1 /* aarch64-dis.c -- AArch64 disassembler.
2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of the GNU opcodes library.
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
22 #include "bfd_stdint.h"
24 #include "libiberty.h"
26 #include "aarch64-dis.h"
36 /* Cached mapping symbol state. */
43 static enum map_type last_type;
44 static int last_mapping_sym = -1;
45 static bfd_vma last_mapping_addr = 0;
48 static int no_aliases = 0; /* If set disassemble as most general inst. */
52 set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
57 parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
59 /* Try to match options that are simple flags */
60 if (CONST_STRNEQ (option, "no-aliases"))
66 if (CONST_STRNEQ (option, "aliases"))
73 if (CONST_STRNEQ (option, "debug_dump"))
78 #endif /* DEBUG_AARCH64 */
81 fprintf (stderr, _("Unrecognised disassembler option: %s\n"), option);
85 parse_aarch64_dis_options (const char *options)
87 const char *option_end;
92 while (*options != '\0')
94 /* Skip empty options. */
101 /* We know that *options is neither NUL or a comma. */
102 option_end = options + 1;
103 while (*option_end != ',' && *option_end != '\0')
106 parse_aarch64_dis_option (options, option_end - options);
108 /* Go on to the next one. If option_end points to a comma, it
109 will be skipped above. */
110 options = option_end;
114 /* Functions doing the instruction disassembling. */
116 /* The unnamed arguments consist of the number of fields and information about
117 these fields where the VALUE will be extracted from CODE and returned.
118 MASK can be zero or the base mask of the opcode.
120 N.B. the fields are required to be in such an order than the most signficant
121 field for VALUE comes the first, e.g. the <index> in
122 SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
123 is encoded in H:L:M in some cases, the fields H:L:M should be passed in
124 the order of H, L, M. */
127 extract_fields (aarch64_insn code, aarch64_insn mask, ...)
130 const aarch64_field *field;
131 enum aarch64_field_kind kind;
135 num = va_arg (va, uint32_t);
137 aarch64_insn value = 0x0;
140 kind = va_arg (va, enum aarch64_field_kind);
141 field = &fields[kind];
142 value <<= field->width;
143 value |= extract_field (kind, code, mask);
148 /* Extract the value of all fields in SELF->fields from instruction CODE.
149 The least significant bit comes from the final field. */
152 extract_all_fields (const aarch64_operand *self, aarch64_insn code)
156 enum aarch64_field_kind kind;
159 for (i = 0; i < ARRAY_SIZE (self->fields) && self->fields[i] != FLD_NIL; ++i)
161 kind = self->fields[i];
162 value <<= fields[kind].width;
163 value |= extract_field (kind, code, 0);
168 /* Sign-extend bit I of VALUE. */
169 static inline int32_t
170 sign_extend (aarch64_insn value, unsigned i)
172 uint32_t ret = value;
175 if ((value >> i) & 0x1)
177 uint32_t val = (uint32_t)(-1) << i;
180 return (int32_t) ret;
183 /* N.B. the following inline helpfer functions create a dependency on the
184 order of operand qualifier enumerators. */
186 /* Given VALUE, return qualifier for a general purpose register. */
187 static inline enum aarch64_opnd_qualifier
188 get_greg_qualifier_from_value (aarch64_insn value)
190 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
192 && aarch64_get_qualifier_standard_value (qualifier) == value);
196 /* Given VALUE, return qualifier for a vector register. This does not support
197 decoding instructions that accept the 2H vector type. */
199 static inline enum aarch64_opnd_qualifier
200 get_vreg_qualifier_from_value (aarch64_insn value)
202 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
204 /* Instructions using vector type 2H should not call this function. Skip over
206 if (qualifier >= AARCH64_OPND_QLF_V_2H)
210 && aarch64_get_qualifier_standard_value (qualifier) == value);
214 /* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
215 static inline enum aarch64_opnd_qualifier
216 get_sreg_qualifier_from_value (aarch64_insn value)
218 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
221 && aarch64_get_qualifier_standard_value (qualifier) == value);
225 /* Given the instruction in *INST which is probably half way through the
226 decoding and our caller wants to know the expected qualifier for operand
227 I. Return such a qualifier if we can establish it; otherwise return
228 AARCH64_OPND_QLF_NIL. */
230 static aarch64_opnd_qualifier_t
231 get_expected_qualifier (const aarch64_inst *inst, int i)
233 aarch64_opnd_qualifier_seq_t qualifiers;
234 /* Should not be called if the qualifier is known. */
235 assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
236 if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
238 return qualifiers[i];
240 return AARCH64_OPND_QLF_NIL;
243 /* Operand extractors. */
246 aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
247 const aarch64_insn code,
248 const aarch64_inst *inst ATTRIBUTE_UNUSED)
250 info->reg.regno = extract_field (self->fields[0], code, 0);
255 aarch64_ext_regno_pair (const aarch64_operand *self ATTRIBUTE_UNUSED, aarch64_opnd_info *info,
256 const aarch64_insn code ATTRIBUTE_UNUSED,
257 const aarch64_inst *inst ATTRIBUTE_UNUSED)
259 assert (info->idx == 1
261 info->reg.regno = inst->operands[info->idx - 1].reg.regno + 1;
265 /* e.g. IC <ic_op>{, <Xt>}. */
267 aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
268 const aarch64_insn code,
269 const aarch64_inst *inst ATTRIBUTE_UNUSED)
271 info->reg.regno = extract_field (self->fields[0], code, 0);
272 assert (info->idx == 1
273 && (aarch64_get_operand_class (inst->operands[0].type)
274 == AARCH64_OPND_CLASS_SYSTEM));
275 /* This will make the constraint checking happy and more importantly will
276 help the disassembler determine whether this operand is optional or
278 info->present = aarch64_sys_ins_reg_has_xt (inst->operands[0].sysins_op);
283 /* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
285 aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
286 const aarch64_insn code,
287 const aarch64_inst *inst ATTRIBUTE_UNUSED)
290 info->reglane.regno = extract_field (self->fields[0], code,
293 /* Index and/or type. */
294 if (inst->opcode->iclass == asisdone
295 || inst->opcode->iclass == asimdins)
297 if (info->type == AARCH64_OPND_En
298 && inst->opcode->operands[0] == AARCH64_OPND_Ed)
301 /* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
302 assert (info->idx == 1); /* Vn */
303 aarch64_insn value = extract_field (FLD_imm4, code, 0);
304 /* Depend on AARCH64_OPND_Ed to determine the qualifier. */
305 info->qualifier = get_expected_qualifier (inst, info->idx);
306 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
307 info->reglane.index = value >> shift;
311 /* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
319 aarch64_insn value = extract_field (FLD_imm5, code, 0);
320 while (++pos <= 3 && (value & 0x1) == 0)
324 info->qualifier = get_sreg_qualifier_from_value (pos);
325 info->reglane.index = (unsigned) (value >> 1);
330 /* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
331 or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
333 /* Need information in other operand(s) to help decoding. */
334 info->qualifier = get_expected_qualifier (inst, info->idx);
335 switch (info->qualifier)
337 case AARCH64_OPND_QLF_S_H:
339 info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
341 info->reglane.regno &= 0xf;
343 case AARCH64_OPND_QLF_S_S:
345 info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
347 case AARCH64_OPND_QLF_S_D:
349 info->reglane.index = extract_field (FLD_H, code, 0);
355 if (inst->opcode->op == OP_FCMLA_ELEM)
357 /* Complex operand takes two elements. */
358 if (info->reglane.index & 1)
360 info->reglane.index /= 2;
368 aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
369 const aarch64_insn code,
370 const aarch64_inst *inst ATTRIBUTE_UNUSED)
373 info->reglist.first_regno = extract_field (self->fields[0], code, 0);
375 info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
379 /* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
381 aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
382 aarch64_opnd_info *info, const aarch64_insn code,
383 const aarch64_inst *inst)
386 /* Number of elements in each structure to be loaded/stored. */
387 unsigned expected_num = get_opcode_dependent_value (inst->opcode);
391 unsigned is_reserved;
393 unsigned num_elements;
409 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
411 value = extract_field (FLD_opcode, code, 0);
412 if (expected_num != data[value].num_elements || data[value].is_reserved)
414 info->reglist.num_regs = data[value].num_regs;
419 /* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
420 lanes instructions. */
422 aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
423 aarch64_opnd_info *info, const aarch64_insn code,
424 const aarch64_inst *inst)
429 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
431 value = extract_field (FLD_S, code, 0);
433 /* Number of registers is equal to the number of elements in
434 each structure to be loaded/stored. */
435 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
436 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
438 /* Except when it is LD1R. */
439 if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
440 info->reglist.num_regs = 2;
445 /* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
446 load/store single element instructions. */
448 aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
449 aarch64_opnd_info *info, const aarch64_insn code,
450 const aarch64_inst *inst ATTRIBUTE_UNUSED)
452 aarch64_field field = {0, 0};
453 aarch64_insn QSsize; /* fields Q:S:size. */
454 aarch64_insn opcodeh2; /* opcode<2:1> */
457 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
459 /* Decode the index, opcode<2:1> and size. */
460 gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
461 opcodeh2 = extract_field_2 (&field, code, 0);
462 QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
466 info->qualifier = AARCH64_OPND_QLF_S_B;
467 /* Index encoded in "Q:S:size". */
468 info->reglist.index = QSsize;
474 info->qualifier = AARCH64_OPND_QLF_S_H;
475 /* Index encoded in "Q:S:size<1>". */
476 info->reglist.index = QSsize >> 1;
479 if ((QSsize >> 1) & 0x1)
482 if ((QSsize & 0x1) == 0)
484 info->qualifier = AARCH64_OPND_QLF_S_S;
485 /* Index encoded in "Q:S". */
486 info->reglist.index = QSsize >> 2;
490 if (extract_field (FLD_S, code, 0))
493 info->qualifier = AARCH64_OPND_QLF_S_D;
494 /* Index encoded in "Q". */
495 info->reglist.index = QSsize >> 3;
502 info->reglist.has_index = 1;
503 info->reglist.num_regs = 0;
504 /* Number of registers is equal to the number of elements in
505 each structure to be loaded/stored. */
506 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
507 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
512 /* Decode fields immh:immb and/or Q for e.g.
