
Nettle Manual
For the Nettle Library version 2.1

Niels Möller

This manual is for the Nettle library (version 2.1), a low-level cryptographic library.

Originally written 2001 by Niels Möller, updated 2010.

This manual is placed in the public domain. You may freely copy it, in whole
or in part, with or without modification. Attribution is appreciated, but not
required.

i

Table of Contents

1 Introduction . 1

2 Copyright . 2

3 Conventions . 4

4 Example . 5

5 Linking . 7

6 Reference . 8

6.1 Hash functions . 8
6.1.1 MD5 . 8
6.1.2 MD2 . 9
6.1.3 MD4 . 9
6.1.4 SHA1 . 10
6.1.5 SHA256 . 10
6.1.6 SHA224 . 11
6.1.7 SHA512 . 11
6.1.8 SHA384 . 12
6.1.9 struct nettle_hash . 13

6.2 Cipher functions . 13
6.2.1 AES . 14
6.2.2 ARCFOUR . 15
6.2.3 ARCTWO . 16
6.2.4 BLOWFISH . 17
6.2.5 Camellia . 18
6.2.6 CAST128 . 18
6.2.7 DES . 19
6.2.8 DES3 . 20
6.2.9 SERPENT . 21
6.2.10 TWOFISH . 22
6.2.11 struct nettle_cipher . 22

6.3 Cipher modes . 23
6.3.1 Cipher Block Chaining . 23
6.3.2 Counter mode . 25

6.4 Keyed Hash Functions . 26
6.4.1 HMAC . 26
6.4.2 Concrete HMAC functions . 27

6.4.2.1 HMAC-MD5 . 27
6.4.2.2 HMAC-SHA1 . 28

ii

6.4.2.3 HMAC-SHA256 . 28
6.4.2.4 HMAC-SHA512 . 29

6.5 Public-key algorithms . 29
6.5.1 RSA . 30
6.5.2 Nettle’s RSA support . 31
6.5.3 Nettle’s DSA support . 33
6.5.4 Nettle’s DSA support . 35

6.6 Randomness . 37
6.6.1 Yarrow . 40

6.7 Miscellaneous functions . 42
6.8 Compatibility functions . 42

7 Traditional Nettle Soup . 43

8 Installation . 44

Function and Concept Index . 45

Chapter 1: Introduction 1

1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any I/O.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.

Chapter 2: Copyright 2

2 Copyright

Nettle is distributed under the GNU General Public License (GPL) (see the file COPYING
for details). However, most of the individual files are dual licensed under less restrictive
licenses like the GNU Lesser General Public License (LGPL), or are in the public domain.
This means that if you don’t use the parts of nettle that are GPL-only, you have the option
to use the Nettle library just as if it were licensed under the LGPL. To find the current
status of particular files, you have to read the copyright notices at the top of the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

A list of the supported algorithms, their origins and licenses:

AES The implementation of the AES cipher (also known as rijndael) is written by
Rafael Sevilla. Assembler for x86 by Rafael Sevilla and Niels Möller, Sparc
assembler by Niels Möller. Released under the LGPL.

ARCFOUR

The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Möller. Released under the LGPL.

ARCTWO

The implementation of the ARCTWO (also known as RC2) cipher is written
by Nikos Mavroyanopoulos and modified by Werner Koch and Simon Josefsson.
Released under the LGPL.

BLOWFISH

The implementation of the BLOWFISH cipher is written by Werner Koch,
copyright owned by the Free Software Foundation. Also hacked by Ray Dassen
and Niels Möller. Released under the GPL.

CAMELLIA

The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Möller. Assembler for x86 by Niels Möller.
Released under the LGPL.

CAST128 The implementation of the CAST128 cipher is written by Steve Reid. Released
into the public domain.

DES The implementation of the DES cipher is written by Dana L. How, and released
under the LGPL.

MD2 The implementation of MD2 is written by Andrew Kuchling, and hacked some
by Andreas Sigfridsson and Niels Möller. Python Cryptography Toolkit license
(essentially public domain).

MD4 This is almost the same code as for MD5 below, with modifications by Marcus
Comstedt. Released into the public domain.

MD5 The implementation of the MD5 message digest is written by Colin Plumb. It
has been hacked some more by Andrew Kuchling and Niels Möller. Released
into the public domain.

Chapter 2: Copyright 3

SERPENT

The implementation of the SERPENT cipher is written by Ross Anderson, Eli
Biham, and Lars Knudsen, adapted to LSH by Rafael Sevilla, and to Nettle by
Niels Möller. Released under the GPL.

SHA1 The C implementation of the SHA1 message digest is written by Peter Gut-
mann, and hacked some more by Andrew Kuchling and Niels Möller. Released
into the public domain. Assembler for x86 by Niels Möller, released under the
LGPL.

SHA224, SHA256, SHA384, and SHA512

Written by Niels Möller, using Peter Gutmann’s SHA1 code as a model. Re-
leased under the LGPL.

TWOFISH

The implementation of the TWOFISH cipher is written by Ruud de Rooij.
Released under the LGPL.

RSA Written by Niels Möller, released under the LGPL. Uses the GMP library for
bignum operations.

DSA Written by Niels Möller, released under the LGPL. Uses the GMP library for
bignum operations.

Chapter 3: Conventions 4

3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_

set_key (a function).

In all functions, strings are represented with an explicit length, of type unsigned, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string to
another, the argument order is length, destination pointer and source pointer. Source and
destination areas are of the same length. Source and destination may be the same, so that
you can process strings in place, but they must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.

Chapter 4: Example 5

4 Example

A simple example program that reads a file from standard input and writes its SHA1
checksum on standard output should give the flavor of Nettle.

#include <stdio.h>

#include <stdlib.h>

#include <nettle/sha.h>

#define BUF_SIZE 1000

static void

display_hex(unsigned length, uint8_t *data)

{

unsigned i;

for (i = 0; i<length; i++)

printf("%02x ", data[i]);

printf("\n");

}

int

main(int argc, char **argv)

{

struct sha1_ctx ctx;

uint8_t buffer[BUF_SIZE];

uint8_t digest[SHA1_DIGEST_SIZE];

sha1_init(&ctx);

for (;;)

{

int done = fread(buffer, 1, sizeof(buffer), stdin);

sha1_update(&ctx, done, buffer);

if (done < sizeof(buffer))

break;

}

if (ferror(stdin))

return EXIT_FAILURE;

sha1_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);

return EXIT_SUCCESS;

}

Chapter 4: Example 6

On a typical Unix system, this program can be compiled and linked with the command
line

cc sha-example.c -o sha-example -lnettle

Chapter 5: Linking 7

5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -lnettle. If an application also
uses public-key algorithms, the recommended linker flags are -lhogweed -lnettle -lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just -lhogweed, and the loader will resolve the dependencies automatically.

Chapter 6: Reference 8

6 Reference

This chapter describes all the Nettle functions, grouped by family.

6.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant

It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both these
fail the collision-resistance requirement; cryptologists have found ways to construct colliding
inputs. The recommended hash function for new applications is SHA256, even though it
uses a structure similar to MD5 and SHA1. Constructing better hash functions is an urgent
research problem.

6.1.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in RFC

1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘<nettle/md5.h>’.

[Context struct]struct md5_ctx

[Constant]MD5_DIGEST_SIZE
The size of an MD5 digest, i.e. 16.

[Constant]MD5_DATA_SIZE
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MD5.

[Function]void md5_init (struct md5 ctx *ctx)
Initialize the MD5 state.

[Function]void md5_update (struct md5 ctx *ctx , unsigned length , const uint8 t

*data)
Hash some more data.

[Function]void md5_digest (struct md5 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

Chapter 6: Reference 9

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.

6.1.2 MD2

MD2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

[Context struct]struct md2_ctx

[Constant]MD2_DIGEST_SIZE
The size of an MD2 digest, i.e. 16.

[Constant]MD2_DATA_SIZE
The internal block size of MD2.

[Function]void md2_init (struct md2 ctx *ctx)
Initialize the MD2 state.

[Function]void md2_update (struct md2 ctx *ctx , unsigned length , const uint8 t

*data)
Hash some more data.

[Function]void md2_digest (struct md2 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

6.1.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MD5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘<nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

[Context struct]struct md4_ctx

[Constant]MD4_DIGEST_SIZE
The size of an MD4 digest, i.e. 16.

[Constant]MD4_DATA_SIZE
The internal block size of MD4.

[Function]void md4_init (struct md4 ctx *ctx)
Initialize the MD4 state.

[Function]void md4_update (struct md4 ctx *ctx , unsigned length , const uint8 t

*data)
Hash some more data.

Chapter 6: Reference 10

[Function]void md4_digest (struct md4 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.

6.1.4 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/sha.h>’.

The functions are analogous to the MD5 ones.

[Context struct]struct sha1_ctx

[Constant]SHA1_DIGEST_SIZE
The size of an SHA1 digest, i.e. 20.

[Constant]SHA1_DATA_SIZE
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHA1.

[Function]void sha1_init (struct sha1 ctx *ctx)
Initialize the SHA1 state.

[Function]void sha1_update (struct sha1 ctx *ctx , unsigned length , const

uint8 t *data)
Hash some more data.

[Function]void sha1_digest (struct sha1 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as sha1_init.

6.1.5 SHA256

SHA256 is another hash function specified by NIST, intended as a replacement for SHA1,
generating larger digests. It outputs hash values of 256 bits, or 32 octets. Nettle defines
SHA256 in ‘<nettle/sha.h>’.

The functions are analogous to the MD5 ones.

[Context struct]struct sha256_ctx

[Constant]SHA256_DIGEST_SIZE
The size of an SHA256 digest, i.e. 32.

[Constant]SHA256_DATA_SIZE
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

Chapter 6: Reference 11

[Function]void sha256_init (struct sha256 ctx *ctx)
Initialize the SHA256 state.

[Function]void sha256_update (struct sha256 ctx *ctx , unsigned length , const

uint8 t *data)
Hash some more data.

[Function]void sha256_digest (struct sha256 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

6.1.6 SHA224

SHA224 is a variant of SHA256, with a different initial state, and with the output truncated
to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha.h>’.

The functions are analogous to the MD5 ones.

[Context struct]struct sha224_ctx

[Constant]SHA224_DIGEST_SIZE
The size of an SHA224 digest, i.e. 28.

