io_uring: shut io_prep_async_work warning
[platform/kernel/linux-starfive.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547         const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549         if (!(ether_addr_equal(hdr, rfc1042_header) &&
550               *hdr_proto != htons(ETH_P_AARP) &&
551               *hdr_proto != htons(ETH_P_IPX)) &&
552             !ether_addr_equal(hdr, bridge_tunnel_header))
553                 return false;
554
555         *proto = *hdr_proto;
556
557         return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563         const void *mesh_addr;
564         struct {
565                 struct ethhdr eth;
566                 u8 flags;
567         } payload;
568         int hdrlen;
569         int ret;
570
571         ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572         if (ret)
573                 return ret;
574
575         hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577         if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578                    ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579                                                    &payload.eth.h_proto)))
580                 hdrlen += ETH_ALEN + 2;
581         else if (!pskb_may_pull(skb, hdrlen))
582                 return -EINVAL;
583
584         mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
585         switch (payload.flags & MESH_FLAGS_AE) {
586         case MESH_FLAGS_AE_A4:
587                 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
588                 break;
589         case MESH_FLAGS_AE_A5_A6:
590                 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
591                 break;
592         default:
593                 break;
594         }
595
596         pskb_pull(skb, hdrlen - sizeof(payload.eth));
597         memcpy(skb->data, &payload.eth, sizeof(payload.eth));
598
599         return 0;
600 }
601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
602
603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
604                                   const u8 *addr, enum nl80211_iftype iftype,
605                                   u8 data_offset, bool is_amsdu)
606 {
607         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
608         struct {
609                 u8 hdr[ETH_ALEN] __aligned(2);
610                 __be16 proto;
611         } payload;
612         struct ethhdr tmp;
613         u16 hdrlen;
614
615         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
616                 return -1;
617
618         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
619         if (skb->len < hdrlen)
620                 return -1;
621
622         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
623          * header
624          * IEEE 802.11 address fields:
625          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
626          *   0     0   DA    SA    BSSID n/a
627          *   0     1   DA    BSSID SA    n/a
628          *   1     0   BSSID SA    DA    n/a
629          *   1     1   RA    TA    DA    SA
630          */
631         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
632         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
633
634         switch (hdr->frame_control &
635                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
636         case cpu_to_le16(IEEE80211_FCTL_TODS):
637                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
638                              iftype != NL80211_IFTYPE_AP_VLAN &&
639                              iftype != NL80211_IFTYPE_P2P_GO))
640                         return -1;
641                 break;
642         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
643                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
644                              iftype != NL80211_IFTYPE_AP_VLAN &&
645                              iftype != NL80211_IFTYPE_STATION))
646                         return -1;
647                 break;
648         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
649                 if ((iftype != NL80211_IFTYPE_STATION &&
650                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
651                      iftype != NL80211_IFTYPE_MESH_POINT) ||
652                     (is_multicast_ether_addr(tmp.h_dest) &&
653                      ether_addr_equal(tmp.h_source, addr)))
654                         return -1;
655                 break;
656         case cpu_to_le16(0):
657                 if (iftype != NL80211_IFTYPE_ADHOC &&
658                     iftype != NL80211_IFTYPE_STATION &&
659                     iftype != NL80211_IFTYPE_OCB)
660                                 return -1;
661                 break;
662         }
663
664         if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
665                    skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
666                    ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
667                 /* remove RFC1042 or Bridge-Tunnel encapsulation */
668                 hdrlen += ETH_ALEN + 2;
669                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
670         } else {
671                 tmp.h_proto = htons(skb->len - hdrlen);
672         }
673
674         pskb_pull(skb, hdrlen);
675
676         if (!ehdr)
677                 ehdr = skb_push(skb, sizeof(struct ethhdr));
678         memcpy(ehdr, &tmp, sizeof(tmp));
679
680         return 0;
681 }
682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
683
684 static void
685 __frame_add_frag(struct sk_buff *skb, struct page *page,
686                  void *ptr, int len, int size)
687 {
688         struct skb_shared_info *sh = skb_shinfo(skb);
689         int page_offset;
690
691         get_page(page);
692         page_offset = ptr - page_address(page);
693         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
694 }
695
696 static void
697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
698                             int offset, int len)
699 {
700         struct skb_shared_info *sh = skb_shinfo(skb);
701         const skb_frag_t *frag = &sh->frags[0];
702         struct page *frag_page;
703         void *frag_ptr;
704         int frag_len, frag_size;
705         int head_size = skb->len - skb->data_len;
706         int cur_len;
707
708         frag_page = virt_to_head_page(skb->head);
709         frag_ptr = skb->data;
710         frag_size = head_size;
711
712         while (offset >= frag_size) {
713                 offset -= frag_size;
714                 frag_page = skb_frag_page(frag);
715                 frag_ptr = skb_frag_address(frag);
716                 frag_size = skb_frag_size(frag);
717                 frag++;
718         }
719
720         frag_ptr += offset;
721         frag_len = frag_size - offset;
722
723         cur_len = min(len, frag_len);
724
725         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
726         len -= cur_len;
727
728         while (len > 0) {
729                 frag_len = skb_frag_size(frag);
730                 cur_len = min(len, frag_len);
731                 __frame_add_frag(frame, skb_frag_page(frag),
732                                  skb_frag_address(frag), cur_len, frag_len);
733                 len -= cur_len;
734                 frag++;
735         }
736 }
737
738 static struct sk_buff *
739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
740                        int offset, int len, bool reuse_frag,
741                        int min_len)
742 {
743         struct sk_buff *frame;
744         int cur_len = len;
745
746         if (skb->len - offset < len)
747                 return NULL;
748
749         /*
750          * When reusing framents, copy some data to the head to simplify
751          * ethernet header handling and speed up protocol header processing
752          * in the stack later.
753          */
754         if (reuse_frag)
755                 cur_len = min_t(int, len, min_len);
756
757         /*
758          * Allocate and reserve two bytes more for payload
759          * alignment since sizeof(struct ethhdr) is 14.
