,
4712 bfd_boolean encoding ATTRIBUTE_UNUSED,
4713 aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
4714 aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
4716 int t = BITS (insn, 4, 0);
4717 int n = BITS (insn, 9, 5);
4718 int t2 = BITS (insn, 14, 10);
4722 /* Write back enabled. */
4723 if ((t == n || t2 == n) && n != 31)
4737 /* Initialize an instruction sequence insn_sequence with the instruction INST.
4738 If INST is NULL the given insn_sequence is cleared and the sequence is left
4742 init_insn_sequence (const struct aarch64_inst *inst,
4743 aarch64_instr_sequence *insn_sequence)
4745 int num_req_entries = 0;
4746 insn_sequence->next_insn = 0;
4747 insn_sequence->num_insns = num_req_entries;
4748 if (insn_sequence->instr)
4749 XDELETE (insn_sequence->instr);
4750 insn_sequence->instr = NULL;
4754 insn_sequence->instr = XNEW (aarch64_inst);
4755 memcpy (insn_sequence->instr, inst, sizeof (aarch64_inst));
4758 /* Handle all the cases here. May need to think of something smarter than
4759 a giant if/else chain if this grows. At that time, a lookup table may be
4761 if (inst && inst->opcode->constraints & C_SCAN_MOVPRFX)
4762 num_req_entries = 1;
4764 if (insn_sequence->current_insns)
4765 XDELETEVEC (insn_sequence->current_insns);
4766 insn_sequence->current_insns = NULL;
4768 if (num_req_entries != 0)
4770 size_t size = num_req_entries * sizeof (aarch64_inst);
4771 insn_sequence->current_insns
4772 = (aarch64_inst**) XNEWVEC (aarch64_inst, num_req_entries);
4773 memset (insn_sequence->current_insns, 0, size);
4778 /* This function verifies that the instruction INST adheres to its specified
4779 constraints. If it does then ERR_OK is returned, if not then ERR_VFI is
4780 returned and MISMATCH_DETAIL contains the reason why verification failed.
4782 The function is called both during assembly and disassembly. If assembling
4783 then ENCODING will be TRUE, else FALSE. If dissassembling PC will be set
4784 and will contain the PC of the current instruction w.r.t to the section.
4786 If ENCODING and PC=0 then you are at a start of a section. The constraints
4787 are verified against the given state insn_sequence which is updated as it
4788 transitions through the verification. */
4791 verify_constraints (const struct aarch64_inst *inst,
4792 const aarch64_insn insn ATTRIBUTE_UNUSED,
4794 bfd_boolean encoding,
4795 aarch64_operand_error *mismatch_detail,
4796 aarch64_instr_sequence *insn_sequence)
4799 assert (inst->opcode);
4801 const struct aarch64_opcode *opcode = inst->opcode;
4802 if (!opcode->constraints && !insn_sequence->instr)
4805 assert (insn_sequence);
4807 enum err_type res = ERR_OK;
4809 /* This instruction puts a constraint on the insn_sequence. */
4810 if (opcode->flags & F_SCAN)
4812 if (insn_sequence->instr)
4814 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4815 mismatch_detail->error = _("instruction opens new dependency "
4816 "sequence without ending previous one");
4817 mismatch_detail->index = -1;
4818 mismatch_detail->non_fatal = TRUE;
4822 init_insn_sequence (inst, insn_sequence);
4826 /* Verify constraints on an existing sequence. */
4827 if (insn_sequence->instr)
4829 const struct aarch64_opcode* inst_opcode = insn_sequence->instr->opcode;
4830 /* If we're decoding and we hit PC=0 with an open sequence then we haven't
4831 closed a previous one that we should have. */
4832 if (!encoding && pc == 0)
4834 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4835 mismatch_detail->error = _("previous `movprfx' sequence not closed");
4836 mismatch_detail->index = -1;
