i40e: Fix unexpected MFS warning message
[platform/kernel/linux-starfive.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547         const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549         if (!(ether_addr_equal(hdr, rfc1042_header) &&
550               *hdr_proto != htons(ETH_P_AARP) &&
551               *hdr_proto != htons(ETH_P_IPX)) &&
552             !ether_addr_equal(hdr, bridge_tunnel_header))
553                 return false;
554
555         *proto = *hdr_proto;
556
557         return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563         const void *mesh_addr;
564         struct {
565                 struct ethhdr eth;
566                 u8 flags;
567         } payload;
568         int hdrlen;
569         int ret;
570
571         ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572         if (ret)
573                 return ret;
574
575         hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577         if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578                    ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579                                                    &payload.eth.h_proto)))
580                 hdrlen += ETH_ALEN + 2;
581         else if (!pskb_may_pull(skb, hdrlen))
582                 return -EINVAL;
583         else
584                 payload.eth.h_proto = htons(skb->len - hdrlen);
585
586         mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
587         switch (payload.flags & MESH_FLAGS_AE) {
588         case MESH_FLAGS_AE_A4:
589                 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
590                 break;
591         case MESH_FLAGS_AE_A5_A6:
592                 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
593                 break;
594         default:
595                 break;
596         }
597
598         pskb_pull(skb, hdrlen - sizeof(payload.eth));
599         memcpy(skb->data, &payload.eth, sizeof(payload.eth));
600
601         return 0;
602 }
603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
604
605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
606                                   const u8 *addr, enum nl80211_iftype iftype,
607                                   u8 data_offset, bool is_amsdu)
608 {
609         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
610         struct {
611                 u8 hdr[ETH_ALEN] __aligned(2);
612                 __be16 proto;
613         } payload;
614         struct ethhdr tmp;
615         u16 hdrlen;
616
617         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
618                 return -1;
619
620         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
621         if (skb->len < hdrlen)
622                 return -1;
623
624         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
625          * header
626          * IEEE 802.11 address fields:
627          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
628          *   0     0   DA    SA    BSSID n/a
629          *   0     1   DA    BSSID SA    n/a
630          *   1     0   BSSID SA    DA    n/a
631          *   1     1   RA    TA    DA    SA
632          */
633         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
634         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
635
636         switch (hdr->frame_control &
637                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
638         case cpu_to_le16(IEEE80211_FCTL_TODS):
639                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
640                              iftype != NL80211_IFTYPE_AP_VLAN &&
641                              iftype != NL80211_IFTYPE_P2P_GO))
642                         return -1;
643                 break;
644         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
645                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
646                              iftype != NL80211_IFTYPE_AP_VLAN &&
647                              iftype != NL80211_IFTYPE_STATION))
648                         return -1;
649                 break;
650         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
651                 if ((iftype != NL80211_IFTYPE_STATION &&
652                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
653                      iftype != NL80211_IFTYPE_MESH_POINT) ||
654                     (is_multicast_ether_addr(tmp.h_dest) &&
655                      ether_addr_equal(tmp.h_source, addr)))
656                         return -1;
657                 break;
658         case cpu_to_le16(0):
659                 if (iftype != NL80211_IFTYPE_ADHOC &&
660                     iftype != NL80211_IFTYPE_STATION &&
661                     iftype != NL80211_IFTYPE_OCB)
662                                 return -1;
663                 break;
664         }
665
666         if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
667                    skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
668                    ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
669                 /* remove RFC1042 or Bridge-Tunnel encapsulation */
670                 hdrlen += ETH_ALEN + 2;
671                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
672         } else {
673                 tmp.h_proto = htons(skb->len - hdrlen);
674         }
675
676         pskb_pull(skb, hdrlen);
677
678         if (!ehdr)
679                 ehdr = skb_push(skb, sizeof(struct ethhdr));
680         memcpy(ehdr, &tmp, sizeof(tmp));
681
682         return 0;
683 }
684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
685
686 static void
687 __frame_add_frag(struct sk_buff *skb, struct page *page,
688                  void *ptr, int len, int size)
689 {
690         struct skb_shared_info *sh = skb_shinfo(skb);
691         int page_offset;
692
693         get_page(page);
694         page_offset = ptr - page_address(page);
695         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
696 }
697
698 static void
699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
700                             int offset, int len)
701 {
702         struct skb_shared_info *sh = skb_shinfo(skb);
703         const skb_frag_t *frag = &sh->frags[0];
704         struct page *frag_page;
705         void *frag_ptr;
706         int frag_len, frag_size;
707         int head_size = skb->len - skb->data_len;
708         int cur_len;
709
710         frag_page = virt_to_head_page(skb->head);
711         frag_ptr = skb->data;
712         frag_size = head_size;
713
714         while (offset >= frag_size) {
715                 offset -= frag_size;
716                 frag_page = skb_frag_page(frag);
717                 frag_ptr = skb_frag_address(frag);
718                 frag_size = skb_frag_size(frag);
719                 frag++;
720         }
721
722         frag_ptr += offset;
723         frag_len = frag_size - offset;
724
725         cur_len = min(len, frag_len);
726
727         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
728         len -= cur_len;
729
730         while (len > 0) {
731                 frag_len = skb_frag_size(frag);
732                 cur_len = min(len, frag_len);
733                 __frame_add_frag(frame, skb_frag_page(frag),
734                                  skb_frag_address(frag), cur_len, frag_len);
735                 len -= cur_len;
736                 frag++;
737         }
738 }
739
740 static struct sk_buff *
741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
742                        int offset, int len, bool reuse_frag,
743                        int min_len)
744 {
745         struct sk_buff *frame;
746         int cur_len = len;
747
748         if (skb->len - offset < len)
749                 return NULL;
750
751         /*
752          * When reusing framents, copy some data to the head to simplify
753          * ethernet header handling and speed up protocol header processing
754          * in the stack later.
755          */
756         if (reuse_frag)
757                 cur_len = min_t(int, len, min_len);
758
759         /*
760          * Allocate and reserve two bytes more for payload
761          * alignment since sizeof(struct ethhdr) is 14.
