Merge tag 'drm-misc-fixes-2022-12-08' of git://anongit.freedesktop.org/drm/drm-misc...
[platform/kernel/linux-starfive.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546                                   const u8 *addr, enum nl80211_iftype iftype,
547                                   u8 data_offset, bool is_amsdu)
548 {
549         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550         struct {
551                 u8 hdr[ETH_ALEN] __aligned(2);
552                 __be16 proto;
553         } payload;
554         struct ethhdr tmp;
555         u16 hdrlen;
556         u8 mesh_flags = 0;
557
558         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559                 return -1;
560
561         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562         if (skb->len < hdrlen)
563                 return -1;
564
565         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566          * header
567          * IEEE 802.11 address fields:
568          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569          *   0     0   DA    SA    BSSID n/a
570          *   0     1   DA    BSSID SA    n/a
571          *   1     0   BSSID SA    DA    n/a
572          *   1     1   RA    TA    DA    SA
573          */
574         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577         if (iftype == NL80211_IFTYPE_MESH_POINT &&
578             skb_copy_bits(skb, hdrlen, &mesh_flags, 1) < 0)
579                 return -1;
580
581         mesh_flags &= MESH_FLAGS_AE;
582
583         switch (hdr->frame_control &
584                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
585         case cpu_to_le16(IEEE80211_FCTL_TODS):
586                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
587                              iftype != NL80211_IFTYPE_AP_VLAN &&
588                              iftype != NL80211_IFTYPE_P2P_GO))
589                         return -1;
590                 break;
591         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
592                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
593                              iftype != NL80211_IFTYPE_AP_VLAN &&
594                              iftype != NL80211_IFTYPE_STATION))
595                         return -1;
596                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
597                         if (mesh_flags == MESH_FLAGS_AE_A4)
598                                 return -1;
599                         if (mesh_flags == MESH_FLAGS_AE_A5_A6 &&
600                             skb_copy_bits(skb, hdrlen +
601                                           offsetof(struct ieee80211s_hdr, eaddr1),
602                                           tmp.h_dest, 2 * ETH_ALEN) < 0)
603                                 return -1;
604
605                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
606                 }
607                 break;
608         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
609                 if ((iftype != NL80211_IFTYPE_STATION &&
610                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
611                      iftype != NL80211_IFTYPE_MESH_POINT) ||
612                     (is_multicast_ether_addr(tmp.h_dest) &&
613                      ether_addr_equal(tmp.h_source, addr)))
614                         return -1;
615                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
616                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
617                                 return -1;
618                         if (mesh_flags == MESH_FLAGS_AE_A4 &&
619                             skb_copy_bits(skb, hdrlen +
620                                           offsetof(struct ieee80211s_hdr, eaddr1),
621                                           tmp.h_source, ETH_ALEN) < 0)
622                                 return -1;
623                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
624                 }
625                 break;
626         case cpu_to_le16(0):
627                 if (iftype != NL80211_IFTYPE_ADHOC &&
628                     iftype != NL80211_IFTYPE_STATION &&
629                     iftype != NL80211_IFTYPE_OCB)
630                                 return -1;
631                 break;
632         }
633
634         if (likely(skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635                    ((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
636                      payload.proto != htons(ETH_P_AARP) &&
637                      payload.proto != htons(ETH_P_IPX)) ||
638                     ether_addr_equal(payload.hdr, bridge_tunnel_header)))) {
639                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
640                  * replace EtherType */
641                 hdrlen += ETH_ALEN + 2;
642                 tmp.h_proto = payload.proto;
643                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
644         } else {
645                 tmp.h_proto = htons(skb->len - hdrlen);
646         }
647
648         pskb_pull(skb, hdrlen);
649
650         if (!ehdr)
651                 ehdr = skb_push(skb, sizeof(struct ethhdr));
652         memcpy(ehdr, &tmp, sizeof(tmp));
653
654         return 0;
655 }
656 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
657
658 static void
659 __frame_add_frag(struct sk_buff *skb, struct page *page,
660                  void *ptr, int len, int size)
661 {
662         struct skb_shared_info *sh = skb_shinfo(skb);
663         int page_offset;
664
665         get_page(page);
666         page_offset = ptr - page_address(page);
667         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
668 }
669
670 static void
671 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
672                             int offset, int len)
673 {
674         struct skb_shared_info *sh = skb_shinfo(skb);
675         const skb_frag_t *frag = &sh->frags[0];
676         struct page *frag_page;
677         void *frag_ptr;
678         int frag_len, frag_size;
679         int head_size = skb->len - skb->data_len;
680         int cur_len;
681
682         frag_page = virt_to_head_page(skb->head);
683         frag_ptr = skb->data;
684         frag_size = head_size;
685
686         while (offset >= frag_size) {
687                 offset -= frag_size;
688                 frag_page = skb_frag_page(frag);
689                 frag_ptr = skb_frag_address(frag);
690                 frag_size = skb_frag_size(frag);
691                 frag++;
692         }
693
694         frag_ptr += offset;
695         frag_len = frag_size - offset;
696
697         cur_len = min(len, frag_len);
698
699         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
700         len -= cur_len;
701
702         while (len > 0) {
703                 frag_len = skb_frag_size(frag);
704                 cur_len = min(len, frag_len);
705                 __frame_add_frag(frame, skb_frag_page(frag),
706                                  skb_frag_address(frag), cur_len, frag_len);
707                 len -= cur_len;
708                 frag++;
709         }
710 }
711
712 static struct sk_buff *
713 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
714                        int offset, int len, bool reuse_frag)
715 {
716         struct sk_buff *frame;
717         int cur_len = len;
718
719         if (skb->len - offset < len)
720                 return NULL;
721
722         /*
723          * When reusing framents, copy some data to the head to simplify
724          * ethernet header handling and speed up protocol header processing
725          * in the stack later.
726          */
727         if (reuse_frag)
728                 cur_len = min_t(int, len, 32);
729
730         /*
731          * Allocate and reserve two bytes more for payload
732          * alignment since sizeof(struct ethhdr) is 14.