760          */
761         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
762         if (!frame)
763                 return NULL;
764
765         frame->priority = skb->priority;
766         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
767         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
768
769         len -= cur_len;
770         if (!len)
771                 return frame;
772
773         offset += cur_len;
774         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
775
776         return frame;
777 }
778
779 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, bool mesh_hdr)
780 {
781         int offset = 0, remaining, subframe_len, padding;
782
783         for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
784                 struct {
785                     __be16 len;
786                     u8 mesh_flags;
787                 } hdr;
788                 u16 len;
789
790                 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
791                         return false;
792
793                 if (mesh_hdr)
794                         len = le16_to_cpu(*(__le16 *)&hdr.len) +
795                               __ieee80211_get_mesh_hdrlen(hdr.mesh_flags);
796                 else
797                         len = ntohs(hdr.len);
798
799                 subframe_len = sizeof(struct ethhdr) + len;
800                 padding = (4 - subframe_len) & 0x3;
801                 remaining = skb->len - offset;
802
803                 if (subframe_len > remaining)
804                         return false;
805         }
806
807         return true;
808 }
809 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
810
811 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
812                               const u8 *addr, enum nl80211_iftype iftype,
813                               const unsigned int extra_headroom,
814                               const u8 *check_da, const u8 *check_sa,
815                               bool mesh_control)
816 {
817         unsigned int hlen = ALIGN(extra_headroom, 4);
818         struct sk_buff *frame = NULL;
819         int offset = 0, remaining;
820         struct {
821                 struct ethhdr eth;
822                 uint8_t flags;
823         } hdr;
824         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
825         bool reuse_skb = false;
826         bool last = false;
827         int copy_len = sizeof(hdr.eth);
828
829         if (iftype == NL80211_IFTYPE_MESH_POINT)
830                 copy_len = sizeof(hdr);
831
832         while (!last) {
833                 unsigned int subframe_len;
834                 int len, mesh_len = 0;
835                 u8 padding;
836
837                 skb_copy_bits(skb, offset, &hdr, copy_len);
838                 if (iftype == NL80211_IFTYPE_MESH_POINT)
839                         mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
840                 if (mesh_control)
841                         len = le16_to_cpu(*(__le16 *)&hdr.eth.h_proto) + mesh_len;
842                 else
843                         len = ntohs(hdr.eth.h_proto);
844
845                 subframe_len = sizeof(struct ethhdr) + len;
846                 padding = (4 - subframe_len) & 0x3;
847
848                 /* the last MSDU has no padding */
849                 remaining = skb->len - offset;
850                 if (subframe_len > remaining)
851                         goto purge;
852                 /* mitigate A-MSDU aggregation injection attacks */
853                 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
854                         goto purge;
855
856                 offset += sizeof(struct ethhdr);
857                 last = remaining <= subframe_len + padding;
858
859                 /* FIXME: should we really accept multicast DA? */
860                 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
861                      !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
862                     (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
863                         offset += len + padding;
864                         continue;
865                 }
866
867                 /* reuse skb for the last subframe */
868                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
869                         skb_pull(skb, offset);
870                         frame = skb;
871                         reuse_skb = true;
872                 } else {
873                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
874                                                        reuse_frag, 32 + mesh_len);
875                         if (!frame)
876                                 goto purge;
877
878                         offset += len + padding;
879                 }
880
881                 skb_reset_network_header(frame);
882                 frame->dev = skb->dev;
883                 frame->priority = skb->priority;
884
885                 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
886                            ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
887                         skb_pull(frame, ETH_ALEN + 2);
888
889                 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
890                 __skb_queue_tail(list, frame);
891         }
892
893         if (!reuse_skb)
894                 dev_kfree_skb(skb);
895
896         return;
897
898  purge:
899         __skb_queue_purge(list);
900         dev_kfree_skb(skb);
901 }
902 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
903
904 /* Given a data frame determine the 802.1p/1d tag to use. */
905 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
906                                     struct cfg80211_qos_map *qos_map)
907 {
908         unsigned int dscp;
909         unsigned char vlan_priority;
910         unsigned int ret;
911
912         /* skb->priority values from 256->263 are magic values to
913          * directly indicate a specific 802.1d priority.  This is used
914          * to allow 802.1d priority to be passed directly in from VLAN
915          * tags, etc.
916          */
917         if (skb->priority >= 256 && skb->priority <= 263) {
918                 ret = skb->priority - 256;
919                 goto out;
920         }
921
922         if (skb_vlan_tag_present(skb)) {
923                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
924                         >> VLAN_PRIO_SHIFT;
925                 if (vlan_priority > 0) {
926                         ret = vlan_priority;
927                         goto out;
928                 }
929         }
930
931         switch (skb->protocol) {
932         case htons(ETH_P_IP):
933                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
934                 break;
935         case htons(ETH_P_IPV6):
936                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
937                 break;
938         case htons(ETH_P_MPLS_UC):
939         case htons(ETH_P_MPLS_MC): {
940                 struct mpls_label mpls_tmp, *mpls;
941
942                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
943                                           sizeof(*mpls), &mpls_tmp);
944                 if (!mpls)
945                         return 0;
946
947                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
948                         >> MPLS_LS_TC_SHIFT;
949                 goto out;
950         }
951         case htons(ETH_P_80221):
952                 /* 802.21 is always network control traffic */
953                 return 7;
954         default:
955                 return 0;
956         }
957
958         if (qos_map) {
959                 unsigned int i, tmp_dscp = dscp >> 2;
960
961                 for (i = 0; i < qos_map->num_des; i++) {
962                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
963                                 ret = qos_map->dscp_exception[i].up;
964                                 goto out;
965                         }
966                 }
967
968                 for (i = 0; i < 8; i++) {
969                         if (tmp_dscp >= qos_map->up[i].low &&
970                             tmp_dscp <= qos_map->up[i].high) {
971                                 ret = i;
972                                 goto out;
973                         }
974                 }
975         }
976
977         ret = dscp >> 5;
978 out:
979         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
980 }
981 EXPORT_SYMBOL(cfg80211_classify8021d);
982
983 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
984 {
985         const struct cfg80211_bss_ies *ies;
986
987         ies = rcu_dereference(bss->ies);
988         if (!ies)
989                 return NULL;
990
991         return cfg80211_find_elem(id, ies->data, ies->len);
992 }
993 EXPORT_SYMBOL(ieee80211_bss_get_elem);
994
995 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
996 {
997         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
998         struct net_device *dev = wdev->netdev;
999         int i;
1000
1001         if (!wdev->connect_keys)
1002                 return;
1003
1004         for (i = 0; i < 4; i++) {
1005                 if (!wdev->connect_keys->params[i].cipher)
1006                         continue;
1007                 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1008                                  &wdev->connect_keys->params[i])) {
1009                         netdev_err(dev, "failed to set key %d\n", i);
1010                         continue;
1011                 }
1012                 if (wdev->connect_keys->def == i &&
1013                     rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1014                         netdev_err(dev, "failed to set defkey %d\n", i);
1015                         continue;
1016                 }
1017         }
1018
1019         kfree_sensitive(wdev->connect_keys);
1020         wdev->connect_keys = NULL;
1021 }
1022
1023 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1024 {
1025         struct cfg80211_event *ev;
1026         unsigned long flags;
1027
1028         spin_lock_irqsave(&wdev->event_lock, flags);
1029         while (!list_empty(&wdev->event_list)) {
1030                 ev = list_first_entry(&wdev->event_list,
1031                                       struct cfg80211_event, list);