762          */
763         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
764         if (!frame)
765                 return NULL;
766
767         frame->priority = skb->priority;
768         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
769         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
770
771         len -= cur_len;
772         if (!len)
773                 return frame;
774
775         offset += cur_len;
776         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
777
778         return frame;
779 }
780
781 static u16
782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
783 {
784         __le16 *field_le = field;
785         __be16 *field_be = field;
786         u16 len;
787
788         if (hdr_type >= 2)
789                 len = le16_to_cpu(*field_le);
790         else
791                 len = be16_to_cpu(*field_be);
792         if (hdr_type)
793                 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
794
795         return len;
796 }
797
798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
799 {
800         int offset = 0, remaining, subframe_len, padding;
801
802         for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
803                 struct {
804                     __be16 len;
805                     u8 mesh_flags;
806                 } hdr;
807                 u16 len;
808
809                 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
810                         return false;
811
812                 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
813                                                       mesh_hdr);
814                 subframe_len = sizeof(struct ethhdr) + len;
815                 padding = (4 - subframe_len) & 0x3;
816                 remaining = skb->len - offset;
817
818                 if (subframe_len > remaining)
819                         return false;
820         }
821
822         return true;
823 }
824 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
825
826 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
827                               const u8 *addr, enum nl80211_iftype iftype,
828                               const unsigned int extra_headroom,
829                               const u8 *check_da, const u8 *check_sa,
830                               u8 mesh_control)
831 {
832         unsigned int hlen = ALIGN(extra_headroom, 4);
833         struct sk_buff *frame = NULL;
834         int offset = 0, remaining;
835         struct {
836                 struct ethhdr eth;
837                 uint8_t flags;
838         } hdr;
839         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
840         bool reuse_skb = false;
841         bool last = false;
842         int copy_len = sizeof(hdr.eth);
843
844         if (iftype == NL80211_IFTYPE_MESH_POINT)
845                 copy_len = sizeof(hdr);
846
847         while (!last) {
848                 unsigned int subframe_len;
849                 int len, mesh_len = 0;
850                 u8 padding;
851
852                 skb_copy_bits(skb, offset, &hdr, copy_len);
853                 if (iftype == NL80211_IFTYPE_MESH_POINT)
854                         mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
855                 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
856                                                       mesh_control);
857                 subframe_len = sizeof(struct ethhdr) + len;
858                 padding = (4 - subframe_len) & 0x3;
859
860                 /* the last MSDU has no padding */
861                 remaining = skb->len - offset;
862                 if (subframe_len > remaining)
863                         goto purge;
864                 /* mitigate A-MSDU aggregation injection attacks */
865                 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866                         goto purge;
867
868                 offset += sizeof(struct ethhdr);
869                 last = remaining <= subframe_len + padding;
870
871                 /* FIXME: should we really accept multicast DA? */
872                 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873                      !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874                     (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875                         offset += len + padding;
876                         continue;
877                 }
878
879                 /* reuse skb for the last subframe */
880                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881                         skb_pull(skb, offset);
882                         frame = skb;
883                         reuse_skb = true;
884                 } else {
885                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886                                                        reuse_frag, 32 + mesh_len);
887                         if (!frame)
888                                 goto purge;
889
890                         offset += len + padding;
891                 }
892
893                 skb_reset_network_header(frame);
894                 frame->dev = skb->dev;
895                 frame->priority = skb->priority;
896
897                 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898                            ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899                         skb_pull(frame, ETH_ALEN + 2);
900
901                 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902                 __skb_queue_tail(list, frame);
903         }
904
905         if (!reuse_skb)
906                 dev_kfree_skb(skb);
907
908         return;
909
910  purge:
911         __skb_queue_purge(list);
912         dev_kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916 /* Given a data frame determine the 802.1p/1d tag to use. */
917 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918                                     struct cfg80211_qos_map *qos_map)
919 {
920         unsigned int dscp;
921         unsigned char vlan_priority;
922         unsigned int ret;
923
924         /* skb->priority values from 256->263 are magic values to
925          * directly indicate a specific 802.1d priority.  This is used
926          * to allow 802.1d priority to be passed directly in from VLAN
927          * tags, etc.
928          */
929         if (skb->priority >= 256 && skb->priority <= 263) {
930                 ret = skb->priority - 256;
931                 goto out;
932         }
933
934         if (skb_vlan_tag_present(skb)) {
935                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936                         >> VLAN_PRIO_SHIFT;
937                 if (vlan_priority > 0) {
938                         ret = vlan_priority;
939                         goto out;
940                 }
941         }
942
943         switch (skb->protocol) {
944         case htons(ETH_P_IP):
945                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946                 break;
947         case htons(ETH_P_IPV6):
948                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949                 break;
950         case htons(ETH_P_MPLS_UC):
951         case htons(ETH_P_MPLS_MC): {
952                 struct mpls_label mpls_tmp, *mpls;
953
954                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955                                           sizeof(*mpls), &mpls_tmp);
956                 if (!mpls)
957                         return 0;
958
959                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960                         >> MPLS_LS_TC_SHIFT;
961                 goto out;
962         }
963         case htons(ETH_P_80221):
964                 /* 802.21 is always network control traffic */
965                 return 7;
966         default:
967                 return 0;
968         }
969
970         if (qos_map) {
971                 unsigned int i, tmp_dscp = dscp >> 2;
972
973                 for (i = 0; i < qos_map->num_des; i++) {
974                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975                                 ret = qos_map->dscp_exception[i].up;
976                                 goto out;
977                         }
978                 }
979
980                 for (i = 0; i < 8; i++) {
981                         if (tmp_dscp >= qos_map->up[i].low &&
982                             tmp_dscp <= qos_map->up[i].high) {
983                                 ret = i;
984                                 goto out;
985                         }
986                 }
987         }
988
989         ret = dscp >> 5;
990 out:
991         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
992 }
993 EXPORT_SYMBOL(cfg80211_classify8021d);
994
995 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
996 {
997         const struct cfg80211_bss_ies *ies;
998
999         ies = rcu_dereference(bss->ies);
1000         if (!ies)
1001                 return NULL;
1002
1003         return cfg80211_find_elem(id, ies->data, ies->len);
1004 }
1005 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1006
1007 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1008 {
1009         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1010         struct net_device *dev = wdev->netdev;
1011         int i;
1012
1013         if (!wdev->connect_keys)
1014                 return;
1015
1016         for (i = 0; i < 4; i++) {
1017                 if (!wdev->connect_keys->params[i].cipher)
1018                         continue;
1019                 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1020                                  &wdev->connect_keys->params[i])) {
1021                         netdev_err(dev, "failed to set key %d\n", i);
1022                         continue;
1023                 }
1024                 if (wdev->connect_keys->def == i &&
1025                     rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1026                         netdev_err(dev, "failed to set defkey %d\n", i);
1027                         continue;
1028                 }
1029         }
1030
1031         kfree_sensitive(wdev->connect_keys);
1032         wdev->connect_keys = NULL;
1033 }
1034
1035 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1036 {
1037         struct cfg80211_event *ev;
1038         unsigned long flags;
1039
1040         spin_lock_irqsave(&wdev->event_lock, flags);
1041         while (!list_empty(&wdev->event_list)) {
1042                 ev = list_first_entry(&wdev->event_list,
1043                                       struct cfg80211_event, list);
1044                 list_del(&ev->list);
1045                 spin_unlock_irqrestore(&wdev->event_lock, flags);
1046
1047                 wdev_lock(wdev);
1048                 switch (ev->type) {
1049                 case EVENT_CONNECT_RESULT:
1050                         __cfg80211_connect_result(
1051                                 wdev->netdev,
1052                                 &ev->cr,
1053                                 ev->cr.status == WLAN_STATUS_SUCCESS);
1054                         break;
