Bluetooth: Write host suggested default le data length
[platform/kernel/linux-starfive.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
78
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *      that operate in the same channel as the reported AP and that might be
89  *      detected by a STA receiving this frame, are transmitting unsolicited
90  *      Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *      colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101         struct list_head list;
102         u8 bssid[ETH_ALEN];
103         u8 ssid[IEEE80211_MAX_SSID_LEN];
104         size_t ssid_len;
105         u32 short_ssid;
106         u32 center_freq;
107         u8 unsolicited_probe:1,
108            oct_recommended:1,
109            same_ssid:1,
110            multi_bss:1,
111            transmitted_bssid:1,
112            colocated_ess:1,
113            short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118         struct cfg80211_bss_ies *ies;
119
120         if (WARN_ON(atomic_read(&bss->hold)))
121                 return;
122
123         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124         if (ies && !bss->pub.hidden_beacon_bss)
125                 kfree_rcu(ies, rcu_head);
126         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127         if (ies)
128                 kfree_rcu(ies, rcu_head);
129
130         /*
131          * This happens when the module is removed, it doesn't
132          * really matter any more save for completeness
133          */
134         if (!list_empty(&bss->hidden_list))
135                 list_del(&bss->hidden_list);
136
137         kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141                                struct cfg80211_internal_bss *bss)
142 {
143         lockdep_assert_held(&rdev->bss_lock);
144
145         bss->refcount++;
146
147         if (bss->pub.hidden_beacon_bss)
148                 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150         if (bss->pub.transmitted_bss)
151                 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153
154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155                                struct cfg80211_internal_bss *bss)
156 {
157         lockdep_assert_held(&rdev->bss_lock);
158
159         if (bss->pub.hidden_beacon_bss) {
160                 struct cfg80211_internal_bss *hbss;
161                 hbss = container_of(bss->pub.hidden_beacon_bss,
162                                     struct cfg80211_internal_bss,
163                                     pub);
164                 hbss->refcount--;
165                 if (hbss->refcount == 0)
166                         bss_free(hbss);
167         }
168
169         if (bss->pub.transmitted_bss) {
170                 struct cfg80211_internal_bss *tbss;
171
172                 tbss = container_of(bss->pub.transmitted_bss,
173                                     struct cfg80211_internal_bss,
174                                     pub);
175                 tbss->refcount--;
176                 if (tbss->refcount == 0)
177                         bss_free(tbss);
178         }
179
180         bss->refcount--;
181         if (bss->refcount == 0)
182                 bss_free(bss);
183 }
184
185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186                                   struct cfg80211_internal_bss *bss)
187 {
188         lockdep_assert_held(&rdev->bss_lock);
189
190         if (!list_empty(&bss->hidden_list)) {
191                 /*
192                  * don't remove the beacon entry if it has
193                  * probe responses associated with it
194                  */
195                 if (!bss->pub.hidden_beacon_bss)
196                         return false;
197                 /*
198                  * if it's a probe response entry break its
199                  * link to the other entries in the group
200                  */
201                 list_del_init(&bss->hidden_list);
202         }
203
204         list_del_init(&bss->list);
205         list_del_init(&bss->pub.nontrans_list);
206         rb_erase(&bss->rbn, &rdev->bss_tree);
207         rdev->bss_entries--;
208         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
210                   rdev->bss_entries, list_empty(&rdev->bss_list));
211         bss_ref_put(rdev, bss);
212         return true;
213 }
214
215 bool cfg80211_is_element_inherited(const struct element *elem,
216                                    const struct element *non_inherit_elem)
217 {
218         u8 id_len, ext_id_len, i, loop_len, id;
219         const u8 *list;
220
221         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222                 return false;
223
224         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225                 return true;
226
227         /*
228          * non inheritance element format is:
229          * ext ID (56) | IDs list len | list | extension IDs list len | list
230          * Both lists are optional. Both lengths are mandatory.