513 SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
514 or SSHR <V><d>, <V><n>, #<shift>. */
517 aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
518 aarch64_opnd_info *info, const aarch64_insn code,
519 const aarch64_inst *inst)
522 aarch64_insn Q, imm, immh;
523 enum aarch64_insn_class iclass = inst->opcode->iclass;
525 immh = extract_field (FLD_immh, code, 0);
528 imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
530 /* Get highest set bit in immh. */
531 while (--pos >= 0 && (immh & 0x8) == 0)
534 assert ((iclass == asimdshf || iclass == asisdshf)
535 && (info->type == AARCH64_OPND_IMM_VLSR
536 || info->type == AARCH64_OPND_IMM_VLSL));
538 if (iclass == asimdshf)
540 Q = extract_field (FLD_Q, code, 0);
542 0000 x SEE AdvSIMD modified immediate
552 get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
555 info->qualifier = get_sreg_qualifier_from_value (pos);
557 if (info->type == AARCH64_OPND_IMM_VLSR)
559 0000 SEE AdvSIMD modified immediate
560 0001 (16-UInt(immh:immb))
561 001x (32-UInt(immh:immb))
562 01xx (64-UInt(immh:immb))
563 1xxx (128-UInt(immh:immb)) */
564 info->imm.value = (16 << pos) - imm;
568 0000 SEE AdvSIMD modified immediate
569 0001 (UInt(immh:immb)-8)
570 001x (UInt(immh:immb)-16)
571 01xx (UInt(immh:immb)-32)
572 1xxx (UInt(immh:immb)-64) */
573 info->imm.value = imm - (8 << pos);
578 /* Decode shift immediate for e.g. sshr (imm). */
580 aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
581 aarch64_opnd_info *info, const aarch64_insn code,
582 const aarch64_inst *inst ATTRIBUTE_UNUSED)
586 val = extract_field (FLD_size, code, 0);
589 case 0: imm = 8; break;
590 case 1: imm = 16; break;
591 case 2: imm = 32; break;
594 info->imm.value = imm;
598 /* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
599 value in the field(s) will be extracted as unsigned immediate value. */
601 aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
602 const aarch64_insn code,
603 const aarch64_inst *inst ATTRIBUTE_UNUSED)
607 imm = extract_all_fields (self, code);
609 if (operand_need_sign_extension (self))
610 imm = sign_extend (imm, get_operand_fields_width (self) - 1);
612 if (operand_need_shift_by_two (self))
615 if (info->type == AARCH64_OPND_ADDR_ADRP)
618 info->imm.value = imm;
622 /* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
624 aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
625 const aarch64_insn code,
626 const aarch64_inst *inst ATTRIBUTE_UNUSED)
628 aarch64_ext_imm (self, info, code, inst);
629 info->shifter.kind = AARCH64_MOD_LSL;
630 info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
634 /* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
635 MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
637 aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
638 aarch64_opnd_info *info,
639 const aarch64_insn code,
640 const aarch64_inst *inst ATTRIBUTE_UNUSED)
643 enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
644 aarch64_field field = {0, 0};
646 assert (info->idx == 1);
648 if (info->type == AARCH64_OPND_SIMD_FPIMM)
651 /* a:b:c:d:e:f:g:h */
652 imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
653 if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
655 /* Either MOVI <Dd>, #<imm>
656 or MOVI <Vd>.2D, #<imm>.
657 <imm> is a 64-bit immediate
658 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
659 encoded in "a:b:c:d:e:f:g:h". */
661 unsigned abcdefgh = imm;
662 for (imm = 0ull, i = 0; i < 8; i++)
663 if (((abcdefgh >> i) & 0x1) != 0)
664 imm |= 0xffull << (8 * i);
666 info->imm.value = imm;
669 info->qualifier = get_expected_qualifier (inst, info->idx);
670 switch (info->qualifier)
672 case AARCH64_OPND_QLF_NIL:
674 info->shifter.kind = AARCH64_MOD_NONE;
676 case AARCH64_OPND_QLF_LSL:
678 info->shifter.kind = AARCH64_MOD_LSL;
679 switch (aarch64_get_qualifier_esize (opnd0_qualifier))
681 case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
682 case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
683 case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
684 default: assert (0); return 0;
686 /* 00: 0; 01: 8; 10:16; 11:24. */
687 info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
689 case AARCH64_OPND_QLF_MSL:
691 info->shifter.kind = AARCH64_MOD_MSL;
692 gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
693 info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
703 /* Decode an 8-bit floating-point immediate. */
705 aarch64_ext_fpimm (const aarch64_operand *self, aarch64_opnd_info *info,
706 const aarch64_insn code,
707 const aarch64_inst *inst ATTRIBUTE_UNUSED)
709 info->imm.value = extract_all_fields (self, code);
714 /* Decode rotate immediate for FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #rotate. */
716 aarch64_ext_imm_rotate (const aarch64_operand *self, aarch64_opnd_info *info,
717 const aarch64_insn code,
718 const aarch64_inst *inst ATTRIBUTE_UNUSED)
720 uint64_t rot = extract_field (self->fields[0], code, 0);
724 case AARCH64_OPND_IMM_ROT1:
725 case AARCH64_OPND_IMM_ROT2:
733 case AARCH64_OPND_IMM_ROT3:
744 info->imm.value = rot * 90;
748 /* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
750 aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
751 aarch64_opnd_info *info, const aarch64_insn code,
752 const aarch64_inst *inst ATTRIBUTE_UNUSED)
754 info->imm.value = 64- extract_field (FLD_scale, code, 0);
758 /* Decode arithmetic immediate for e.g.
759 SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
761 aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
762 aarch64_opnd_info *info, const aarch64_insn code,
763 const aarch64_inst *inst ATTRIBUTE_UNUSED)
767 info->shifter.kind = AARCH64_MOD_LSL;
769 value = extract_field (FLD_shift, code, 0);
772 info->shifter.amount = value ? 12 : 0;
773 /* imm12 (unsigned) */
774 info->imm.value = extract_field (FLD_imm12, code, 0);
779 /* Return true if VALUE is a valid logical immediate encoding, storing the
780 decoded value in *RESULT if so. ESIZE is the number of bytes in the
781 decoded immediate. */
783 decode_limm (uint32_t esize, aarch64_insn value, int64_t *result)
789 /* value is N:immr:imms. */
791 R = (value >> 6) & 0x3f;
792 N = (value >> 12) & 0x1;
794 /* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
795 (in other words, right rotated by R), then replicated. */
799 mask = 0xffffffffffffffffull;
805 case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
806 case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
807 case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
808 case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
809 case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
812 mask = (1ull << simd_size) - 1;
813 /* Top bits are IGNORED. */
817 if (simd_size > esize * 8)
820 /* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
821 if (S == simd_size - 1)
823 /* S+1 consecutive bits to 1. */
824 /* NOTE: S can't be 63 due to detection above. */
825 imm = (1ull << (S + 1)) - 1;
826 /* Rotate to the left by simd_size - R. */
828 imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
829 /* Replicate the value according to SIMD size. */
832 case 2: imm = (imm << 2) | imm;
834 case 4: imm = (imm << 4) | imm;
836 case 8: imm = (imm << 8) | imm;
838 case 16: imm = (imm << 16) | imm;
840 case 32: imm = (imm << 32) | imm;
843 default: assert (0); return 0;
846 *result = imm & ~((uint64_t) -1 << (esize * 4) << (esize * 4));
851 /* Decode a logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
853 aarch64_ext_limm (const aarch64_operand *self,
854 aarch64_opnd_info *info, const aarch64_insn code,
855 const aarch64_inst *inst)
860 value = extract_fields (code, 0, 3, self->fields[0], self->fields[1],
862 esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
863 return decode_limm (esize, value, &info->imm.value);
866 /* Decode a logical immediate for the BIC alias of AND (etc.). */
868 aarch64_ext_inv_limm (const aarch64_operand *self,
869 aarch64_opnd_info *info, const aarch64_insn code,
870 const aarch64_inst *inst)
872 if (!aarch64_ext_limm (self, info, code, inst))
874 info->imm.value = ~info->imm.value;
878 /* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
879 or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
881 aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
882 aarch64_opnd_info *info,
883 const aarch64_insn code, const aarch64_inst *inst)
888 info->reg.regno = extract_field (FLD_Rt, code, 0);
891 value = extract_field (FLD_ldst_size, code, 0);
892 if (inst->opcode->iclass == ldstpair_indexed
893 || inst->opcode->iclass == ldstnapair_offs
894 || inst->opcode->iclass == ldstpair_off
895 || inst->opcode->iclass == loadlit)
897 enum aarch64_opnd_qualifier qualifier;
900 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
901 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
902 case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
905 info->qualifier = qualifier;
910 value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
913 info->qualifier = get_sreg_qualifier_from_value (value);
919 /* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
921 aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
922 aarch64_opnd_info *info,
924 const aarch64_inst *inst ATTRIBUTE_UNUSED)
927 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
931 /* Decode the address operand for e.g.