1055                 case EVENT_ROAMED:
1056                         __cfg80211_roamed(wdev, &ev->rm);
1057                         break;
1058                 case EVENT_DISCONNECTED:
1059                         __cfg80211_disconnected(wdev->netdev,
1060                                                 ev->dc.ie, ev->dc.ie_len,
1061                                                 ev->dc.reason,
1062                                                 !ev->dc.locally_generated);
1063                         break;
1064                 case EVENT_IBSS_JOINED:
1065                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1066                                                ev->ij.channel);
1067                         break;
1068                 case EVENT_STOPPED:
1069                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1070                         break;
1071                 case EVENT_PORT_AUTHORIZED:
1072                         __cfg80211_port_authorized(wdev, ev->pa.bssid,
1073                                                    ev->pa.td_bitmap,
1074                                                    ev->pa.td_bitmap_len);
1075                         break;
1076                 }
1077                 wdev_unlock(wdev);
1078
1079                 kfree(ev);
1080
1081                 spin_lock_irqsave(&wdev->event_lock, flags);
1082         }
1083         spin_unlock_irqrestore(&wdev->event_lock, flags);
1084 }
1085
1086 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1087 {
1088         struct wireless_dev *wdev;
1089
1090         lockdep_assert_held(&rdev->wiphy.mtx);
1091
1092         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1093                 cfg80211_process_wdev_events(wdev);
1094 }
1095
1096 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1097                           struct net_device *dev, enum nl80211_iftype ntype,
1098                           struct vif_params *params)
1099 {
1100         int err;
1101         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1102
1103         lockdep_assert_held(&rdev->wiphy.mtx);
1104
1105         /* don't support changing VLANs, you just re-create them */
1106         if (otype == NL80211_IFTYPE_AP_VLAN)
1107                 return -EOPNOTSUPP;
1108
1109         /* cannot change into P2P device or NAN */
1110         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1111             ntype == NL80211_IFTYPE_NAN)
1112                 return -EOPNOTSUPP;
1113
1114         if (!rdev->ops->change_virtual_intf ||
1115             !(rdev->wiphy.interface_modes & (1 << ntype)))
1116                 return -EOPNOTSUPP;
1117
1118         if (ntype != otype) {
1119                 /* if it's part of a bridge, reject changing type to station/ibss */
1120                 if (netif_is_bridge_port(dev) &&
1121                     (ntype == NL80211_IFTYPE_ADHOC ||
1122                      ntype == NL80211_IFTYPE_STATION ||
1123                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1124                         return -EBUSY;
1125
1126                 dev->ieee80211_ptr->use_4addr = false;
1127                 wdev_lock(dev->ieee80211_ptr);
1128                 rdev_set_qos_map(rdev, dev, NULL);
1129                 wdev_unlock(dev->ieee80211_ptr);
1130
1131                 switch (otype) {
1132                 case NL80211_IFTYPE_AP:
1133                 case NL80211_IFTYPE_P2P_GO:
1134                         cfg80211_stop_ap(rdev, dev, -1, true);
1135                         break;
1136                 case NL80211_IFTYPE_ADHOC:
1137                         cfg80211_leave_ibss(rdev, dev, false);
1138                         break;
1139                 case NL80211_IFTYPE_STATION:
1140                 case NL80211_IFTYPE_P2P_CLIENT:
1141                         wdev_lock(dev->ieee80211_ptr);
1142                         cfg80211_disconnect(rdev, dev,
1143                                             WLAN_REASON_DEAUTH_LEAVING, true);
1144                         wdev_unlock(dev->ieee80211_ptr);
1145                         break;
1146                 case NL80211_IFTYPE_MESH_POINT:
1147                         /* mesh should be handled? */
1148                         break;
1149                 case NL80211_IFTYPE_OCB:
1150                         cfg80211_leave_ocb(rdev, dev);
1151                         break;
1152                 default:
1153                         break;
1154                 }
1155
1156                 cfg80211_process_rdev_events(rdev);
1157                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1158
1159                 memset(&dev->ieee80211_ptr->u, 0,
1160                        sizeof(dev->ieee80211_ptr->u));
1161                 memset(&dev->ieee80211_ptr->links, 0,
1162                        sizeof(dev->ieee80211_ptr->links));
1163         }
1164
1165         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1166
1167         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1168
1169         if (!err && params && params->use_4addr != -1)
1170                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1171
1172         if (!err) {
1173                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1174                 switch (ntype) {
1175                 case NL80211_IFTYPE_STATION:
1176                         if (dev->ieee80211_ptr->use_4addr)
1177                                 break;
1178                         fallthrough;
1179                 case NL80211_IFTYPE_OCB:
1180                 case NL80211_IFTYPE_P2P_CLIENT:
1181                 case NL80211_IFTYPE_ADHOC:
1182                         dev->priv_flags |= IFF_DONT_BRIDGE;
1183                         break;
1184                 case NL80211_IFTYPE_P2P_GO:
1185                 case NL80211_IFTYPE_AP:
1186                 case NL80211_IFTYPE_AP_VLAN:
1187                 case NL80211_IFTYPE_MESH_POINT:
1188                         /* bridging OK */
1189                         break;
1190                 case NL80211_IFTYPE_MONITOR:
1191                         /* monitor can't bridge anyway */
1192                         break;
1193                 case NL80211_IFTYPE_UNSPECIFIED:
1194                 case NUM_NL80211_IFTYPES:
1195                         /* not happening */
1196                         break;
1197                 case NL80211_IFTYPE_P2P_DEVICE:
1198                 case NL80211_IFTYPE_WDS:
1199                 case NL80211_IFTYPE_NAN:
1200                         WARN_ON(1);
1201                         break;
1202                 }
1203         }
1204
1205         if (!err && ntype != otype && netif_running(dev)) {
1206                 cfg80211_update_iface_num(rdev, ntype, 1);
1207                 cfg80211_update_iface_num(rdev, otype, -1);
1208         }
1209
1210         return err;
1211 }
1212
1213 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1214 {
1215         int modulation, streams, bitrate;
1216
1217         /* the formula below does only work for MCS values smaller than 32 */
1218         if (WARN_ON_ONCE(rate->mcs >= 32))
1219                 return 0;
1220
1221         modulation = rate->mcs & 7;
1222         streams = (rate->mcs >> 3) + 1;
1223
1224         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1225
1226         if (modulation < 4)
1227                 bitrate *= (modulation + 1);
1228         else if (modulation == 4)
1229                 bitrate *= (modulation + 2);
1230         else
1231                 bitrate *= (modulation + 3);
1232
1233         bitrate *= streams;
1234
1235         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1236                 bitrate = (bitrate / 9) * 10;
1237
1238         /* do NOT round down here */
1239         return (bitrate + 50000) / 100000;
1240 }
1241
1242 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1243 {
1244         static const u32 __mcs2bitrate[] = {
1245                 /* control PHY */
1246                 [0] =   275,
1247                 /* SC PHY */
1248                 [1] =  3850,
1249                 [2] =  7700,
1250                 [3] =  9625,
1251                 [4] = 11550,
1252                 [5] = 12512, /* 1251.25 mbps */
1253                 [6] = 15400,
1254                 [7] = 19250,
1255                 [8] = 23100,
1256                 [9] = 25025,
1257                 [10] = 30800,
1258                 [11] = 38500,
1259                 [12] = 46200,
1260                 /* OFDM PHY */
1261                 [13] =  6930,
1262                 [14] =  8662, /* 866.25 mbps */
1263                 [15] = 13860,
1264                 [16] = 17325,
1265                 [17] = 20790,
1266                 [18] = 27720,
1267                 [19] = 34650,
1268                 [20] = 41580,
1269                 [21] = 45045,
1270                 [22] = 51975,
1271                 [23] = 62370,
1272                 [24] = 67568, /* 6756.75 mbps */
1273                 /* LP-SC PHY */
1274                 [25] =  6260,
1275                 [26] =  8340,
1276                 [27] = 11120,
1277                 [28] = 12510,
1278                 [29] = 16680,
1279                 [30] = 22240,
1280                 [31] = 25030,
1281         };
1282
1283         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1284                 return 0;
1285
1286         return __mcs2bitrate[rate->mcs];
1287 }
1288
1289 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1290 {
1291         static const u32 __mcs2bitrate[] = {
1292                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1293                 [7 - 6] = 50050, /* MCS 12.1 */
1294                 [8 - 6] = 53900,
1295                 [9 - 6] = 57750,
1296                 [10 - 6] = 63900,
1297                 [11 - 6] = 75075,
1298                 [12 - 6] = 80850,
1299         };
1300
1301         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1302         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1303                 return 0;
1304
1305         return __mcs2bitrate[rate->mcs - 6];
1306 }
1307
1308 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1309 {
1310         static const u32 __mcs2bitrate[] = {
1311                 /* control PHY */
1312                 [0] =   275,
1313                 /* SC PHY */
1314                 [1] =  3850,
1315                 [2] =  7700,
1316                 [3] =  9625,
1317                 [4] = 11550,
1318                 [5] = 12512, /* 1251.25 mbps */
1319                 [6] = 13475,
1320                 [7] = 15400,
1321                 [8] = 19250,
1322                 [9] = 23100,
1323                 [10] = 25025,
1324                 [11] = 26950,
1325                 [12] = 30800,
1326                 [13] = 38500,
1327                 [14] = 46200,
1328                 [15] = 50050,
1329                 [16] = 53900,
1330                 [17] = 57750,
1331                 [18] = 69300,
1332                 [19] = 75075,
1333                 [20] = 80850,
1334         };
1335
1336         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1337                 return 0;
1338