1032                 list_del(&ev->list);
1033                 spin_unlock_irqrestore(&wdev->event_lock, flags);
1034
1035                 wdev_lock(wdev);
1036                 switch (ev->type) {
1037                 case EVENT_CONNECT_RESULT:
1038                         __cfg80211_connect_result(
1039                                 wdev->netdev,
1040                                 &ev->cr,
1041                                 ev->cr.status == WLAN_STATUS_SUCCESS);
1042                         break;
1043                 case EVENT_ROAMED:
1044                         __cfg80211_roamed(wdev, &ev->rm);
1045                         break;
1046                 case EVENT_DISCONNECTED:
1047                         __cfg80211_disconnected(wdev->netdev,
1048                                                 ev->dc.ie, ev->dc.ie_len,
1049                                                 ev->dc.reason,
1050                                                 !ev->dc.locally_generated);
1051                         break;
1052                 case EVENT_IBSS_JOINED:
1053                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1054                                                ev->ij.channel);
1055                         break;
1056                 case EVENT_STOPPED:
1057                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1058                         break;
1059                 case EVENT_PORT_AUTHORIZED:
1060                         __cfg80211_port_authorized(wdev, ev->pa.bssid,
1061                                                    ev->pa.td_bitmap,
1062                                                    ev->pa.td_bitmap_len);
1063                         break;
1064                 }
1065                 wdev_unlock(wdev);
1066
1067                 kfree(ev);
1068
1069                 spin_lock_irqsave(&wdev->event_lock, flags);
1070         }
1071         spin_unlock_irqrestore(&wdev->event_lock, flags);
1072 }
1073
1074 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1075 {
1076         struct wireless_dev *wdev;
1077
1078         lockdep_assert_held(&rdev->wiphy.mtx);
1079
1080         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1081                 cfg80211_process_wdev_events(wdev);
1082 }
1083
1084 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1085                           struct net_device *dev, enum nl80211_iftype ntype,
1086                           struct vif_params *params)
1087 {
1088         int err;
1089         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1090
1091         lockdep_assert_held(&rdev->wiphy.mtx);
1092
1093         /* don't support changing VLANs, you just re-create them */
1094         if (otype == NL80211_IFTYPE_AP_VLAN)
1095                 return -EOPNOTSUPP;
1096
1097         /* cannot change into P2P device or NAN */
1098         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1099             ntype == NL80211_IFTYPE_NAN)
1100                 return -EOPNOTSUPP;
1101
1102         if (!rdev->ops->change_virtual_intf ||
1103             !(rdev->wiphy.interface_modes & (1 << ntype)))
1104                 return -EOPNOTSUPP;
1105
1106         if (ntype != otype) {
1107                 /* if it's part of a bridge, reject changing type to station/ibss */
1108                 if (netif_is_bridge_port(dev) &&
1109                     (ntype == NL80211_IFTYPE_ADHOC ||
1110                      ntype == NL80211_IFTYPE_STATION ||
1111                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1112                         return -EBUSY;
1113
1114                 dev->ieee80211_ptr->use_4addr = false;
1115                 wdev_lock(dev->ieee80211_ptr);
1116                 rdev_set_qos_map(rdev, dev, NULL);
1117                 wdev_unlock(dev->ieee80211_ptr);
1118
1119                 switch (otype) {
1120                 case NL80211_IFTYPE_AP:
1121                 case NL80211_IFTYPE_P2P_GO:
1122                         cfg80211_stop_ap(rdev, dev, -1, true);
1123                         break;
1124                 case NL80211_IFTYPE_ADHOC:
1125                         cfg80211_leave_ibss(rdev, dev, false);
1126                         break;
1127                 case NL80211_IFTYPE_STATION:
1128                 case NL80211_IFTYPE_P2P_CLIENT:
1129                         wdev_lock(dev->ieee80211_ptr);
1130                         cfg80211_disconnect(rdev, dev,
1131                                             WLAN_REASON_DEAUTH_LEAVING, true);
1132                         wdev_unlock(dev->ieee80211_ptr);
1133                         break;
1134                 case NL80211_IFTYPE_MESH_POINT:
1135                         /* mesh should be handled? */
1136                         break;
1137                 case NL80211_IFTYPE_OCB:
1138                         cfg80211_leave_ocb(rdev, dev);
1139                         break;
1140                 default:
1141                         break;
1142                 }
1143
1144                 cfg80211_process_rdev_events(rdev);
1145                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1146
1147                 memset(&dev->ieee80211_ptr->u, 0,
1148                        sizeof(dev->ieee80211_ptr->u));
1149                 memset(&dev->ieee80211_ptr->links, 0,
1150                        sizeof(dev->ieee80211_ptr->links));
1151         }
1152
1153         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1154
1155         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1156
1157         if (!err && params && params->use_4addr != -1)
1158                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1159
1160         if (!err) {
1161                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1162                 switch (ntype) {
1163                 case NL80211_IFTYPE_STATION:
1164                         if (dev->ieee80211_ptr->use_4addr)
1165                                 break;
1166                         fallthrough;
1167                 case NL80211_IFTYPE_OCB:
1168                 case NL80211_IFTYPE_P2P_CLIENT:
1169                 case NL80211_IFTYPE_ADHOC:
1170                         dev->priv_flags |= IFF_DONT_BRIDGE;
1171                         break;
1172                 case NL80211_IFTYPE_P2P_GO:
1173                 case NL80211_IFTYPE_AP:
1174                 case NL80211_IFTYPE_AP_VLAN:
1175                 case NL80211_IFTYPE_MESH_POINT:
1176                         /* bridging OK */
1177                         break;
1178                 case NL80211_IFTYPE_MONITOR:
1179                         /* monitor can't bridge anyway */
1180                         break;
1181                 case NL80211_IFTYPE_UNSPECIFIED:
1182                 case NUM_NL80211_IFTYPES:
1183                         /* not happening */
1184                         break;
1185                 case NL80211_IFTYPE_P2P_DEVICE:
1186                 case NL80211_IFTYPE_WDS:
1187                 case NL80211_IFTYPE_NAN:
1188                         WARN_ON(1);
1189                         break;
1190                 }
1191         }
1192
1193         if (!err && ntype != otype && netif_running(dev)) {
1194                 cfg80211_update_iface_num(rdev, ntype, 1);
1195                 cfg80211_update_iface_num(rdev, otype, -1);
1196         }
1197
1198         return err;
1199 }
1200
1201 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1202 {
1203         int modulation, streams, bitrate;
1204
1205         /* the formula below does only work for MCS values smaller than 32 */
1206         if (WARN_ON_ONCE(rate->mcs >= 32))
1207                 return 0;
1208
1209         modulation = rate->mcs & 7;
1210         streams = (rate->mcs >> 3) + 1;
1211
1212         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1213
1214         if (modulation < 4)
1215                 bitrate *= (modulation + 1);
1216         else if (modulation == 4)
1217                 bitrate *= (modulation + 2);
1218         else
1219                 bitrate *= (modulation + 3);
1220
1221         bitrate *= streams;
1222
1223         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1224                 bitrate = (bitrate / 9) * 10;
1225
1226         /* do NOT round down here */
1227         return (bitrate + 50000) / 100000;
1228 }
1229
1230 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1231 {
1232         static const u32 __mcs2bitrate[] = {
1233                 /* control PHY */
1234                 [0] =   275,
1235                 /* SC PHY */
1236                 [1] =  3850,
1237                 [2] =  7700,
1238                 [3] =  9625,
1239                 [4] = 11550,
1240                 [5] = 12512, /* 1251.25 mbps */
1241                 [6] = 15400,
1242                 [7] = 19250,
1243                 [8] = 23100,
1244                 [9] = 25025,
1245                 [10] = 30800,
1246                 [11] = 38500,
1247                 [12] = 46200,
1248                 /* OFDM PHY */
1249                 [13] =  6930,
1250                 [14] =  8662, /* 866.25 mbps */
1251                 [15] = 13860,
1252                 [16] = 17325,
1253                 [17] = 20790,
1254                 [18] = 27720,
1255                 [19] = 34650,
1256                 [20] = 41580,
1257                 [21] = 45045,
1258                 [22] = 51975,
1259                 [23] = 62370,
1260                 [24] = 67568, /* 6756.75 mbps */
1261                 /* LP-SC PHY */
1262                 [25] =  6260,
1263                 [26] =  8340,
1264                 [27] = 11120,
1265                 [28] = 12510,
1266                 [29] = 16680,
1267                 [30] = 22240,
1268                 [31] = 25030,
1269         };
1270
1271         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1272                 return 0;
1273
1274         return __mcs2bitrate[rate->mcs];
1275 }
1276
1277 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1278 {
1279         static const u32 __mcs2bitrate[] = {
1280                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1281                 [7 - 6] = 50050, /* MCS 12.1 */
1282                 [8 - 6] = 53900,
1283                 [9 - 6] = 57750,
1284                 [10 - 6] = 63900,
1285                 [11 - 6] = 75075,
1286                 [12 - 6] = 80850,
1287         };
1288