932 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
934 aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
935 aarch64_opnd_info *info,
936 aarch64_insn code, const aarch64_inst *inst)
938 aarch64_insn S, value;
941 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
943 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
945 value = extract_field (FLD_option, code, 0);
947 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
948 /* Fix-up the shifter kind; although the table-driven approach is
949 efficient, it is slightly inflexible, thus needing this fix-up. */
950 if (info->shifter.kind == AARCH64_MOD_UXTX)
951 info->shifter.kind = AARCH64_MOD_LSL;
953 S = extract_field (FLD_S, code, 0);
956 info->shifter.amount = 0;
957 info->shifter.amount_present = 0;
962 /* Need information in other operand(s) to help achieve the decoding
964 info->qualifier = get_expected_qualifier (inst, info->idx);
965 /* Get the size of the data element that is accessed, which may be
966 different from that of the source register size, e.g. in strb/ldrb. */
967 size = aarch64_get_qualifier_esize (info->qualifier);
968 info->shifter.amount = get_logsz (size);
969 info->shifter.amount_present = 1;
975 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
977 aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
978 aarch64_insn code, const aarch64_inst *inst)
981 info->qualifier = get_expected_qualifier (inst, info->idx);
984 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
985 /* simm (imm9 or imm7) */
986 imm = extract_field (self->fields[0], code, 0);
987 info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
988 if (self->fields[0] == FLD_imm7)
989 /* scaled immediate in ld/st pair instructions. */
990 info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
992 if (inst->opcode->iclass == ldst_unscaled
993 || inst->opcode->iclass == ldstnapair_offs
994 || inst->opcode->iclass == ldstpair_off
995 || inst->opcode->iclass == ldst_unpriv)
996 info->addr.writeback = 0;
999 /* pre/post- index */
1000 info->addr.writeback = 1;
1001 if (extract_field (self->fields[1], code, 0) == 1)
1002 info->addr.preind = 1;
1004 info->addr.postind = 1;
1010 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
1012 aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
1014 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1017 info->qualifier = get_expected_qualifier (inst, info->idx);
1018 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
1020 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1022 info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
1026 /* Decode the address operand for e.g. LDRAA <Xt>, [<Xn|SP>{, #<simm>}]. */
1028 aarch64_ext_addr_simm10 (const aarch64_operand *self, aarch64_opnd_info *info,
1030 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1034 info->qualifier = get_expected_qualifier (inst, info->idx);
1036 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1038 imm = extract_fields (code, 0, 2, self->fields[1], self->fields[2]);
1039 info->addr.offset.imm = sign_extend (imm, 9) << 3;
1040 if (extract_field (self->fields[3], code, 0) == 1) {
1041 info->addr.writeback = 1;
1042 info->addr.preind = 1;
1047 /* Decode the address operand for e.g.
1048 LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
1050 aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
1051 aarch64_opnd_info *info,
1052 aarch64_insn code, const aarch64_inst *inst)
1054 /* The opcode dependent area stores the number of elements in
1055 each structure to be loaded/stored. */
1056 int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
1059 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
1060 /* Rm | #<amount> */
1061 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
1062 if (info->addr.offset.regno == 31)
1064 if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
1065 /* Special handling of loading single structure to all lane. */
1066 info->addr.offset.imm = (is_ld1r ? 1
1067 : inst->operands[0].reglist.num_regs)
1068 * aarch64_get_qualifier_esize (inst->operands[0].qualifier);
1070 info->addr.offset.imm = inst->operands[0].reglist.num_regs
1071 * aarch64_get_qualifier_esize (inst->operands[0].qualifier)
1072 * aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
1075 info->addr.offset.is_reg = 1;
1076 info->addr.writeback = 1;
1081 /* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
1083 aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
1084 aarch64_opnd_info *info,
1085 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
1089 value = extract_field (FLD_cond, code, 0);
1090 info->cond = get_cond_from_value (value);
1094 /* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
1096 aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
1097 aarch64_opnd_info *info,
1099 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1101 /* op0:op1:CRn:CRm:op2 */
1102 info->sysreg = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
1107 /* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
1109 aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
1110 aarch64_opnd_info *info, aarch64_insn code,
1111 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1115 info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
1116 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
1117 if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
1119 /* Reserved value in <pstatefield>. */
1123 /* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
1125 aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
1126 aarch64_opnd_info *info,
1128 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1132 const aarch64_sys_ins_reg *sysins_ops;
1133 /* op0:op1:CRn:CRm:op2 */
1134 value = extract_fields (code, 0, 5,
1135 FLD_op0, FLD_op1, FLD_CRn,
1140 case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
1141 case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
1142 case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
1143 case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
1144 default: assert (0); return 0;
1147 for (i = 0; sysins_ops[i].name != NULL; ++i)
1148 if (sysins_ops[i].value == value)
1150 info->sysins_op = sysins_ops + i;
1151 DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
1152 info->sysins_op->name,
1153 (unsigned)info->sysins_op->value,
1154 aarch64_sys_ins_reg_has_xt (info->sysins_op), i);
1161 /* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
1164 aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
1165 aarch64_opnd_info *info,
1167 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1170 info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
1174 /* Decode the prefetch operation option operand for e.g.
1175 PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
1178 aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
1179 aarch64_opnd_info *info,
1180 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
1183 info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
1187 /* Decode the hint number for an alias taking an operand. Set info->hint_option
1188 to the matching name/value pair in aarch64_hint_options. */
1191 aarch64_ext_hint (const aarch64_operand *self ATTRIBUTE_UNUSED,
1192 aarch64_opnd_info *info,
1194 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1197 unsigned hint_number;
1200 hint_number = extract_fields (code, 0, 2, FLD_CRm, FLD_op2);
1202 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
1204 if (hint_number == aarch64_hint_options[i].value)
1206 info->hint_option = &(aarch64_hint_options[i]);
1214 /* Decode the extended register operand for e.g.
1215 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
1217 aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
1218 aarch64_opnd_info *info,
1220 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1225 info->reg.regno = extract_field (FLD_Rm, code, 0);
1227 value = extract_field (FLD_option, code, 0);
1228 info->shifter.kind =
1229 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
1231 info->shifter.amount = extract_field (FLD_imm3, code, 0);
1233 /* This makes the constraint checking happy. */
1234 info->shifter.operator_present = 1;
1236 /* Assume inst->operands[0].qualifier has been resolved. */
1237 assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
1238 info->qualifier = AARCH64_OPND_QLF_W;
1239 if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
1240 && (info->shifter.kind == AARCH64_MOD_UXTX
1241 || info->shifter.kind == AARCH64_MOD_SXTX))
1242 info->qualifier = AARCH64_OPND_QLF_X;
1247 /* Decode the shifted register operand for e.g.
1248 SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
1250 aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
1251 aarch64_opnd_info *info,
1253 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1258 info->reg.regno = extract_field (FLD_Rm, code, 0);
1260 value = extract_field (FLD_shift, code, 0);
1261 info->shifter.kind =
1262 aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */);
1263 if (info->shifter.kind == AARCH64_MOD_ROR
1264 && inst->opcode->iclass != log_shift)
1265 /* ROR is not available for the shifted register operand in arithmetic
1269 info->shifter.amount = extract_field (FLD_imm6, code, 0);
1271 /* This makes the constraint checking happy. */
1272 info->shifter.operator_present = 1;
1277 /* Decode an SVE address [<base>, #<offset>*<factor>, MUL VL],
1278 where <offset> is given by the OFFSET parameter and where <factor> is
1279 1 plus SELF's operand-dependent value. fields[0] specifies the field
1280 that holds <base>. */
1282 aarch64_ext_sve_addr_reg_mul_vl (const aarch64_operand *self,
1283 aarch64_opnd_info *info, aarch64_insn code,
1286 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1287 info->addr.offset.imm = offset * (1 + get_operand_specific_data (self));
1288 info->addr.offset.is_reg = FALSE;
1289 info->addr.writeback = FALSE;
1290 info->addr.preind = TRUE;
1292 info->shifter.kind = AARCH64_MOD_MUL_VL;
1293 info->shifter.amount = 1;
1294 info->shifter.operator_present = (info->addr.offset.imm != 0);