1339         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1340 }
1341
1342 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1343 {
1344         static const u32 base[4][12] = {
1345                 {   6500000,
1346                    13000000,
1347                    19500000,
1348                    26000000,
1349                    39000000,
1350                    52000000,
1351                    58500000,
1352                    65000000,
1353                    78000000,
1354                 /* not in the spec, but some devices use this: */
1355                    86700000,
1356                    97500000,
1357                   108300000,
1358                 },
1359                 {  13500000,
1360                    27000000,
1361                    40500000,
1362                    54000000,
1363                    81000000,
1364                   108000000,
1365                   121500000,
1366                   135000000,
1367                   162000000,
1368                   180000000,
1369                   202500000,
1370                   225000000,
1371                 },
1372                 {  29300000,
1373                    58500000,
1374                    87800000,
1375                   117000000,
1376                   175500000,
1377                   234000000,
1378                   263300000,
1379                   292500000,
1380                   351000000,
1381                   390000000,
1382                   438800000,
1383                   487500000,
1384                 },
1385                 {  58500000,
1386                   117000000,
1387                   175500000,
1388                   234000000,
1389                   351000000,
1390                   468000000,
1391                   526500000,
1392                   585000000,
1393                   702000000,
1394                   780000000,
1395                   877500000,
1396                   975000000,
1397                 },
1398         };
1399         u32 bitrate;
1400         int idx;
1401
1402         if (rate->mcs > 11)
1403                 goto warn;
1404
1405         switch (rate->bw) {
1406         case RATE_INFO_BW_160:
1407                 idx = 3;
1408                 break;
1409         case RATE_INFO_BW_80:
1410                 idx = 2;
1411                 break;
1412         case RATE_INFO_BW_40:
1413                 idx = 1;
1414                 break;
1415         case RATE_INFO_BW_5:
1416         case RATE_INFO_BW_10:
1417         default:
1418                 goto warn;
1419         case RATE_INFO_BW_20:
1420                 idx = 0;
1421         }
1422
1423         bitrate = base[idx][rate->mcs];
1424         bitrate *= rate->nss;
1425
1426         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1427                 bitrate = (bitrate / 9) * 10;
1428
1429         /* do NOT round down here */
1430         return (bitrate + 50000) / 100000;
1431  warn:
1432         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1433                   rate->bw, rate->mcs, rate->nss);
1434         return 0;
1435 }
1436
1437 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1438 {
1439 #define SCALE 6144
1440         u32 mcs_divisors[14] = {
1441                 102399, /* 16.666666... */
1442                  51201, /*  8.333333... */
1443                  34134, /*  5.555555... */
1444                  25599, /*  4.166666... */
1445                  17067, /*  2.777777... */
1446                  12801, /*  2.083333... */
1447                  11377, /*  1.851725... */
1448                  10239, /*  1.666666... */
1449                   8532, /*  1.388888... */
1450                   7680, /*  1.250000... */
1451                   6828, /*  1.111111... */
1452                   6144, /*  1.000000... */
1453                   5690, /*  0.926106... */
1454                   5120, /*  0.833333... */
1455         };
1456         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1457         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1458         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1459         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1460         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1461         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1462         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1463         u64 tmp;
1464         u32 result;
1465
1466         if (WARN_ON_ONCE(rate->mcs > 13))
1467                 return 0;
1468
1469         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1470                 return 0;
1471         if (WARN_ON_ONCE(rate->he_ru_alloc >
1472                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1473                 return 0;
1474         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475                 return 0;
1476
1477         if (rate->bw == RATE_INFO_BW_160)
1478                 result = rates_160M[rate->he_gi];
1479         else if (rate->bw == RATE_INFO_BW_80 ||
1480                  (rate->bw == RATE_INFO_BW_HE_RU &&
1481                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1482                 result = rates_969[rate->he_gi];
1483         else if (rate->bw == RATE_INFO_BW_40 ||
1484                  (rate->bw == RATE_INFO_BW_HE_RU &&
1485                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1486                 result = rates_484[rate->he_gi];
1487         else if (rate->bw == RATE_INFO_BW_20 ||
1488                  (rate->bw == RATE_INFO_BW_HE_RU &&
1489                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1490                 result = rates_242[rate->he_gi];
1491         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1492                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1493                 result = rates_106[rate->he_gi];
1494         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1495                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1496                 result = rates_52[rate->he_gi];
1497         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1498                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1499                 result = rates_26[rate->he_gi];
1500         else {
1501                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1502                      rate->bw, rate->he_ru_alloc);
1503                 return 0;
1504         }
1505
1506         /* now scale to the appropriate MCS */
1507         tmp = result;
1508         tmp *= SCALE;
1509         do_div(tmp, mcs_divisors[rate->mcs]);
1510         result = tmp;
1511
1512         /* and take NSS, DCM into account */
1513         result = (result * rate->nss) / 8;
1514         if (rate->he_dcm)
1515                 result /= 2;
1516
1517         return result / 10000;
1518 }
1519
1520 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1521 {
1522 #define SCALE 6144
1523         static const u32 mcs_divisors[16] = {
1524                 102399, /* 16.666666... */
1525                  51201, /*  8.333333... */
1526                  34134, /*  5.555555... */
1527                  25599, /*  4.166666... */
1528                  17067, /*  2.777777... */
1529                  12801, /*  2.083333... */
1530                  11377, /*  1.851725... */
1531                  10239, /*  1.666666... */
1532                   8532, /*  1.388888... */
1533                   7680, /*  1.250000... */
1534                   6828, /*  1.111111... */
1535                   6144, /*  1.000000... */
1536                   5690, /*  0.926106... */
1537                   5120, /*  0.833333... */
1538                 409600, /* 66.666666... */
1539                 204800, /* 33.333333... */
1540         };
1541         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1542         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1543         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1544         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1545         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1546         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1547         u64 tmp;
1548         u32 result;
1549
1550         if (WARN_ON_ONCE(rate->mcs > 15))
1551                 return 0;
1552         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1553                 return 0;
1554         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1555                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1556                 return 0;
1557         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1558                 return 0;
1559
1560         /* Bandwidth checks for MCS 14 */
1561         if (rate->mcs == 14) {
1562                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1563                      rate->bw != RATE_INFO_BW_80 &&
1564                      rate->bw != RATE_INFO_BW_160 &&
1565                      rate->bw != RATE_INFO_BW_320) ||
1566                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1567                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1568                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1569                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1570                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1571                              rate->bw, rate->eht_ru_alloc);
1572                         return 0;
1573                 }
1574         }
1575
1576         if (rate->bw == RATE_INFO_BW_320 ||
1577             (rate->bw == RATE_INFO_BW_EHT_RU &&
1578              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1579                 result = 4 * rates_996[rate->eht_gi];
1580         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1581                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1582                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1583         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1584                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1585                 result = 3 * rates_996[rate->eht_gi];
1586         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1588                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589         else if (rate->bw == RATE_INFO_BW_160 ||
1590                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1591                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1592                 result = 2 * rates_996[rate->eht_gi];
1593         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594                  rate->eht_ru_alloc ==
1595                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1596                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1597                          + rates_242[rate->eht_gi];
1598         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1599                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1600                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1601         else if (rate->bw == RATE_INFO_BW_80 ||