733          */
734         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
735         if (!frame)
736                 return NULL;
737
738         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
739         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
740
741         len -= cur_len;
742         if (!len)
743                 return frame;
744
745         offset += cur_len;
746         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
747
748         return frame;
749 }
750
751 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
752                               const u8 *addr, enum nl80211_iftype iftype,
753                               const unsigned int extra_headroom,
754                               const u8 *check_da, const u8 *check_sa)
755 {
756         unsigned int hlen = ALIGN(extra_headroom, 4);
757         struct sk_buff *frame = NULL;
758         u16 ethertype;
759         u8 *payload;
760         int offset = 0, remaining;
761         struct ethhdr eth;
762         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
763         bool reuse_skb = false;
764         bool last = false;
765
766         while (!last) {
767                 unsigned int subframe_len;
768                 int len;
769                 u8 padding;
770
771                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
772                 len = ntohs(eth.h_proto);
773                 subframe_len = sizeof(struct ethhdr) + len;
774                 padding = (4 - subframe_len) & 0x3;
775
776                 /* the last MSDU has no padding */
777                 remaining = skb->len - offset;
778                 if (subframe_len > remaining)
779                         goto purge;
780                 /* mitigate A-MSDU aggregation injection attacks */
781                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
782                         goto purge;
783
784                 offset += sizeof(struct ethhdr);
785                 last = remaining <= subframe_len + padding;
786
787                 /* FIXME: should we really accept multicast DA? */
788                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
789                      !ether_addr_equal(check_da, eth.h_dest)) ||
790                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
791                         offset += len + padding;
792                         continue;
793                 }
794
795                 /* reuse skb for the last subframe */
796                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
797                         skb_pull(skb, offset);
798                         frame = skb;
799                         reuse_skb = true;
800                 } else {
801                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
802                                                        reuse_frag);
803                         if (!frame)
804                                 goto purge;
805
806                         offset += len + padding;
807                 }
808
809                 skb_reset_network_header(frame);
810                 frame->dev = skb->dev;
811                 frame->priority = skb->priority;
812
813                 payload = frame->data;
814                 ethertype = (payload[6] << 8) | payload[7];
815                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
816                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
817                            ether_addr_equal(payload, bridge_tunnel_header))) {
818                         eth.h_proto = htons(ethertype);
819                         skb_pull(frame, ETH_ALEN + 2);
820                 }
821
822                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
823                 __skb_queue_tail(list, frame);
824         }
825
826         if (!reuse_skb)
827                 dev_kfree_skb(skb);
828
829         return;
830
831  purge:
832         __skb_queue_purge(list);
833         dev_kfree_skb(skb);
834 }
835 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
836
837 /* Given a data frame determine the 802.1p/1d tag to use. */
838 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
839                                     struct cfg80211_qos_map *qos_map)
840 {
841         unsigned int dscp;
842         unsigned char vlan_priority;
843         unsigned int ret;
844
845         /* skb->priority values from 256->263 are magic values to
846          * directly indicate a specific 802.1d priority.  This is used
847          * to allow 802.1d priority to be passed directly in from VLAN
848          * tags, etc.
849          */
850         if (skb->priority >= 256 && skb->priority <= 263) {
851                 ret = skb->priority - 256;
852                 goto out;
853         }
854
855         if (skb_vlan_tag_present(skb)) {
856                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
857                         >> VLAN_PRIO_SHIFT;
858                 if (vlan_priority > 0) {
859                         ret = vlan_priority;
860                         goto out;
861                 }
862         }
863
864         switch (skb->protocol) {
865         case htons(ETH_P_IP):
866                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
867                 break;
868         case htons(ETH_P_IPV6):
869                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
870                 break;
871         case htons(ETH_P_MPLS_UC):
872         case htons(ETH_P_MPLS_MC): {
873                 struct mpls_label mpls_tmp, *mpls;
874
875                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
876                                           sizeof(*mpls), &mpls_tmp);
877                 if (!mpls)
878                         return 0;
879
880                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
881                         >> MPLS_LS_TC_SHIFT;
882                 goto out;
883         }
884         case htons(ETH_P_80221):
885                 /* 802.21 is always network control traffic */
886                 return 7;
887         default:
888                 return 0;
889         }
890
891         if (qos_map) {
892                 unsigned int i, tmp_dscp = dscp >> 2;
893
894                 for (i = 0; i < qos_map->num_des; i++) {
895                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
896                                 ret = qos_map->dscp_exception[i].up;
897                                 goto out;
898                         }
899                 }
900
901                 for (i = 0; i < 8; i++) {
902                         if (tmp_dscp >= qos_map->up[i].low &&
903                             tmp_dscp <= qos_map->up[i].high) {
904                                 ret = i;
905                                 goto out;
906                         }
907                 }
908         }
909
910         ret = dscp >> 5;
911 out:
912         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
913 }
914 EXPORT_SYMBOL(cfg80211_classify8021d);
915
916 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
917 {
918         const struct cfg80211_bss_ies *ies;
919
920         ies = rcu_dereference(bss->ies);
921         if (!ies)
922                 return NULL;
923
924         return cfg80211_find_elem(id, ies->data, ies->len);
925 }
926 EXPORT_SYMBOL(ieee80211_bss_get_elem);
927
928 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
929 {
930         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
931         struct net_device *dev = wdev->netdev;
932         int i;
933
934         if (!wdev->connect_keys)
935                 return;
936
937         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
938                 if (!wdev->connect_keys->params[i].cipher)
939                         continue;
940                 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
941                                  &wdev->connect_keys->params[i])) {
942                         netdev_err(dev, "failed to set key %d\n", i);
943                         continue;
944                 }
945                 if (wdev->connect_keys->def == i &&
946                     rdev_set_default_key(rdev, dev, -1, i, true, true)) {
947                         netdev_err(dev, "failed to set defkey %d\n", i);
948                         continue;
949                 }
950         }
951
952         kfree_sensitive(wdev->connect_keys);
953         wdev->connect_keys = NULL;
954 }
955
956 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
957 {
958         struct cfg80211_event *ev;
959         unsigned long flags;
960
961         spin_lock_irqsave(&wdev->event_lock, flags);
962         while (!list_empty(&wdev->event_list)) {
963                 ev = list_first_entry(&wdev->event_list,
964                                       struct cfg80211_event, list);
965                 list_del(&ev->list);
966                 spin_unlock_irqrestore(&wdev->event_lock, flags);
967
968                 wdev_lock(wdev);
969                 switch (ev->type) {
970                 case EVENT_CONNECT_RESULT:
971                         __cfg80211_connect_result(
972                                 wdev->netdev,
973                                 &ev->cr,
974                                 ev->cr.status == WLAN_STATUS_SUCCESS);
975                         break;
976                 case EVENT_ROAMED:
977                         __cfg80211_roamed(wdev, &ev->rm);
978                         break;
979                 case EVENT_DISCONNECTED:
980                         __cfg80211_disconnected(wdev->netdev,
981                                                 ev->dc.ie, ev->dc.ie_len,
982                                                 ev->dc.reason,
983                                                 !ev->dc.locally_generated);
984                         break;
985                 case EVENT_IBSS_JOINED:
986                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
987                                                ev->ij.channel);
988                         break;
989                 case EVENT_STOPPED:
990                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
991                         break;
992                 case EVENT_PORT_AUTHORIZED:
993                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
994                         break;
995                 }
996                 wdev_unlock(wdev);
997
998                 kfree(ev);
999
1000                 spin_lock_irqsave(&wdev->event_lock, flags);
1001         }
1002         spin_unlock_irqrestore(&wdev->event_lock, flags);
1003 }
1004
1005 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1006 {
1007         struct wireless_dev *wdev;
1008
1009         lockdep_assert_held(&rdev->wiphy.mtx);
1010
1011         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1012                 cfg80211_process_wdev_events(wdev);
1013 }
1014
1015 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1016                           struct net_device *dev, enum nl80211_iftype ntype,
1017                           struct vif_params *params)
1018 {
1019         int err;
1020         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1021
1022         lockdep_assert_held(&rdev->wiphy.mtx);
1023
1024         /* don't support changing VLANs, you just re-create them */
1025         if (otype == NL80211_IFTYPE_AP_VLAN)
1026                 return -EOPNOTSUPP;
1027
1028         /* cannot change into P2P device or NAN */
1029         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1030             ntype == NL80211_IFTYPE_NAN)
1031                 return -EOPNOTSUPP;
1032
1033         if (!rdev->ops->change_virtual_intf ||
1034             !(rdev->wiphy.interface_modes & (1 << ntype)))
1035                 return -EOPNOTSUPP;
1036
1037         if (ntype != otype) {
1038                 /* if it's part of a bridge, reject changing type to station/ibss */
1039                 if (netif_is_bridge_port(dev) &&
1040                     (ntype == NL80211_IFTYPE_ADHOC ||
1041                      ntype == NL80211_IFTYPE_STATION ||
1042                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1043                         return -EBUSY;
1044
1045                 dev->ieee80211_ptr->use_4addr = false;
1046                 wdev_lock(dev->ieee80211_ptr);
1047                 rdev_set_qos_map(rdev, dev, NULL);
1048                 wdev_unlock(dev->ieee80211_ptr);
1049
1050                 switch (otype) {
1051                 case NL80211_IFTYPE_AP:
1052                 case NL80211_IFTYPE_P2P_GO:
1053                         cfg80211_stop_ap(rdev, dev, -1, true);
1054                         break;
1055                 case NL80211_IFTYPE_ADHOC:
1056                         cfg80211_leave_ibss(rdev, dev, false);
1057                         break;
1058                 case NL80211_IFTYPE_STATION:
1059                 case NL80211_IFTYPE_P2P_CLIENT:
1060                         wdev_lock(dev->ieee80211_ptr);
1061                         cfg80211_disconnect(rdev, dev,
1062                                             WLAN_REASON_DEAUTH_LEAVING, true);
1063                         wdev_unlock(dev->ieee80211_ptr);
1064                         break;
1065                 case NL80211_IFTYPE_MESH_POINT:
1066                         /* mesh should be handled? */
1067                         break;
1068                 case NL80211_IFTYPE_OCB:
1069                         cfg80211_leave_ocb(rdev, dev);
1070                         break;
1071                 default:
1072                         break;
1073                 }
1074
1075                 cfg80211_process_rdev_events(rdev);
1076                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1077
1078                 memset(&dev->ieee80211_ptr->u, 0,
1079                        sizeof(dev->ieee80211_ptr->u));
1080                 memset(&dev->ieee80211_ptr->links, 0,
1081                        sizeof(dev->ieee80211_ptr->links));
1082         }
1083
1084         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1085
1086         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1087
1088         if (!err && params && params->use_4addr != -1)
1089                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1090
1091         if (!err) {
1092                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1093                 switch (ntype) {
1094                 case NL80211_IFTYPE_STATION:
1095                         if (dev->ieee80211_ptr->use_4addr)
1096                                 break;
1097                         fallthrough;
1098                 case NL80211_IFTYPE_OCB:
1099                 case NL80211_IFTYPE_P2P_CLIENT:
1100                 case NL80211_IFTYPE_ADHOC:
1101                         dev->priv_flags |= IFF_DONT_BRIDGE;
1102                         break;
1103                 case NL80211_IFTYPE_P2P_GO:
1104                 case NL80211_IFTYPE_AP:
1105                 case NL80211_IFTYPE_AP_VLAN:
1106                 case NL80211_IFTYPE_MESH_POINT:
1107                         /* bridging OK */
1108                         break;
1109                 case NL80211_IFTYPE_MONITOR:
1110                         /* monitor can't bridge anyway */
1111                         break;
1112                 case NL80211_IFTYPE_UNSPECIFIED:
1113                 case NUM_NL80211_IFTYPES:
1114                         /* not happening */
1115                         break;
1116                 case NL80211_IFTYPE_P2P_DEVICE:
1117                 case NL80211_IFTYPE_WDS:
1118                 case NL80211_IFTYPE_NAN:
1119                         WARN_ON(1);
1120                         break;
1121                 }
1122         }
1123
1124         if (!err && ntype != otype && netif_running(dev)) {
1125                 cfg80211_update_iface_num(rdev, ntype, 1);
1126                 cfg80211_update_iface_num(rdev, otype, -1);
1127         }
1128
1129         return err;
1130 }
1131
1132 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1133 {
1134         int modulation, streams, bitrate;
1135
1136         /* the formula below does only work for MCS values smaller than 32 */
1137         if (WARN_ON_ONCE(rate->mcs >= 32))
1138                 return 0;
1139
1140         modulation = rate->mcs & 7;
1141         streams = (rate->mcs >> 3) + 1;
1142
1143         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1144
1145         if (modulation < 4)
1146                 bitrate *= (modulation + 1);
1147         else if (modulation == 4)
1148                 bitrate *= (modulation + 2);
1149         else
1150                 bitrate *= (modulation + 3);
1151
1152         bitrate *= streams;
1153
1154         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1155                 bitrate = (bitrate / 9) * 10;
1156
1157         /* do NOT round down here */
1158         return (bitrate + 50000) / 100000;
1159 }
1160
1161 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1162 {
1163         static const u32 __mcs2bitrate[] = {
1164                 /* control PHY */
1165                 [0] =   275,
1166                 /* SC PHY */
1167                 [1] =  3850,
1168                 [2] =  7700,
1169                 [3] =  9625,
1170                 [4] = 11550,
1171                 [5] = 12512, /* 1251.25 mbps */
1172                 [6] = 15400,
1173                 [7] = 19250,
1174                 [8] = 23100,
1175                 [9] = 25025,
1176                 [10] = 30800,
1177                 [11] = 38500,
1178                 [12] = 46200,
1179                 /* OFDM PHY */
1180                 [13] =  6930,
1181                 [14] =  8662, /* 866.25 mbps */
1182                 [15] = 13860,
1183                 [16] = 17325,
1184                 [17] = 20790,
1185                 [18] = 27720,
1186                 [19] = 34650,
1187                 [20] = 41580,
1188                 [21] = 45045,
1189                 [22] = 51975,
1190                 [23] = 62370,
1191                 [24] = 67568, /* 6756.75 mbps */
1192                 /* LP-SC PHY */
1193                 [25] =  6260,
1194                 [26] =  8340,
1195                 [27] = 11120,
1196                 [28] = 12510,
1197                 [29] = 16680,
1198                 [30] = 22240,
1199                 [31] = 25030,
1200         };
1201
1202         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1203                 return 0;
1204
1205         return __mcs2bitrate[rate->mcs];
1206 }
1207
1208 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1209 {
1210         static const u32 __mcs2bitrate[] = {
1211                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1212                 [7 - 6] = 50050, /* MCS 12.1 */
1213                 [8 - 6] = 53900,
1214                 [9 - 6] = 57750,
1215                 [10 - 6] = 63900,
1216                 [11 - 6] = 75075,
1217                 [12 - 6] = 80850,
1218         };
1219
1220         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1221         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1222                 return 0;
1223
1224         return __mcs2bitrate[rate->mcs - 6];
1225 }
1226
1227 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1228 {
1229         static const u32 __mcs2bitrate[] = {
1230                 /* control PHY */
1231                 [0] =   275,
1232                 /* SC PHY */
1233                 [1] =  3850,
1234                 [2] =  7700,
1235                 [3] =  9625,
1236                 [4] = 11550,
1237                 [5] = 12512, /* 1251.25 mbps */
1238                 [6] = 13475,
1239                 [7] = 15400,
1240                 [8] = 19250,
1241                 [9] = 23100,
1242                 [10] = 25025,
1243                 [11] = 26950,
1244                 [12] = 30800,
1245                 [13] = 38500,
1246                 [14] = 46200,
1247                 [15] = 50050,
1248                 [16] = 53900,
1249                 [17] = 57750,
1250                 [18] = 69300,
1251                 [19] = 75075,
1252                 [20] = 80850,
1253         };
1254
1255         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1256                 return 0;
1257
1258         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1259 }
1260
1261 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1262 {
1263         static const u32 base[4][12] = {
1264                 {   6500000,