1289         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1290         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1291                 return 0;
1292
1293         return __mcs2bitrate[rate->mcs - 6];
1294 }
1295
1296 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1297 {
1298         static const u32 __mcs2bitrate[] = {
1299                 /* control PHY */
1300                 [0] =   275,
1301                 /* SC PHY */
1302                 [1] =  3850,
1303                 [2] =  7700,
1304                 [3] =  9625,
1305                 [4] = 11550,
1306                 [5] = 12512, /* 1251.25 mbps */
1307                 [6] = 13475,
1308                 [7] = 15400,
1309                 [8] = 19250,
1310                 [9] = 23100,
1311                 [10] = 25025,
1312                 [11] = 26950,
1313                 [12] = 30800,
1314                 [13] = 38500,
1315                 [14] = 46200,
1316                 [15] = 50050,
1317                 [16] = 53900,
1318                 [17] = 57750,
1319                 [18] = 69300,
1320                 [19] = 75075,
1321                 [20] = 80850,
1322         };
1323
1324         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1325                 return 0;
1326
1327         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1328 }
1329
1330 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1331 {
1332         static const u32 base[4][12] = {
1333                 {   6500000,
1334                    13000000,
1335                    19500000,
1336                    26000000,
1337                    39000000,
1338                    52000000,
1339                    58500000,
1340                    65000000,
1341                    78000000,
1342                 /* not in the spec, but some devices use this: */
1343                    86700000,
1344                    97500000,
1345                   108300000,
1346                 },
1347                 {  13500000,
1348                    27000000,
1349                    40500000,
1350                    54000000,
1351                    81000000,
1352                   108000000,
1353                   121500000,
1354                   135000000,
1355                   162000000,
1356                   180000000,
1357                   202500000,
1358                   225000000,
1359                 },
1360                 {  29300000,
1361                    58500000,
1362                    87800000,
1363                   117000000,
1364                   175500000,
1365                   234000000,
1366                   263300000,
1367                   292500000,
1368                   351000000,
1369                   390000000,
1370                   438800000,
1371                   487500000,
1372                 },
1373                 {  58500000,
1374                   117000000,
1375                   175500000,
1376                   234000000,
1377                   351000000,
1378                   468000000,
1379                   526500000,
1380                   585000000,
1381                   702000000,
1382                   780000000,
1383                   877500000,
1384                   975000000,
1385                 },
1386         };
1387         u32 bitrate;
1388         int idx;
1389
1390         if (rate->mcs > 11)
1391                 goto warn;
1392
1393         switch (rate->bw) {
1394         case RATE_INFO_BW_160:
1395                 idx = 3;
1396                 break;
1397         case RATE_INFO_BW_80:
1398                 idx = 2;
1399                 break;
1400         case RATE_INFO_BW_40:
1401                 idx = 1;
1402                 break;
1403         case RATE_INFO_BW_5:
1404         case RATE_INFO_BW_10:
1405         default:
1406                 goto warn;
1407         case RATE_INFO_BW_20:
1408                 idx = 0;
1409         }
1410
1411         bitrate = base[idx][rate->mcs];
1412         bitrate *= rate->nss;
1413
1414         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1415                 bitrate = (bitrate / 9) * 10;
1416
1417         /* do NOT round down here */
1418         return (bitrate + 50000) / 100000;
1419  warn:
1420         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1421                   rate->bw, rate->mcs, rate->nss);
1422         return 0;
1423 }
1424
1425 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1426 {
1427 #define SCALE 6144
1428         u32 mcs_divisors[14] = {
1429                 102399, /* 16.666666... */
1430                  51201, /*  8.333333... */
1431                  34134, /*  5.555555... */
1432                  25599, /*  4.166666... */
1433                  17067, /*  2.777777... */
1434                  12801, /*  2.083333... */
1435                  11377, /*  1.851725... */
1436                  10239, /*  1.666666... */
1437                   8532, /*  1.388888... */
1438                   7680, /*  1.250000... */
1439                   6828, /*  1.111111... */
1440                   6144, /*  1.000000... */
1441                   5690, /*  0.926106... */
1442                   5120, /*  0.833333... */
1443         };
1444         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1445         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1446         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1447         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1448         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1449         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1450         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1451         u64 tmp;
1452         u32 result;
1453
1454         if (WARN_ON_ONCE(rate->mcs > 13))
1455                 return 0;
1456
1457         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1458                 return 0;
1459         if (WARN_ON_ONCE(rate->he_ru_alloc >
1460                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1461                 return 0;
1462         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1463                 return 0;
1464
1465         if (rate->bw == RATE_INFO_BW_160)
1466                 result = rates_160M[rate->he_gi];
1467         else if (rate->bw == RATE_INFO_BW_80 ||
1468                  (rate->bw == RATE_INFO_BW_HE_RU &&
1469                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1470                 result = rates_969[rate->he_gi];
1471         else if (rate->bw == RATE_INFO_BW_40 ||
1472                  (rate->bw == RATE_INFO_BW_HE_RU &&
1473                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1474                 result = rates_484[rate->he_gi];
1475         else if (rate->bw == RATE_INFO_BW_20 ||
1476                  (rate->bw == RATE_INFO_BW_HE_RU &&
1477                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1478                 result = rates_242[rate->he_gi];
1479         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1480                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1481                 result = rates_106[rate->he_gi];
1482         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1483                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1484                 result = rates_52[rate->he_gi];
1485         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1486                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1487                 result = rates_26[rate->he_gi];
1488         else {
1489                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1490                      rate->bw, rate->he_ru_alloc);
1491                 return 0;
1492         }
1493
1494         /* now scale to the appropriate MCS */
1495         tmp = result;
1496         tmp *= SCALE;
1497         do_div(tmp, mcs_divisors[rate->mcs]);
1498         result = tmp;
1499
1500         /* and take NSS, DCM into account */
1501         result = (result * rate->nss) / 8;
1502         if (rate->he_dcm)
1503                 result /= 2;
1504
1505         return result / 10000;
1506 }
1507
1508 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1509 {
1510 #define SCALE 6144
1511         static const u32 mcs_divisors[16] = {
1512                 102399, /* 16.666666... */
1513                  51201, /*  8.333333... */
1514                  34134, /*  5.555555... */
1515                  25599, /*  4.166666... */
1516                  17067, /*  2.777777... */
1517                  12801, /*  2.083333... */
1518                  11377, /*  1.851725... */
1519                  10239, /*  1.666666... */
1520                   8532, /*  1.388888... */
1521                   7680, /*  1.250000... */
1522                   6828, /*  1.111111... */
1523                   6144, /*  1.000000... */
1524                   5690, /*  0.926106... */
1525                   5120, /*  0.833333... */
1526                 409600, /* 66.666666... */
1527                 204800, /* 33.333333... */
1528         };
1529         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1530         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1531         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1532         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1533         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1534         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1535         u64 tmp;
1536         u32 result;
1537
1538         if (WARN_ON_ONCE(rate->mcs > 15))
1539                 return 0;
1540         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1541                 return 0;
1542         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1543                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1544                 return 0;
1545         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1546                 return 0;
1547
1548         /* Bandwidth checks for MCS 14 */
1549         if (rate->mcs == 14) {
1550                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1551                      rate->bw != RATE_INFO_BW_80 &&
1552                      rate->bw != RATE_INFO_BW_160 &&
1553                      rate->bw != RATE_INFO_BW_320) ||