1602                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1603                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1604                 result = rates_996[rate->eht_gi];
1605         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1606                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1607                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1608         else if (rate->bw == RATE_INFO_BW_40 ||
1609                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1610                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1611                 result = rates_484[rate->eht_gi];
1612         else if (rate->bw == RATE_INFO_BW_20 ||
1613                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1614                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1615                 result = rates_242[rate->eht_gi];
1616         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1618                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1619         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1620                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1621                 result = rates_106[rate->eht_gi];
1622         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1623                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1624                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1625         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1626                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1627                 result = rates_52[rate->eht_gi];
1628         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1629                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1630                 result = rates_26[rate->eht_gi];
1631         else {
1632                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1633                      rate->bw, rate->eht_ru_alloc);
1634                 return 0;
1635         }
1636
1637         /* now scale to the appropriate MCS */
1638         tmp = result;
1639         tmp *= SCALE;
1640         do_div(tmp, mcs_divisors[rate->mcs]);
1641
1642         /* and take NSS */
1643         tmp *= rate->nss;
1644         do_div(tmp, 8);
1645
1646         result = tmp;
1647
1648         return result / 10000;
1649 }
1650
1651 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1652 {
1653         /* For 1, 2, 4, 8 and 16 MHz channels */
1654         static const u32 base[5][11] = {
1655                 {  300000,
1656                    600000,
1657                    900000,
1658                   1200000,
1659                   1800000,
1660                   2400000,
1661                   2700000,
1662                   3000000,
1663                   3600000,
1664                   4000000,
1665                   /* MCS 10 supported in 1 MHz only */
1666                   150000,
1667                 },
1668                 {  650000,
1669                   1300000,
1670                   1950000,
1671                   2600000,
1672                   3900000,
1673                   5200000,
1674                   5850000,
1675                   6500000,
1676                   7800000,
1677                   /* MCS 9 not valid */
1678                 },
1679                 {  1350000,
1680                    2700000,
1681                    4050000,
1682                    5400000,
1683                    8100000,
1684                   10800000,
1685                   12150000,
1686                   13500000,
1687                   16200000,
1688                   18000000,
1689                 },
1690                 {  2925000,
1691                    5850000,
1692                    8775000,
1693                   11700000,
1694                   17550000,
1695                   23400000,
1696                   26325000,
1697                   29250000,
1698                   35100000,
1699                   39000000,
1700                 },
1701                 {  8580000,
1702                   11700000,
1703                   17550000,
1704                   23400000,
1705                   35100000,
1706                   46800000,
1707                   52650000,
1708                   58500000,
1709                   70200000,
1710                   78000000,
1711                 },
1712         };
1713         u32 bitrate;
1714         /* default is 1 MHz index */
1715         int idx = 0;
1716
1717         if (rate->mcs >= 11)
1718                 goto warn;
1719
1720         switch (rate->bw) {
1721         case RATE_INFO_BW_16:
1722                 idx = 4;
1723                 break;
1724         case RATE_INFO_BW_8:
1725                 idx = 3;
1726                 break;
1727         case RATE_INFO_BW_4:
1728                 idx = 2;
1729                 break;
1730         case RATE_INFO_BW_2:
1731                 idx = 1;
1732                 break;
1733         case RATE_INFO_BW_1:
1734                 idx = 0;
1735                 break;
1736         case RATE_INFO_BW_5:
1737         case RATE_INFO_BW_10:
1738         case RATE_INFO_BW_20:
1739         case RATE_INFO_BW_40:
1740         case RATE_INFO_BW_80:
1741         case RATE_INFO_BW_160:
1742         default:
1743                 goto warn;
1744         }
1745
1746         bitrate = base[idx][rate->mcs];
1747         bitrate *= rate->nss;
1748
1749         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1750                 bitrate = (bitrate / 9) * 10;
1751         /* do NOT round down here */
1752         return (bitrate + 50000) / 100000;
1753 warn:
1754         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1755                   rate->bw, rate->mcs, rate->nss);
1756         return 0;
1757 }
1758
1759 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1760 {
1761         if (rate->flags & RATE_INFO_FLAGS_MCS)
1762                 return cfg80211_calculate_bitrate_ht(rate);
1763         if (rate->flags & RATE_INFO_FLAGS_DMG)
1764                 return cfg80211_calculate_bitrate_dmg(rate);
1765         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1766                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1767         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1768                 return cfg80211_calculate_bitrate_edmg(rate);
1769         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1770                 return cfg80211_calculate_bitrate_vht(rate);
1771         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1772                 return cfg80211_calculate_bitrate_he(rate);
1773         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1774                 return cfg80211_calculate_bitrate_eht(rate);
1775         if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1776                 return cfg80211_calculate_bitrate_s1g(rate);
1777
1778         return rate->legacy;
1779 }
1780 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1781
1782 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1783                           enum ieee80211_p2p_attr_id attr,
1784                           u8 *buf, unsigned int bufsize)
1785 {
1786         u8 *out = buf;
1787         u16 attr_remaining = 0;
1788         bool desired_attr = false;
1789         u16 desired_len = 0;
1790
1791         while (len > 0) {
1792                 unsigned int iedatalen;
1793                 unsigned int copy;
1794                 const u8 *iedata;
1795
1796                 if (len < 2)
1797                         return -EILSEQ;
1798                 iedatalen = ies[1];
1799                 if (iedatalen + 2 > len)
1800                         return -EILSEQ;
1801
1802                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1803                         goto cont;
1804
1805                 if (iedatalen < 4)
1806                         goto cont;
1807
1808                 iedata = ies + 2;
1809
1810                 /* check WFA OUI, P2P subtype */
1811                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1812                     iedata[2] != 0x9a || iedata[3] != 0x09)
1813                         goto cont;
1814
1815                 iedatalen -= 4;
1816                 iedata += 4;
1817
1818                 /* check attribute continuation into this IE */
1819                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1820                 if (copy && desired_attr) {
1821                         desired_len += copy;
1822                         if (out) {
1823                                 memcpy(out, iedata, min(bufsize, copy));
1824                                 out += min(bufsize, copy);
1825                                 bufsize -= min(bufsize, copy);
1826                         }
1827
1828
1829                         if (copy == attr_remaining)
1830                                 return desired_len;
1831                 }
1832
1833                 attr_remaining -= copy;
1834                 if (attr_remaining)
1835                         goto cont;
1836
1837                 iedatalen -= copy;
1838                 iedata += copy;
1839
1840                 while (iedatalen > 0) {
1841                         u16 attr_len;
1842
1843                         /* P2P attribute ID & size must fit */
1844                         if (iedatalen < 3)
1845                                 return -EILSEQ;
1846                         desired_attr = iedata[0] == attr;
1847                         attr_len = get_unaligned_le16(iedata + 1);
1848                         iedatalen -= 3;
1849                         iedata += 3;
1850
1851                         copy = min_t(unsigned int, attr_len, iedatalen);
1852
1853                         if (desired_attr) {
1854                                 desired_len += copy;
1855                                 if (out) {
1856                                         memcpy(out, iedata, min(bufsize, copy));
1857                                         out += min(bufsize, copy);
1858                                         bufsize -= min(bufsize, copy);
1859                                 }
1860
1861                                 if (copy == attr_len)
1862                                         return desired_len;
1863                         }
1864
1865                         iedata += copy;
1866                         iedatalen -= copy;
1867                         attr_remaining = attr_len - copy;
1868                 }
1869
1870  cont:
1871                 len -= ies[1] + 2;
1872                 ies += ies[1] + 2;
1873         }
1874
1875         if (attr_remaining && desired_attr)
1876                 return -EILSEQ;
1877
1878         return -ENOENT;
1879 }
1880 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1881
1882 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1883 {
1884         int i;
1885
1886         /* Make sure array values are legal */
1887         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1888                 return false;
1889
1890         i = 0;
1891         while (i < n_ids) {
1892                 if (ids[i] == WLAN_EID_EXTENSION) {