[Constant]SHA224_DATA_SIZE
The internal block size of SHA224. Useful for some special constructions, in particular
HMAC-SHA224.

[Function]void sha224_init (struct sha224 ctx *ctx)
Initialize the SHA224 state.

[Function]void sha224_update (struct sha224 ctx *ctx , unsigned length , const

uint8 t *data)
Hash some more data.

[Function]void sha224_digest (struct sha224 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

6.1.7 SHA512

SHA512 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha.h>’.

The functions are analogous to the MD5 ones.

Chapter 6: Reference 12

[Context struct]struct sha512_ctx

[Constant]SHA512_DIGEST_SIZE
The size of an SHA512 digest, i.e. 64.

[Constant]SHA512_DATA_SIZE
The internal block size of SHA512. Useful for some special constructions, in particular
HMAC-SHA512.

[Function]void sha512_init (struct sha512 ctx *ctx)
Initialize the SHA512 state.

[Function]void sha512_update (struct sha512 ctx *ctx , unsigned length , const

uint8 t *data)
Hash some more data.

[Function]void sha512_digest (struct sha512 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha512_init.

6.1.8 SHA384

SHA384 is a variant of SHA512, with a different initial state, and with the output truncated
to 384 bits, or 48 octets. Nettle defines SHA384 in ‘<nettle/sha.h>’.

The functions are analogous to the MD5 ones.

[Context struct]struct sha384_ctx

[Constant]SHA384_DIGEST_SIZE
The size of an SHA384 digest, i.e. 48.

[Constant]SHA384_DATA_SIZE
The internal block size of SHA384. Useful for some special constructions, in particular
HMAC-SHA384.

[Function]void sha384_init (struct sha384 ctx *ctx)
Initialize the SHA384 state.

[Function]void sha384_update (struct sha384 ctx *ctx , unsigned length , const

uint8 t *data)
Hash some more data.

[Function]void sha384_digest (struct sha384 ctx *ctx , unsigned length , uint8 t

*digest)
Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than SHA384_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha384_init.

Chapter 6: Reference 13

6.1.9 struct nettle_hash

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’, and is used by Nettle’s implementation of HMAC

see Section 6.4 [Keyed hash functions], page 26.

[Meta struct]struct nettle_hash name context size digest size block size init

update digest

The last three attributes are function pointers, of types nettle_hash_init_func,
nettle_hash_update_func, and nettle_hash_digest_func. The first argument to
these functions is void * pointer to a context struct, which is of size context_size.

[Constant Struct]struct nettle_hash nettle_md2
[Constant Struct]struct nettle_hash nettle_md4
[Constant Struct]struct nettle_hash nettle_md5
[Constant Struct]struct nettle_hash nettle_sha1
[Constant Struct]struct nettle_hash nettle_sha224
[Constant Struct]struct nettle_hash nettle_sha256
[Constant Struct]struct nettle_hash nettle_sha384
[Constant Struct]struct nettle_hash nettle_sha512

These are all the hash functions that Nettle implements.

6.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the
plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal;
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 6.3 [Cipher modes], page 23, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never

ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the

Chapter 6: Reference 14

key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you’re reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting
the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 see
Section 6.4 [Keyed hash functions], page 26, or digital signatures like RSA.

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns 0.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.

6.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and variable key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed key
sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’.

[Context struct]struct aes_ctx

[Constant]AES_BLOCK_SIZE
The AES block-size, 16

[Constant]AES_MIN_KEY_SIZE

[Constant]AES_MAX_KEY_SIZE

[Constant]AES_KEY_SIZE
Default AES key size, 32

[Function]void aes_set_encrypt_key (struct aes ctx *ctx , unsigned length ,

const uint8 t *key)
[Function]void aes_set_decrypt_key (struct aes ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher, for encryption or decryption, respectively.

Chapter 6: Reference 15

[Function]void aes_invert_key (struct aes ctx *dst , const struct aes ctx *src)
Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. Calling aes_set_encrypt_key and aes_invert_key is
more efficient than calling aes_set_encrypt_key and aes_set_decrypt_key. This
function is mainly useful for applications which needs to both encrypt and decrypt
using the same key.

[Function]void aes_encrypt (struct aes ctx *ctx , unsigned length , const uint8 t

*dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void aes_decrypt (struct aes ctx *ctx , unsigned length , const uint8 t

*dst , uint8 t *src)
Analogous to aes_encrypt

6.2.2 ARCFOUR

ARCFOUR is a stream cipher, also known under the trade marked name RC4, and it
is one of the fastest ciphers around. A problem is that the key setup of ARCFOUR is
quite weak, you should never use keys with structure, keys that are ordinary passwords,
or sequences of keys like “secret:1”, “secret:2”, If you have keys that don’t look like
random bit strings, and you want to use ARCFOUR, always hash the key before feeding it
to ARCFOUR. Furthermore, the initial bytes of the generated key stream leak information
about the key; for this reason, it is recommended to discard the first 512 bytes of the key
stream.

/* A more robust key setup function for ARCFOUR */

void

arcfour_set_key_hashed(struct arcfour_ctx *ctx,

unsigned length, const uint8_t *key)

{

struct sha256_ctx hash;

uint8_t digest[SHA256_DIGEST_SIZE];

uint8_t buffer[0x200];

sha256_init(&hash);

sha256_update(&hash, length, key);

sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);

arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);

arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);

}

Nettle defines ARCFOUR in ‘<nettle/arcfour.h>’.

[Context struct]struct arcfour_ctx

[Constant]ARCFOUR_MIN_KEY_SIZE
Minimum key size, 1

Chapter 6: Reference 16

[Constant]ARCFOUR_MAX_KEY_SIZE
Maximum key size, 256

[Constant]ARCFOUR_KEY_SIZE
Default ARCFOUR key size, 16

[Function]void arcfour_set_key (struct arcfour ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void arcfour_crypt (struct arcfour ctx *ctx , unsigned length , const

uint8 t *dst , uint8 t *src)
Encrypt some data. The same function is used for both encryption and decryption.
Unlike the block ciphers, this function modifies the context, so you can split the data
into arbitrary chunks and encrypt them one after another. The result is the same as
if you had called arcfour_crypt only once with all the data.

6.2.3 ARCTWO

ARCTWO (also known as the trade marked name RC2) is a block cipher specified in RFC
2268. Nettle also include a variation of the ARCTWO set key operation that lack one
step, to be compatible with the reverse engineered RC2 cipher description, as described in
a Usenet post to sci.crypt by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging from 1 to 128
octets. Besides the key, ARCTWO also has a second parameter to key setup, the number
of effective key bits, ekb. This parameter can be used to artificially reduce the key size.
In practice, ekb is usually set equal to the input key size. Nettle defines ARCTWO in
‘<nettle/arctwo.h>’.

We do not recommend the use of ARCTWO; the Nettle implementation is provided
primarily for interoperability with existing applications and standards.

[Context struct]struct arctwo_ctx

[Constant]ARCTWO_BLOCK_SIZE
The AES block-size, 8

[Constant]ARCTWO_MIN_KEY_SIZE

[Constant]ARCTWO_MAX_KEY_SIZE

[Constant]ARCTWO_KEY_SIZE
Default ARCTWO key size, 8

[Function]void arctwo_set_key_ekb (struct arctwo ctx *ctx , unsigned length ,

const uint8 t *key , unsigned ekb)
[Function]void arctwo_set_key (struct arctwo ctx *ctx , unsigned length , const

uint8 t *key)
[Function]void arctwo_set_key_gutmann (struct arctwo ctx *ctx , unsigned

length , const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
The first function is the most general one, which lets you provide both the variable

Chapter 6: Reference 17

size key, and the desired effective key size (in bits). The maximum value for ekb is
1024, and for convenience, ekb = 0 has the same effect as ekb = 1024.

arctwo_set_key(ctx, length, key) is equivalent to arctwo_set_key_ekb(ctx,

length, key, 8*length), and arctwo_set_key_gutmann(ctx, length, key) is
equivalent to arctwo_set_key_ekb(ctx, length, key, 1024)

[Function]void arctwo_encrypt (struct arctwo ctx *ctx , unsigned length , const

uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void arctwo_decrypt (struct arctwo ctx *ctx , unsigned length , const

uint8 t *dst , uint8 t *src)
Analogous to arctwo_encrypt

6.2.4 BLOWFISH

BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block size of 64 bits
(8 octets), and a variable key size, up to 448 bits. It has some weak keys. Nettle defines
BLOWFISH in ‘<nettle/blowfish.h>’.

[Context struct]struct blowfish_ctx

[Constant]BLOWFISH_BLOCK_SIZE
The BLOWFISH block-size, 8

[Constant]BLOWFISH_MIN_KEY_SIZE
Minimum BLOWFISH key size, 8

[Constant]BLOWFISH_MAX_KEY_SIZE
Maximum BLOWFISH key size, 56

[Constant]BLOWFISH_KEY_SIZE
Default BLOWFISH key size, 16

[Function]int blowfish_set_key (struct blowfish ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Checks for weak keys, returning 1 for good keys and 0 for weak keys. Applications
that don’t care about weak keys can ignore the return value.

blowfish_encrypt or blowfish_decrypt with a weak key will crash with an assert
violation.

[Function]void blowfish_encrypt (struct blowfish ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void blowfish_decrypt (struct blowfish ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Analogous to blowfish_encrypt

Chapter 6: Reference 18

6.2.5 Camellia

Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph and Telephone
Corporation, described in RFC3713, and recommended by some Japanese and European au-
thorities as an alternative to AES. The algorithm is patented. The implementation in Nettle
is derived from the implementation released by NTT under the GNU LGPL (v2.1 or later),
and relies on the implicit patent license of the LGPL. There is also a statement of royalty-
free licensing for Camellia at http://www.ntt.co.jp/news/news01e/0104/010417.html,
but this statement has some limitations which seem problematic for free software.

Camellia uses a the same block size and key sizes as AES: The block size is 128 bits (16
octets), and the supported key sizes are 128, 192, and 256 bits. Nettle defines Camellia in
‘<nettle/camellia.h>’.