1265                    13000000,
1266                    19500000,
1267                    26000000,
1268                    39000000,
1269                    52000000,
1270                    58500000,
1271                    65000000,
1272                    78000000,
1273                 /* not in the spec, but some devices use this: */
1274                    86700000,
1275                    97500000,
1276                   108300000,
1277                 },
1278                 {  13500000,
1279                    27000000,
1280                    40500000,
1281                    54000000,
1282                    81000000,
1283                   108000000,
1284                   121500000,
1285                   135000000,
1286                   162000000,
1287                   180000000,
1288                   202500000,
1289                   225000000,
1290                 },
1291                 {  29300000,
1292                    58500000,
1293                    87800000,
1294                   117000000,
1295                   175500000,
1296                   234000000,
1297                   263300000,
1298                   292500000,
1299                   351000000,
1300                   390000000,
1301                   438800000,
1302                   487500000,
1303                 },
1304                 {  58500000,
1305                   117000000,
1306                   175500000,
1307                   234000000,
1308                   351000000,
1309                   468000000,
1310                   526500000,
1311                   585000000,
1312                   702000000,
1313                   780000000,
1314                   877500000,
1315                   975000000,
1316                 },
1317         };
1318         u32 bitrate;
1319         int idx;
1320
1321         if (rate->mcs > 11)
1322                 goto warn;
1323
1324         switch (rate->bw) {
1325         case RATE_INFO_BW_160:
1326                 idx = 3;
1327                 break;
1328         case RATE_INFO_BW_80:
1329                 idx = 2;
1330                 break;
1331         case RATE_INFO_BW_40:
1332                 idx = 1;
1333                 break;
1334         case RATE_INFO_BW_5:
1335         case RATE_INFO_BW_10:
1336         default:
1337                 goto warn;
1338         case RATE_INFO_BW_20:
1339                 idx = 0;
1340         }
1341
1342         bitrate = base[idx][rate->mcs];
1343         bitrate *= rate->nss;
1344
1345         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1346                 bitrate = (bitrate / 9) * 10;
1347
1348         /* do NOT round down here */
1349         return (bitrate + 50000) / 100000;
1350  warn:
1351         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1352                   rate->bw, rate->mcs, rate->nss);
1353         return 0;
1354 }
1355
1356 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1357 {
1358 #define SCALE 6144
1359         u32 mcs_divisors[14] = {
1360                 102399, /* 16.666666... */
1361                  51201, /*  8.333333... */
1362                  34134, /*  5.555555... */
1363                  25599, /*  4.166666... */
1364                  17067, /*  2.777777... */
1365                  12801, /*  2.083333... */
1366                  11377, /*  1.851725... */
1367                  10239, /*  1.666666... */
1368                   8532, /*  1.388888... */
1369                   7680, /*  1.250000... */
1370                   6828, /*  1.111111... */
1371                   6144, /*  1.000000... */
1372                   5690, /*  0.926106... */
1373                   5120, /*  0.833333... */
1374         };
1375         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1376         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1377         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1378         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1379         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1380         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1381         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1382         u64 tmp;
1383         u32 result;
1384
1385         if (WARN_ON_ONCE(rate->mcs > 13))
1386                 return 0;
1387
1388         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1389                 return 0;
1390         if (WARN_ON_ONCE(rate->he_ru_alloc >
1391                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1392                 return 0;
1393         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1394                 return 0;
1395
1396         if (rate->bw == RATE_INFO_BW_160)
1397                 result = rates_160M[rate->he_gi];
1398         else if (rate->bw == RATE_INFO_BW_80 ||
1399                  (rate->bw == RATE_INFO_BW_HE_RU &&
1400                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1401                 result = rates_969[rate->he_gi];
1402         else if (rate->bw == RATE_INFO_BW_40 ||
1403                  (rate->bw == RATE_INFO_BW_HE_RU &&
1404                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1405                 result = rates_484[rate->he_gi];
1406         else if (rate->bw == RATE_INFO_BW_20 ||
1407                  (rate->bw == RATE_INFO_BW_HE_RU &&
1408                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1409                 result = rates_242[rate->he_gi];
1410         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1411                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1412                 result = rates_106[rate->he_gi];
1413         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1414                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1415                 result = rates_52[rate->he_gi];
1416         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1417                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1418                 result = rates_26[rate->he_gi];
1419         else {
1420                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1421                      rate->bw, rate->he_ru_alloc);
1422                 return 0;
1423         }
1424
1425         /* now scale to the appropriate MCS */
1426         tmp = result;
1427         tmp *= SCALE;
1428         do_div(tmp, mcs_divisors[rate->mcs]);
1429         result = tmp;
1430
1431         /* and take NSS, DCM into account */
1432         result = (result * rate->nss) / 8;
1433         if (rate->he_dcm)
1434                 result /= 2;
1435
1436         return result / 10000;
1437 }
1438
1439 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1440 {
1441 #define SCALE 6144
1442         static const u32 mcs_divisors[16] = {
1443                 102399, /* 16.666666... */
1444                  51201, /*  8.333333... */
1445                  34134, /*  5.555555... */
1446                  25599, /*  4.166666... */
1447                  17067, /*  2.777777... */
1448                  12801, /*  2.083333... */
1449                  11377, /*  1.851725... */
1450                  10239, /*  1.666666... */
1451                   8532, /*  1.388888... */
1452                   7680, /*  1.250000... */
1453                   6828, /*  1.111111... */
1454                   6144, /*  1.000000... */
1455                   5690, /*  0.926106... */
1456                   5120, /*  0.833333... */
1457                 409600, /* 66.666666... */
1458                 204800, /* 33.333333... */
1459         };
1460         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1461         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1462         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1463         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1464         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1465         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1466         u64 tmp;
1467         u32 result;
1468
1469         if (WARN_ON_ONCE(rate->mcs > 15))
1470                 return 0;
1471         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1472                 return 0;
1473         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1474                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1475                 return 0;
1476         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1477                 return 0;
1478
1479         /* Bandwidth checks for MCS 14 */
1480         if (rate->mcs == 14) {
1481                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1482                      rate->bw != RATE_INFO_BW_80 &&
1483                      rate->bw != RATE_INFO_BW_160 &&
1484                      rate->bw != RATE_INFO_BW_320) ||
1485                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1486                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1487                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1488                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1489                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1490                              rate->bw, rate->eht_ru_alloc);
1491                         return 0;
1492                 }
1493         }
1494
1495         if (rate->bw == RATE_INFO_BW_320 ||
1496             (rate->bw == RATE_INFO_BW_EHT_RU &&
1497              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1498                 result = 4 * rates_996[rate->eht_gi];
1499         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1500                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1501                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1502         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1503                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1504                 result = 3 * rates_996[rate->eht_gi];
1505         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1506                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1507                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1508         else if (rate->bw == RATE_INFO_BW_160 ||
1509                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1510                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1511                 result = 2 * rates_996[rate->eht_gi];