1554                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1555                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1556                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1557                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1558                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1559                              rate->bw, rate->eht_ru_alloc);
1560                         return 0;
1561                 }
1562         }
1563
1564         if (rate->bw == RATE_INFO_BW_320 ||
1565             (rate->bw == RATE_INFO_BW_EHT_RU &&
1566              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1567                 result = 4 * rates_996[rate->eht_gi];
1568         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1569                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1570                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1571         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1572                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1573                 result = 3 * rates_996[rate->eht_gi];
1574         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1575                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1576                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1577         else if (rate->bw == RATE_INFO_BW_160 ||
1578                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1579                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1580                 result = 2 * rates_996[rate->eht_gi];
1581         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1582                  rate->eht_ru_alloc ==
1583                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1584                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1585                          + rates_242[rate->eht_gi];
1586         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1588                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589         else if (rate->bw == RATE_INFO_BW_80 ||
1590                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1591                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1592                 result = rates_996[rate->eht_gi];
1593         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1595                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1596         else if (rate->bw == RATE_INFO_BW_40 ||
1597                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1598                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1599                 result = rates_484[rate->eht_gi];
1600         else if (rate->bw == RATE_INFO_BW_20 ||
1601                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1602                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1603                 result = rates_242[rate->eht_gi];
1604         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1605                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1606                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1607         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1608                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1609                 result = rates_106[rate->eht_gi];
1610         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1611                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1612                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1613         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1614                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1615                 result = rates_52[rate->eht_gi];
1616         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1618                 result = rates_26[rate->eht_gi];
1619         else {
1620                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1621                      rate->bw, rate->eht_ru_alloc);
1622                 return 0;
1623         }
1624
1625         /* now scale to the appropriate MCS */
1626         tmp = result;
1627         tmp *= SCALE;
1628         do_div(tmp, mcs_divisors[rate->mcs]);
1629
1630         /* and take NSS */
1631         tmp *= rate->nss;
1632         do_div(tmp, 8);
1633
1634         result = tmp;
1635
1636         return result / 10000;
1637 }
1638
1639 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1640 {
1641         if (rate->flags & RATE_INFO_FLAGS_MCS)
1642                 return cfg80211_calculate_bitrate_ht(rate);
1643         if (rate->flags & RATE_INFO_FLAGS_DMG)
1644                 return cfg80211_calculate_bitrate_dmg(rate);
1645         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1646                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1647         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1648                 return cfg80211_calculate_bitrate_edmg(rate);
1649         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1650                 return cfg80211_calculate_bitrate_vht(rate);
1651         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1652                 return cfg80211_calculate_bitrate_he(rate);
1653         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1654                 return cfg80211_calculate_bitrate_eht(rate);
1655
1656         return rate->legacy;
1657 }
1658 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1659
1660 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1661                           enum ieee80211_p2p_attr_id attr,
1662                           u8 *buf, unsigned int bufsize)
1663 {
1664         u8 *out = buf;
1665         u16 attr_remaining = 0;
1666         bool desired_attr = false;
1667         u16 desired_len = 0;
1668
1669         while (len > 0) {
1670                 unsigned int iedatalen;
1671                 unsigned int copy;
1672                 const u8 *iedata;
1673
1674                 if (len < 2)
1675                         return -EILSEQ;
1676                 iedatalen = ies[1];
1677                 if (iedatalen + 2 > len)
1678                         return -EILSEQ;
1679
1680                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1681                         goto cont;
1682
1683                 if (iedatalen < 4)
1684                         goto cont;
1685
1686                 iedata = ies + 2;
1687
1688                 /* check WFA OUI, P2P subtype */
1689                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1690                     iedata[2] != 0x9a || iedata[3] != 0x09)
1691                         goto cont;
1692
1693                 iedatalen -= 4;
1694                 iedata += 4;
1695
1696                 /* check attribute continuation into this IE */
1697                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1698                 if (copy && desired_attr) {
1699                         desired_len += copy;
1700                         if (out) {
1701                                 memcpy(out, iedata, min(bufsize, copy));
1702                                 out += min(bufsize, copy);
1703                                 bufsize -= min(bufsize, copy);
1704                         }
1705
1706
1707                         if (copy == attr_remaining)
1708                                 return desired_len;
1709                 }
1710
1711                 attr_remaining -= copy;
1712                 if (attr_remaining)
1713                         goto cont;
1714
1715                 iedatalen -= copy;
1716                 iedata += copy;
1717
1718                 while (iedatalen > 0) {
1719                         u16 attr_len;
1720
1721                         /* P2P attribute ID & size must fit */
1722                         if (iedatalen < 3)
1723                                 return -EILSEQ;
1724                         desired_attr = iedata[0] == attr;
1725                         attr_len = get_unaligned_le16(iedata + 1);
1726                         iedatalen -= 3;
1727                         iedata += 3;
1728
1729                         copy = min_t(unsigned int, attr_len, iedatalen);
1730
1731                         if (desired_attr) {
1732                                 desired_len += copy;
1733                                 if (out) {
1734                                         memcpy(out, iedata, min(bufsize, copy));
1735                                         out += min(bufsize, copy);
1736                                         bufsize -= min(bufsize, copy);
1737                                 }
1738
1739                                 if (copy == attr_len)
1740                                         return desired_len;
1741                         }
1742
1743                         iedata += copy;
1744                         iedatalen -= copy;
1745                         attr_remaining = attr_len - copy;
1746                 }
1747
1748  cont:
1749                 len -= ies[1] + 2;
1750                 ies += ies[1] + 2;
1751         }
1752
1753         if (attr_remaining && desired_attr)
1754                 return -EILSEQ;
1755
1756         return -ENOENT;
1757 }
1758 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1759
1760 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1761 {
1762         int i;
1763
1764         /* Make sure array values are legal */
1765         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1766                 return false;
1767
1768         i = 0;
1769         while (i < n_ids) {
1770                 if (ids[i] == WLAN_EID_EXTENSION) {
1771                         if (id_ext && (ids[i + 1] == id))
1772                                 return true;
1773
1774                         i += 2;
1775                         continue;
1776                 }
1777
1778                 if (ids[i] == id && !id_ext)
1779                         return true;
1780
1781                 i++;
1782         }
1783         return false;
1784 }
1785
1786 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1787 {
1788         /* we assume a validly formed IEs buffer */
1789         u8 len = ies[pos + 1];
1790
1791         pos += 2 + len;
1792
1793         /* the IE itself must have 255 bytes for fragments to follow */
1794         if (len < 255)
1795                 return pos;
1796
1797         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1798                 len = ies[pos + 1];