[Context struct]struct camellia_ctx

[Constant]CAMELLIA_BLOCK_SIZE
The CAMELLIA block-size, 16

[Constant]CAMELLIA_MIN_KEY_SIZE

[Constant]CAMELLIA_MAX_KEY_SIZE

[Constant]CAMELLIA_KEY_SIZE
Default CAMELLIA key size, 32

[Function]void camellia_set_encrypt_key (struct camellia ctx *ctx , unsigned

length , const uint8 t *key)
[Function]void camellia_set_decrypt_key (struct camellia ctx *ctx , unsigned

length , const uint8 t *key)
Initialize the cipher, for encryption or decryption, respectively.

[Function]void camellia_invert_key (struct camellia ctx *dst , const struct

camellia ctx *src)
Given a context src initialized for encryption, initializes the context struct dst

for decryption, using the same key. If the same context struct is passed for both
src and dst, it is converted in place. Calling camellia_set_encrypt_key and
camellia_invert_key is more efficient than calling camellia_set_encrypt_key

and camellia_set_decrypt_key. This function is mainly useful for applications
which needs to both encrypt and decrypt using the same key.

[Function]void camellia_crypt (struct camellia ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
The same function is used for both encryption and decryption. length must be an
integral multiple of the block size. If it is more than one block, the data is processed
in ECB mode. src and dst may be equal, but they must not overlap in any other
way.

6.2.6 CAST128

CAST-128 is a block cipher, specified in RFC 2144. It uses a 64 bit (8 octets) block size,
and a variable key size of up to 128 bits. Nettle defines cast128 in ‘<nettle/cast128.h>’.

Chapter 6: Reference 19

[Context struct]struct cast128_ctx

[Constant]CAST128_BLOCK_SIZE
The CAST128 block-size, 8

[Constant]CAST128_MIN_KEY_SIZE
Minimum CAST128 key size, 5

[Constant]CAST128_MAX_KEY_SIZE
Maximum CAST128 key size, 16

[Constant]CAST128_KEY_SIZE
Default CAST128 key size, 16

[Function]void cast128_set_key (struct cast128 ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void cast128_encrypt (struct cast128 ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void cast128_decrypt (struct cast128 ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Analogous to cast128_encrypt

6.2.7 DES

DES is the old Data Encryption Standard, specified by NIST. It uses a block size of 64 bits
(8 octets), and a key size of 56 bits. However, the key bits are distributed over 8 octets,
where the least significant bit of each octet may be used for parity. A common way to use
DES is to generate 8 random octets in some way, then set the least significant bit of each
octet to get odd parity, and initialize DES with the resulting key.

The key size of DES is so small that keys can be found by brute force, using specialized
hardware or lots of ordinary work stations in parallel. One shouldn’t be using plain DES
at all today, if one uses DES at all one should be using “triple DES”, see DES3 below.

DES also has some weak keys. Nettle defines DES in ‘<nettle/des.h>’.

[Context struct]struct des_ctx

[Constant]DES_BLOCK_SIZE
The DES block-size, 8

[Constant]DES_KEY_SIZE
DES key size, 8

[Function]int des_set_key (struct des ctx *ctx , const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 for good keys and 0 for
weak keys. Applications that don’t care about weak keys can ignore the return value.

Chapter 6: Reference 20

[Function]void des_encrypt (struct des ctx *ctx , unsigned length , const uint8 t

*dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void des_decrypt (struct des ctx *ctx , unsigned length , const uint8 t

*dst , uint8 t *src)
Analogous to des_encrypt

[Function]int des_check_parity (unsigned length , const uint8 t *key);
Checks that the given key has correct, odd, parity. Returns 1 for correct parity, and
0 for bad parity.

[Function]void des_fix_parity (unsigned length , uint8 t *dst , const uint8 t

*src)
Adjusts the parity bits to match DES’s requirements. You need this function if you
have created a random-looking string by a key agreement protocol, and want to use
it as a DES key. dst and src may be equal.

6.2.8 DES3

The inadequate key size of DES has already been mentioned. One way to increase the key
size is to pipe together several DES boxes with independent keys. It turns out that using
two DES ciphers is not as secure as one might think, even if the key size of the combination
is a respectable 112 bits.

The standard way to increase DES’s key size is to use three DES boxes. The mode of
operation is a little peculiar: the middle DES box is wired in the reverse direction. To
encrypt a block with DES3, you encrypt it using the first 56 bits of the key, then decrypt

it using the middle 56 bits of the key, and finally encrypt it again using the last 56 bits of
the key. This is known as “ede” triple-DES, for “encrypt-decrypt-encrypt”.

The “ede” construction provides some backward compatibility, as you get plain single
DES simply by feeding the same key to all three boxes. That should help keeping down the
gate count, and the price, of hardware circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity bits are inserted,
so that keys are represented as 24 octets (192 bits). As a 112 bit key is large enough to make
brute force attacks impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES box in the pipe,
while the middle box is keyed independently. The two-key variant is believed to be secure,
i.e. there are no known attacks significantly better than brute force.

Naturally, it’s simple to implement triple-DES on top of Nettle’s DES functions. Nettle
includes an implementation of three-key “ede” triple-DES, it is defined in the same place
as plain DES, ‘<nettle/des.h>’.

[Context struct]struct des3_ctx

[Constant]DES3_BLOCK_SIZE
The DES3 block-size is the same as DES BLOCK SIZE, 8

Chapter 6: Reference 21

[Constant]DES3_KEY_SIZE
DES key size, 24

[Function]int des3_set_key (struct des3 ctx *ctx , const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 if all three keys are good
keys, and 0 if one or more key is weak. Applications that don’t care about weak keys
can ignore the return value.

For random-looking strings, you can use des_fix_parity to adjust the parity bits before
calling des3_set_key.

[Function]void des3_encrypt (struct des3 ctx *ctx , unsigned length , const

uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void des3_decrypt (struct des3 ctx *ctx , unsigned length , const

uint8 t *dst , uint8 t *src)
Analogous to des_encrypt

6.2.9 SERPENT

SERPENT is one of the AES finalists, designed by Ross Anderson, Eli Biham and Lars
Knudsen. Thus, the interface and properties are similar to AES’. One peculiarity is that it
is quite pointless to use it with anything but the maximum key size, smaller keys are just
padded to larger ones. Nettle defines SERPENT in ‘<nettle/serpent.h>’.

[Context struct]struct serpent_ctx

[Constant]SERPENT_BLOCK_SIZE
The SERPENT block-size, 16

[Constant]SERPENT_MIN_KEY_SIZE
Minimum SERPENT key size, 16

[Constant]SERPENT_MAX_KEY_SIZE
Maximum SERPENT key size, 32

[Constant]SERPENT_KEY_SIZE
Default SERPENT key size, 32

[Function]void serpent_set_key (struct serpent ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void serpent_encrypt (struct serpent ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

Chapter 6: Reference 22

[Function]void serpent_decrypt (struct serpent ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Analogous to serpent_encrypt

6.2.10 TWOFISH

Another AES finalist, this one designed by Bruce Schneier and others. Nettle defines it in
‘<nettle/twofish.h>’.

[Context struct]struct twofish_ctx

[Constant]TWOFISH_BLOCK_SIZE
The TWOFISH block-size, 16

[Constant]TWOFISH_MIN_KEY_SIZE
Minimum TWOFISH key size, 16

[Constant]TWOFISH_MAX_KEY_SIZE
Maximum TWOFISH key size, 32

[Constant]TWOFISH_KEY_SIZE
Default TWOFISH key size, 32

[Function]void twofish_set_key (struct twofish ctx *ctx , unsigned length ,

const uint8 t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void twofish_encrypt (struct twofish ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void twofish_decrypt (struct twofish ctx *ctx , unsigned length ,

const uint8 t *dst , uint8 t *src)
Analogous to twofish_encrypt

6.2.11 struct nettle_cipher

Nettle includes a struct including information about some of the more regular cipher func-
tions. It should be considered a little experimental, but can be useful for applications
that need a simple way to handle various algorithms. Nettle defines these structs in
‘<nettle/nettle-meta.h>’.

[Meta struct]struct nettle_cipher name context size block size key size

set encrypt key set decrypt key encrypt decrypt

The last four attributes are function pointers, of types nettle_set_key_func and
nettle_crypt_func. The first argument to these functions is a void * pointer to a
context struct, which is of size context_size.

Chapter 6: Reference 23

[Constant Struct]struct nettle_cipher nettle_aes128
[Constant Struct]struct nettle_cipher nettle_aes192
[Constant Struct]struct nettle_cipher nettle_aes256
[Constant Struct]struct nettle_cipher nettle_arctwo40;
[Constant Struct]struct nettle_cipher nettle_arctwo64;
[Constant Struct]struct nettle_cipher nettle_arctwo128;
[Constant Struct]struct nettle_cipher nettle_arctwo_gutmann128;
[Constant Struct]struct nettle_cipher nettle_arcfour128
[Constant Struct]struct nettle_cipher nettle_camellia128
[Constant Struct]struct nettle_cipher nettle_camellia192
[Constant Struct]struct nettle_cipher nettle_camellia256
[Constant Struct]struct nettle_cipher nettle_cast128
[Constant Struct]struct nettle_cipher nettle_serpent128
[Constant Struct]struct nettle_cipher nettle_serpent192
[Constant Struct]struct nettle_cipher nettle_serpent256
[Constant Struct]struct nettle_cipher nettle_twofish128
[Constant Struct]struct nettle_cipher nettle_twofish192
[Constant Struct]struct nettle_cipher nettle_twofish256
[Constant Struct]struct nettle_cipher nettle_arctwo40;
[Constant Struct]struct nettle_cipher nettle_arctwo64;
[Constant Struct]struct nettle_cipher nettle_arctwo128;
[Constant Struct]struct nettle_cipher nettle_arctwo_gutmann128;

Nettle includes such structs for all the regular ciphers, i.e. ones without weak keys or
other oddities.

6.3 Cipher modes

Cipher modes of operation specifies the procedure to use when encrypting a message that
is larger than the cipher’s block size. As explained in See Section 6.2 [Cipher functions],
page 13, splitting the message into blocks and processing them independently with the block
cipher (Electronic Code Book mode, ECB) leaks information. Besides ECB, Nettle provides
two other modes of operation: Cipher Block Chaining (CBC) and Counter mode (CTR).
CBC is widely used, but there are a few subtle issues of information leakage. CTR was
standardized more recently, and is believed to be more secure.