1893                         if (id_ext && (ids[i + 1] == id))
1894                                 return true;
1895
1896                         i += 2;
1897                         continue;
1898                 }
1899
1900                 if (ids[i] == id && !id_ext)
1901                         return true;
1902
1903                 i++;
1904         }
1905         return false;
1906 }
1907
1908 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1909 {
1910         /* we assume a validly formed IEs buffer */
1911         u8 len = ies[pos + 1];
1912
1913         pos += 2 + len;
1914
1915         /* the IE itself must have 255 bytes for fragments to follow */
1916         if (len < 255)
1917                 return pos;
1918
1919         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1920                 len = ies[pos + 1];
1921                 pos += 2 + len;
1922         }
1923
1924         return pos;
1925 }
1926
1927 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1928                               const u8 *ids, int n_ids,
1929                               const u8 *after_ric, int n_after_ric,
1930                               size_t offset)
1931 {
1932         size_t pos = offset;
1933
1934         while (pos < ielen) {
1935                 u8 ext = 0;
1936
1937                 if (ies[pos] == WLAN_EID_EXTENSION)
1938                         ext = 2;
1939                 if ((pos + ext) >= ielen)
1940                         break;
1941
1942                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1943                                           ies[pos] == WLAN_EID_EXTENSION))
1944                         break;
1945
1946                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1947                         pos = skip_ie(ies, ielen, pos);
1948
1949                         while (pos < ielen) {
1950                                 if (ies[pos] == WLAN_EID_EXTENSION)
1951                                         ext = 2;
1952                                 else
1953                                         ext = 0;
1954
1955                                 if ((pos + ext) >= ielen)
1956                                         break;
1957
1958                                 if (!ieee80211_id_in_list(after_ric,
1959                                                           n_after_ric,
1960                                                           ies[pos + ext],
1961                                                           ext == 2))
1962                                         pos = skip_ie(ies, ielen, pos);
1963                                 else
1964                                         break;
1965                         }
1966                 } else {
1967                         pos = skip_ie(ies, ielen, pos);
1968                 }
1969         }
1970
1971         return pos;
1972 }
1973 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1974
1975 bool ieee80211_operating_class_to_band(u8 operating_class,
1976                                        enum nl80211_band *band)
1977 {
1978         switch (operating_class) {
1979         case 112:
1980         case 115 ... 127:
1981         case 128 ... 130:
1982                 *band = NL80211_BAND_5GHZ;
1983                 return true;
1984         case 131 ... 135:
1985                 *band = NL80211_BAND_6GHZ;
1986                 return true;
1987         case 81:
1988         case 82:
1989         case 83:
1990         case 84:
1991                 *band = NL80211_BAND_2GHZ;
1992                 return true;
1993         case 180:
1994                 *band = NL80211_BAND_60GHZ;
1995                 return true;
1996         }
1997
1998         return false;
1999 }
2000 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2001
2002 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2003                                           u8 *op_class)
2004 {
2005         u8 vht_opclass;
2006         u32 freq = chandef->center_freq1;
2007
2008         if (freq >= 2412 && freq <= 2472) {
2009                 if (chandef->width > NL80211_CHAN_WIDTH_40)
2010                         return false;
2011
2012                 /* 2.407 GHz, channels 1..13 */
2013                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2014                         if (freq > chandef->chan->center_freq)
2015                                 *op_class = 83; /* HT40+ */
2016                         else
2017                                 *op_class = 84; /* HT40- */
2018                 } else {
2019                         *op_class = 81;
2020                 }
2021
2022                 return true;
2023         }
2024
2025         if (freq == 2484) {
2026                 /* channel 14 is only for IEEE 802.11b */
2027                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2028                         return false;
2029
2030                 *op_class = 82; /* channel 14 */
2031                 return true;
2032         }
2033
2034         switch (chandef->width) {
2035         case NL80211_CHAN_WIDTH_80:
2036                 vht_opclass = 128;
2037                 break;
2038         case NL80211_CHAN_WIDTH_160:
2039                 vht_opclass = 129;
2040                 break;
2041         case NL80211_CHAN_WIDTH_80P80:
2042                 vht_opclass = 130;
2043                 break;
2044         case NL80211_CHAN_WIDTH_10:
2045         case NL80211_CHAN_WIDTH_5:
2046                 return false; /* unsupported for now */
2047         default:
2048                 vht_opclass = 0;
2049                 break;
2050         }
2051
2052         /* 5 GHz, channels 36..48 */
2053         if (freq >= 5180 && freq <= 5240) {
2054                 if (vht_opclass) {
2055                         *op_class = vht_opclass;
2056                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2057                         if (freq > chandef->chan->center_freq)
2058                                 *op_class = 116;
2059                         else
2060                                 *op_class = 117;
2061                 } else {
2062                         *op_class = 115;
2063                 }
2064
2065                 return true;
2066         }
2067
2068         /* 5 GHz, channels 52..64 */
2069         if (freq >= 5260 && freq <= 5320) {
2070                 if (vht_opclass) {
2071                         *op_class = vht_opclass;
2072                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2073                         if (freq > chandef->chan->center_freq)
2074                                 *op_class = 119;
2075                         else
2076                                 *op_class = 120;
2077                 } else {
2078                         *op_class = 118;
2079                 }
2080
2081                 return true;
2082         }
2083
2084         /* 5 GHz, channels 100..144 */
2085         if (freq >= 5500 && freq <= 5720) {
2086                 if (vht_opclass) {
2087                         *op_class = vht_opclass;
2088                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2089                         if (freq > chandef->chan->center_freq)
2090                                 *op_class = 122;
2091                         else
2092                                 *op_class = 123;
2093                 } else {
2094                         *op_class = 121;
2095                 }
2096
2097                 return true;
2098         }
2099
2100         /* 5 GHz, channels 149..169 */
2101         if (freq >= 5745 && freq <= 5845) {
2102                 if (vht_opclass) {
2103                         *op_class = vht_opclass;
2104                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2105                         if (freq > chandef->chan->center_freq)
2106                                 *op_class = 126;
2107                         else
2108                                 *op_class = 127;
2109                 } else if (freq <= 5805) {
2110                         *op_class = 124;
2111                 } else {
2112                         *op_class = 125;
2113                 }
2114
2115                 return true;
2116         }
2117
2118         /* 56.16 GHz, channel 1..4 */
2119         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2120                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2121                         return false;
2122
2123                 *op_class = 180;
2124                 return true;
2125         }
2126
2127         /* not supported yet */
2128         return false;
2129 }
2130 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2131
2132 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2133 {
2134         switch (wdev->iftype) {
2135         case NL80211_IFTYPE_AP:
2136         case NL80211_IFTYPE_P2P_GO:
2137                 WARN_ON(wdev->valid_links);
2138                 return wdev->links[0].ap.beacon_interval;
2139         case NL80211_IFTYPE_MESH_POINT:
2140                 return wdev->u.mesh.beacon_interval;
2141         case NL80211_IFTYPE_ADHOC:
2142                 return wdev->u.ibss.beacon_interval;
2143         default:
2144                 break;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2151                                        u32 *beacon_int_gcd,
2152                                        bool *beacon_int_different)
2153 {
2154         struct wireless_dev *wdev;
2155
2156         *beacon_int_gcd = 0;
2157         *beacon_int_different = false;
2158
2159         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2160                 int wdev_bi;
2161
2162                 /* this feature isn't supported with MLO */
2163                 if (wdev->valid_links)
2164                         continue;
2165
2166                 wdev_bi = cfg80211_wdev_bi(wdev);
2167
2168                 if (!wdev_bi)
2169                         continue;
2170
2171                 if (!*beacon_int_gcd) {
2172                         *beacon_int_gcd = wdev_bi;
2173                         continue;
2174                 }
2175
2176                 if (wdev_bi == *beacon_int_gcd)
2177                         continue;
2178
2179                 *beacon_int_different = true;
2180                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2181         }
2182
2183         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2184                 if (*beacon_int_gcd)
2185                         *beacon_int_different = true;
2186                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2187         }
2188 }
2189
2190 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2191                                  enum nl80211_iftype iftype, u32 beacon_int)
2192 {
2193         /*
2194          * This is just a basic pre-condition check; if interface combinations
2195          * are possible the driver must already be checking those with a call
2196          * to cfg80211_check_combinations(), in which case we'll validate more
2197          * through the cfg80211_calculate_bi_data() call and code in
2198          * cfg80211_iter_combinations().