1512         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1513                  rate->eht_ru_alloc ==
1514                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1515                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1516                          + rates_242[rate->eht_gi];
1517         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1518                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1519                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1520         else if (rate->bw == RATE_INFO_BW_80 ||
1521                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1522                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1523                 result = rates_996[rate->eht_gi];
1524         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1525                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1526                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1527         else if (rate->bw == RATE_INFO_BW_40 ||
1528                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1529                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1530                 result = rates_484[rate->eht_gi];
1531         else if (rate->bw == RATE_INFO_BW_20 ||
1532                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1533                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1534                 result = rates_242[rate->eht_gi];
1535         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1536                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1537                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1538         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1539                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1540                 result = rates_106[rate->eht_gi];
1541         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1542                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1543                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1544         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1545                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1546                 result = rates_52[rate->eht_gi];
1547         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1548                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1549                 result = rates_26[rate->eht_gi];
1550         else {
1551                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1552                      rate->bw, rate->eht_ru_alloc);
1553                 return 0;
1554         }
1555
1556         /* now scale to the appropriate MCS */
1557         tmp = result;
1558         tmp *= SCALE;
1559         do_div(tmp, mcs_divisors[rate->mcs]);
1560
1561         /* and take NSS */
1562         tmp *= rate->nss;
1563         do_div(tmp, 8);
1564
1565         result = tmp;
1566
1567         return result / 10000;
1568 }
1569
1570 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1571 {
1572         if (rate->flags & RATE_INFO_FLAGS_MCS)
1573                 return cfg80211_calculate_bitrate_ht(rate);
1574         if (rate->flags & RATE_INFO_FLAGS_DMG)
1575                 return cfg80211_calculate_bitrate_dmg(rate);
1576         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1577                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1578         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1579                 return cfg80211_calculate_bitrate_edmg(rate);
1580         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1581                 return cfg80211_calculate_bitrate_vht(rate);
1582         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1583                 return cfg80211_calculate_bitrate_he(rate);
1584         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1585                 return cfg80211_calculate_bitrate_eht(rate);
1586
1587         return rate->legacy;
1588 }
1589 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1590
1591 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1592                           enum ieee80211_p2p_attr_id attr,
1593                           u8 *buf, unsigned int bufsize)
1594 {
1595         u8 *out = buf;
1596         u16 attr_remaining = 0;
1597         bool desired_attr = false;
1598         u16 desired_len = 0;
1599
1600         while (len > 0) {
1601                 unsigned int iedatalen;
1602                 unsigned int copy;
1603                 const u8 *iedata;
1604
1605                 if (len < 2)
1606                         return -EILSEQ;
1607                 iedatalen = ies[1];
1608                 if (iedatalen + 2 > len)
1609                         return -EILSEQ;
1610
1611                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1612                         goto cont;
1613
1614                 if (iedatalen < 4)
1615                         goto cont;
1616
1617                 iedata = ies + 2;
1618
1619                 /* check WFA OUI, P2P subtype */
1620                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1621                     iedata[2] != 0x9a || iedata[3] != 0x09)
1622                         goto cont;
1623
1624                 iedatalen -= 4;
1625                 iedata += 4;
1626
1627                 /* check attribute continuation into this IE */
1628                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1629                 if (copy && desired_attr) {
1630                         desired_len += copy;
1631                         if (out) {
1632                                 memcpy(out, iedata, min(bufsize, copy));
1633                                 out += min(bufsize, copy);
1634                                 bufsize -= min(bufsize, copy);
1635                         }
1636
1637
1638                         if (copy == attr_remaining)
1639                                 return desired_len;
1640                 }
1641
1642                 attr_remaining -= copy;
1643                 if (attr_remaining)
1644                         goto cont;
1645
1646                 iedatalen -= copy;
1647                 iedata += copy;
1648
1649                 while (iedatalen > 0) {
1650                         u16 attr_len;
1651
1652                         /* P2P attribute ID & size must fit */
1653                         if (iedatalen < 3)
1654                                 return -EILSEQ;
1655                         desired_attr = iedata[0] == attr;
1656                         attr_len = get_unaligned_le16(iedata + 1);
1657                         iedatalen -= 3;
1658                         iedata += 3;
1659
1660                         copy = min_t(unsigned int, attr_len, iedatalen);
1661
1662                         if (desired_attr) {
1663                                 desired_len += copy;
1664                                 if (out) {
1665                                         memcpy(out, iedata, min(bufsize, copy));
1666                                         out += min(bufsize, copy);
1667                                         bufsize -= min(bufsize, copy);
1668                                 }
1669
1670                                 if (copy == attr_len)
1671                                         return desired_len;
1672                         }
1673
1674                         iedata += copy;
1675                         iedatalen -= copy;
1676                         attr_remaining = attr_len - copy;
1677                 }
1678
1679  cont:
1680                 len -= ies[1] + 2;
1681                 ies += ies[1] + 2;
1682         }
1683
1684         if (attr_remaining && desired_attr)
1685                 return -EILSEQ;
1686
1687         return -ENOENT;
1688 }
1689 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1690
1691 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1692 {
1693         int i;
1694
1695         /* Make sure array values are legal */
1696         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1697                 return false;
1698
1699         i = 0;
1700         while (i < n_ids) {
1701                 if (ids[i] == WLAN_EID_EXTENSION) {
1702                         if (id_ext && (ids[i + 1] == id))
1703                                 return true;
1704
1705                         i += 2;
1706                         continue;
1707                 }
1708
1709                 if (ids[i] == id && !id_ext)
1710                         return true;
1711
1712                 i++;
1713         }
1714         return false;
1715 }
1716
1717 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1718 {
1719         /* we assume a validly formed IEs buffer */
1720         u8 len = ies[pos + 1];
1721
1722         pos += 2 + len;
1723
1724         /* the IE itself must have 255 bytes for fragments to follow */
1725         if (len < 255)
1726                 return pos;
1727
1728         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1729                 len = ies[pos + 1];
1730                 pos += 2 + len;
1731         }
1732
1733         return pos;
1734 }
1735
1736 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1737                               const u8 *ids, int n_ids,
1738                               const u8 *after_ric, int n_after_ric,
1739                               size_t offset)
1740 {
1741         size_t pos = offset;
1742
1743         while (pos < ielen) {
1744                 u8 ext = 0;
1745
1746                 if (ies[pos] == WLAN_EID_EXTENSION)
1747                         ext = 2;
1748                 if ((pos + ext) >= ielen)
1749                         break;
1750
1751                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1752                                           ies[pos] == WLAN_EID_EXTENSION))
1753                         break;
1754
1755                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1756                         pos = skip_ie(ies, ielen, pos);
1757
1758                         while (pos < ielen) {
1759                                 if (ies[pos] == WLAN_EID_EXTENSION)