4837 mismatch_detail->non_fatal = TRUE;
4839 /* Reset the sequence. */
4840 init_insn_sequence (NULL, insn_sequence);
4844 /* Validate C_SCAN_MOVPRFX constraints. Move this to a lookup table. */
4845 if (inst_opcode->constraints & C_SCAN_MOVPRFX)
4847 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4848 instruction for better error messages. */
4849 if (!opcode->avariant || !(*opcode->avariant & AARCH64_FEATURE_SVE))
4851 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4852 mismatch_detail->error = _("SVE instruction expected after "
4854 mismatch_detail->index = -1;
4855 mismatch_detail->non_fatal = TRUE;
4860 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4861 instruction that is allowed to be used with a MOVPRFX. */
4862 if (!(opcode->constraints & C_SCAN_MOVPRFX))
4864 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4865 mismatch_detail->error = _("SVE `movprfx' compatible instruction "
4867 mismatch_detail->index = -1;
4868 mismatch_detail->non_fatal = TRUE;
4873 /* Next check for usage of the predicate register. */
4874 aarch64_opnd_info blk_dest = insn_sequence->instr->operands[0];
4875 aarch64_opnd_info blk_pred, inst_pred;
4876 memset (&blk_pred, 0, sizeof (aarch64_opnd_info));
4877 memset (&inst_pred, 0, sizeof (aarch64_opnd_info));
4878 bfd_boolean predicated = FALSE;
4879 assert (blk_dest.type == AARCH64_OPND_SVE_Zd);
4881 /* Determine if the movprfx instruction used is predicated or not. */
4882 if (insn_sequence->instr->operands[1].type == AARCH64_OPND_SVE_Pg3)
4885 blk_pred = insn_sequence->instr->operands[1];
4888 unsigned char max_elem_size = 0;
4889 unsigned char current_elem_size;
4890 int num_op_used = 0, last_op_usage = 0;
4891 int i, inst_pred_idx = -1;
4892 int num_ops = aarch64_num_of_operands (opcode);
4893 for (i = 0; i < num_ops; i++)
4895 aarch64_opnd_info inst_op = inst->operands[i];
4896 switch (inst_op.type)
4898 case AARCH64_OPND_SVE_Zd:
4899 case AARCH64_OPND_SVE_Zm_5:
4900 case AARCH64_OPND_SVE_Zm_16:
4901 case AARCH64_OPND_SVE_Zn:
4902 case AARCH64_OPND_SVE_Zt:
4903 case AARCH64_OPND_SVE_Vm:
4904 case AARCH64_OPND_SVE_Vn:
4905 case AARCH64_OPND_Va:
4906 case AARCH64_OPND_Vn:
4907 case AARCH64_OPND_Vm:
4908 case AARCH64_OPND_Sn:
4909 case AARCH64_OPND_Sm:
4910 case AARCH64_OPND_Rn:
4911 case AARCH64_OPND_Rm:
4912 case AARCH64_OPND_Rn_SP:
4913 case AARCH64_OPND_Rm_SP:
4914 if (inst_op.reg.regno == blk_dest.reg.regno)
4920 = aarch64_get_qualifier_esize (inst_op.qualifier);
4921 if (current_elem_size > max_elem_size)
4922 max_elem_size = current_elem_size;
4924 case AARCH64_OPND_SVE_Pd:
4925 case AARCH64_OPND_SVE_Pg3:
4926 case AARCH64_OPND_SVE_Pg4_5:
4927 case AARCH64_OPND_SVE_Pg4_10:
4928 case AARCH64_OPND_SVE_Pg4_16:
4929 case AARCH64_OPND_SVE_Pm:
4930 case AARCH64_OPND_SVE_Pn:
4931 case AARCH64_OPND_SVE_Pt:
4932 inst_pred = inst_op;
4940 assert (max_elem_size != 0);
4941 aarch64_opnd_info inst_dest = inst->operands[0];
4942 /* Determine the size that should be used to compare against the
4945 = opcode->constraints & C_MAX_ELEM
4947 : aarch64_get_qualifier_esize (inst_dest.qualifier);
4949 /* If movprfx is predicated do some extra checks. */
4952 /* The instruction must be predicated. */
4953 if (inst_pred_idx < 0)
4955 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4956 mismatch_detail->error = _("predicated instruction expected "
4958 mismatch_detail->index = -1;
4959 mismatch_detail->non_fatal = TRUE;
4964 /* The instruction must have a merging predicate. */
4965 if (inst_pred.qualifier != AARCH64_OPND_QLF_P_M)