6.3.1 Cipher Block Chaining

When using CBC mode, plaintext blocks are not encrypted independently of each other,
like in Electronic Cook Book mode. Instead, when encrypting a block in CBC mode, the
previous ciphertext block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an IV, or Initialization Vector, is
used as the “previous ciphertext block”. The IV should be chosen randomly, but it need
not be kept secret, and can even be transmitted in the clear together with the encrypted
data.

In symbols, if E_k is the encryption function of a block cipher, and IV is the initialization
vector, then n plaintext blocks M_1,. . . M_n are transformed into n ciphertext blocks C_1,. . .
C_n as follows:

C_1 = E_k(IV XOR M_1)

Chapter 6: Reference 24

C_2 = E_k(C_1 XOR M_2)

...

C_n = E_k(C_(n-1) XOR M_n)

Nettle’s includes two functions for applying a block cipher in Cipher Block Chaining
(CBC) mode, one for encryption and one for decryption. These functions uses void * to
pass cipher contexts around.

[Function]void cbc_encrypt (void *ctx , nettle crypt func f , unsigned

block_size , uint8 t *iv , unsigned length , uint8 t *dst , const uint8 t

*src)
[Function]void cbc_decrypt (void *ctx , void (*f)(), unsigned block_size ,

uint8 t *iv , unsigned length , uint8 t *dst , const uint8 t *src)
Applies the encryption or decryption function f in CBC mode. The final ciphertext
block processed is copied into iv before returning, so that large message be processed
be a sequence of calls to cbc_encrypt. The function f is of type

void f (void *ctx, unsigned length, uint8_t dst, const uint8_t *src),

and the cbc_encrypt and cbc_decrypt functions pass their argument ctx on to f .

There are also some macros to help use these functions correctly.

[Macro]CBC_CTX (context_type , block_size)
Expands into

{

context_type ctx;

uint8_t iv[block_size];

}

It can be used to define a CBC context struct, either directly,

struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;

or to give it a struct tag,

struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);

[Macro]CBC_SET_IV (ctx , iv)
First argument is a pointer to a context struct as defined by CBC_CTX, and the second
is a pointer to an Initialization Vector (IV) that is copied into that context.

[Macro]CBC_ENCRYPT (ctx , f , length , dst , src)
[Macro]CBC_DECRYPT (ctx , f , length , dst , src)

A simpler way to invoke cbc_encrypt and cbc_decrypt. The first argument is a
pointer to a context struct as defined by CBC_CTX, and the second argument is an
encryption or decryption function following Nettle’s conventions. The last three ar-
guments define the source and destination area for the operation.

These macros use some tricks to make the compiler display a warning if the types of f and
ctx don’t match, e.g. if you try to use an struct aes_ctx context with the des_encrypt

function.

Chapter 6: Reference 25

6.3.2 Counter mode

Counter mode (CTR) uses the block cipher as a keyed pseudo-random generator. The
output of the generator is XORed with the data to be encrypted. It can be understood as
a way to transform a block cipher to a stream cipher.

The message is divided into n blocks M_1,. . . M_n, where M_n is of size m which may be
smaller than the block size. Except for the last block, all the message blocks must be of
size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IC is the initial counter, then the n

plaintext blocks are transformed into n ciphertext blocks C_1,. . . C_n as follows:

C_1 = E_k(IC) XOR M_1

C_2 = E_k(IC + 1) XOR M_2

...

C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)

C_n = E_k(IC + n - 1) [1..m] XOR M_n

The IC is the initial value for the counter, it plays a similar role as the IV for CBC. When
adding, IC + x, IC is interpreted as an integer, in network byte order. For the last block,
E_k(IC + n - 1) [1..m] means that the cipher output is truncated to m bytes.

[Function]void ctr_crypt (void *ctx , nettle crypt func f , unsigned block_size ,

uint8 t *ctr , unsigned length , uint8 t *dst , const uint8 t *src)
Applies the encryption function f in CTR mode. Note that for CTR mode, encryption
and decryption is the same operation, and hence f should always be the encryption
function for the underlying block cipher.

When a message is encrypted using a sequence of calls to ctr_crypt, all but the last
call must use a length that is a multiple of the block size.

Like for CBC, there are also a couple of helper macros.

[Macro]CTR_CTX (context_type , block_size)
Expands into

{

context_type ctx;

uint8_t ctr[block_size];

}

[Macro]CTR_SET_COUNTER (ctx , iv)
First argument is a pointer to a context struct as defined by CTR_CTX, and the second
is a pointer to an initial counter that is copied into that context.

[Macro]CTR_CRYPT (ctx , f , length , dst , src)
A simpler way to invoke ctr_crypt. The first argument is a pointer to a context struct
as defined by CTR_CTX, and the second argument is an encryption function following
Nettle’s conventions. The last three arguments define the source and destination area
for the operation.

Chapter 6: Reference 26

6.4 Keyed Hash Functions

A keyed hash function, or Message Authentication Code (MAC) is a function that takes a
key and a message, and produces fixed size MAC. It should be hard to compute a message
and a matching MAC without knowledge of the key. It should also be hard to compute the
key given only messages and corresponding MACs.

Keyed hash functions are useful primarily for message authentication, when Alice and
Bob shares a secret: The sender, Alice, computes the MAC and attaches it to the message.
The receiver, Bob, also computes the MAC of the message, using the same key, and compares
that to Alice’s value. If they match, Bob can be assured that the message has not been
modified on its way from Alice.

However, unlike digital signatures, this assurance is not transferable. Bob can’t show
the message and the MAC to a third party and prove that Alice sent that message. Not
even if he gives away the key to the third party. The reason is that the same key is used on
both sides, and anyone knowing the key can create a correct MAC for any message. If Bob
believes that only he and Alice knows the key, and he knows that he didn’t attach a MAC

to a particular message, he knows it must be Alice who did it. However, the third party
can’t distinguish between a MAC created by Alice and one created by Bob.

Keyed hash functions are typically a lot faster than digital signatures as well.

6.4.1 HMAC

One can build keyed hash functions from ordinary hash functions. Older constructions
simply concatenate secret key and message and hashes that, but such constructions have
weaknesses. A better construction is HMAC, described in RFC 2104.

For an underlying hash function H, with digest size l and internal block size b, HMAC-

H is constructed as follows: From a given key k, two distinct subkeys k_i and k_o are
constructed, both of length b. The HMAC-H of a message m is then computed as H(k_o |

H(k_i | m)), where | denotes string concatenation.

HMAC keys can be of any length, but it is recommended to use keys of length l, the
digest size of the underlying hash function H. Keys that are longer than b are shortened to
length l by hashing with H, so arbitrarily long keys aren’t very useful.

Nettle’s HMAC functions are defined in ‘<nettle/hmac.h>’. There are abstract functions
that use a pointer to a struct nettle_hash to represent the underlying hash function and
void * pointers that point to three different context structs for that hash function. There are
also concrete functions for HMAC-MD5, HMAC-SHA1, HMAC-SHA256, and HMAC-SHA512.
First, the abstract functions:

[Function]void hmac_set_key (void *outer , void *inner , void *state , const

struct nettle hash *H , unsigned length , const uint8 t *key)
Initializes the three context structs from the key. The outer and inner contexts
corresponds to the subkeys k_o and k_i. state is used for hashing the message, and
is initialized as a copy of the inner context.

[Function]void hmac_update (void *state , const struct nettle hash *H , unsigned

length , const uint8 t *data)
This function is called zero or more times to process the message. Actually,
hmac_update(state, H, length, data) is equivalent to H->update(state,

Chapter 6: Reference 27

length, data), so if you wish you can use the ordinary update function of the
underlying hash function instead.

[Function]void hmac_digest (const void *outer , const void *inner , void

*state , const struct nettle hash *H , unsigned length , uint8 t *digest)
Extracts the MAC of the message, writing it to digest. outer and inner are not
modified. length is usually equal to H->digest_size, but if you provide a smaller
value, only the first length octets of the MAC are written.

This function also resets the state context so that you can start over processing a new
message (with the same key).

Like for CBC, there are some macros to help use these functions correctly.

[Macro]HMAC_CTX (type)
Expands into

{

type outer;

type inner;

type state;

}

It can be used to define a HMAC context struct, either directly,

struct HMAC_CTX(struct md5_ctx) ctx;

or to give it a struct tag,

struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);

[Macro]HMAC_SET_KEY (ctx , H , length , key)
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a const

struct nettle_hash describing the underlying hash function (so it must match the
type of the components of ctx). The last two arguments specify the secret key.

[Macro]HMAC_DIGEST (ctx , H , length , digest)
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a
const struct nettle_hash describing the underlying hash function. The last two
arguments specify where the digest is written.

Note that there is no HMAC_UPDATE macro; simply call hmac_update function directly, or
the update function of the underlying hash function.

6.4.2 Concrete HMAC functions

Now we come to the specialized HMAC functions, which are easier to use than the general
HMAC functions.

6.4.2.1 HMAC-MD5

[Context struct]struct hmac_md5_ctx

[Function]void hmac_md5_set_key (struct hmac md5 ctx *ctx , unsigned

key_length , const uint8 t *key)
Initializes the context with the key.

Chapter 6: Reference 28

[Function]void hmac_md5_update (struct hmac md5 ctx *ctx , unsigned length ,

const uint8 t *data)
Process some more data.

[Function]void hmac_md5_digest (struct hmac md5 ctx *ctx , unsigned length ,

uint8 t *digest)
Extracts the MAC, writing it to digest. length may be smaller than MD5_DIGEST_SIZE,
in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

6.4.2.2 HMAC-SHA1

[Context struct]struct hmac_sha1_ctx

[Function]void hmac_sha1_set_key (struct hmac sha1 ctx *ctx , unsigned

key_length , const uint8 t *key)
Initializes the context with the key.

[Function]void hmac_sha1_update (struct hmac sha1 ctx *ctx , unsigned

length , const uint8 t *data)
Process some more data.

[Function]void hmac_sha1_digest (struct hmac sha1 ctx *ctx , unsigned

length , uint8 t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA1_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

6.4.2.3 HMAC-SHA256

[Context struct]struct hmac_sha256_ctx

[Function]void hmac_sha256_set_key (struct hmac sha256 ctx *ctx , unsigned

key_length , const uint8 t *key)
Initializes the context with the key.