1760                                         ext = 2;
1761                                 else
1762                                         ext = 0;
1763
1764                                 if ((pos + ext) >= ielen)
1765                                         break;
1766
1767                                 if (!ieee80211_id_in_list(after_ric,
1768                                                           n_after_ric,
1769                                                           ies[pos + ext],
1770                                                           ext == 2))
1771                                         pos = skip_ie(ies, ielen, pos);
1772                                 else
1773                                         break;
1774                         }
1775                 } else {
1776                         pos = skip_ie(ies, ielen, pos);
1777                 }
1778         }
1779
1780         return pos;
1781 }
1782 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1783
1784 bool ieee80211_operating_class_to_band(u8 operating_class,
1785                                        enum nl80211_band *band)
1786 {
1787         switch (operating_class) {
1788         case 112:
1789         case 115 ... 127:
1790         case 128 ... 130:
1791                 *band = NL80211_BAND_5GHZ;
1792                 return true;
1793         case 131 ... 135:
1794                 *band = NL80211_BAND_6GHZ;
1795                 return true;
1796         case 81:
1797         case 82:
1798         case 83:
1799         case 84:
1800                 *band = NL80211_BAND_2GHZ;
1801                 return true;
1802         case 180:
1803                 *band = NL80211_BAND_60GHZ;
1804                 return true;
1805         }
1806
1807         return false;
1808 }
1809 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1810
1811 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1812                                           u8 *op_class)
1813 {
1814         u8 vht_opclass;
1815         u32 freq = chandef->center_freq1;
1816
1817         if (freq >= 2412 && freq <= 2472) {
1818                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1819                         return false;
1820
1821                 /* 2.407 GHz, channels 1..13 */
1822                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1823                         if (freq > chandef->chan->center_freq)
1824                                 *op_class = 83; /* HT40+ */
1825                         else
1826                                 *op_class = 84; /* HT40- */
1827                 } else {
1828                         *op_class = 81;
1829                 }
1830
1831                 return true;
1832         }
1833
1834         if (freq == 2484) {
1835                 /* channel 14 is only for IEEE 802.11b */
1836                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1837                         return false;
1838
1839                 *op_class = 82; /* channel 14 */
1840                 return true;
1841         }
1842
1843         switch (chandef->width) {
1844         case NL80211_CHAN_WIDTH_80:
1845                 vht_opclass = 128;
1846                 break;
1847         case NL80211_CHAN_WIDTH_160:
1848                 vht_opclass = 129;
1849                 break;
1850         case NL80211_CHAN_WIDTH_80P80:
1851                 vht_opclass = 130;
1852                 break;
1853         case NL80211_CHAN_WIDTH_10:
1854         case NL80211_CHAN_WIDTH_5:
1855                 return false; /* unsupported for now */
1856         default:
1857                 vht_opclass = 0;
1858                 break;
1859         }
1860
1861         /* 5 GHz, channels 36..48 */
1862         if (freq >= 5180 && freq <= 5240) {
1863                 if (vht_opclass) {
1864                         *op_class = vht_opclass;
1865                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1866                         if (freq > chandef->chan->center_freq)
1867                                 *op_class = 116;
1868                         else
1869                                 *op_class = 117;
1870                 } else {
1871                         *op_class = 115;
1872                 }
1873
1874                 return true;
1875         }
1876
1877         /* 5 GHz, channels 52..64 */
1878         if (freq >= 5260 && freq <= 5320) {
1879                 if (vht_opclass) {
1880                         *op_class = vht_opclass;
1881                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1882                         if (freq > chandef->chan->center_freq)
1883                                 *op_class = 119;
1884                         else
1885                                 *op_class = 120;
1886                 } else {
1887                         *op_class = 118;
1888                 }
1889
1890                 return true;
1891         }
1892
1893         /* 5 GHz, channels 100..144 */
1894         if (freq >= 5500 && freq <= 5720) {
1895                 if (vht_opclass) {
1896                         *op_class = vht_opclass;
1897                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1898                         if (freq > chandef->chan->center_freq)
1899                                 *op_class = 122;
1900                         else
1901                                 *op_class = 123;
1902                 } else {
1903                         *op_class = 121;
1904                 }
1905
1906                 return true;
1907         }
1908
1909         /* 5 GHz, channels 149..169 */
1910         if (freq >= 5745 && freq <= 5845) {
1911                 if (vht_opclass) {
1912                         *op_class = vht_opclass;
1913                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1914                         if (freq > chandef->chan->center_freq)
1915                                 *op_class = 126;
1916                         else
1917                                 *op_class = 127;
1918                 } else if (freq <= 5805) {
1919                         *op_class = 124;
1920                 } else {
1921                         *op_class = 125;
1922                 }
1923
1924                 return true;
1925         }
1926
1927         /* 56.16 GHz, channel 1..4 */
1928         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1929                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1930                         return false;
1931
1932                 *op_class = 180;
1933                 return true;
1934         }
1935
1936         /* not supported yet */
1937         return false;
1938 }
1939 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1940
1941 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1942 {
1943         switch (wdev->iftype) {
1944         case NL80211_IFTYPE_AP:
1945         case NL80211_IFTYPE_P2P_GO:
1946                 WARN_ON(wdev->valid_links);
1947                 return wdev->links[0].ap.beacon_interval;
1948         case NL80211_IFTYPE_MESH_POINT:
1949                 return wdev->u.mesh.beacon_interval;
1950         case NL80211_IFTYPE_ADHOC:
1951                 return wdev->u.ibss.beacon_interval;
1952         default:
1953                 break;
1954         }
1955
1956         return 0;
1957 }
1958
1959 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1960                                        u32 *beacon_int_gcd,
1961                                        bool *beacon_int_different)
1962 {
1963         struct wireless_dev *wdev;
1964
1965         *beacon_int_gcd = 0;
1966         *beacon_int_different = false;
1967
1968         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1969                 int wdev_bi;
1970
1971                 /* this feature isn't supported with MLO */
1972                 if (wdev->valid_links)
1973                         continue;
1974
1975                 wdev_bi = cfg80211_wdev_bi(wdev);
1976
1977                 if (!wdev_bi)
1978                         continue;
1979
1980                 if (!*beacon_int_gcd) {
1981                         *beacon_int_gcd = wdev_bi;
1982                         continue;
1983                 }
1984
1985                 if (wdev_bi == *beacon_int_gcd)
1986                         continue;
1987
1988                 *beacon_int_different = true;
1989                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1990         }
1991
1992         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1993                 if (*beacon_int_gcd)
1994                         *beacon_int_different = true;
1995                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1996         }
1997 }
1998
1999 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2000                                  enum nl80211_iftype iftype, u32 beacon_int)
2001 {
2002         /*
2003          * This is just a basic pre-condition check; if interface combinations
2004          * are possible the driver must already be checking those with a call
2005          * to cfg80211_check_combinations(), in which case we'll validate more
2006          * through the cfg80211_calculate_bi_data() call and code in
2007          * cfg80211_iter_combinations().
2008          */
2009
2010         if (beacon_int < 10 || beacon_int > 10000)
2011                 return -EINVAL;
2012
2013         return 0;
2014 }
2015
2016 int cfg80211_iter_combinations(struct wiphy *wiphy,
2017                                struct iface_combination_params *params,
2018                                void (*iter)(const struct ieee80211_iface_combination *c,
2019                                             void *data),
2020                                void *data)
2021 {
2022         const struct ieee80211_regdomain *regdom;
2023         enum nl80211_dfs_regions region = 0;
2024         int i, j, iftype;
2025         int num_interfaces = 0;
2026         u32 used_iftypes = 0;
2027         u32 beacon_int_gcd;
2028         bool beacon_int_different;
2029
2030         /*
2031          * This is a bit strange, since the iteration used to rely only on
2032          * the data given by the driver, but here it now relies on context,
2033          * in form of the currently operating interfaces.