2199          */
2200
2201         if (beacon_int < 10 || beacon_int > 10000)
2202                 return -EINVAL;
2203
2204         return 0;
2205 }
2206
2207 int cfg80211_iter_combinations(struct wiphy *wiphy,
2208                                struct iface_combination_params *params,
2209                                void (*iter)(const struct ieee80211_iface_combination *c,
2210                                             void *data),
2211                                void *data)
2212 {
2213         const struct ieee80211_regdomain *regdom;
2214         enum nl80211_dfs_regions region = 0;
2215         int i, j, iftype;
2216         int num_interfaces = 0;
2217         u32 used_iftypes = 0;
2218         u32 beacon_int_gcd;
2219         bool beacon_int_different;
2220
2221         /*
2222          * This is a bit strange, since the iteration used to rely only on
2223          * the data given by the driver, but here it now relies on context,
2224          * in form of the currently operating interfaces.
2225          * This is OK for all current users, and saves us from having to
2226          * push the GCD calculations into all the drivers.
2227          * In the future, this should probably rely more on data that's in
2228          * cfg80211 already - the only thing not would appear to be any new
2229          * interfaces (while being brought up) and channel/radar data.
2230          */
2231         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2232                                    &beacon_int_gcd, &beacon_int_different);
2233
2234         if (params->radar_detect) {
2235                 rcu_read_lock();
2236                 regdom = rcu_dereference(cfg80211_regdomain);
2237                 if (regdom)
2238                         region = regdom->dfs_region;
2239                 rcu_read_unlock();
2240         }
2241
2242         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2243                 num_interfaces += params->iftype_num[iftype];
2244                 if (params->iftype_num[iftype] > 0 &&
2245                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2246                         used_iftypes |= BIT(iftype);
2247         }
2248
2249         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2250                 const struct ieee80211_iface_combination *c;
2251                 struct ieee80211_iface_limit *limits;
2252                 u32 all_iftypes = 0;
2253
2254                 c = &wiphy->iface_combinations[i];
2255
2256                 if (num_interfaces > c->max_interfaces)
2257                         continue;
2258                 if (params->num_different_channels > c->num_different_channels)
2259                         continue;
2260
2261                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2262                                  GFP_KERNEL);
2263                 if (!limits)
2264                         return -ENOMEM;
2265
2266                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2267                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2268                                 continue;
2269                         for (j = 0; j < c->n_limits; j++) {
2270                                 all_iftypes |= limits[j].types;
2271                                 if (!(limits[j].types & BIT(iftype)))
2272                                         continue;
2273                                 if (limits[j].max < params->iftype_num[iftype])
2274                                         goto cont;
2275                                 limits[j].max -= params->iftype_num[iftype];
2276                         }
2277                 }
2278
2279                 if (params->radar_detect !=
2280                         (c->radar_detect_widths & params->radar_detect))
2281                         goto cont;
2282
2283                 if (params->radar_detect && c->radar_detect_regions &&
2284                     !(c->radar_detect_regions & BIT(region)))
2285                         goto cont;
2286
2287                 /* Finally check that all iftypes that we're currently
2288                  * using are actually part of this combination. If they
2289                  * aren't then we can't use this combination and have
2290                  * to continue to the next.
2291                  */
2292                 if ((all_iftypes & used_iftypes) != used_iftypes)
2293                         goto cont;
2294
2295                 if (beacon_int_gcd) {
2296                         if (c->beacon_int_min_gcd &&
2297                             beacon_int_gcd < c->beacon_int_min_gcd)
2298                                 goto cont;
2299                         if (!c->beacon_int_min_gcd && beacon_int_different)
2300                                 goto cont;
2301                 }
2302
2303                 /* This combination covered all interface types and
2304                  * supported the requested numbers, so we're good.
2305                  */
2306
2307                 (*iter)(c, data);
2308  cont:
2309                 kfree(limits);
2310         }
2311
2312         return 0;
2313 }
2314 EXPORT_SYMBOL(cfg80211_iter_combinations);
2315
2316 static void
2317 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2318                           void *data)
2319 {
2320         int *num = data;
2321         (*num)++;
2322 }
2323
2324 int cfg80211_check_combinations(struct wiphy *wiphy,
2325                                 struct iface_combination_params *params)
2326 {
2327         int err, num = 0;
2328
2329         err = cfg80211_iter_combinations(wiphy, params,
2330                                          cfg80211_iter_sum_ifcombs, &num);
2331         if (err)
2332                 return err;
2333         if (num == 0)
2334                 return -EBUSY;
2335
2336         return 0;
2337 }
2338 EXPORT_SYMBOL(cfg80211_check_combinations);
2339
2340 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2341                            const u8 *rates, unsigned int n_rates,
2342                            u32 *mask)
2343 {
2344         int i, j;
2345
2346         if (!sband)
2347                 return -EINVAL;
2348
2349         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2350                 return -EINVAL;
2351
2352         *mask = 0;
2353
2354         for (i = 0; i < n_rates; i++) {
2355                 int rate = (rates[i] & 0x7f) * 5;
2356                 bool found = false;
2357
2358                 for (j = 0; j < sband->n_bitrates; j++) {
2359                         if (sband->bitrates[j].bitrate == rate) {
2360                                 found = true;
2361                                 *mask |= BIT(j);
2362                                 break;
2363                         }
2364                 }
2365                 if (!found)
2366                         return -EINVAL;
2367         }
2368
2369         /*
2370          * mask must have at least one bit set here since we
2371          * didn't accept a 0-length rates array nor allowed
2372          * entries in the array that didn't exist
2373          */
2374
2375         return 0;
2376 }
2377
2378 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2379 {
2380         enum nl80211_band band;
2381         unsigned int n_channels = 0;
2382
2383         for (band = 0; band < NUM_NL80211_BANDS; band++)
2384                 if (wiphy->bands[band])
2385                         n_channels += wiphy->bands[band]->n_channels;
2386
2387         return n_channels;
2388 }
2389 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2390
2391 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2392                          struct station_info *sinfo)
2393 {
2394         struct cfg80211_registered_device *rdev;
2395         struct wireless_dev *wdev;
2396
2397         wdev = dev->ieee80211_ptr;
2398         if (!wdev)
2399                 return -EOPNOTSUPP;
2400
2401         rdev = wiphy_to_rdev(wdev->wiphy);
2402         if (!rdev->ops->get_station)
2403                 return -EOPNOTSUPP;
2404
2405         memset(sinfo, 0, sizeof(*sinfo));
2406
2407         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2408 }
2409 EXPORT_SYMBOL(cfg80211_get_station);
2410
2411 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2412 {
2413         int i;
2414
2415         if (!f)
2416                 return;
2417
2418         kfree(f->serv_spec_info);
2419         kfree(f->srf_bf);
2420         kfree(f->srf_macs);
2421         for (i = 0; i < f->num_rx_filters; i++)
2422                 kfree(f->rx_filters[i].filter);
2423
2424         for (i = 0; i < f->num_tx_filters; i++)
2425                 kfree(f->tx_filters[i].filter);
2426
2427         kfree(f->rx_filters);
2428         kfree(f->tx_filters);
2429         kfree(f);
2430 }
2431 EXPORT_SYMBOL(cfg80211_free_nan_func);
2432
2433 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2434                                 u32 center_freq_khz, u32 bw_khz)
2435 {
2436         u32 start_freq_khz, end_freq_khz;
2437
2438         start_freq_khz = center_freq_khz - (bw_khz / 2);
2439         end_freq_khz = center_freq_khz + (bw_khz / 2);
2440
2441         if (start_freq_khz >= freq_range->start_freq_khz &&
2442             end_freq_khz <= freq_range->end_freq_khz)
2443                 return true;
2444
2445         return false;
2446 }
2447
2448 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2449 {
2450         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2451                                 sizeof(*(sinfo->pertid)),
2452                                 gfp);
2453         if (!sinfo->pertid)
2454                 return -ENOMEM;
2455
2456         return 0;
2457 }
2458 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2459
2460 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2461 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2462 const unsigned char rfc1042_header[] __aligned(2) =
2463         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2464 EXPORT_SYMBOL(rfc1042_header);
2465
2466 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2467 const unsigned char bridge_tunnel_header[] __aligned(2) =
2468         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2469 EXPORT_SYMBOL(bridge_tunnel_header);
2470
2471 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2472 struct iapp_layer2_update {
2473         u8 da[ETH_ALEN];        /* broadcast */
2474         u8 sa[ETH_ALEN];        /* STA addr */
2475         __be16 len;             /* 6 */
2476         u8 dsap;                /* 0 */
2477         u8 ssap;                /* 0 */
2478         u8 control;
2479         u8 xid_info[3];
2480 } __packed;
2481
2482 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2483 {
2484         struct iapp_layer2_update *msg;
2485         struct sk_buff *skb;
2486
2487         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2488          * bridge devices */
2489
2490         skb = dev_alloc_skb(sizeof(*msg));
2491         if (!skb)
2492                 return;
2493         msg = skb_put(skb, sizeof(*msg));
2494
2495         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2496          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2497
2498         eth_broadcast_addr(msg->da);
2499         ether_addr_copy(msg->sa, addr);
2500         msg->len = htons(6);
2501         msg->dsap = 0;
2502         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2503         msg->control = 0xaf;    /* XID response lsb.1111F101.