1799                 pos += 2 + len;
1800         }
1801
1802         return pos;
1803 }
1804
1805 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1806                               const u8 *ids, int n_ids,
1807                               const u8 *after_ric, int n_after_ric,
1808                               size_t offset)
1809 {
1810         size_t pos = offset;
1811
1812         while (pos < ielen) {
1813                 u8 ext = 0;
1814
1815                 if (ies[pos] == WLAN_EID_EXTENSION)
1816                         ext = 2;
1817                 if ((pos + ext) >= ielen)
1818                         break;
1819
1820                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1821                                           ies[pos] == WLAN_EID_EXTENSION))
1822                         break;
1823
1824                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1825                         pos = skip_ie(ies, ielen, pos);
1826
1827                         while (pos < ielen) {
1828                                 if (ies[pos] == WLAN_EID_EXTENSION)
1829                                         ext = 2;
1830                                 else
1831                                         ext = 0;
1832
1833                                 if ((pos + ext) >= ielen)
1834                                         break;
1835
1836                                 if (!ieee80211_id_in_list(after_ric,
1837                                                           n_after_ric,
1838                                                           ies[pos + ext],
1839                                                           ext == 2))
1840                                         pos = skip_ie(ies, ielen, pos);
1841                                 else
1842                                         break;
1843                         }
1844                 } else {
1845                         pos = skip_ie(ies, ielen, pos);
1846                 }
1847         }
1848
1849         return pos;
1850 }
1851 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1852
1853 bool ieee80211_operating_class_to_band(u8 operating_class,
1854                                        enum nl80211_band *band)
1855 {
1856         switch (operating_class) {
1857         case 112:
1858         case 115 ... 127:
1859         case 128 ... 130:
1860                 *band = NL80211_BAND_5GHZ;
1861                 return true;
1862         case 131 ... 135:
1863                 *band = NL80211_BAND_6GHZ;
1864                 return true;
1865         case 81:
1866         case 82:
1867         case 83:
1868         case 84:
1869                 *band = NL80211_BAND_2GHZ;
1870                 return true;
1871         case 180:
1872                 *band = NL80211_BAND_60GHZ;
1873                 return true;
1874         }
1875
1876         return false;
1877 }
1878 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1879
1880 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1881                                           u8 *op_class)
1882 {
1883         u8 vht_opclass;
1884         u32 freq = chandef->center_freq1;
1885
1886         if (freq >= 2412 && freq <= 2472) {
1887                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1888                         return false;
1889
1890                 /* 2.407 GHz, channels 1..13 */
1891                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1892                         if (freq > chandef->chan->center_freq)
1893                                 *op_class = 83; /* HT40+ */
1894                         else
1895                                 *op_class = 84; /* HT40- */
1896                 } else {
1897                         *op_class = 81;
1898                 }
1899
1900                 return true;
1901         }
1902
1903         if (freq == 2484) {
1904                 /* channel 14 is only for IEEE 802.11b */
1905                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1906                         return false;
1907
1908                 *op_class = 82; /* channel 14 */
1909                 return true;
1910         }
1911
1912         switch (chandef->width) {
1913         case NL80211_CHAN_WIDTH_80:
1914                 vht_opclass = 128;
1915                 break;
1916         case NL80211_CHAN_WIDTH_160:
1917                 vht_opclass = 129;
1918                 break;
1919         case NL80211_CHAN_WIDTH_80P80:
1920                 vht_opclass = 130;
1921                 break;
1922         case NL80211_CHAN_WIDTH_10:
1923         case NL80211_CHAN_WIDTH_5:
1924                 return false; /* unsupported for now */
1925         default:
1926                 vht_opclass = 0;
1927                 break;
1928         }
1929
1930         /* 5 GHz, channels 36..48 */
1931         if (freq >= 5180 && freq <= 5240) {
1932                 if (vht_opclass) {
1933                         *op_class = vht_opclass;
1934                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1935                         if (freq > chandef->chan->center_freq)
1936                                 *op_class = 116;
1937                         else
1938                                 *op_class = 117;
1939                 } else {
1940                         *op_class = 115;
1941                 }
1942
1943                 return true;
1944         }
1945
1946         /* 5 GHz, channels 52..64 */
1947         if (freq >= 5260 && freq <= 5320) {
1948                 if (vht_opclass) {
1949                         *op_class = vht_opclass;
1950                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1951                         if (freq > chandef->chan->center_freq)
1952                                 *op_class = 119;
1953                         else
1954                                 *op_class = 120;
1955                 } else {
1956                         *op_class = 118;
1957                 }
1958
1959                 return true;
1960         }
1961
1962         /* 5 GHz, channels 100..144 */
1963         if (freq >= 5500 && freq <= 5720) {
1964                 if (vht_opclass) {
1965                         *op_class = vht_opclass;
1966                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1967                         if (freq > chandef->chan->center_freq)
1968                                 *op_class = 122;
1969                         else
1970                                 *op_class = 123;
1971                 } else {
1972                         *op_class = 121;
1973                 }
1974
1975                 return true;
1976         }
1977
1978         /* 5 GHz, channels 149..169 */
1979         if (freq >= 5745 && freq <= 5845) {
1980                 if (vht_opclass) {
1981                         *op_class = vht_opclass;
1982                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1983                         if (freq > chandef->chan->center_freq)
1984                                 *op_class = 126;
1985                         else
1986                                 *op_class = 127;
1987                 } else if (freq <= 5805) {
1988                         *op_class = 124;
1989                 } else {
1990                         *op_class = 125;
1991                 }
1992
1993                 return true;
1994         }
1995
1996         /* 56.16 GHz, channel 1..4 */
1997         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1998                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1999                         return false;
2000
2001                 *op_class = 180;
2002                 return true;
2003         }
2004
2005         /* not supported yet */
2006         return false;
2007 }
2008 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2009
2010 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2011 {
2012         switch (wdev->iftype) {
2013         case NL80211_IFTYPE_AP:
2014         case NL80211_IFTYPE_P2P_GO:
2015                 WARN_ON(wdev->valid_links);
2016                 return wdev->links[0].ap.beacon_interval;
2017         case NL80211_IFTYPE_MESH_POINT:
2018                 return wdev->u.mesh.beacon_interval;
2019         case NL80211_IFTYPE_ADHOC:
2020                 return wdev->u.ibss.beacon_interval;
2021         default:
2022                 break;
2023         }
2024
2025         return 0;
2026 }
2027
2028 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2029                                        u32 *beacon_int_gcd,
2030                                        bool *beacon_int_different)
2031 {
2032         struct wireless_dev *wdev;
2033
2034         *beacon_int_gcd = 0;
2035         *beacon_int_different = false;
2036
2037         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2038                 int wdev_bi;
2039
2040                 /* this feature isn't supported with MLO */
2041                 if (wdev->valid_links)
2042                         continue;
2043
2044                 wdev_bi = cfg80211_wdev_bi(wdev);
2045
2046                 if (!wdev_bi)
2047                         continue;
2048
2049                 if (!*beacon_int_gcd) {
2050                         *beacon_int_gcd = wdev_bi;
2051                         continue;
2052                 }
2053
2054                 if (wdev_bi == *beacon_int_gcd)
2055                         continue;
2056
2057                 *beacon_int_different = true;
2058                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2059         }
2060
2061         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2062                 if (*beacon_int_gcd)
2063                         *beacon_int_different = true;
2064                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2065         }
2066 }
2067
2068 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2069                                  enum nl80211_iftype iftype, u32 beacon_int)
2070 {
2071         /*
2072          * This is just a basic pre-condition check; if interface combinations
2073          * are possible the driver must already be checking those with a call
2074          * to cfg80211_check_combinations(), in which case we'll validate more
2075          * through the cfg80211_calculate_bi_data() call and code in
2076          * cfg80211_iter_combinations().