231          * This means valid length is:
232          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233          */
234         id_len = non_inherit_elem->data[1];
235         if (non_inherit_elem->datalen < 3 + id_len)
236                 return true;
237
238         ext_id_len = non_inherit_elem->data[2 + id_len];
239         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240                 return true;
241
242         if (elem->id == WLAN_EID_EXTENSION) {
243                 if (!ext_id_len)
244                         return true;
245                 loop_len = ext_id_len;
246                 list = &non_inherit_elem->data[3 + id_len];
247                 id = elem->data[0];
248         } else {
249                 if (!id_len)
250                         return true;
251                 loop_len = id_len;
252                 list = &non_inherit_elem->data[2];
253                 id = elem->id;
254         }
255
256         for (i = 0; i < loop_len; i++) {
257                 if (list[i] == id)
258                         return false;
259         }
260
261         return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264
265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266                                             const u8 *ie, size_t ie_len,
267                                             u8 **pos, u8 *buf, size_t buf_len)
268 {
269         if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270                     elem->data + elem->datalen > ie + ie_len))
271                 return 0;
272
273         if (elem->datalen + 2 > buf + buf_len - *pos)
274                 return 0;
275
276         memcpy(*pos, elem, elem->datalen + 2);
277         *pos += elem->datalen + 2;
278
279         /* Finish if it is not fragmented  */
280         if (elem->datalen != 255)
281                 return *pos - buf;
282
283         ie_len = ie + ie_len - elem->data - elem->datalen;
284         ie = (const u8 *)elem->data + elem->datalen;
285
286         for_each_element(elem, ie, ie_len) {
287                 if (elem->id != WLAN_EID_FRAGMENT)
288                         break;
289
290                 if (elem->datalen + 2 > buf + buf_len - *pos)
291                         return 0;
292
293                 memcpy(*pos, elem, elem->datalen + 2);
294                 *pos += elem->datalen + 2;
295
296                 if (elem->datalen != 255)
297                         break;
298         }
299
300         return *pos - buf;
301 }
302
303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304                                   const u8 *subie, size_t subie_len,
305                                   u8 *new_ie, size_t new_ie_len)
306 {
307         const struct element *non_inherit_elem, *parent, *sub;
308         u8 *pos = new_ie;
309         u8 id, ext_id;
310         unsigned int match_len;
311
312         non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313                                                   subie, subie_len);
314
315         /* We copy the elements one by one from the parent to the generated
316          * elements.
317          * If they are not inherited (included in subie or in the non
318          * inheritance element), then we copy all occurrences the first time
319          * we see this element type.
320          */
321         for_each_element(parent, ie, ielen) {
322                 if (parent->id == WLAN_EID_FRAGMENT)
323                         continue;
324
325                 if (parent->id == WLAN_EID_EXTENSION) {
326                         if (parent->datalen < 1)
327                                 continue;
328
329                         id = WLAN_EID_EXTENSION;
330                         ext_id = parent->data[0];
331                         match_len = 1;
332                 } else {
333                         id = parent->id;
334                         match_len = 0;
335                 }
336
337                 /* Find first occurrence in subie */
338                 sub = cfg80211_find_elem_match(id, subie, subie_len,
339                                                &ext_id, match_len, 0);
340
341                 /* Copy from parent if not in subie and inherited */
342                 if (!sub &&
343                     cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344                         if (!cfg80211_copy_elem_with_frags(parent,
345                                                            ie, ielen,
346                                                            &pos, new_ie,
347                                                            new_ie_len))
348                                 return 0;
349
350                         continue;
351                 }
352
353                 /* Already copied if an earlier element had the same type */
354                 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355                                              &ext_id, match_len, 0))
356                         continue;
357
358                 /* Not inheriting, copy all similar elements from subie */
359                 while (sub) {
360                         if (!cfg80211_copy_elem_with_frags(sub,
361                                                            subie, subie_len,
362                                                            &pos, new_ie,
363                                                            new_ie_len))
364                                 return 0;
365
366                         sub = cfg80211_find_elem_match(id,
367                                                        sub->data + sub->datalen,
368                                                        subie_len + subie -
369                                                        (sub->data +
370                                                         sub->datalen),
371                                                        &ext_id, match_len, 0);
372                 }
373         }
374
375         /* The above misses elements that are included in subie but not in the
376          * parent, so do a pass over subie and append those.
377          * Skip the non-tx BSSID caps and non-inheritance element.