1295 info->shifter.amount_present = FALSE;
1299 /* Decode an SVE address [<base>, #<simm4>*<factor>, MUL VL],
1300 where <simm4> is a 4-bit signed value and where <factor> is 1 plus
1301 SELF's operand-dependent value. fields[0] specifies the field that
1302 holds <base>. <simm4> is encoded in the SVE_imm4 field. */
1304 aarch64_ext_sve_addr_ri_s4xvl (const aarch64_operand *self,
1305 aarch64_opnd_info *info, aarch64_insn code,
1306 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1310 offset = extract_field (FLD_SVE_imm4, code, 0);
1311 offset = ((offset + 8) & 15) - 8;
1312 return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
1315 /* Decode an SVE address [<base>, #<simm6>*<factor>, MUL VL],
1316 where <simm6> is a 6-bit signed value and where <factor> is 1 plus
1317 SELF's operand-dependent value. fields[0] specifies the field that
1318 holds <base>. <simm6> is encoded in the SVE_imm6 field. */
1320 aarch64_ext_sve_addr_ri_s6xvl (const aarch64_operand *self,
1321 aarch64_opnd_info *info, aarch64_insn code,
1322 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1326 offset = extract_field (FLD_SVE_imm6, code, 0);
1327 offset = (((offset + 32) & 63) - 32);
1328 return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
1331 /* Decode an SVE address [<base>, #<simm9>*<factor>, MUL VL],
1332 where <simm9> is a 9-bit signed value and where <factor> is 1 plus
1333 SELF's operand-dependent value. fields[0] specifies the field that
1334 holds <base>. <simm9> is encoded in the concatenation of the SVE_imm6
1335 and imm3 fields, with imm3 being the less-significant part. */
1337 aarch64_ext_sve_addr_ri_s9xvl (const aarch64_operand *self,
1338 aarch64_opnd_info *info,
1340 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1344 offset = extract_fields (code, 0, 2, FLD_SVE_imm6, FLD_imm3);
1345 offset = (((offset + 256) & 511) - 256);
1346 return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
1349 /* Decode an SVE address [<base>, #<offset> << <shift>], where <offset>
1350 is given by the OFFSET parameter and where <shift> is SELF's operand-
1351 dependent value. fields[0] specifies the base register field <base>. */
1353 aarch64_ext_sve_addr_reg_imm (const aarch64_operand *self,
1354 aarch64_opnd_info *info, aarch64_insn code,
1357 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1358 info->addr.offset.imm = offset * (1 << get_operand_specific_data (self));
1359 info->addr.offset.is_reg = FALSE;
1360 info->addr.writeback = FALSE;
1361 info->addr.preind = TRUE;
1362 info->shifter.operator_present = FALSE;
1363 info->shifter.amount_present = FALSE;
1367 /* Decode an SVE address [X<n>, #<SVE_imm6> << <shift>], where <SVE_imm6>
1368 is a 6-bit unsigned number and where <shift> is SELF's operand-dependent
1369 value. fields[0] specifies the base register field. */
1371 aarch64_ext_sve_addr_ri_u6 (const aarch64_operand *self,
1372 aarch64_opnd_info *info, aarch64_insn code,
1373 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1375 int offset = extract_field (FLD_SVE_imm6, code, 0);
1376 return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
1379 /* Decode an SVE address [X<n>, X<m>{, LSL #<shift>}], where <shift>
1380 is SELF's operand-dependent value. fields[0] specifies the base
1381 register field and fields[1] specifies the offset register field. */
1383 aarch64_ext_sve_addr_rr_lsl (const aarch64_operand *self,
1384 aarch64_opnd_info *info, aarch64_insn code,
1385 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1389 index_regno = extract_field (self->fields[1], code, 0);
1390 if (index_regno == 31 && (self->flags & OPD_F_NO_ZR) != 0)
1393 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1394 info->addr.offset.regno = index_regno;
1395 info->addr.offset.is_reg = TRUE;
1396 info->addr.writeback = FALSE;
1397 info->addr.preind = TRUE;
1398 info->shifter.kind = AARCH64_MOD_LSL;
1399 info->shifter.amount = get_operand_specific_data (self);
1400 info->shifter.operator_present = (info->shifter.amount != 0);
1401 info->shifter.amount_present = (info->shifter.amount != 0);
1405 /* Decode an SVE address [X<n>, Z<m>.<T>, (S|U)XTW {#<shift>}], where
1406 <shift> is SELF's operand-dependent value. fields[0] specifies the
1407 base register field, fields[1] specifies the offset register field and
1408 fields[2] is a single-bit field that selects SXTW over UXTW. */
1410 aarch64_ext_sve_addr_rz_xtw (const aarch64_operand *self,
1411 aarch64_opnd_info *info, aarch64_insn code,
1412 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1414 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1415 info->addr.offset.regno = extract_field (self->fields[1], code, 0);
1416 info->addr.offset.is_reg = TRUE;
1417 info->addr.writeback = FALSE;
1418 info->addr.preind = TRUE;
1419 if (extract_field (self->fields[2], code, 0))
1420 info->shifter.kind = AARCH64_MOD_SXTW;
1422 info->shifter.kind = AARCH64_MOD_UXTW;
1423 info->shifter.amount = get_operand_specific_data (self);
1424 info->shifter.operator_present = TRUE;
1425 info->shifter.amount_present = (info->shifter.amount != 0);
1429 /* Decode an SVE address [Z<n>.<T>, #<imm5> << <shift>], where <imm5> is a
1430 5-bit unsigned number and where <shift> is SELF's operand-dependent value.
1431 fields[0] specifies the base register field. */
1433 aarch64_ext_sve_addr_zi_u5 (const aarch64_operand *self,
1434 aarch64_opnd_info *info, aarch64_insn code,
1435 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1437 int offset = extract_field (FLD_imm5, code, 0);
1438 return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
1441 /* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, <modifier> {#<msz>}}],
1442 where <modifier> is given by KIND and where <msz> is a 2-bit unsigned
1443 number. fields[0] specifies the base register field and fields[1]
1444 specifies the offset register field. */
1446 aarch64_ext_sve_addr_zz (const aarch64_operand *self, aarch64_opnd_info *info,
1447 aarch64_insn code, enum aarch64_modifier_kind kind)
1449 info->addr.base_regno = extract_field (self->fields[0], code, 0);
1450 info->addr.offset.regno = extract_field (self->fields[1], code, 0);
1451 info->addr.offset.is_reg = TRUE;
1452 info->addr.writeback = FALSE;
1453 info->addr.preind = TRUE;
1454 info->shifter.kind = kind;
1455 info->shifter.amount = extract_field (FLD_SVE_msz, code, 0);
1456 info->shifter.operator_present = (kind != AARCH64_MOD_LSL
1457 || info->shifter.amount != 0);
1458 info->shifter.amount_present = (info->shifter.amount != 0);
1462 /* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, LSL #<msz>}], where
1463 <msz> is a 2-bit unsigned number. fields[0] specifies the base register
1464 field and fields[1] specifies the offset register field. */
1466 aarch64_ext_sve_addr_zz_lsl (const aarch64_operand *self,
1467 aarch64_opnd_info *info, aarch64_insn code,
1468 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1470 return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_LSL);
1473 /* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, SXTW {#<msz>}], where
1474 <msz> is a 2-bit unsigned number. fields[0] specifies the base register
1475 field and fields[1] specifies the offset register field. */
1477 aarch64_ext_sve_addr_zz_sxtw (const aarch64_operand *self,
1478 aarch64_opnd_info *info, aarch64_insn code,
1479 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1481 return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_SXTW);
1484 /* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, UXTW {#<msz>}], where
1485 <msz> is a 2-bit unsigned number. fields[0] specifies the base register
1486 field and fields[1] specifies the offset register field. */
1488 aarch64_ext_sve_addr_zz_uxtw (const aarch64_operand *self,
1489 aarch64_opnd_info *info, aarch64_insn code,
1490 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1492 return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_UXTW);
1495 /* Finish decoding an SVE arithmetic immediate, given that INFO already
1496 has the raw field value and that the low 8 bits decode to VALUE. */
1498 decode_sve_aimm (aarch64_opnd_info *info, int64_t value)
1500 info->shifter.kind = AARCH64_MOD_LSL;
1501 info->shifter.amount = 0;
1502 if (info->imm.value & 0x100)
1505 /* Decode 0x100 as #0, LSL #8. */
1506 info->shifter.amount = 8;
1510 info->shifter.operator_present = (info->shifter.amount != 0);
1511 info->shifter.amount_present = (info->shifter.amount != 0);
1512 info->imm.value = value;
1516 /* Decode an SVE ADD/SUB immediate. */
1518 aarch64_ext_sve_aimm (const aarch64_operand *self,
1519 aarch64_opnd_info *info, const aarch64_insn code,
1520 const aarch64_inst *inst)
1522 return (aarch64_ext_imm (self, info, code, inst)
1523 && decode_sve_aimm (info, (uint8_t) info->imm.value));
1526 /* Decode an SVE CPY/DUP immediate. */
1528 aarch64_ext_sve_asimm (const aarch64_operand *self,
1529 aarch64_opnd_info *info, const aarch64_insn code,
1530 const aarch64_inst *inst)
1532 return (aarch64_ext_imm (self, info, code, inst)
1533 && decode_sve_aimm (info, (int8_t) info->imm.value));
1536 /* Decode a single-bit immediate that selects between #0.5 and #1.0.
1537 The fields array specifies which field to use. */
1539 aarch64_ext_sve_float_half_one (const aarch64_operand *self,
1540 aarch64_opnd_info *info, aarch64_insn code,
1541 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1543 if (extract_field (self->fields[0], code, 0))
1544 info->imm.value = 0x3f800000;
1546 info->imm.value = 0x3f000000;
1547 info->imm.is_fp = TRUE;
1551 /* Decode a single-bit immediate that selects between #0.5 and #2.0.
1552 The fields array specifies which field to use. */
1554 aarch64_ext_sve_float_half_two (const aarch64_operand *self,
1555 aarch64_opnd_info *info, aarch64_insn code,
1556 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1558 if (extract_field (self->fields[0], code, 0))
1559 info->imm.value = 0x40000000;
1561 info->imm.value = 0x3f000000;
1562 info->imm.is_fp = TRUE;
1566 /* Decode a single-bit immediate that selects between #0.0 and #1.0.