[Function]void hmac_sha256_update (struct hmac sha256 ctx *ctx , unsigned

length , const uint8 t *data)
Process some more data.

[Function]void hmac_sha256_digest (struct hmac sha256 ctx *ctx , unsigned

length , uint8 t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA256_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

Chapter 6: Reference 29

6.4.2.4 HMAC-SHA512

[Context struct]struct hmac_sha512_ctx

[Function]void hmac_sha512_set_key (struct hmac sha512 ctx *ctx , unsigned

key_length , const uint8 t *key)
Initializes the context with the key.

[Function]void hmac_sha512_update (struct hmac sha512 ctx *ctx , unsigned

length , const uint8 t *data)
Process some more data.

[Function]void hmac_sha512_digest (struct hmac sha512 ctx *ctx , unsigned

length , uint8 t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA512_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

6.5 Public-key algorithms

Nettle uses GMP, the GNU bignum library, for all calculations with large numbers. In order
to use the public-key features of Nettle, you must install GMP, at least version 3.0, before
compiling Nettle, and you need to link your programs with -lhogweed -lnettle -lgmp.

The concept of Public-key encryption and digital signatures was discovered by Whitfield
Diffie and Martin E. Hellman and described in a paper 1976. In traditional, “symmetric”,
cryptography, sender and receiver share the same keys, and these keys must be distributed
in a secure way. And if there are many users or entities that need to communicate, each
pair needs a shared secret key known by nobody else.

Public-key cryptography uses trapdoor one-way functions. A one-way function is a
function F such that it is easy to compute the value F(x) for any x, but given a value y, it
is hard to compute a corresponding x such that y = F(x). Two examples are cryptographic
hash functions, and exponentiation in certain groups.

A trapdoor one-way function is a function F that is one-way, unless one knows some
secret information about F. If one knows the secret, it is easy to compute both F and it’s
inverse. If this sounds strange, look at the RSA example below.

Two important uses for one-way functions with trapdoors are public-key encryption, and
digital signatures. The public-key encryption functions in Nettle are not yet documented;
the rest of this chapter is about digital signatures.

To use a digital signature algorithm, one must first create a key-pair: A public key and
a corresponding private key. The private key is used to sign messages, while the public key
is used for verifying that that signatures and messages match. Some care must be taken
when distributing the public key; it need not be kept secret, but if a bad guy is able to
replace it (in transit, or in some user’s list of known public keys), bad things may happen.

There are two operations one can do with the keys. The signature operation takes a
message and a private key, and creates a signature for the message. A signature is some
string of bits, usually at most a few thousand bits or a few hundred octets. Unlike paper-
and-ink signatures, the digital signature depends on the message, so one can’t cut it out of
context and glue it to a different message.

Chapter 6: Reference 30

The verification operation takes a public key, a message, and a string that is claimed to
be a signature on the message, and returns true or false. If it returns true, that means that
the three input values matched, and the verifier can be sure that someone went through
with the signature operation on that very message, and that the “someone” also knows the
private key corresponding to the public key.

The desired properties of a digital signature algorithm are as follows: Given the public
key and pairs of messages and valid signatures on them, it should be hard to compute
the private key, and it should also be hard to create a new message and signature that is
accepted by the verification operation.

Besides signing meaningful messages, digital signatures can be used for authorization.
A server can be configured with a public key, such that any client that connects to the
service is given a random nonce message. If the server gets a reply with a correct signature
matching the nonce message and the configured public key, the client is granted access. So
the configuration of the server can be understood as “grant access to whoever knows the
private key corresponding to this particular public key, and to no others”.

6.5.1 RSA

The RSA algorithm was the first practical digital signature algorithm that was constructed.
It was described 1978 in a paper by Ronald Rivest, Adi Shamir and L.M. Adleman, and
the technique was also patented in the USA in 1983. The patent expired on September 20,
2000, and since that day, RSA can be used freely, even in the USA.

It’s remarkably simple to describe the trapdoor function behind RSA. The “one-way”-
function used is

F(x) = x^e mod n

I.e. raise x to the e:th power, while discarding all multiples of n. The pair of numbers
n and e is the public key. e can be quite small, even e = 3 has been used, although slightly
larger numbers are recommended. n should be about 1000 bits or larger.

If n is large enough, and properly chosen, the inverse of F, the computation of e:th roots
modulo n, is very difficult. But, where’s the trapdoor?

Let’s first look at how RSA key-pairs are generated. First n is chosen as the product of
two large prime numbers p and q of roughly the same size (so if n is 1000 bits, p and q are
about 500 bits each). One also computes the number phi = (p-1)(q-1), in mathematical
speak, phi is the order of the multiplicative group of integers modulo n.

Next, e is chosen. It must have no factors in common with phi (in particular, it must
be odd), but can otherwise be chosen more or less randomly. e = 65537 is a popular choice,
because it makes raising to the e’th power particularly efficient, and being prime, it usually
has no factors common with phi.

Finally, a number d, d < n is computed such that e d mod phi = 1. It can be shown that
such a number exists (this is why e and phi must have no common factors), and that for
all x,

(x^e)^d mod n = x^(ed) mod n = (x^d)^e mod n = x

Using Euclid’s algorithm, d can be computed quite easily from phi and e. But it is still
hard to get d without knowing phi, which depends on the factorization of n.

Chapter 6: Reference 31

So d is the trapdoor, if we know d and y = F(x), we can recover x as y^d mod n. d is
also the private half of the RSA key-pair.

The most common signature operation for RSA is defined in PKCS#1, a specification
by RSA Laboratories. The message to be signed is first hashed using a cryptographic hash
function, e.g. MD5 or SHA1. Next, some padding, the ASN.1 “Algorithm Identifier” for the
hash function, and the message digest itself, are concatenated and converted to a number
x. The signature is computed from x and the private key as s = x^d mod n1. The signature,
s is a number of about the same size of n, and it usually encoded as a sequence of octets,
most significant octet first.

The verification operation is straight-forward, x is computed from the message in the
same way as above. Then s^e mod n is computed, the operation returns true if and only if
the result equals x.

6.5.2 Nettle’s RSA support

Nettle represents RSA keys using two structures that contain large numbers (of type mpz_t).

[Context struct]rsa_public_key size n e

size is the size, in octets, of the modulo, and is used internally. n and e is the public
key.

[Context struct]rsa_private_key size d p q a b c

size is the size, in octets, of the modulo, and is used internally. d is the secret
exponent, but it is not actually used when signing. Instead, the factors p and q, and
the parameters a, b and c are used. They are computed from p, q and e such that a
e mod (p - 1) = 1, b e mod (q - 1) = 1, c q mod p = 1.

Before use, these structs must be initialized by calling one of

[Function]void rsa_public_key_init (struct rsa public key *pub)
[Function]void rsa_private_key_init (struct rsa private key *key)

Calls mpz_init on all numbers in the key struct.

and when finished with them, the space for the numbers must be deallocated by calling
one of

[Function]void rsa_public_key_clear (struct rsa public key *pub)
[Function]void rsa_private_key_clear (struct rsa private key *key)

Calls mpz_clear on all numbers in the key struct.

In general, Nettle’s RSA functions deviates from Nettle’s “no memory allocation”-policy.
Space for all the numbers, both in the key structs above, and temporaries, are allocated
dynamically. For information on how to customize allocation, see See Section “GMP Allo-
cation” in GMP Manual.

When you have assigned values to the attributes of a key, you must call

1 Actually, the computation is not done like this, it is done more efficiently using p, q and the Chinese
remainder theorem (CRT). But the result is the same.

Chapter 6: Reference 32

[Function]int rsa_public_key_prepare (struct rsa public key *pub)
[Function]int rsa_private_key_prepare (struct rsa private key *key)

Computes the octet size of the key (stored in the size attribute, and may also do
other basic sanity checks. Returns one if successful, or zero if the key can’t be used,
for instance if the modulo is smaller than the minimum size needed for RSA operations
specified by PKCS#1.

Before signing or verifying a message, you first hash it with the appropriate hash function.
You pass the hash function’s context struct to the RSA signature function, and it will extract
the message digest and do the rest of the work. There are also alternative functions that
take the hash digest as argument.

There is currently no support for using SHA224 or SHA384 with RSA signatures, since
there’s no gain in either computation time nor message size compared to using SHA256 and
SHA512, respectively.

Creation and verification of signatures is done with the following functions:

[Function]int rsa_md5_sign (const struct rsa private key *key , struct md5 ctx

*hash , mpz t signature)
[Function]int rsa_sha1_sign (const struct rsa private key *key , struct sha1 ctx

*hash , mpz t signature)
[Function]int rsa_sha256_sign (const struct rsa private key *key , struct

sha256 ctx *hash , mpz t signature)
[Function]int rsa_sha512_sign (const struct rsa private key *key , struct

sha512 ctx *hash , mpz t signature)
The signature is stored in signature (which must have been mpz_init’ed earlier). The
hash context is reset so that it can be used for new messages. Returns one on success,
or zero on failure. Signing fails if the key is too small for the given hash size, e.g., it’s
not possible to create a signature using SHA512 and a 512-bit RSA key.

[Function]int rsa_md5_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature)
[Function]int rsa_sha1_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature);
[Function]int rsa_sha256_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature);
[Function]int rsa_sha512_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature);
Creates a signature from the given hash digest. digest should point to a digest of size
MD5_DIGEST_SIZE, SHA1_DIGEST_SIZE, or SHA256_DIGEST_SIZE, respectively. The
signature is stored in signature (which must have been mpz_init:ed earlier). Returns
one on success, or zero on failure.

[Function]int rsa_md5_verify (const struct rsa public key *key , struct md5 ctx

*hash , const mpz t signature)
[Function]int rsa_sha1_verify (const struct rsa public key *key , struct sha1 ctx

*hash , const mpz t signature)
[Function]int rsa_sha256_verify (const struct rsa public key *key , struct

sha256 ctx *hash , const mpz t signature)

Chapter 6: Reference 33

[Function]int rsa_sha512_verify (const struct rsa public key *key , struct

sha512 ctx *hash , const mpz t signature)
Returns 1 if the signature is valid, or 0 if it isn’t. In either case, the hash context is
reset so that it can be used for new messages.