378          */
379         for_each_element(sub, subie, subie_len) {
380                 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381                         continue;
382
383                 if (sub->id == WLAN_EID_FRAGMENT)
384                         continue;
385
386                 if (sub->id == WLAN_EID_EXTENSION) {
387                         if (sub->datalen < 1)
388                                 continue;
389
390                         id = WLAN_EID_EXTENSION;
391                         ext_id = sub->data[0];
392                         match_len = 1;
393
394                         if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395                                 continue;
396                 } else {
397                         id = sub->id;
398                         match_len = 0;
399                 }
400
401                 /* Processed if one was included in the parent */
402                 if (cfg80211_find_elem_match(id, ie, ielen,
403                                              &ext_id, match_len, 0))
404                         continue;
405
406                 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407                                                    &pos, new_ie, new_ie_len))
408                         return 0;
409         }
410
411         return pos - new_ie;
412 }
413
414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415                    const u8 *ssid, size_t ssid_len)
416 {
417         const struct cfg80211_bss_ies *ies;
418         const struct element *ssid_elem;
419
420         if (bssid && !ether_addr_equal(a->bssid, bssid))
421                 return false;
422
423         if (!ssid)
424                 return true;
425
426         ies = rcu_access_pointer(a->ies);
427         if (!ies)
428                 return false;
429         ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
430         if (!ssid_elem)
431                 return false;
432         if (ssid_elem->datalen != ssid_len)
433                 return false;
434         return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
435 }
436
437 static int
438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439                            struct cfg80211_bss *nontrans_bss)
440 {
441         const struct element *ssid_elem;
442         struct cfg80211_bss *bss = NULL;
443
444         rcu_read_lock();
445         ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
446         if (!ssid_elem) {
447                 rcu_read_unlock();
448                 return -EINVAL;
449         }
450
451         /* check if nontrans_bss is in the list */
452         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
453                 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
454                            ssid_elem->datalen)) {
455                         rcu_read_unlock();
456                         return 0;
457                 }
458         }
459
460         rcu_read_unlock();
461
462         /*
463          * This is a bit weird - it's not on the list, but already on another
464          * one! The only way that could happen is if there's some BSSID/SSID
465          * shared by multiple APs in their multi-BSSID profiles, potentially
466          * with hidden SSID mixed in ... ignore it.
467          */
468         if (!list_empty(&nontrans_bss->nontrans_list))
469                 return -EINVAL;
470
471         /* add to the list */
472         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
473         return 0;
474 }
475
476 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
477                                   unsigned long expire_time)
478 {
479         struct cfg80211_internal_bss *bss, *tmp;
480         bool expired = false;
481
482         lockdep_assert_held(&rdev->bss_lock);
483
484         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
485                 if (atomic_read(&bss->hold))
486                         continue;
487                 if (!time_after(expire_time, bss->ts))
488                         continue;
489
490                 if (__cfg80211_unlink_bss(rdev, bss))
491                         expired = true;
492         }
493
494         if (expired)
495                 rdev->bss_generation++;
496 }
497
498 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
499 {
500         struct cfg80211_internal_bss *bss, *oldest = NULL;
501         bool ret;
502
503         lockdep_assert_held(&rdev->bss_lock);
504
505         list_for_each_entry(bss, &rdev->bss_list, list) {
506                 if (atomic_read(&bss->hold))
507                         continue;
508
509                 if (!list_empty(&bss->hidden_list) &&
510                     !bss->pub.hidden_beacon_bss)
511                         continue;
512
513                 if (oldest && time_before(oldest->ts, bss->ts))
514                         continue;
515                 oldest = bss;
516         }
517
518         if (WARN_ON(!oldest))
519                 return false;
520
521         /*
522          * The callers make sure to increase rdev->bss_generation if anything
523          * gets removed (and a new entry added), so there's no need to also do
524          * it here.