1567 The fields array specifies which field to use. */
1569 aarch64_ext_sve_float_zero_one (const aarch64_operand *self,
1570 aarch64_opnd_info *info, aarch64_insn code,
1571 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1573 if (extract_field (self->fields[0], code, 0))
1574 info->imm.value = 0x3f800000;
1576 info->imm.value = 0x0;
1577 info->imm.is_fp = TRUE;
1581 /* Decode Zn[MM], where MM has a 7-bit triangular encoding. The fields
1582 array specifies which field to use for Zn. MM is encoded in the
1583 concatenation of imm5 and SVE_tszh, with imm5 being the less
1584 significant part. */
1586 aarch64_ext_sve_index (const aarch64_operand *self,
1587 aarch64_opnd_info *info, aarch64_insn code,
1588 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1592 info->reglane.regno = extract_field (self->fields[0], code, 0);
1593 val = extract_fields (code, 0, 2, FLD_SVE_tszh, FLD_imm5);
1594 if ((val & 15) == 0)
1596 while ((val & 1) == 0)
1598 info->reglane.index = val / 2;
1602 /* Decode a logical immediate for the MOV alias of SVE DUPM. */
1604 aarch64_ext_sve_limm_mov (const aarch64_operand *self,
1605 aarch64_opnd_info *info, const aarch64_insn code,
1606 const aarch64_inst *inst)
1608 int esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
1609 return (aarch64_ext_limm (self, info, code, inst)
1610 && aarch64_sve_dupm_mov_immediate_p (info->imm.value, esize));
1613 /* Decode {Zn.<T> - Zm.<T>}. The fields array specifies which field
1614 to use for Zn. The opcode-dependent value specifies the number
1615 of registers in the list. */
1617 aarch64_ext_sve_reglist (const aarch64_operand *self,
1618 aarch64_opnd_info *info, aarch64_insn code,
1619 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1621 info->reglist.first_regno = extract_field (self->fields[0], code, 0);
1622 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
1626 /* Decode <pattern>{, MUL #<amount>}. The fields array specifies which
1627 fields to use for <pattern>. <amount> - 1 is encoded in the SVE_imm4
1630 aarch64_ext_sve_scale (const aarch64_operand *self,
1631 aarch64_opnd_info *info, aarch64_insn code,
1632 const aarch64_inst *inst)
1636 if (!aarch64_ext_imm (self, info, code, inst))
1638 val = extract_field (FLD_SVE_imm4, code, 0);
1639 info->shifter.kind = AARCH64_MOD_MUL;
1640 info->shifter.amount = val + 1;
1641 info->shifter.operator_present = (val != 0);
1642 info->shifter.amount_present = (val != 0);
1646 /* Return the top set bit in VALUE, which is expected to be relatively
1649 get_top_bit (uint64_t value)
1651 while ((value & -value) != value)
1652 value -= value & -value;
1656 /* Decode an SVE shift-left immediate. */
1658 aarch64_ext_sve_shlimm (const aarch64_operand *self,
1659 aarch64_opnd_info *info, const aarch64_insn code,
1660 const aarch64_inst *inst)
1662 if (!aarch64_ext_imm (self, info, code, inst)
1663 || info->imm.value == 0)
1666 info->imm.value -= get_top_bit (info->imm.value);
1670 /* Decode an SVE shift-right immediate. */
1672 aarch64_ext_sve_shrimm (const aarch64_operand *self,
1673 aarch64_opnd_info *info, const aarch64_insn code,
1674 const aarch64_inst *inst)
1676 if (!aarch64_ext_imm (self, info, code, inst)
1677 || info->imm.value == 0)
1680 info->imm.value = get_top_bit (info->imm.value) * 2 - info->imm.value;
1684 /* Bitfields that are commonly used to encode certain operands' information
1685 may be partially used as part of the base opcode in some instructions.
1686 For example, the bit 1 of the field 'size' in
1687 FCVTXN <Vb><d>, <Va><n>
1688 is actually part of the base opcode, while only size<0> is available
1689 for encoding the register type. Another example is the AdvSIMD
1690 instruction ORR (register), in which the field 'size' is also used for
1691 the base opcode, leaving only the field 'Q' available to encode the
1692 vector register arrangement specifier '8B' or '16B'.
1694 This function tries to deduce the qualifier from the value of partially
1695 constrained field(s). Given the VALUE of such a field or fields, the
1696 qualifiers CANDIDATES and the MASK (indicating which bits are valid for
1697 operand encoding), the function returns the matching qualifier or
1698 AARCH64_OPND_QLF_NIL if nothing matches.
1700 N.B. CANDIDATES is a group of possible qualifiers that are valid for
1701 one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
1702 may end with AARCH64_OPND_QLF_NIL. */
1704 static enum aarch64_opnd_qualifier
1705 get_qualifier_from_partial_encoding (aarch64_insn value,
1706 const enum aarch64_opnd_qualifier* \
1711 DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
1712 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1714 aarch64_insn standard_value;
1715 if (candidates[i] == AARCH64_OPND_QLF_NIL)
1717 standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
1718 if ((standard_value & mask) == (value & mask))
1719 return candidates[i];
1721 return AARCH64_OPND_QLF_NIL;
1724 /* Given a list of qualifier sequences, return all possible valid qualifiers
1725 for operand IDX in QUALIFIERS.
1726 Assume QUALIFIERS is an array whose length is large enough. */
1729 get_operand_possible_qualifiers (int idx,
1730 const aarch64_opnd_qualifier_seq_t *list,
1731 enum aarch64_opnd_qualifier *qualifiers)
1734 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1735 if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
1739 /* Decode the size Q field for e.g. SHADD.
1740 We tag one operand with the qualifer according to the code;
1741 whether the qualifier is valid for this opcode or not, it is the
1742 duty of the semantic checking. */
1745 decode_sizeq (aarch64_inst *inst)
1748 enum aarch64_opnd_qualifier qualifier;
1750 aarch64_insn value, mask;
1751 enum aarch64_field_kind fld_sz;
1752 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1754 if (inst->opcode->iclass == asisdlse
1755 || inst->opcode->iclass == asisdlsep
1756 || inst->opcode->iclass == asisdlso
1757 || inst->opcode->iclass == asisdlsop)
1758 fld_sz = FLD_vldst_size;
1763 value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
1764 /* Obtain the info that which bits of fields Q and size are actually
1765 available for operand encoding. Opcodes like FMAXNM and FMLA have
1766 size[1] unavailable. */
1767 mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
1769 /* The index of the operand we are going to tag a qualifier and the qualifer
1770 itself are reasoned from the value of the size and Q fields and the
1771 possible valid qualifier lists. */
1772 idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
1773 DEBUG_TRACE ("key idx: %d", idx);
1775 /* For most related instruciton, size:Q are fully available for operand
1779 inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
1783 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
1785 #ifdef DEBUG_AARCH64
1789 for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
1790 && i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1791 DEBUG_TRACE ("qualifier %d: %s", i,
1792 aarch64_get_qualifier_name(candidates[i]));
1793 DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
1795 #endif /* DEBUG_AARCH64 */
1797 qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
1799 if (qualifier == AARCH64_OPND_QLF_NIL)
1802 inst->operands[idx].qualifier = qualifier;
1806 /* Decode size[0]:Q, i.e. bit 22 and bit 30, for
1807 e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1810 decode_asimd_fcvt (aarch64_inst *inst)
1812 aarch64_field field = {0, 0};
1814 enum aarch64_opnd_qualifier qualifier;
1816 gen_sub_field (FLD_size, 0, 1, &field);
1817 value = extract_field_2 (&field, inst->value, 0);
1818 qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
1819 : AARCH64_OPND_QLF_V_2D;
1820 switch (inst->opcode->op)
1824 /* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1825 inst->operands[1].qualifier = qualifier;
1829 /* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
1830 inst->operands[0].qualifier = qualifier;
1840 /* Decode size[0], i.e. bit 22, for
1841 e.g. FCVTXN <Vb><d>, <Va><n>. */
1844 decode_asisd_fcvtxn (aarch64_inst *inst)
1846 aarch64_field field = {0, 0};
1847 gen_sub_field (FLD_size, 0, 1, &field);
1848 if (!extract_field_2 (&field, inst->value, 0))
1850 inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
1854 /* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
1856 decode_fcvt (aarch64_inst *inst)
1858 enum aarch64_opnd_qualifier qualifier;
1860 const aarch64_field field = {15, 2};
1863 value = extract_field_2 (&field, inst->value, 0);
1866 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
1867 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
1868 case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
1871 inst->operands[0].qualifier = qualifier;
1876 /* Do miscellaneous decodings that are not common enough to be driven by
1880 do_misc_decoding (aarch64_inst *inst)
1883 switch (inst->opcode->op)
1886 return decode_fcvt (inst);
1892 return decode_asimd_fcvt (inst);
1895 return decode_asisd_fcvtxn (inst);
1899 value = extract_field (FLD_SVE_Pn, inst->value, 0);
1900 return (value == extract_field (FLD_SVE_Pm, inst->value, 0)
1901 && value == extract_field (FLD_SVE_Pg4_10, inst->value, 0));
1904 return (extract_field (FLD_SVE_Zd, inst->value, 0)
1905 == extract_field (FLD_SVE_Zm_16, inst->value, 0));
1908 /* Index must be zero. */
1909 value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
1910 return value == 1 || value == 2 || value == 4 || value == 8;
1913 return (extract_field (FLD_SVE_Zn, inst->value, 0)
1914 == extract_field (FLD_SVE_Zm_16, inst->value, 0));
1917 /* Index must be nonzero. */
1918 value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
1919 return value != 1 && value != 2 && value != 4 && value != 8;
1922 return (extract_field (FLD_SVE_Pd, inst->value, 0)
1923 == extract_field (FLD_SVE_Pm, inst->value, 0));
1925 case OP_MOVZS_P_P_P:
1927 return (extract_field (FLD_SVE_Pn, inst->value, 0)
1928 == extract_field (FLD_SVE_Pm, inst->value, 0));
1930 case OP_NOTS_P_P_P_Z:
1931 case OP_NOT_P_P_P_Z:
1932 return (extract_field (FLD_SVE_Pm, inst->value, 0)
1933 == extract_field (FLD_SVE_Pg4_10, inst->value, 0));
1940 /* Opcodes that have fields shared by multiple operands are usually flagged
1941 with flags. In this function, we detect such flags, decode the related
1942 field(s) and store the information in one of the related operands. The
1943 'one' operand is not any operand but one of the operands that can
1944 accommadate all the information that has been decoded. */
1947 do_special_decoding (aarch64_inst *inst)
1951 /* Condition for truly conditional executed instructions, e.g. b.cond. */
1952 if (inst->opcode->flags & F_COND)
1954 value = extract_field (FLD_cond2, inst->value, 0);
1955 inst->cond = get_cond_from_value (value);
1958 if (inst->opcode->flags & F_SF)
1960 idx = select_operand_for_sf_field_coding (inst->opcode);
1961 value = extract_field (FLD_sf, inst->value, 0);
1962 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1963 if ((inst->opcode->flags & F_N)
1964 && extract_field (FLD_N, inst->value, 0) != value)
1968 if (inst->opcode->flags & F_LSE_SZ)
1970 idx = select_operand_for_sf_field_coding (inst->opcode);
1971 value = extract_field (FLD_lse_sz, inst->value, 0);
1972 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1974 /* size:Q fields. */
1975 if (inst->opcode->flags & F_SIZEQ)
1976 return decode_sizeq (inst);
1978 if (inst->opcode->flags & F_FPTYPE)
1980 idx = select_operand_for_fptype_field_coding (inst->opcode);
1981 value = extract_field (FLD_type, inst->value, 0);
1984 case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
1985 case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
1986 case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
1991 if (inst->opcode->flags & F_SSIZE)
1993 /* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
1994 of the base opcode. */
1996 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1997 idx = select_operand_for_scalar_size_field_coding (inst->opcode);
1998 value = extract_field (FLD_size, inst->value, inst->opcode->mask);
1999 mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
2000 /* For most related instruciton, the 'size' field is fully available for
2001 operand encoding. */
2003 inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
2006 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
2008 inst->operands[idx].qualifier
2009 = get_qualifier_from_partial_encoding (value, candidates, mask);
2013 if (inst->opcode->flags & F_T)
2015 /* Num of consecutive '0's on the right side of imm5<3:0>. */
2018 assert (aarch64_get_operand_class (inst->opcode->operands[0])
2019 == AARCH64_OPND_CLASS_SIMD_REG);
2030 val = extract_field (FLD_imm5, inst->value, 0);
2031 while ((val & 0x1) == 0 && ++num <= 3)
2035 Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
2036 inst->operands[0].qualifier =
2037 get_vreg_qualifier_from_value ((num << 1) | Q);
2040 if (inst->opcode->flags & F_GPRSIZE_IN_Q)
2042 /* Use Rt to encode in the case of e.g.