[Function]int rsa_md5_verify_digest (const struct rsa public key *key , const

uint8 t *digest , const mpz t signature)
[Function]int rsa_sha1_verify_digest (const struct rsa public key *key , const

uint8 t *digest , const mpz t signature)
[Function]int rsa_sha256_verify_digest (const struct rsa public key *key ,

const uint8 t *digest , const mpz t signature)
[Function]int rsa_sha512_verify_digest (const struct rsa public key *key ,

const uint8 t *digest , const mpz t signature)
Returns 1 if the signature is valid, or 0 if it isn’t. digest should point to a digest of
size MD5_DIGEST_SIZE, SHA1_DIGEST_SIZE, or SHA256_DIGEST_SIZE, respectively.

If you need to use the RSA trapdoor, the private key, in a way that isn’t supported by
the above functions Nettle also includes a function that computes x^d mod n and nothing
more, using the CRT optimization.

[Function]void rsa_compute_root (struct rsa private key *key , mpz t x , const

mpz t m)
Computes x = m^d, efficiently.

At last, how do you create new keys?

[Function]int rsa_generate_keypair (struct rsa public key *pub , struct

rsa private key *key , void *random_ctx , nettle random func random , void

*progress_ctx , nettle progress func progress , unsigned n_size , unsigned

e_size);
There are lots of parameters. pub and key is where the resulting key pair is stored.
The structs should be initialized, but you don’t need to call rsa_public_key_prepare
or rsa_private_key_prepare after key generation.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 6.6 [Randomness], page 37.

progress and progress ctx can be used to get callbacks during the key generation
process, in order to uphold an illusion of progress. progress can be NULL, in that
case there are no callbacks.

size n is the desired size of the modulo, in bits. If size e is non-zero, it is the desired
size of the public exponent and a random exponent of that size is selected. But if
e size is zero, it is assumed that the caller has already chosen a value for e, and
stored it in pub. Returns one on success, and zero on failure. The function can fail
for example if if n size is too small, or if e size is zero and pub->e is an even number.

6.5.3 Nettle’s DSA support

The DSA digital signature algorithm is more complex than RSA. It was specified during the
early 1990s, and in 1994 NIST published FIPS 186 which is the authoritative specification.

Chapter 6: Reference 34

Sometimes DSA is referred to using the acronym DSS, for Digital Signature Standard. The
most recent revision of the specification, FIPS186-3, was issueed in 2009, and it adds support
for larger hash functions than sha1.

For DSA, the underlying mathematical problem is the computation of discreet logarithms.
The public key consists of a large prime p, a small prime q which is a factor of p-1, a number
g which generates a subgroup of order q modulo p, and an element y in that subgroup.

In the original DSA, the size of q is fixed to 160 bits, to match with the SHA1 hash
algorithm. The size of p is in principle unlimited, but the standard specifies only nine
specific sizes: 512 + l*64, where l is between 0 and 8. Thus, the maximum size of p is 1024
bits, and sizes less than 1024 bits are considered obsolete and not secure.

The subgroup requirement means that if you compute

g^t mod p

for all possible integers t, you will get precisely q distinct values.

The private key is a secret exponent x, such that

g^x = y mod p

In mathematical speak, x is the discrete logarithm of y mod p, with respect to the
generator g. The size of x will also be about the same size as q. The security of the DSA

algorithm relies on the difficulty of the discrete logarithm problem. Current algorithms to
compute discrete logarithms in this setting, and hence crack DSA, are of two types. The
first type works directly in the (multiplicative) group of integers mod p. The best known
algorithm of this type is the Number Field Sieve, and it’s complexity is similar to the
complexity of factoring numbers of the same size as p. The other type works in the smaller
q-sized subgroup generated by g, which has a more difficult group structure. One good
algorithm is Pollard-rho, which has complexity sqrt(q).

The important point is that security depends on the size of both p and q, and they
should be choosen so that the difficulty of both discrete logarithm methods are comparable.
Today, the security margin of the original DSA may be uncomfortably small. Using a p

of 1024 bits implies that cracking using the number field sieve is expected to take about
the same time as factoring a 1024-bit RSA modulo, and using a q of size 160 bits implies
that cracking using Pollard-rho will take roughly 2^80 group operations. With the size of q
fixed, tied to the SHA1 digest size, it may be tempting to increase the size of p to, say, 4096
bits. This will provide excellent resistance against attacks like the number field sieve which
works in the large group. But it will do very little to defend against Pollard-rho attacking
the small subgroup; the attacker is slowed down at most by a single factor of 10 due to the
more expensive group operation. And the attacker will surely choose the latter attack.

The signature generation algorithm is randomized; in order to create a DSA signature,
you need a good source for random numbers (see Section 6.6 [Randomness], page 37). Let
us describe the common case of a 160-bit q.

To create a signature, one starts with the hash digest of the message, h, which is a 160
bit number, and a random number k, 0<k<q, also 160 bits. Next, one computes

r = (g^k mod p) mod q

s = k^-1 (h + x r) mod q

The signature is the pair (r, s), two 160 bit numbers. Note the two different mod
operations when computing r, and the use of the secret exponent x.

Chapter 6: Reference 35

To verify a signature, one first checks that 0 < r,s < q, and then one computes back-
wards,

w = s^-1 mod q

v = (g^(w h) y^(w r) mod p) mod q

The signature is valid if v = r. This works out because w = s^-1 mod q = k (h + x r)^-1

mod q, so that

g^(w h) y^(w r) = g^(w h) (g^x)^(w r) = g^(w (h + x r)) = g^k

When reducing mod q this yields r. Note that when verifying a signature, we don’t
know either k or x: those numbers are secret.

If you can choose between RSA and DSA, which one is best? Both are believed to be
secure. DSA gained popularity in the late 1990s, as a patent free alternative to RSA. Now
that the RSA patents have expired, there’s no compelling reason to want to use DSA. Today,
the original DSA key size does not provide a large security margin, and it should probably
be phased out together with RSA keys of 1024 bits. Using the revised DSA algorithm with
a larger hash function, in particular, SHA256, a 256-bit q, and p of size 2048 bits or more,
should provide for a more comfortable security margin, but these variants are not yet in
wide use.

DSA signatures are smaller than RSA signatures, which is important for some specialized
applications.

From a practical point of view, DSA’s need for a good randomness source is a serious
disadvantage. If you ever use the same k (and r) for two different message, you leak your
private key.

6.5.4 Nettle’s DSA support

Like for RSA, Nettle represents DSA keys using two structures, containing values of type
mpz_t. For information on how to customize allocation, see See Section “GMP Allocation”
in GMP Manual.

Most of the DSA functions are very similar to the corresponding RSA functions, but there
are a few differences pointed out below. For a start, there are no functions corresponding
to rsa_public_key_prepare and rsa_private_key_prepare.

[Context struct]dsa_public_key p q g y

The public parameters described above.

[Context struct]dsa_private_key x

The private key x.

Before use, these structs must be initialized by calling one of

[Function]void dsa_public_key_init (struct dsa public key *pub)
[Function]void dsa_private_key_init (struct dsa private key *key)

Calls mpz_init on all numbers in the key struct.

When finished with them, the space for the numbers must be deallocated by calling one
of

Chapter 6: Reference 36

[Function]void dsa_public_key_clear (struct dsa public key *pub)
[Function]void dsa_private_key_clear (struct dsa private key *key)

Calls mpz_clear on all numbers in the key struct.

Signatures are represented using the structure below, and need to be initialized and
cleared in the same way as the key structs.

[Context struct]dsa_signature r s

[Function]void dsa_signature_init (struct dsa signature *signature)
[Function]void dsa_signature_clear (struct dsa signature *signature)

You must call dsa_signature_init before creating or using a signature, and call
dsa_signature_clear when you are finished with it.

For signing, you need to provide both the public and the private key (unlike RSA,
where the private key struct includes all information needed for signing), and a source for
random numbers. Signatures can use the SHA1 or the SHA256 hash function, although the
implementation of DSA with SHA256 should be considered somewhat experimental due to
lack of official test vectors and interoperability testing.

[Function]int dsa_sha1_sign (const struct dsa public key *pub , const struct

dsa private key *key , void *random_ctx , nettle random func random , struct

sha1 ctx *hash , struct dsa signature *signature)
[Function]int dsa_sha1_sign_digest (const struct dsa public key *pub , const

struct dsa private key *key , void *random_ctx , nettle random func random ,

const uint8 t *digest , struct dsa signature *signature)
[Function]int dsa_sha256_sign (const struct dsa public key *pub , const struct

dsa private key *key , void *random_ctx , nettle random func random , struct

sha256 ctx *hash , struct dsa signature *signature)
[Function]int dsa_sha256_sign_digest (const struct dsa public key *pub , const

struct dsa private key *key , void *random_ctx , nettle random func random ,

const uint8 t *digest , struct dsa signature *signature)
Creates a signature from the given hash context or digest. random ctx and ran-

dom is a randomness generator. random(random_ctx, length, dst) should gener-
ate length random octets and store them at dst. For advice, see See Section 6.6
[Randomness], page 37. Returns one on success, or zero on failure. Signing fails if
the key size and the hash size don’t match.

Verifying signatures is a little easier, since no randomness generator is needed. The
functions are

[Function]int dsa_sha1_verify (const struct dsa public key *key , struct

sha1 ctx *hash , const struct dsa signature *signature)
[Function]int dsa_sha1_verify_digest (const struct dsa public key *key , const

uint8 t *digest , const struct dsa signature *signature)
[Function]int dsa_sha256_verify (const struct dsa public key *key , struct

sha256 ctx *hash , const struct dsa signature *signature)
[Function]int dsa_sha256_verify_digest (const struct dsa public key *key ,

const uint8 t *digest , const struct dsa signature *signature)
Verifies a signature. Returns 1 if the signature is valid, otherwise 0.

Chapter 6: Reference 37

Key generation uses mostly the same parameters as the corresponding RSA function.