2504                                  * F=0 (no poll command; unsolicited frame) */
2505         msg->xid_info[0] = 0x81;        /* XID format identifier */
2506         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2507         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2508
2509         skb->dev = dev;
2510         skb->protocol = eth_type_trans(skb, dev);
2511         memset(skb->cb, 0, sizeof(skb->cb));
2512         netif_rx(skb);
2513 }
2514 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2515
2516 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2517                               enum ieee80211_vht_chanwidth bw,
2518                               int mcs, bool ext_nss_bw_capable,
2519                               unsigned int max_vht_nss)
2520 {
2521         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2522         int ext_nss_bw;
2523         int supp_width;
2524         int i, mcs_encoding;
2525
2526         if (map == 0xffff)
2527                 return 0;
2528
2529         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2530                 return 0;
2531         if (mcs <= 7)
2532                 mcs_encoding = 0;
2533         else if (mcs == 8)
2534                 mcs_encoding = 1;
2535         else
2536                 mcs_encoding = 2;
2537
2538         if (!max_vht_nss) {
2539                 /* find max_vht_nss for the given MCS */
2540                 for (i = 7; i >= 0; i--) {
2541                         int supp = (map >> (2 * i)) & 3;
2542
2543                         if (supp == 3)
2544                                 continue;
2545
2546                         if (supp >= mcs_encoding) {
2547                                 max_vht_nss = i + 1;
2548                                 break;
2549                         }
2550                 }
2551         }
2552
2553         if (!(cap->supp_mcs.tx_mcs_map &
2554                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2555                 return max_vht_nss;
2556
2557         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2558                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2559         supp_width = le32_get_bits(cap->vht_cap_info,
2560                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2561
2562         /* if not capable, treat ext_nss_bw as 0 */
2563         if (!ext_nss_bw_capable)
2564                 ext_nss_bw = 0;
2565
2566         /* This is invalid */
2567         if (supp_width == 3)
2568                 return 0;
2569
2570         /* This is an invalid combination so pretend nothing is supported */
2571         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2572                 return 0;
2573
2574         /*
2575          * Cover all the special cases according to IEEE 802.11-2016
2576          * Table 9-250. All other cases are either factor of 1 or not
2577          * valid/supported.
2578          */
2579         switch (bw) {
2580         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2581         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2582                 if ((supp_width == 1 || supp_width == 2) &&
2583                     ext_nss_bw == 3)
2584                         return 2 * max_vht_nss;
2585                 break;
2586         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2587                 if (supp_width == 0 &&
2588                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2589                         return max_vht_nss / 2;
2590                 if (supp_width == 0 &&
2591                     ext_nss_bw == 3)
2592                         return (3 * max_vht_nss) / 4;
2593                 if (supp_width == 1 &&
2594                     ext_nss_bw == 3)
2595                         return 2 * max_vht_nss;
2596                 break;
2597         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2598                 if (supp_width == 0 && ext_nss_bw == 1)
2599                         return 0; /* not possible */
2600                 if (supp_width == 0 &&
2601                     ext_nss_bw == 2)
2602                         return max_vht_nss / 2;
2603                 if (supp_width == 0 &&
2604                     ext_nss_bw == 3)
2605                         return (3 * max_vht_nss) / 4;
2606                 if (supp_width == 1 &&
2607                     ext_nss_bw == 0)
2608                         return 0; /* not possible */
2609                 if (supp_width == 1 &&
2610                     ext_nss_bw == 1)
2611                         return max_vht_nss / 2;
2612                 if (supp_width == 1 &&
2613                     ext_nss_bw == 2)
2614                         return (3 * max_vht_nss) / 4;
2615                 break;
2616         }
2617
2618         /* not covered or invalid combination received */
2619         return max_vht_nss;
2620 }
2621 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2622
2623 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2624                              bool is_4addr, u8 check_swif)
2625
2626 {
2627         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2628
2629         switch (check_swif) {
2630         case 0:
2631                 if (is_vlan && is_4addr)
2632                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2633                 return wiphy->interface_modes & BIT(iftype);
2634         case 1:
2635                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2636                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2637                 return wiphy->software_iftypes & BIT(iftype);
2638         default:
2639                 break;
2640         }
2641
2642         return false;
2643 }
2644 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2645
2646 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2647 {
2648         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2649
2650         ASSERT_WDEV_LOCK(wdev);
2651
2652         switch (wdev->iftype) {
2653         case NL80211_IFTYPE_AP:
2654         case NL80211_IFTYPE_P2P_GO:
2655                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2656                 break;
2657         default:
2658                 /* per-link not relevant */
2659                 break;
2660         }
2661
2662         wdev->valid_links &= ~BIT(link_id);
2663
2664         rdev_del_intf_link(rdev, wdev, link_id);
2665
2666         eth_zero_addr(wdev->links[link_id].addr);
2667 }
2668
2669 void cfg80211_remove_links(struct wireless_dev *wdev)
2670 {
2671         unsigned int link_id;
2672
2673         /*
2674          * links are controlled by upper layers (userspace/cfg)
2675          * only for AP mode, so only remove them here for AP
2676          */
2677         if (wdev->iftype != NL80211_IFTYPE_AP)
2678                 return;
2679
2680         wdev_lock(wdev);
2681         if (wdev->valid_links) {
2682                 for_each_valid_link(wdev, link_id)
2683                         cfg80211_remove_link(wdev, link_id);
2684         }
2685         wdev_unlock(wdev);
2686 }
2687
2688 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2689                                  struct wireless_dev *wdev)
2690 {
2691         cfg80211_remove_links(wdev);
2692
2693         return rdev_del_virtual_intf(rdev, wdev);
2694 }
2695
2696 const struct wiphy_iftype_ext_capab *
2697 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2698 {
2699         int i;
2700
2701         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2702                 if (wiphy->iftype_ext_capab[i].iftype == type)
2703                         return &wiphy->iftype_ext_capab[i];
2704         }
2705
2706         return NULL;
2707 }
2708 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);