2043 STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
2044 idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
2047 /* Otherwise use the result operand, which has to be a integer
2049 assert (aarch64_get_operand_class (inst->opcode->operands[0])
2050 == AARCH64_OPND_CLASS_INT_REG);
2053 assert (idx == 0 || idx == 1);
2054 value = extract_field (FLD_Q, inst->value, 0);
2055 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
2058 if (inst->opcode->flags & F_LDS_SIZE)
2060 aarch64_field field = {0, 0};
2061 assert (aarch64_get_operand_class (inst->opcode->operands[0])
2062 == AARCH64_OPND_CLASS_INT_REG);
2063 gen_sub_field (FLD_opc, 0, 1, &field);
2064 value = extract_field_2 (&field, inst->value, 0);
2065 inst->operands[0].qualifier
2066 = value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2069 /* Miscellaneous decoding; done as the last step. */
2070 if (inst->opcode->flags & F_MISC)
2071 return do_misc_decoding (inst);
2076 /* Converters converting a real opcode instruction to its alias form. */
2078 /* ROR <Wd>, <Ws>, #<shift>
2080 EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
2082 convert_extr_to_ror (aarch64_inst *inst)
2084 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
2086 copy_operand_info (inst, 2, 3);
2087 inst->operands[3].type = AARCH64_OPND_NIL;
2093 /* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
2095 USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
2097 convert_shll_to_xtl (aarch64_inst *inst)
2099 if (inst->operands[2].imm.value == 0)
2101 inst->operands[2].type = AARCH64_OPND_NIL;
2108 UBFM <Xd>, <Xn>, #<shift>, #63.
2110 LSR <Xd>, <Xn>, #<shift>. */
2112 convert_bfm_to_sr (aarch64_inst *inst)
2116 imms = inst->operands[3].imm.value;
2117 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
2120 inst->operands[3].type = AARCH64_OPND_NIL;
2127 /* Convert MOV to ORR. */
2129 convert_orr_to_mov (aarch64_inst *inst)
2131 /* MOV <Vd>.<T>, <Vn>.<T>
2133 ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
2134 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
2136 inst->operands[2].type = AARCH64_OPND_NIL;
2142 /* When <imms> >= <immr>, the instruction written:
2143 SBFX <Xd>, <Xn>, #<lsb>, #<width>
2145 SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
2148 convert_bfm_to_bfx (aarch64_inst *inst)
2152 immr = inst->operands[2].imm.value;
2153 imms = inst->operands[3].imm.value;
2157 inst->operands[2].imm.value = lsb;
2158 inst->operands[3].imm.value = imms + 1 - lsb;
2159 /* The two opcodes have different qualifiers for
2160 the immediate operands; reset to help the checking. */
2161 reset_operand_qualifier (inst, 2);
2162 reset_operand_qualifier (inst, 3);
2169 /* When <imms> < <immr>, the instruction written:
2170 SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
2172 SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
2175 convert_bfm_to_bfi (aarch64_inst *inst)
2177 int64_t immr, imms, val;
2179 immr = inst->operands[2].imm.value;
2180 imms = inst->operands[3].imm.value;
2181 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
2184 inst->operands[2].imm.value = (val - immr) & (val - 1);
2185 inst->operands[3].imm.value = imms + 1;
2186 /* The two opcodes have different qualifiers for
2187 the immediate operands; reset to help the checking. */
2188 reset_operand_qualifier (inst, 2);
2189 reset_operand_qualifier (inst, 3);
2196 /* The instruction written:
2197 BFC <Xd>, #<lsb>, #<width>
2199 BFM <Xd>, XZR, #((64-<lsb>)&0x3f), #(<width>-1). */
2202 convert_bfm_to_bfc (aarch64_inst *inst)
2204 int64_t immr, imms, val;
2206 /* Should have been assured by the base opcode value. */
2207 assert (inst->operands[1].reg.regno == 0x1f);
2209 immr = inst->operands[2].imm.value;
2210 imms = inst->operands[3].imm.value;
2211 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
2214 /* Drop XZR from the second operand. */
2215 copy_operand_info (inst, 1, 2);
2216 copy_operand_info (inst, 2, 3);
2217 inst->operands[3].type = AARCH64_OPND_NIL;
2219 /* Recalculate the immediates. */
2220 inst->operands[1].imm.value = (val - immr) & (val - 1);
2221 inst->operands[2].imm.value = imms + 1;
2223 /* The two opcodes have different qualifiers for the operands; reset to
2224 help the checking. */
2225 reset_operand_qualifier (inst, 1);
2226 reset_operand_qualifier (inst, 2);
2227 reset_operand_qualifier (inst, 3);
2235 /* The instruction written:
2236 LSL <Xd>, <Xn>, #<shift>
2238 UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
2241 convert_ubfm_to_lsl (aarch64_inst *inst)
2243 int64_t immr = inst->operands[2].imm.value;
2244 int64_t imms = inst->operands[3].imm.value;
2246 = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
2248 if ((immr == 0 && imms == val) || immr == imms + 1)
2250 inst->operands[3].type = AARCH64_OPND_NIL;
2251 inst->operands[2].imm.value = val - imms;
2258 /* CINC <Wd>, <Wn>, <cond>
2260 CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)
2261 where <cond> is not AL or NV. */
2264 convert_from_csel (aarch64_inst *inst)
2266 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno
2267 && (inst->operands[3].cond->value & 0xe) != 0xe)
2269 copy_operand_info (inst, 2, 3);
2270 inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
2271 inst->operands[3].type = AARCH64_OPND_NIL;
2277 /* CSET <Wd>, <cond>
2279 CSINC <Wd>, WZR, WZR, invert(<cond>)
2280 where <cond> is not AL or NV. */
2283 convert_csinc_to_cset (aarch64_inst *inst)
2285 if (inst->operands[1].reg.regno == 0x1f
2286 && inst->operands[2].reg.regno == 0x1f
2287 && (inst->operands[3].cond->value & 0xe) != 0xe)
2289 copy_operand_info (inst, 1, 3);
2290 inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
2291 inst->operands[3].type = AARCH64_OPND_NIL;
2292 inst->operands[2].type = AARCH64_OPND_NIL;
2300 MOVZ <Wd>, #<imm16>, LSL #<shift>.
2302 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
2303 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
2304 or where a MOVN has an immediate that could be encoded by MOVZ, or where
2305 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
2306 machine-instruction mnemonic must be used. */
2309 convert_movewide_to_mov (aarch64_inst *inst)
2311 uint64_t value = inst->operands[1].imm.value;
2312 /* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
2313 if (value == 0 && inst->operands[1].shifter.amount != 0)
2315 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
2316 inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
2317 value <<= inst->operands[1].shifter.amount;
2318 /* As an alias convertor, it has to be clear that the INST->OPCODE
2319 is the opcode of the real instruction. */
2320 if (inst->opcode->op == OP_MOVN)
2322 int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
2324 /* A MOVN has an immediate that could be encoded by MOVZ. */
2325 if (aarch64_wide_constant_p (value, is32, NULL) == TRUE)
2328 inst->operands[1].imm.value = value;
2329 inst->operands[1].shifter.amount = 0;
2335 ORR <Wd>, WZR, #<imm>.
2337 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
2338 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
2339 or where a MOVN has an immediate that could be encoded by MOVZ, or where
2340 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
2341 machine-instruction mnemonic must be used. */
2344 convert_movebitmask_to_mov (aarch64_inst *inst)
2349 /* Should have been assured by the base opcode value. */
2350 assert (inst->operands[1].reg.regno == 0x1f);
2351 copy_operand_info (inst, 1, 2);
2352 is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
2353 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
2354 value = inst->operands[1].imm.value;
2355 /* ORR has an immediate that could be generated by a MOVZ or MOVN
2357 if (inst->operands[0].reg.regno != 0x1f
2358 && (aarch64_wide_constant_p (value, is32, NULL) == TRUE
2359 || aarch64_wide_constant_p (~value, is32, NULL) == TRUE))
2362 inst->operands[2].type = AARCH64_OPND_NIL;
2366 /* Some alias opcodes are disassembled by being converted from their real-form.