[Function]int dsa_generate_keypair (struct dsa public key *pub , struct

dsa private key *key , void *random_ctx , nettle random func random , void

*progress_ctx , nettle progress func progress , unsigned p_bits , unsigned

q_bits)
pub and key is where the resulting key pair is stored. The structs should be initialized
before you call this function.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 6.6 [Randomness], page 37.

progress and progress ctx can be used to get callbacks during the key generation
process, in order to uphold an illusion of progress. progress can be NULL, in that
case there are no callbacks.

p bits and q bits are the desired sizes of p and q. To generate keys that conform
to the original DSA standard, you must use q_bits = 160 and select p bits of the
form p_bits = 512 + l*64, for 0 <= l <= 8, where the smaller sizes are no longer
recommended, so you should most likely stick to p_bits = 1024. Non-standard sizes
are possible, in particular p_bits larger than 1024, although DSA implementations
can not in general be expected to support such keys. Also note that using very large
p bits, with q bits fixed at 160, doesn’t make much sense, because the security is also
limited by the size of the smaller prime. Using a larger q_bits requires switchign to
a larger hash function. To generate DSA keys for use with SHA256, use q_bits = 256

and, e.g., p_bits = 2048.

Returns one on success, and zero on failure. The function will fail if q bits is neither
160 nor 256, or if p bits is unreasonably small.

6.6 Randomness

A crucial ingredient in many cryptographic contexts is randomness: Let p be a random
prime, choose a random initialization vector iv, a random key k and a random exponent
e, etc. In the theories, it is assumed that you have plenty of randomness around. If this
assumption is not true in practice, systems that are otherwise perfectly secure, can be
broken. Randomness has often turned out to be the weakest link in the chain.

In non-cryptographic applications, such as games as well as scientific simulation, a good
randomness generator usually means a generator that has good statistical properties, and is
seeded by some simple function of things like the current time, process id, and host name.

However, such a generator is inadequate for cryptography, for at least two reasons:

• It’s too easy for an attacker to guess the initial seed. Even if it will take some 2^32
tries before he guesses right, that’s far too easy. For example, if the process id is 16
bits, the resolution of “current time” is one second, and the attacker knows what day
the generator was seeded, there are only about 2^32 possibilities to try if all possible
values for the process id and time-of-day are tried.

• The generator output reveals too much. By observing only a small segment of the
generator’s output, its internal state can be recovered, and from there, all previous
output and all future output can be computed by the attacker.

Chapter 6: Reference 38

A randomness generator that is used for cryptographic purposes must have better prop-
erties. Let’s first look at the seeding, as the issues here are mostly independent of the
rest of the generator. The initial state of the generator (its seed) must be unguessable
by the attacker. So what’s unguessable? It depends on what the attacker already knows.
The concept used in information theory to reason about such things is called “entropy”,
or “conditional entropy” (not to be confused with the thermodynamic concept with the
same name). A reasonable requirement is that the seed contains a conditional entropy of
at least some 80-100 bits. This property can be explained as follows: Allow the attacker
to ask n yes-no-questions, of his own choice, about the seed. If the attacker, using this
question-and-answer session, as well as any other information he knows about the seeding
process, still can’t guess the seed correctly, then the conditional entropy is more than n bits.

Let’s look at an example. Say information about timing of received network packets
is used in the seeding process. If there is some random network traffic going on, this will
contribute some bits of entropy or “unguessability” to the seed. However, if the attacker can
listen in to the local network, or if all but a small number of the packets were transmitted by
machines that the attacker can monitor, this additional information makes the seed easier
for the attacker to figure out. Even if the information is exactly the same, the conditional
entropy, or unguessability, is smaller for an attacker that knows some of it already before
the hypothetical question-and-answer session.

Seeding of good generators is usually based on several sources. The key point here is that
the amount of unguessability that each source contributes, depends on who the attacker is.
Some sources that have been used are:

High resolution timing of i/o activities
Such as completed blocks from spinning hard disks, network packets, etc. Get-
ting access to such information is quite system dependent, and not all systems
include suitable hardware. If available, it’s one of the better randomness source
one can find in a digital, mostly predictable, computer.

User activity
Timing and contents of user interaction events is another popular source that is
available for interactive programs (even if I suspect that it is sometimes used in
order to make the user feel good, not because the quality of the input is needed
or used properly). Obviously, not available when a machine is unattended. Also
beware of networks: User interaction that happens across a long serial cable,
TELNET session, or even SSH session may be visible to an attacker, in full or
partially.

Audio input
Any room, or even a microphone input that’s left unconnected, is a source of
some random background noise, which can be fed into the seeding process.

Specialized hardware
Hardware devices with the sole purpose of generating random data have been
designed. They range from radioactive samples with an attached Geiger
counter, to amplification of the inherent noise in electronic components such
as diodes and resistors, to low-frequency sampling of chaotic systems. Hashing
successive images of a Lava lamp is a spectacular example of the latter type.

Chapter 6: Reference 39

Secret information
Secret information, such as user passwords or keys, or private files stored on
disk, can provide some unguessability. A problem is that if the information
is revealed at a later time, the unguessability vanishes. Another problem is
that this kind of information tends to be fairly constant, so if you rely on it
and seed your generator regularly, you risk constructing almost similar seeds or
even constructing the same seed more than once.

For all practical sources, it’s difficult but important to provide a reliable lower bound
on the amount of unguessability that it provides. Two important points are to make sure
that the attacker can’t observe your sources (so if you like the Lava lamp idea, remember
that you have to get your own lamp, and not put it by a window or anywhere else where
strangers can see it), and that hardware failures are detected. What if the bulb in the Lava
lamp, which you keep locked into a cupboard following the above advice, breaks after a few
months?

So let’s assume that we have been able to find an unguessable seed, which contains at
least 80 bits of conditional entropy, relative to all attackers that we care about (typically,
we must at the very least assume that no attacker has root privileges on our machine).

How do we generate output from this seed, and how much can we get? Some generators
(notably the Linux ‘/dev/random’ generator) tries to estimate available entropy and restrict
the amount of output. The goal is that if you read 128 bits from ‘/dev/random’, you
should get 128 “truly random” bits. This is a property that is useful in some specialized
circumstances, for instance when generating key material for a one time pad, or when
working with unconditional blinding, but in most cases, it doesn’t matter much. For most
application, there’s no limit on the amount of useful “random” data that we can generate
from a small seed; what matters is that the seed is unguessable and that the generator has
good cryptographic properties.

At the heart of all generators lies its internal state. Future output is determined by
the internal state alone. Let’s call it the generator’s key. The key is initialized from the
unguessable seed. Important properties of a generator are:

Key-hiding

An attacker observing the output should not be able to recover the generator’s
key.

Independence of outputs

Observing some of the output should not help the attacker to guess previous or
future output.

Forward secrecy

Even if an attacker compromises the generator’s key, he should not be able to
guess the generator output before the key compromise.

Recovery from key compromise

If an attacker compromises the generator’s key, he can compute all future out-
put. This is inevitable if the generator is seeded only once, at startup. However,
the generator can provide a reseeding mechanism, to achieve recovery from key
compromise. More precisely: If the attacker compromises the key at a particu-
lar time t_1, there is another later time t_2, such that if the attacker observes

Chapter 6: Reference 40

all output generated between t_1 and t_2, he still can’t guess what output is
generated after t_2.

Nettle includes one randomness generator that is believed to have all the above proper-
ties, and two simpler ones.

ARCFOUR, like any stream cipher, can be used as a randomness generator. Its output
should be of reasonable quality, if the seed is hashed properly before it is used with arcfour_

set_key. There’s no single natural way to reseed it, but if you need reseeding, you should
be using Yarrow instead.

The “lagged Fibonacci” generator in ‘<nettle/knuth-lfib.h>’ is a fast generator with
good statistical properties, but is not for cryptographic use, and therefore not documented
here. It is included mostly because the Nettle test suite needs to generate some test data
from a small seed.

The recommended generator to use is Yarrow, described below.

6.6.1 Yarrow

Yarrow is a family of pseudo-randomness generators, designed for cryptographic use, by
John Kelsey, Bruce Schneier and Niels Ferguson. Yarrow-160 is described in a paper at
http://www.counterpane.com/yarrow.html, and it uses SHA1 and triple-DES, and has a
160-bit internal state. Nettle implements Yarrow-256, which is similar, but uses SHA256

and AES to get an internal state of 256 bits.

Yarrow was an almost finished project, the paper mentioned above is the closest thing
to a specification for it, but some smaller details are left out. There is no official reference
implementation or test cases. This section includes an overview of Yarrow, but for the
details of Yarrow-256, as implemented by Nettle, you have to consult the source code.
Maybe a complete specification can be written later.

Yarrow can use many sources (at least two are needed for proper reseeding), and two
randomness “pools”, referred to as the “slow pool” and the “fast pool”. Input from the
sources is fed alternatingly into the two pools. When one of the sources has contributed 100
bits of entropy to the fast pool, a “fast reseed” happens and the fast pool is mixed into the
internal state. When at least two of the sources have contributed at least 160 bits each to
the slow pool, a “slow reseed” takes place. The contents of both pools are mixed into the
internal state. These procedures should ensure that the generator will eventually recover
after a key compromise.

The output is generated by using AES to encrypt a counter, using the generator’s current
key. After each request for output, another 256 bits are generated which replace the key.
This ensures forward secrecy.

Yarrow can also use a seed file to save state across restarts. Yarrow is seeded by either
feeding it the contents of the previous seed file, or feeding it input from its sources until a
slow reseed happens.

Nettle defines Yarrow-256 in ‘<nettle/yarrow.h>’.

[Context struct]struct yarrow256_ctx

[Context struct]struct yarrow_source
Information about a single source.

Chapter 6: Reference 41

[Constant]YARROW256_SEED_FILE_SIZE
Recommanded size of the Yarrow-256 seed file.

[Function]void yarrow256_init (struct yarrow256 ctx *ctx , unsigned nsources ,

struct yarrow source *sources)
Initializes the yarrow context, and its nsources sources. It’s possible to call it with
nsources=0 and sources=NULL, if you don’t need the update features.

[Function]void yarrow256_seed (struct yarrow256 ctx *ctx , unsigned length ,

uint8 t *seed_file)
Seeds Yarrow-256 from a previous seed file. length should be at least YARROW256_

SEED_FILE_SIZE, but it can be larger.

The generator will trust you that the seed file data really is unguessable. After calling
this function, you must overwrite the old seed file with newly generated data from
yarrow256_random. If it’s possible for several processes to read the seed file at about
the same time, access must be coordinated using some locking mechanism.