2077          */
2078
2079         if (beacon_int < 10 || beacon_int > 10000)
2080                 return -EINVAL;
2081
2082         return 0;
2083 }
2084
2085 int cfg80211_iter_combinations(struct wiphy *wiphy,
2086                                struct iface_combination_params *params,
2087                                void (*iter)(const struct ieee80211_iface_combination *c,
2088                                             void *data),
2089                                void *data)
2090 {
2091         const struct ieee80211_regdomain *regdom;
2092         enum nl80211_dfs_regions region = 0;
2093         int i, j, iftype;
2094         int num_interfaces = 0;
2095         u32 used_iftypes = 0;
2096         u32 beacon_int_gcd;
2097         bool beacon_int_different;
2098
2099         /*
2100          * This is a bit strange, since the iteration used to rely only on
2101          * the data given by the driver, but here it now relies on context,
2102          * in form of the currently operating interfaces.
2103          * This is OK for all current users, and saves us from having to
2104          * push the GCD calculations into all the drivers.
2105          * In the future, this should probably rely more on data that's in
2106          * cfg80211 already - the only thing not would appear to be any new
2107          * interfaces (while being brought up) and channel/radar data.
2108          */
2109         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2110                                    &beacon_int_gcd, &beacon_int_different);
2111
2112         if (params->radar_detect) {
2113                 rcu_read_lock();
2114                 regdom = rcu_dereference(cfg80211_regdomain);
2115                 if (regdom)
2116                         region = regdom->dfs_region;
2117                 rcu_read_unlock();
2118         }
2119
2120         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2121                 num_interfaces += params->iftype_num[iftype];
2122                 if (params->iftype_num[iftype] > 0 &&
2123                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2124                         used_iftypes |= BIT(iftype);
2125         }
2126
2127         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2128                 const struct ieee80211_iface_combination *c;
2129                 struct ieee80211_iface_limit *limits;
2130                 u32 all_iftypes = 0;
2131
2132                 c = &wiphy->iface_combinations[i];
2133
2134                 if (num_interfaces > c->max_interfaces)
2135                         continue;
2136                 if (params->num_different_channels > c->num_different_channels)
2137                         continue;
2138
2139                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2140                                  GFP_KERNEL);
2141                 if (!limits)
2142                         return -ENOMEM;
2143
2144                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2145                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2146                                 continue;
2147                         for (j = 0; j < c->n_limits; j++) {
2148                                 all_iftypes |= limits[j].types;
2149                                 if (!(limits[j].types & BIT(iftype)))
2150                                         continue;
2151                                 if (limits[j].max < params->iftype_num[iftype])
2152                                         goto cont;
2153                                 limits[j].max -= params->iftype_num[iftype];
2154                         }
2155                 }
2156
2157                 if (params->radar_detect !=
2158                         (c->radar_detect_widths & params->radar_detect))
2159                         goto cont;
2160
2161                 if (params->radar_detect && c->radar_detect_regions &&
2162                     !(c->radar_detect_regions & BIT(region)))
2163                         goto cont;
2164
2165                 /* Finally check that all iftypes that we're currently
2166                  * using are actually part of this combination. If they
2167                  * aren't then we can't use this combination and have
2168                  * to continue to the next.
2169                  */
2170                 if ((all_iftypes & used_iftypes) != used_iftypes)
2171                         goto cont;
2172
2173                 if (beacon_int_gcd) {
2174                         if (c->beacon_int_min_gcd &&
2175                             beacon_int_gcd < c->beacon_int_min_gcd)
2176                                 goto cont;
2177                         if (!c->beacon_int_min_gcd && beacon_int_different)
2178                                 goto cont;
2179                 }
2180
2181                 /* This combination covered all interface types and
2182                  * supported the requested numbers, so we're good.
2183                  */
2184
2185                 (*iter)(c, data);
2186  cont:
2187                 kfree(limits);
2188         }
2189
2190         return 0;
2191 }
2192 EXPORT_SYMBOL(cfg80211_iter_combinations);
2193
2194 static void
2195 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2196                           void *data)
2197 {
2198         int *num = data;
2199         (*num)++;
2200 }
2201
2202 int cfg80211_check_combinations(struct wiphy *wiphy,
2203                                 struct iface_combination_params *params)
2204 {
2205         int err, num = 0;
2206
2207         err = cfg80211_iter_combinations(wiphy, params,
2208                                          cfg80211_iter_sum_ifcombs, &num);
2209         if (err)
2210                 return err;
2211         if (num == 0)
2212                 return -EBUSY;
2213
2214         return 0;
2215 }
2216 EXPORT_SYMBOL(cfg80211_check_combinations);
2217
2218 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2219                            const u8 *rates, unsigned int n_rates,
2220                            u32 *mask)
2221 {
2222         int i, j;
2223
2224         if (!sband)
2225                 return -EINVAL;
2226
2227         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2228                 return -EINVAL;
2229
2230         *mask = 0;
2231
2232         for (i = 0; i < n_rates; i++) {
2233                 int rate = (rates[i] & 0x7f) * 5;
2234                 bool found = false;
2235
2236                 for (j = 0; j < sband->n_bitrates; j++) {
2237                         if (sband->bitrates[j].bitrate == rate) {
2238                                 found = true;
2239                                 *mask |= BIT(j);
2240                                 break;
2241                         }
2242                 }
2243                 if (!found)
2244                         return -EINVAL;
2245         }
2246
2247         /*
2248          * mask must have at least one bit set here since we
2249          * didn't accept a 0-length rates array nor allowed
2250          * entries in the array that didn't exist
2251          */
2252
2253         return 0;
2254 }
2255
2256 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2257 {
2258         enum nl80211_band band;
2259         unsigned int n_channels = 0;
2260
2261         for (band = 0; band < NUM_NL80211_BANDS; band++)
2262                 if (wiphy->bands[band])
2263                         n_channels += wiphy->bands[band]->n_channels;
2264
2265         return n_channels;
2266 }
2267 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2268
2269 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2270                          struct station_info *sinfo)
2271 {
2272         struct cfg80211_registered_device *rdev;
2273         struct wireless_dev *wdev;
2274
2275         wdev = dev->ieee80211_ptr;
2276         if (!wdev)
2277                 return -EOPNOTSUPP;
2278
2279         rdev = wiphy_to_rdev(wdev->wiphy);
2280         if (!rdev->ops->get_station)
2281                 return -EOPNOTSUPP;
2282
2283         memset(sinfo, 0, sizeof(*sinfo));
2284
2285         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2286 }
2287 EXPORT_SYMBOL(cfg80211_get_station);
2288
2289 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2290 {
2291         int i;
2292
2293         if (!f)
2294                 return;
2295
2296         kfree(f->serv_spec_info);
2297         kfree(f->srf_bf);
2298         kfree(f->srf_macs);
2299         for (i = 0; i < f->num_rx_filters; i++)
2300                 kfree(f->rx_filters[i].filter);
2301
2302         for (i = 0; i < f->num_tx_filters; i++)
2303                 kfree(f->tx_filters[i].filter);
2304
2305         kfree(f->rx_filters);
2306         kfree(f->tx_filters);
2307         kfree(f);
2308 }
2309 EXPORT_SYMBOL(cfg80211_free_nan_func);
2310
2311 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2312                                 u32 center_freq_khz, u32 bw_khz)
2313 {
2314         u32 start_freq_khz, end_freq_khz;
2315
2316         start_freq_khz = center_freq_khz - (bw_khz / 2);
2317         end_freq_khz = center_freq_khz + (bw_khz / 2);
2318
2319         if (start_freq_khz >= freq_range->start_freq_khz &&
2320             end_freq_khz <= freq_range->end_freq_khz)
2321                 return true;
2322
2323         return false;
2324 }
2325
2326 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2327 {
2328         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2329                                 sizeof(*(sinfo->pertid)),
2330                                 gfp);
2331         if (!sinfo->pertid)
2332                 return -ENOMEM;
2333
2334         return 0;
2335 }
2336 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2337
2338 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2339 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2340 const unsigned char rfc1042_header[] __aligned(2) =
2341         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2342 EXPORT_SYMBOL(rfc1042_header);
2343
2344 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2345 const unsigned char bridge_tunnel_header[] __aligned(2) =
2346         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2347 EXPORT_SYMBOL(bridge_tunnel_header);
2348
2349 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2350 struct iapp_layer2_update {
2351         u8 da[ETH_ALEN];        /* broadcast */
2352         u8 sa[ETH_ALEN];        /* STA addr */
2353         __be16 len;             /* 6 */
2354         u8 dsap;                /* 0 */
2355         u8 ssap;                /* 0 */
2356         u8 control;
2357         u8 xid_info[3];
2358 } __packed;
2359
2360 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2361 {
2362         struct iapp_layer2_update *msg;
2363         struct sk_buff *skb;
2364
2365         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2366          * bridge devices */
2367
2368         skb = dev_alloc_skb(sizeof(*msg));
2369         if (!skb)
2370                 return;
2371         msg = skb_put(skb, sizeof(*msg));
2372
2373         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2374          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2375
2376         eth_broadcast_addr(msg->da);
2377         ether_addr_copy(msg->sa, addr);
2378         msg->len = htons(6);
2379         msg->dsap = 0;
2380         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2381         msg->control = 0xaf;    /* XID response lsb.1111F101.