2367 N.B. INST->OPCODE is the real opcode rather than the alias. */
2370 convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
2376 return convert_bfm_to_sr (inst);
2378 return convert_ubfm_to_lsl (inst);
2382 return convert_from_csel (inst);
2385 return convert_csinc_to_cset (inst);
2389 return convert_bfm_to_bfx (inst);
2393 return convert_bfm_to_bfi (inst);
2395 return convert_bfm_to_bfc (inst);
2397 return convert_orr_to_mov (inst);
2398 case OP_MOV_IMM_WIDE:
2399 case OP_MOV_IMM_WIDEN:
2400 return convert_movewide_to_mov (inst);
2401 case OP_MOV_IMM_LOG:
2402 return convert_movebitmask_to_mov (inst);
2404 return convert_extr_to_ror (inst);
2409 return convert_shll_to_xtl (inst);
2415 static int aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
2416 aarch64_inst *, int);
2418 /* Given the instruction information in *INST, check if the instruction has
2419 any alias form that can be used to represent *INST. If the answer is yes,
2420 update *INST to be in the form of the determined alias. */
2422 /* In the opcode description table, the following flags are used in opcode
2423 entries to help establish the relations between the real and alias opcodes:
2425 F_ALIAS: opcode is an alias
2426 F_HAS_ALIAS: opcode has alias(es)
2429 F_P3: Disassembly preference priority 1-3 (the larger the
2430 higher). If nothing is specified, it is the priority
2431 0 by default, i.e. the lowest priority.
2433 Although the relation between the machine and the alias instructions are not
2434 explicitly described, it can be easily determined from the base opcode
2435 values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
2436 description entries:
2438 The mask of an alias opcode must be equal to or a super-set (i.e. more
2439 constrained) of that of the aliased opcode; so is the base opcode value.
2441 if (opcode_has_alias (real) && alias_opcode_p (opcode)
2442 && (opcode->mask & real->mask) == real->mask
2443 && (real->mask & opcode->opcode) == (real->mask & real->opcode))
2444 then OPCODE is an alias of, and only of, the REAL instruction
2446 The alias relationship is forced flat-structured to keep related algorithm
2447 simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
2449 During the disassembling, the decoding decision tree (in
2450 opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
2451 if the decoding of such a machine instruction succeeds (and -Mno-aliases is
2452 not specified), the disassembler will check whether there is any alias
2453 instruction exists for this real instruction. If there is, the disassembler
2454 will try to disassemble the 32-bit binary again using the alias's rule, or
2455 try to convert the IR to the form of the alias. In the case of the multiple
2456 aliases, the aliases are tried one by one from the highest priority
2457 (currently the flag F_P3) to the lowest priority (no priority flag), and the
2458 first succeeds first adopted.
2460 You may ask why there is a need for the conversion of IR from one form to
2461 another in handling certain aliases. This is because on one hand it avoids
2462 adding more operand code to handle unusual encoding/decoding; on other
2463 hand, during the disassembling, the conversion is an effective approach to
2464 check the condition of an alias (as an alias may be adopted only if certain
2465 conditions are met).
2467 In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
2468 aarch64_opcode_table and generated aarch64_find_alias_opcode and
2469 aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
2472 determine_disassembling_preference (struct aarch64_inst *inst)
2474 const aarch64_opcode *opcode;
2475 const aarch64_opcode *alias;
2477 opcode = inst->opcode;
2479 /* This opcode does not have an alias, so use itself. */
2480 if (opcode_has_alias (opcode) == FALSE)
2483 alias = aarch64_find_alias_opcode (opcode);
2486 #ifdef DEBUG_AARCH64
2489 const aarch64_opcode *tmp = alias;
2490 printf ("#### LIST orderd: ");
2493 printf ("%s, ", tmp->name);
2494 tmp = aarch64_find_next_alias_opcode (tmp);
2498 #endif /* DEBUG_AARCH64 */
2500 for (; alias; alias = aarch64_find_next_alias_opcode (alias))
2502 DEBUG_TRACE ("try %s", alias->name);
2503 assert (alias_opcode_p (alias) || opcode_has_alias (opcode));
2505 /* An alias can be a pseudo opcode which will never be used in the
2506 disassembly, e.g. BIC logical immediate is such a pseudo opcode
2508 if (pseudo_opcode_p (alias))
2510 DEBUG_TRACE ("skip pseudo %s", alias->name);
2514 if ((inst->value & alias->mask) != alias->opcode)
2516 DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
2519 /* No need to do any complicated transformation on operands, if the alias
2520 opcode does not have any operand. */
2521 if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
2523 DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
2524 aarch64_replace_opcode (inst, alias);
2527 if (alias->flags & F_CONV)
2530 memcpy (©, inst, sizeof (aarch64_inst));
2531 /* ALIAS is the preference as long as the instruction can be
2532 successfully converted to the form of ALIAS. */
2533 if (convert_to_alias (©, alias) == 1)
2535 aarch64_replace_opcode (©, alias);
2536 assert (aarch64_match_operands_constraint (©, NULL));
2537 DEBUG_TRACE ("succeed with %s via conversion", alias->name);
2538 memcpy (inst, ©, sizeof (aarch64_inst));
2544 /* Directly decode the alias opcode. */
2546 memset (&temp, '\0', sizeof (aarch64_inst));
2547 if (aarch64_opcode_decode (alias, inst->value, &temp, 1) == 1)
2549 DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
2550 memcpy (inst, &temp, sizeof (aarch64_inst));
2557 /* Some instructions (including all SVE ones) use the instruction class
2558 to describe how a qualifiers_list index is represented in the instruction
2559 encoding. If INST is such an instruction, decode the appropriate fields
2560 and fill in the operand qualifiers accordingly. Return true if no
2561 problems are found. */
2564 aarch64_decode_variant_using_iclass (aarch64_inst *inst)
2569 switch (inst->opcode->iclass)
2572 variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_14);
2576 i = extract_field (FLD_SVE_tsz, inst->value, 0);
2579 while ((i & 1) == 0)
2587 /* Pick the smallest applicable element size. */
2588 if ((inst->value & 0x20600) == 0x600)
2590 else if ((inst->value & 0x20400) == 0x400)
2592 else if ((inst->value & 0x20000) == 0)
2599 /* sve_misc instructions have only a single variant. */
2603 variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_16);
2607 variant = extract_field (FLD_SVE_M_4, inst->value, 0);
2610 case sve_shift_pred:
2611 i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_8);
2622 case sve_shift_unpred:
2623 i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_19);
2627 variant = extract_field (FLD_size, inst->value, 0);
2633 variant = extract_field (FLD_size, inst->value, 0);
2637 i = extract_field (FLD_size, inst->value, 0);
2644 variant = extract_field (FLD_SVE_sz, inst->value, 0);
2648 /* No mapping between instruction class and qualifiers. */
2652 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2653 inst->operands[i].qualifier = inst->opcode->qualifiers_list[variant][i];
2656 /* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
2657 fails, which meanes that CODE is not an instruction of OPCODE; otherwise
2660 If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
2661 determined and used to disassemble CODE; this is done just before the
2665 aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
2666 aarch64_inst *inst, int noaliases_p)
2670 DEBUG_TRACE ("enter with %s", opcode->name);
2672 assert (opcode && inst);
2674 /* Check the base opcode. */
2675 if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
2677 DEBUG_TRACE ("base opcode match FAIL");
2682 memset (inst, '\0', sizeof (aarch64_inst));
2684 inst->opcode = opcode;
2687 /* Assign operand codes and indexes. */
2688 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2690 if (opcode->operands[i] == AARCH64_OPND_NIL)
2692 inst->operands[i].type = opcode->operands[i];
2693 inst->operands[i].idx = i;
2696 /* Call the opcode decoder indicated by flags. */
2697 if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
2699 DEBUG_TRACE ("opcode flag-based decoder FAIL");
2703 /* Possibly use the instruction class to determine the correct
2705 if (!aarch64_decode_variant_using_iclass (inst))
2707 DEBUG_TRACE ("iclass-based decoder FAIL");
2711 /* Call operand decoders. */
2712 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2714 const aarch64_operand *opnd;
2715 enum aarch64_opnd type;
2717 type = opcode->operands[i];
2718 if (type == AARCH64_OPND_NIL)
2720 opnd = &aarch64_operands[type];
2721 if (operand_has_extractor (opnd)
2722 && (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst)))
2724 DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
2729 /* If the opcode has a verifier, then check it now. */
2730 if (opcode->verifier && ! opcode->verifier (opcode, code))
2732 DEBUG_TRACE ("operand verifier FAIL");
2736 /* Match the qualifiers. */
2737 if (aarch64_match_operands_constraint (inst, NULL) == 1)
2739 /* Arriving here, the CODE has been determined as a valid instruction
2740 of OPCODE and *INST has been filled with information of this OPCODE
2741 instruction. Before the return, check if the instruction has any
2742 alias and should be disassembled in the form of its alias instead.