4967 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4968 mismatch_detail->error = _("merging predicate expected due "
4969 "to preceding `movprfx'");
4970 mismatch_detail->index = inst_pred_idx;
4971 mismatch_detail->non_fatal = TRUE;
4976 /* The same register must be used in instruction. */
4977 if (blk_pred.reg.regno != inst_pred.reg.regno)
4979 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4980 mismatch_detail->error = _("predicate register differs "
4981 "from that in preceding "
4983 mismatch_detail->index = inst_pred_idx;
4984 mismatch_detail->non_fatal = TRUE;
4990 /* Destructive operations by definition must allow one usage of the
4993 = aarch64_is_destructive_by_operands (opcode) ? 2 : 1;
4995 /* Operand is not used at all. */
4996 if (num_op_used == 0)
4998 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4999 mismatch_detail->error = _("output register of preceding "
5000 "`movprfx' not used in current "
5002 mismatch_detail->index = 0;
5003 mismatch_detail->non_fatal = TRUE;
5008 /* We now know it's used, now determine exactly where it's used. */
5009 if (blk_dest.reg.regno != inst_dest.reg.regno)
5011 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5012 mismatch_detail->error = _("output register of preceding "
5013 "`movprfx' expected as output");
5014 mismatch_detail->index = 0;
5015 mismatch_detail->non_fatal = TRUE;
5020 /* Operand used more than allowed for the specific opcode type. */
5021 if (num_op_used > allowed_usage)
5023 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5024 mismatch_detail->error = _("output register of preceding "
5025 "`movprfx' used as input");
5026 mismatch_detail->index = last_op_usage;
5027 mismatch_detail->non_fatal = TRUE;
5032 /* Now the only thing left is the qualifiers checks. The register
5033 must have the same maximum element size. */
5034 if (inst_dest.qualifier
5035 && blk_dest.qualifier
5036 && current_elem_size
5037 != aarch64_get_qualifier_esize (blk_dest.qualifier))
5039 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5040 mismatch_detail->error = _("register size not compatible with "
5041 "previous `movprfx'");
5042 mismatch_detail->index = 0;
5043 mismatch_detail->non_fatal = TRUE;
5050 /* Add the new instruction to the sequence. */
5051 memcpy (insn_sequence->current_insns + insn_sequence->next_insn++,
5052 inst, sizeof (aarch64_inst));
5054 /* Check if sequence is now full. */
5055 if (insn_sequence->next_insn >= insn_sequence->num_insns)
5057 /* Sequence is full, but we don't have anything special to do for now,
5058 so clear and reset it. */
5059 init_insn_sequence (NULL, insn_sequence);
5067 /* Return true if VALUE cannot be moved into an SVE register using DUP
5068 (with any element size, not just ESIZE) and if using DUPM would
5069 therefore be OK. ESIZE is the number of bytes in the immediate. */
5072 aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue, int esize)
5074 int64_t svalue = uvalue;
5075 uint64_t upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
5077 if ((uvalue & ~upper) != uvalue && (uvalue | upper) != uvalue)
5079 if (esize <= 4 || (uint32_t) uvalue == (uint32_t) (uvalue >> 32))
5081 svalue = (int32_t) uvalue;
5082 if (esize <= 2 || (uint16_t) uvalue == (uint16_t) (uvalue >> 16))
5084 svalue = (int16_t) uvalue;
5085 if (esize == 1 || (uint8_t) uvalue == (uint8_t) (uvalue >> 8))
5089 if ((svalue & 0xff) == 0)
5091 return svalue < -128 || svalue >= 128;
5094 /* Include the opcode description table as well as the operand description
5096 #define VERIFIER(x) verify_##x
5097 #include "aarch64-tbl.h"