2034          * This is OK for all current users, and saves us from having to
2035          * push the GCD calculations into all the drivers.
2036          * In the future, this should probably rely more on data that's in
2037          * cfg80211 already - the only thing not would appear to be any new
2038          * interfaces (while being brought up) and channel/radar data.
2039          */
2040         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2041                                    &beacon_int_gcd, &beacon_int_different);
2042
2043         if (params->radar_detect) {
2044                 rcu_read_lock();
2045                 regdom = rcu_dereference(cfg80211_regdomain);
2046                 if (regdom)
2047                         region = regdom->dfs_region;
2048                 rcu_read_unlock();
2049         }
2050
2051         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2052                 num_interfaces += params->iftype_num[iftype];
2053                 if (params->iftype_num[iftype] > 0 &&
2054                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2055                         used_iftypes |= BIT(iftype);
2056         }
2057
2058         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2059                 const struct ieee80211_iface_combination *c;
2060                 struct ieee80211_iface_limit *limits;
2061                 u32 all_iftypes = 0;
2062
2063                 c = &wiphy->iface_combinations[i];
2064
2065                 if (num_interfaces > c->max_interfaces)
2066                         continue;
2067                 if (params->num_different_channels > c->num_different_channels)
2068                         continue;
2069
2070                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2071                                  GFP_KERNEL);
2072                 if (!limits)
2073                         return -ENOMEM;
2074
2075                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2076                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2077                                 continue;
2078                         for (j = 0; j < c->n_limits; j++) {
2079                                 all_iftypes |= limits[j].types;
2080                                 if (!(limits[j].types & BIT(iftype)))
2081                                         continue;
2082                                 if (limits[j].max < params->iftype_num[iftype])
2083                                         goto cont;
2084                                 limits[j].max -= params->iftype_num[iftype];
2085                         }
2086                 }
2087
2088                 if (params->radar_detect !=
2089                         (c->radar_detect_widths & params->radar_detect))
2090                         goto cont;
2091
2092                 if (params->radar_detect && c->radar_detect_regions &&
2093                     !(c->radar_detect_regions & BIT(region)))
2094                         goto cont;
2095
2096                 /* Finally check that all iftypes that we're currently
2097                  * using are actually part of this combination. If they
2098                  * aren't then we can't use this combination and have
2099                  * to continue to the next.
2100                  */
2101                 if ((all_iftypes & used_iftypes) != used_iftypes)
2102                         goto cont;
2103
2104                 if (beacon_int_gcd) {
2105                         if (c->beacon_int_min_gcd &&
2106                             beacon_int_gcd < c->beacon_int_min_gcd)
2107                                 goto cont;
2108                         if (!c->beacon_int_min_gcd && beacon_int_different)
2109                                 goto cont;
2110                 }
2111
2112                 /* This combination covered all interface types and
2113                  * supported the requested numbers, so we're good.
2114                  */
2115
2116                 (*iter)(c, data);
2117  cont:
2118                 kfree(limits);
2119         }
2120
2121         return 0;
2122 }
2123 EXPORT_SYMBOL(cfg80211_iter_combinations);
2124
2125 static void
2126 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2127                           void *data)
2128 {
2129         int *num = data;
2130         (*num)++;
2131 }
2132
2133 int cfg80211_check_combinations(struct wiphy *wiphy,
2134                                 struct iface_combination_params *params)
2135 {
2136         int err, num = 0;
2137
2138         err = cfg80211_iter_combinations(wiphy, params,
2139                                          cfg80211_iter_sum_ifcombs, &num);
2140         if (err)
2141                 return err;
2142         if (num == 0)
2143                 return -EBUSY;
2144
2145         return 0;
2146 }
2147 EXPORT_SYMBOL(cfg80211_check_combinations);
2148
2149 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2150                            const u8 *rates, unsigned int n_rates,
2151                            u32 *mask)
2152 {
2153         int i, j;
2154
2155         if (!sband)
2156                 return -EINVAL;
2157
2158         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2159                 return -EINVAL;
2160
2161         *mask = 0;
2162
2163         for (i = 0; i < n_rates; i++) {
2164                 int rate = (rates[i] & 0x7f) * 5;
2165                 bool found = false;
2166
2167                 for (j = 0; j < sband->n_bitrates; j++) {
2168                         if (sband->bitrates[j].bitrate == rate) {
2169                                 found = true;
2170                                 *mask |= BIT(j);
2171                                 break;
2172                         }
2173                 }
2174                 if (!found)
2175                         return -EINVAL;
2176         }
2177
2178         /*
2179          * mask must have at least one bit set here since we
2180          * didn't accept a 0-length rates array nor allowed
2181          * entries in the array that didn't exist
2182          */
2183
2184         return 0;
2185 }
2186
2187 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2188 {
2189         enum nl80211_band band;
2190         unsigned int n_channels = 0;
2191
2192         for (band = 0; band < NUM_NL80211_BANDS; band++)
2193                 if (wiphy->bands[band])
2194                         n_channels += wiphy->bands[band]->n_channels;
2195
2196         return n_channels;
2197 }
2198 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2199
2200 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2201                          struct station_info *sinfo)
2202 {
2203         struct cfg80211_registered_device *rdev;
2204         struct wireless_dev *wdev;
2205
2206         wdev = dev->ieee80211_ptr;
2207         if (!wdev)
2208                 return -EOPNOTSUPP;
2209
2210         rdev = wiphy_to_rdev(wdev->wiphy);
2211         if (!rdev->ops->get_station)
2212                 return -EOPNOTSUPP;
2213
2214         memset(sinfo, 0, sizeof(*sinfo));
2215
2216         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2217 }
2218 EXPORT_SYMBOL(cfg80211_get_station);
2219
2220 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2221 {
2222         int i;
2223
2224         if (!f)
2225                 return;
2226
2227         kfree(f->serv_spec_info);
2228         kfree(f->srf_bf);
2229         kfree(f->srf_macs);
2230         for (i = 0; i < f->num_rx_filters; i++)
2231                 kfree(f->rx_filters[i].filter);
2232
2233         for (i = 0; i < f->num_tx_filters; i++)
2234                 kfree(f->tx_filters[i].filter);
2235
2236         kfree(f->rx_filters);
2237         kfree(f->tx_filters);
2238         kfree(f);
2239 }
2240 EXPORT_SYMBOL(cfg80211_free_nan_func);
2241
2242 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2243                                 u32 center_freq_khz, u32 bw_khz)
2244 {
2245         u32 start_freq_khz, end_freq_khz;
2246
2247         start_freq_khz = center_freq_khz - (bw_khz / 2);
2248         end_freq_khz = center_freq_khz + (bw_khz / 2);
2249
2250         if (start_freq_khz >= freq_range->start_freq_khz &&
2251             end_freq_khz <= freq_range->end_freq_khz)
2252                 return true;
2253
2254         return false;
2255 }
2256
2257 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2258 {
2259         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2260                                 sizeof(*(sinfo->pertid)),
2261                                 gfp);
2262         if (!sinfo->pertid)
2263                 return -ENOMEM;
2264
2265         return 0;
2266 }
2267 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2268
2269 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2270 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2271 const unsigned char rfc1042_header[] __aligned(2) =
2272         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2273 EXPORT_SYMBOL(rfc1042_header);
2274
2275 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2276 const unsigned char bridge_tunnel_header[] __aligned(2) =
2277         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2278 EXPORT_SYMBOL(bridge_tunnel_header);
2279
2280 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2281 struct iapp_layer2_update {
2282         u8 da[ETH_ALEN];        /* broadcast */
2283         u8 sa[ETH_ALEN];        /* STA addr */
2284         __be16 len;             /* 6 */
2285         u8 dsap;                /* 0 */
2286         u8 ssap;                /* 0 */
2287         u8 control;
2288         u8 xid_info[3];
2289 } __packed;
2290
2291 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2292 {
2293         struct iapp_layer2_update *msg;
2294         struct sk_buff *skb;
2295
2296         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2297          * bridge devices */
2298
2299         skb = dev_alloc_skb(sizeof(*msg));
2300         if (!skb)
2301                 return;
2302         msg = skb_put(skb, sizeof(*msg));
2303
2304         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2305          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2306
2307         eth_broadcast_addr(msg->da);
2308         ether_addr_copy(msg->sa, addr);
2309         msg->len = htons(6);
2310         msg->dsap = 0;
2311         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2312         msg->control = 0xaf;    /* XID response lsb.1111F101.