[Function]int yarrow256_update (struct yarrow256 ctx *ctx , unsigned source ,

unsigned entropy , unsigned length , const uint8 t *data)
Updates the generator with data from source SOURCE (an index that must be smaller
than the number of sources). entropy is your estimated lower bound for the entropy
in the data, measured in bits. Calling update with zero entropy is always safe, no
matter if the data is random or not.

Returns 1 if a reseed happened, in which case an application using a seed file may
want to generate new seed data with yarrow256_random and overwrite the seed file.
Otherwise, the function returns 0.

[Function]void yarrow256_random (struct yarrow256 ctx *ctx , unsigned length ,

uint8 t *dst)
Generates length octets of output. The generator must be seeded before you call this
function.

If you don’t need forward secrecy, e.g. if you need non-secret randomness for ini-
tialization vectors or padding, you can gain some efficiency by buffering, calling this
function for reasonably large blocks of data, say 100-1000 octets at a time.

[Function]int yarrow256_is_seeded (struct yarrow256 ctx *ctx)
Returns 1 if the generator is seeded and ready to generate output, otherwise 0.

[Function]unsigned yarrow256_needed_sources (struct yarrow256 ctx *ctx)
Returns the number of sources that must reach the threshold before a slow reseed
will happen. Useful primarily when the generator is unseeded.

[Function]void yarrow256_fast_reseed (struct yarrow256 ctx *ctx)
[Function]void yarrow256_slow_reseed (struct yarrow256 ctx *ctx)

Causes a fast or slow reseed to take place immediately, regardless of the current
entropy estimates of the two pools. Use with care.

Nettle includes an entropy estimator for one kind of input source: User keyboard input.

Chapter 6: Reference 42

[Context struct]struct yarrow_key_event_ctx
Information about recent key events.

[Function]void yarrow_key_event_init (struct yarrow key event ctx *ctx)
Initializes the context.

[Function]unsigned yarrow_key_event_estimate (struct yarrow key event ctx

*ctx , unsigned key , unsigned time)
key is the id of the key (ASCII value, hardware key code, X keysym, . . . , it doesn’t
matter), and time is the timestamp of the event. The time must be given in units
matching the resolution by which you read the clock. If you read the clock with mi-
crosecond precision, time should be provided in units of microseconds. But if you use
gettimeofday on a typical Unix system where the clock ticks 10 or so microseconds
at a time, time should be given in units of 10 microseconds.

Returns an entropy estimate, in bits, suitable for calling yarrow256_update. Usually,
0, 1 or 2 bits.

6.7 Miscellaneous functions

[Function]uint8_t * memxor (uint8 t *dst , const uint8 t *src , size t n)
XORs the source area on top of the destination area. The interface doesn’t follow
the Nettle conventions, because it is intended to be similar to the ANSI-C memcpy

function.

memxor is declared in ‘<nettle/memxor.h>’.

6.8 Compatibility functions

For convenience, Nettle includes alternative interfaces to some algorithms, for compatibility
with some other popular crypto toolkits. These are not fully documented here; refer to the
source or to the documentation for the original implementation.

MD5 is defined in [RFC 1321], which includes a reference implementation. Nettle defines
a compatible interface to MD5 in ‘<nettle/md5-compat.h>’. This file defines the typedef
MD5_CTX, and declares the functions MD5Init, MD5Update and MD5Final.

Eric Young’s “libdes” (also part of OpenSSL) is a quite popular DES implementation.
Nettle includes a subset if its interface in ‘<nettle/des-compat.h>’. This file defines
the typedefs des_key_schedule and des_cblock, two constants DES_ENCRYPT and
DES_DECRYPT, and declares one global variable des_check_key, and the functions des_

cbc_cksum des_cbc_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ecb_encrypt,
des_ede2_cbc_encrypt, des_ede3_cbc_encrypt, des_is_weak_key, des_key_sched,
des_ncbc_encrypt des_set_key, and des_set_odd_parity.

Chapter 7: Traditional Nettle Soup 43

7 Traditional Nettle Soup

For the serious nettle hacker, here is a recipe for nettle soup. 4 servings.

1 liter fresh nettles (urtica dioica)

2 tablespoons butter

3 tablespoons flour

1 liter stock (meat or vegetable)

1/2 teaspoon salt

a tad white pepper

some cream or milk

Gather 1 liter fresh nettles. Use gloves! Small, tender shoots are preferable but the tops
of larger nettles can also be used.

Rinse the nettles very well. Boil them for 10 minutes in lightly salted water. Strain the
nettles and save the water. Hack the nettles. Melt the butter and mix in the flour. Dilute
with stock and the nettle-water you saved earlier. Add the hacked nettles. If you wish you
can add some milk or cream at this stage. Bring to a boil and let boil for a few minutes.
Season with salt and pepper.

Serve with boiled egg-halves.

Chapter 8: Installation 44

8 Installation

Nettle uses autoconf. To build it, unpack the source and run

./configure

make

make check

make install

to install in the default location, ‘/usr/local’. The library files are installed in
‘/use/local/lib/libnettle.a’ ‘/use/local/lib/libhogweed.a’ and the include files
are installed in ‘/use/local/include/nettle/’.

To get a list of configure options, use ./configure --help.

By default, only static libraries are built and installed. To also build and install shared
libraries, use the ‘ --enable-shared’ option to ./configure.

Using GNU make is recommended. For other make programs, in particular BSD make,
you may have to use the ‘--disable-dependency-tracking’ option to ./configure.

Function and Concept Index 45

Function and Concept Index

A
aes_decrypt . 15
aes_encrypt . 15
aes_invert_key . 15
aes_set_decrypt_key . 14
aes_set_encrypt_key . 14
arcfour_crypt . 16
arcfour_set_key . 16
arctwo_decrypt . 17
arctwo_encrypt . 17
arctwo_set_key . 16
arctwo_set_key_ekb . 16
arctwo_set_key_gutmann . 16

B
Block Cipher . 13
blowfish_decrypt . 17
blowfish_encrypt . 17
blowfish_set_key . 17

C
camellia_crypt . 18
camellia_invert_key . 18
camellia_set_decrypt_key 18
camellia_set_encrypt_key 18
cast128_decrypt . 19
cast128_encrypt . 19
cast128_set_key . 19
CBC Mode . 23
CBC_CTX . 24
cbc_decrypt . 24
CBC_DECRYPT . 24
cbc_encrypt . 24
CBC_ENCRYPT . 24
CBC_SET_IV . 24
Cipher . 13
Cipher Block Chaining . 23
Collision-resistant . 8
Conditional entropy . 38
Counter Mode . 25
CTR Mode . 25
ctr_crypt . 25
CTR_CRYPT . 25
CTR_CTX . 25
CTR_SET_COUNTER . 25

D
des_check_parity . 20
des_decrypt . 20
des_encrypt . 20
des_fix_parity . 20

des_set_key . 19
des3_decrypt . 21
des3_encrypt . 21
des3_set_key . 21
dsa_generate_keypair . 37
dsa_private_key_clear . 36
dsa_private_key_init . 35
dsa_public_key_clear . 36
dsa_public_key_init . 35
dsa_sha1_sign . 36
dsa_sha1_sign_digest . 36
dsa_sha1_verify . 36
dsa_sha1_verify_digest . 36
dsa_sha256_sign . 36
dsa_sha256_sign_digest . 36
dsa_sha256_verify . 36
dsa_sha256_verify_digest 36
dsa_signature_clear . 36
dsa_signature_init . 36

E
Entropy . 38

H
Hash function . 8
HMAC_CTX . 27
hmac_digest . 27
HMAC_DIGEST . 27
hmac_md5_digest . 28
hmac_md5_set_key . 27
hmac_md5_update . 28
hmac_set_key . 26
HMAC_SET_KEY . 27
hmac_sha1_digest . 28
hmac_sha1_set_key . 28
hmac_sha1_update . 28
hmac_sha256_digest . 28
hmac_sha256_set_key . 28
hmac_sha256_update . 28
hmac_sha512_digest . 29
hmac_sha512_set_key . 29
hmac_sha512_update . 29
hmac_update . 26

K
Keyed Hash Function . 26

M
MAC . 26
md2_digest . 9

Function and Concept Index 46

md2_init . 9
md2_update . 9
md4_digest . 10
md4_init . 9
md4_update . 9
md5_digest . 8
md5_init . 8
md5_update . 8
memxor . 42
Message Authentication Code 26

O
One-way . 8
One-way function . 29

P
Public Key Cryptography . 29

R
Randomness . 37
rsa_compute_root . 33
rsa_generate_keypair . 33
rsa_md5_sign . 32
rsa_md5_sign_digest . 32
rsa_md5_verify . 32
rsa_md5_verify_digest . 33
rsa_private_key_clear . 31
rsa_private_key_init . 31
rsa_private_key_prepare . 32
rsa_public_key_clear . 31
rsa_public_key_init . 31
rsa_public_key_prepare . 32
rsa_sha1_sign . 32
rsa_sha1_sign_digest . 32
rsa_sha1_verify . 32
rsa_sha1_verify_digest . 33
rsa_sha256_sign . 32
rsa_sha256_sign_digest . 32
rsa_sha256_verify . 32
rsa_sha256_verify_digest 33
rsa_sha512_sign . 32

rsa_sha512_sign_digest . 32
rsa_sha512_verify . 32
rsa_sha512_verify_digest 33

S
serpent_decrypt . 22
serpent_encrypt . 21
serpent_set_key . 21
sha1_digest . 10
sha1_init . 10
sha1_update . 10
sha224_digest . 11
sha224_init . 11
sha224_update . 11
sha256_digest . 11
sha256_init . 11
sha256_update . 11
sha384_digest . 12
sha384_init . 12
sha384_update . 12
sha512_digest . 12
sha512_init . 12
sha512_update . 12
Stream Cipher . 13

T
twofish_decrypt . 22
twofish_encrypt . 22
twofish_set_key . 22

Y
yarrow_key_event_estimate 42
yarrow_key_event_init . 42
yarrow256_fast_reseed . 41
yarrow256_init . 41
yarrow256_is_seeded . 41
yarrow256_needed_sources 41
yarrow256_random . 41
yarrow256_seed . 41
yarrow256_slow_reseed . 41
yarrow256_update . 41