2743 If the answer is yes, *INST will be updated. */
2745 determine_disassembling_preference (inst);
2746 DEBUG_TRACE ("SUCCESS");
2751 DEBUG_TRACE ("constraint matching FAIL");
2758 /* This does some user-friendly fix-up to *INST. It is currently focus on
2759 the adjustment of qualifiers to help the printed instruction
2760 recognized/understood more easily. */
2763 user_friendly_fixup (aarch64_inst *inst)
2765 switch (inst->opcode->iclass)
2768 /* TBNZ Xn|Wn, #uimm6, label
2769 Test and Branch Not Zero: conditionally jumps to label if bit number
2770 uimm6 in register Xn is not zero. The bit number implies the width of
2771 the register, which may be written and should be disassembled as Wn if
2772 uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
2774 if (inst->operands[1].imm.value < 32)
2775 inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
2781 /* Decode INSN and fill in *INST the instruction information. An alias
2782 opcode may be filled in *INSN if NOALIASES_P is FALSE. Return zero on
2786 aarch64_decode_insn (aarch64_insn insn, aarch64_inst *inst,
2787 bfd_boolean noaliases_p)
2789 const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
2791 #ifdef DEBUG_AARCH64
2794 const aarch64_opcode *tmp = opcode;
2796 DEBUG_TRACE ("opcode lookup:");
2799 aarch64_verbose (" %s", tmp->name);
2800 tmp = aarch64_find_next_opcode (tmp);
2803 #endif /* DEBUG_AARCH64 */
2805 /* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
2806 distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
2807 opcode field and value, apart from the difference that one of them has an
2808 extra field as part of the opcode, but such a field is used for operand
2809 encoding in other opcode(s) ('immh' in the case of the example). */
2810 while (opcode != NULL)
2812 /* But only one opcode can be decoded successfully for, as the
2813 decoding routine will check the constraint carefully. */
2814 if (aarch64_opcode_decode (opcode, insn, inst, noaliases_p) == 1)
2816 opcode = aarch64_find_next_opcode (opcode);
2822 /* Print operands. */
2825 print_operands (bfd_vma pc, const aarch64_opcode *opcode,
2826 const aarch64_opnd_info *opnds, struct disassemble_info *info)
2828 int i, pcrel_p, num_printed;
2829 for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2832 /* We regard the opcode operand info more, however we also look into
2833 the inst->operands to support the disassembling of the optional
2835 The two operand code should be the same in all cases, apart from
2836 when the operand can be optional. */
2837 if (opcode->operands[i] == AARCH64_OPND_NIL
2838 || opnds[i].type == AARCH64_OPND_NIL)
2841 /* Generate the operand string in STR. */
2842 aarch64_print_operand (str, sizeof (str), pc, opcode, opnds, i, &pcrel_p,
2845 /* Print the delimiter (taking account of omitted operand(s)). */
2847 (*info->fprintf_func) (info->stream, "%s",
2848 num_printed++ == 0 ? "\t" : ", ");
2850 /* Print the operand. */
2852 (*info->print_address_func) (info->target, info);
2854 (*info->fprintf_func) (info->stream, "%s", str);
2858 /* Set NAME to a copy of INST's mnemonic with the "." suffix removed. */
2861 remove_dot_suffix (char *name, const aarch64_inst *inst)
2866 ptr = strchr (inst->opcode->name, '.');
2867 assert (ptr && inst->cond);
2868 len = ptr - inst->opcode->name;
2870 strncpy (name, inst->opcode->name, len);
2874 /* Print the instruction mnemonic name. */
2877 print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
2879 if (inst->opcode->flags & F_COND)
2881 /* For instructions that are truly conditionally executed, e.g. b.cond,
2882 prepare the full mnemonic name with the corresponding condition
2886 remove_dot_suffix (name, inst);
2887 (*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]);
2890 (*info->fprintf_func) (info->stream, "%s", inst->opcode->name);
2893 /* Decide whether we need to print a comment after the operands of
2894 instruction INST. */
2897 print_comment (const aarch64_inst *inst, struct disassemble_info *info)
2899 if (inst->opcode->flags & F_COND)
2902 unsigned int i, num_conds;
2904 remove_dot_suffix (name, inst);
2905 num_conds = ARRAY_SIZE (inst->cond->names);
2906 for (i = 1; i < num_conds && inst->cond->names[i]; ++i)
2907 (*info->fprintf_func) (info->stream, "%s %s.%s",
2908 i == 1 ? " //" : ",",
2909 name, inst->cond->names[i]);
2913 /* Print the instruction according to *INST. */
2916 print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
2917 struct disassemble_info *info)
2919 print_mnemonic_name (inst, info);
2920 print_operands (pc, inst->opcode, inst->operands, info);
2921 print_comment (inst, info);
2924 /* Entry-point of the instruction disassembler and printer. */
2927 print_insn_aarch64_word (bfd_vma pc,
2929 struct disassemble_info *info)
2931 static const char *err_msg[6] =
2934 [-ERR_UND] = "undefined",
2935 [-ERR_UNP] = "unpredictable",
2942 info->insn_info_valid = 1;
2943 info->branch_delay_insns = 0;
2944 info->data_size = 0;
2948 if (info->flags & INSN_HAS_RELOC)
2949 /* If the instruction has a reloc associated with it, then
2950 the offset field in the instruction will actually be the
2951 addend for the reloc. (If we are using REL type relocs).
2952 In such cases, we can ignore the pc when computing
2953 addresses, since the addend is not currently pc-relative. */
2956 ret = aarch64_decode_insn (word, &inst, no_aliases);
2958 if (((word >> 21) & 0x3ff) == 1)
2960 /* RESERVED for ALES. */
2961 assert (ret != ERR_OK);
2970 /* Handle undefined instructions. */
2971 info->insn_type = dis_noninsn;
2972 (*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s",
2973 word, err_msg[-ret]);
2976 user_friendly_fixup (&inst);
2977 print_aarch64_insn (pc, &inst, info);
2984 /* Disallow mapping symbols ($x, $d etc) from
2985 being displayed in symbol relative addresses. */
2988 aarch64_symbol_is_valid (asymbol * sym,
2989 struct disassemble_info * info ATTRIBUTE_UNUSED)
2996 name = bfd_asymbol_name (sym);
3000 || (name[1] != 'x' && name[1] != 'd')
3001 || (name[2] != '\0' && name[2] != '.'));
3004 /* Print data bytes on INFO->STREAM. */
3007 print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
3009 struct disassemble_info *info)
3011 switch (info->bytes_per_chunk)
3014 info->fprintf_func (info->stream, ".byte\t0x%02x", word);
3017 info->fprintf_func (info->stream, ".short\t0x%04x", word);
3020 info->fprintf_func (info->stream, ".word\t0x%08x", word);
3027 /* Try to infer the code or data type from a symbol.
3028 Returns nonzero if *MAP_TYPE was set. */
3031 get_sym_code_type (struct disassemble_info *info, int n,
3032 enum map_type *map_type)
3034 elf_symbol_type *es;
3038 es = *(elf_symbol_type **)(info->symtab + n);
3039 type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
3041 /* If the symbol has function type then use that. */
3042 if (type == STT_FUNC)
3044 *map_type = MAP_INSN;
3048 /* Check for mapping symbols. */
3049 name = bfd_asymbol_name(info->symtab[n]);
3051 && (name[1] == 'x' || name[1] == 'd')
3052 && (name[2] == '\0' || name[2] == '.'))
3054 *map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
3061 /* Entry-point of the AArch64 disassembler. */
3064 print_insn_aarch64 (bfd_vma pc,
3065 struct disassemble_info *info)
3067 bfd_byte buffer[INSNLEN];
3069 void (*printer) (bfd_vma, uint32_t, struct disassemble_info *);
3070 bfd_boolean found = FALSE;
3071 unsigned int size = 4;
3074 if (info->disassembler_options)
3076 set_default_aarch64_dis_options (info);
3078 parse_aarch64_dis_options (info->disassembler_options);
3080 /* To avoid repeated parsing of these options, we remove them here. */
3081 info->disassembler_options = NULL;
3084 /* Aarch64 instructions are always little-endian */
3085 info->endian_code = BFD_ENDIAN_LITTLE;
3087 /* First check the full symtab for a mapping symbol, even if there
3088 are no usable non-mapping symbols for this address. */
3089 if (info->symtab_size != 0
3090 && bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
3092 enum map_type type = MAP_INSN;
3097 if (pc <= last_mapping_addr)
3098 last_mapping_sym = -1;
3100 /* Start scanning at the start of the function, or wherever
3101 we finished last time. */
3102 n = info->symtab_pos + 1;
3103 if (n < last_mapping_sym)
3104 n = last_mapping_sym;
3106 /* Scan up to the location being disassembled. */
3107 for (; n < info->symtab_size; n++)
3109 addr = bfd_asymbol_value (info->symtab[n]);
3112 if ((info->section == NULL
3113 || info->section == info->symtab[n]->section)
3114 && get_sym_code_type (info, n, &type))
3123 n = info->symtab_pos;
3124 if (n < last_mapping_sym)
3125 n = last_mapping_sym;
3127 /* No mapping symbol found at this address. Look backwards
3128 for a preceeding one. */
3131 if (get_sym_code_type (info, n, &type))
3140 last_mapping_sym = last_sym;
3143 /* Look a little bit ahead to see if we should print out
3144 less than four bytes of data. If there's a symbol,
3145 mapping or otherwise, after two bytes then don't
3147 if (last_type == MAP_DATA)
3149 size = 4 - (pc & 3);
3150 for (n = last_sym + 1; n < info->symtab_size; n++)
3152 addr = bfd_asymbol_value (info->symtab[n]);
3155 if (addr - pc < size)
3160 /* If the next symbol is after three bytes, we need to
3161 print only part of the data, so that we can use either
3164 size = (pc & 1) ? 1 : 2;
3168 if (last_type == MAP_DATA)
3170 /* size was set above. */
3171 info->bytes_per_chunk = size;
3172 info->display_endian = info->endian;
3173 printer = print_insn_data;
3177 info->bytes_per_chunk = size = INSNLEN;
3178 info->display_endian = info->endian_code;
3179 printer = print_insn_aarch64_word;
3182 status = (*info->read_memory_func) (pc, buffer, size, info);
3185 (*info->memory_error_func) (status, pc, info);
3189 data = bfd_get_bits (buffer, size * 8,
3190 info->display_endian == BFD_ENDIAN_BIG);
3192 (*printer) (pc, data, info);
3198 print_aarch64_disassembler_options (FILE *stream)
3200 fprintf (stream, _("\n\
3201 The following AARCH64 specific disassembler options are supported for use\n\
3202 with the -M switch (multiple options should be separated by commas):\n"));
3204 fprintf (stream, _("\n\
3205 no-aliases Don't print instruction aliases.\n"));
3207 fprintf (stream, _("\n\
3208 aliases Do print instruction aliases.\n"));
3210 #ifdef DEBUG_AARCH64
3211 fprintf (stream, _("\n\
3212 debug_dump Temp switch for debug trace.\n"));
3213 #endif /* DEBUG_AARCH64 */
3215 fprintf (stream, _("\n"));