2313                                  * F=0 (no poll command; unsolicited frame) */
2314         msg->xid_info[0] = 0x81;        /* XID format identifier */
2315         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2316         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2317
2318         skb->dev = dev;
2319         skb->protocol = eth_type_trans(skb, dev);
2320         memset(skb->cb, 0, sizeof(skb->cb));
2321         netif_rx(skb);
2322 }
2323 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2324
2325 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2326                               enum ieee80211_vht_chanwidth bw,
2327                               int mcs, bool ext_nss_bw_capable,
2328                               unsigned int max_vht_nss)
2329 {
2330         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2331         int ext_nss_bw;
2332         int supp_width;
2333         int i, mcs_encoding;
2334
2335         if (map == 0xffff)
2336                 return 0;
2337
2338         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2339                 return 0;
2340         if (mcs <= 7)
2341                 mcs_encoding = 0;
2342         else if (mcs == 8)
2343                 mcs_encoding = 1;
2344         else
2345                 mcs_encoding = 2;
2346
2347         if (!max_vht_nss) {
2348                 /* find max_vht_nss for the given MCS */
2349                 for (i = 7; i >= 0; i--) {
2350                         int supp = (map >> (2 * i)) & 3;
2351
2352                         if (supp == 3)
2353                                 continue;
2354
2355                         if (supp >= mcs_encoding) {
2356                                 max_vht_nss = i + 1;
2357                                 break;
2358                         }
2359                 }
2360         }
2361
2362         if (!(cap->supp_mcs.tx_mcs_map &
2363                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2364                 return max_vht_nss;
2365
2366         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2367                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2368         supp_width = le32_get_bits(cap->vht_cap_info,
2369                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2370
2371         /* if not capable, treat ext_nss_bw as 0 */
2372         if (!ext_nss_bw_capable)
2373                 ext_nss_bw = 0;
2374
2375         /* This is invalid */
2376         if (supp_width == 3)
2377                 return 0;
2378
2379         /* This is an invalid combination so pretend nothing is supported */
2380         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2381                 return 0;
2382
2383         /*
2384          * Cover all the special cases according to IEEE 802.11-2016
2385          * Table 9-250. All other cases are either factor of 1 or not
2386          * valid/supported.
2387          */
2388         switch (bw) {
2389         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2390         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2391                 if ((supp_width == 1 || supp_width == 2) &&
2392                     ext_nss_bw == 3)
2393                         return 2 * max_vht_nss;
2394                 break;
2395         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2396                 if (supp_width == 0 &&
2397                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2398                         return max_vht_nss / 2;
2399                 if (supp_width == 0 &&
2400                     ext_nss_bw == 3)
2401                         return (3 * max_vht_nss) / 4;
2402                 if (supp_width == 1 &&
2403                     ext_nss_bw == 3)
2404                         return 2 * max_vht_nss;
2405                 break;
2406         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2407                 if (supp_width == 0 && ext_nss_bw == 1)
2408                         return 0; /* not possible */
2409                 if (supp_width == 0 &&
2410                     ext_nss_bw == 2)
2411                         return max_vht_nss / 2;
2412                 if (supp_width == 0 &&
2413                     ext_nss_bw == 3)
2414                         return (3 * max_vht_nss) / 4;
2415                 if (supp_width == 1 &&
2416                     ext_nss_bw == 0)
2417                         return 0; /* not possible */
2418                 if (supp_width == 1 &&
2419                     ext_nss_bw == 1)
2420                         return max_vht_nss / 2;
2421                 if (supp_width == 1 &&
2422                     ext_nss_bw == 2)
2423                         return (3 * max_vht_nss) / 4;
2424                 break;
2425         }
2426
2427         /* not covered or invalid combination received */
2428         return max_vht_nss;
2429 }
2430 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2431
2432 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2433                              bool is_4addr, u8 check_swif)
2434
2435 {
2436         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2437
2438         switch (check_swif) {
2439         case 0:
2440                 if (is_vlan && is_4addr)
2441                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2442                 return wiphy->interface_modes & BIT(iftype);
2443         case 1:
2444                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2445                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2446                 return wiphy->software_iftypes & BIT(iftype);
2447         default:
2448                 break;
2449         }
2450
2451         return false;
2452 }
2453 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2454
2455 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2456 {
2457         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2458
2459         ASSERT_WDEV_LOCK(wdev);
2460
2461         switch (wdev->iftype) {
2462         case NL80211_IFTYPE_AP:
2463         case NL80211_IFTYPE_P2P_GO:
2464                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2465                 break;
2466         default:
2467                 /* per-link not relevant */
2468                 break;
2469         }
2470
2471         wdev->valid_links &= ~BIT(link_id);
2472
2473         rdev_del_intf_link(rdev, wdev, link_id);
2474
2475         eth_zero_addr(wdev->links[link_id].addr);
2476 }
2477
2478 void cfg80211_remove_links(struct wireless_dev *wdev)
2479 {
2480         unsigned int link_id;
2481
2482         wdev_lock(wdev);
2483         if (wdev->valid_links) {
2484                 for_each_valid_link(wdev, link_id)
2485                         cfg80211_remove_link(wdev, link_id);
2486         }
2487         wdev_unlock(wdev);
2488 }
2489
2490 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2491                                  struct wireless_dev *wdev)
2492 {
2493         cfg80211_remove_links(wdev);
2494
2495         return rdev_del_virtual_intf(rdev, wdev);
2496 }
2497
2498 const struct wiphy_iftype_ext_capab *
2499 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2500 {
2501         int i;
2502
2503         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2504                 if (wiphy->iftype_ext_capab[i].iftype == type)
2505                         return &wiphy->iftype_ext_capab[i];
2506         }
2507
2508         return NULL;
2509 }
2510 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);