2382                                  * F=0 (no poll command; unsolicited frame) */
2383         msg->xid_info[0] = 0x81;        /* XID format identifier */
2384         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2385         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2386
2387         skb->dev = dev;
2388         skb->protocol = eth_type_trans(skb, dev);
2389         memset(skb->cb, 0, sizeof(skb->cb));
2390         netif_rx(skb);
2391 }
2392 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2393
2394 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2395                               enum ieee80211_vht_chanwidth bw,
2396                               int mcs, bool ext_nss_bw_capable,
2397                               unsigned int max_vht_nss)
2398 {
2399         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2400         int ext_nss_bw;
2401         int supp_width;
2402         int i, mcs_encoding;
2403
2404         if (map == 0xffff)
2405                 return 0;
2406
2407         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2408                 return 0;
2409         if (mcs <= 7)
2410                 mcs_encoding = 0;
2411         else if (mcs == 8)
2412                 mcs_encoding = 1;
2413         else
2414                 mcs_encoding = 2;
2415
2416         if (!max_vht_nss) {
2417                 /* find max_vht_nss for the given MCS */
2418                 for (i = 7; i >= 0; i--) {
2419                         int supp = (map >> (2 * i)) & 3;
2420
2421                         if (supp == 3)
2422                                 continue;
2423
2424                         if (supp >= mcs_encoding) {
2425                                 max_vht_nss = i + 1;
2426                                 break;
2427                         }
2428                 }
2429         }
2430
2431         if (!(cap->supp_mcs.tx_mcs_map &
2432                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2433                 return max_vht_nss;
2434
2435         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2436                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2437         supp_width = le32_get_bits(cap->vht_cap_info,
2438                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2439
2440         /* if not capable, treat ext_nss_bw as 0 */
2441         if (!ext_nss_bw_capable)
2442                 ext_nss_bw = 0;
2443
2444         /* This is invalid */
2445         if (supp_width == 3)
2446                 return 0;
2447
2448         /* This is an invalid combination so pretend nothing is supported */
2449         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2450                 return 0;
2451
2452         /*
2453          * Cover all the special cases according to IEEE 802.11-2016
2454          * Table 9-250. All other cases are either factor of 1 or not
2455          * valid/supported.
2456          */
2457         switch (bw) {
2458         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2459         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2460                 if ((supp_width == 1 || supp_width == 2) &&
2461                     ext_nss_bw == 3)
2462                         return 2 * max_vht_nss;
2463                 break;
2464         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2465                 if (supp_width == 0 &&
2466                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2467                         return max_vht_nss / 2;
2468                 if (supp_width == 0 &&
2469                     ext_nss_bw == 3)
2470                         return (3 * max_vht_nss) / 4;
2471                 if (supp_width == 1 &&
2472                     ext_nss_bw == 3)
2473                         return 2 * max_vht_nss;
2474                 break;
2475         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2476                 if (supp_width == 0 && ext_nss_bw == 1)
2477                         return 0; /* not possible */
2478                 if (supp_width == 0 &&
2479                     ext_nss_bw == 2)
2480                         return max_vht_nss / 2;
2481                 if (supp_width == 0 &&
2482                     ext_nss_bw == 3)
2483                         return (3 * max_vht_nss) / 4;
2484                 if (supp_width == 1 &&
2485                     ext_nss_bw == 0)
2486                         return 0; /* not possible */
2487                 if (supp_width == 1 &&
2488                     ext_nss_bw == 1)
2489                         return max_vht_nss / 2;
2490                 if (supp_width == 1 &&
2491                     ext_nss_bw == 2)
2492                         return (3 * max_vht_nss) / 4;
2493                 break;
2494         }
2495
2496         /* not covered or invalid combination received */
2497         return max_vht_nss;
2498 }
2499 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2500
2501 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2502                              bool is_4addr, u8 check_swif)
2503
2504 {
2505         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2506
2507         switch (check_swif) {
2508         case 0:
2509                 if (is_vlan && is_4addr)
2510                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2511                 return wiphy->interface_modes & BIT(iftype);
2512         case 1:
2513                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2514                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2515                 return wiphy->software_iftypes & BIT(iftype);
2516         default:
2517                 break;
2518         }
2519
2520         return false;
2521 }
2522 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2523
2524 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2525 {
2526         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2527
2528         ASSERT_WDEV_LOCK(wdev);
2529
2530         switch (wdev->iftype) {
2531         case NL80211_IFTYPE_AP:
2532         case NL80211_IFTYPE_P2P_GO:
2533                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2534                 break;
2535         default:
2536                 /* per-link not relevant */
2537                 break;
2538         }
2539
2540         wdev->valid_links &= ~BIT(link_id);
2541
2542         rdev_del_intf_link(rdev, wdev, link_id);
2543
2544         eth_zero_addr(wdev->links[link_id].addr);
2545 }
2546
2547 void cfg80211_remove_links(struct wireless_dev *wdev)
2548 {
2549         unsigned int link_id;
2550
2551         wdev_lock(wdev);
2552         if (wdev->valid_links) {
2553                 for_each_valid_link(wdev, link_id)
2554                         cfg80211_remove_link(wdev, link_id);
2555         }
2556         wdev_unlock(wdev);
2557 }
2558
2559 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2560                                  struct wireless_dev *wdev)
2561 {
2562         cfg80211_remove_links(wdev);
2563
2564         return rdev_del_virtual_intf(rdev, wdev);
2565 }
2566
2567 const struct wiphy_iftype_ext_capab *
2568 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2569 {
2570         int i;
2571
2572         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2573                 if (wiphy->iftype_ext_capab[i].iftype == type)
2574                         return &wiphy->iftype_ext_capab[i];
2575         }
2576
2577         return NULL;
2578 }
2579 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);