525          */
526
527         ret = __cfg80211_unlink_bss(rdev, oldest);
528         WARN_ON(!ret);
529         return ret;
530 }
531
532 static u8 cfg80211_parse_bss_param(u8 data,
533                                    struct cfg80211_colocated_ap *coloc_ap)
534 {
535         coloc_ap->oct_recommended =
536                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
537         coloc_ap->same_ssid =
538                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
539         coloc_ap->multi_bss =
540                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
541         coloc_ap->transmitted_bssid =
542                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
543         coloc_ap->unsolicited_probe =
544                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
545         coloc_ap->colocated_ess =
546                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
547
548         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
549 }
550
551 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
552                                     const struct element **elem, u32 *s_ssid)
553 {
554
555         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
556         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
557                 return -EINVAL;
558
559         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
560         return 0;
561 }
562
563 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
564 {
565         struct cfg80211_colocated_ap *ap, *tmp_ap;
566
567         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
568                 list_del(&ap->list);
569                 kfree(ap);
570         }
571 }
572
573 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
574                                   const u8 *pos, u8 length,
575                                   const struct element *ssid_elem,
576                                   int s_ssid_tmp)
577 {
578         /* skip the TBTT offset */
579         pos++;
580
581         /* ignore entries with invalid BSSID */
582         if (!is_valid_ether_addr(pos))
583                 return -EINVAL;
584
585         memcpy(entry->bssid, pos, ETH_ALEN);
586         pos += ETH_ALEN;
587
588         if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
589                 memcpy(&entry->short_ssid, pos,
590                        sizeof(entry->short_ssid));
591                 entry->short_ssid_valid = true;
592                 pos += 4;
593         }
594
595         /* skip non colocated APs */
596         if (!cfg80211_parse_bss_param(*pos, entry))
597                 return -EINVAL;
598         pos++;
599
600         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
601                 /*
602                  * no information about the short ssid. Consider the entry valid
603                  * for now. It would later be dropped in case there are explicit
604                  * SSIDs that need to be matched
605                  */
606                 if (!entry->same_ssid)
607                         return 0;
608         }
609
610         if (entry->same_ssid) {
611                 entry->short_ssid = s_ssid_tmp;
612                 entry->short_ssid_valid = true;
613
614                 /*
615                  * This is safe because we validate datalen in
616                  * cfg80211_parse_colocated_ap(), before calling this
617                  * function.
618                  */
619                 memcpy(&entry->ssid, &ssid_elem->data,
620                        ssid_elem->datalen);
621                 entry->ssid_len = ssid_elem->datalen;
622         }
623         return 0;
624 }
625
626 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
627                                        struct list_head *list)
628 {
629         struct ieee80211_neighbor_ap_info *ap_info;
630         const struct element *elem, *ssid_elem;
631         const u8 *pos, *end;
632         u32 s_ssid_tmp;
633         int n_coloc = 0, ret;
634         LIST_HEAD(ap_list);
635
636         elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
637                                   ies->len);
638         if (!elem)
639                 return 0;
640
641         pos = elem->data;
642         end = pos + elem->datalen;
643
644         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
645         if (ret)
646                 return ret;
647
648         /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
649         while (pos + sizeof(*ap_info) <= end) {
650                 enum nl80211_band band;
651                 int freq;
652                 u8 length, i, count;
653
654                 ap_info = (void *)pos;
655                 count = u8_get_bits(ap_info->tbtt_info_hdr,
656                                     IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
657                 length = ap_info->tbtt_info_len;
658
659                 pos += sizeof(*ap_info);
660
661                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
662                                                        &band))
663                         break;
664
665                 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
666
667                 if (end - pos < count * length)
668                         break;
669
670                 /*
671                  * TBTT info must include bss param + BSSID +
672                  * (short SSID or same_ssid bit to be set).
673                  * ignore other options, and move to the
674                  * next AP info
675                  */
676                 if (band != NL80211_BAND_6GHZ ||
677                     (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
678                      length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
679                         pos += count * length;
680                         continue;
681                 }
682
683                 for (i = 0; i < count; i++) {
684                         struct cfg80211_colocated_ap *entry;
685
686                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
687                                         GFP_ATOMIC);
688
689                         if (!entry)
690                                 break;
691
692                         entry->center_freq = freq;
693
694                         if (!cfg80211_parse_ap_info(entry, pos, length,
695                                                     ssid_elem, s_ssid_tmp)) {
696                                 n_coloc++;
697                                 list_add_tail(&entry->list, &ap_list);
698                         } else {
699                                 kfree(entry);
700                         }
701
702                         pos += length;
703                 }
704         }
705
706         if (pos != end) {
707                 cfg80211_free_coloc_ap_list(&ap_list);
708                 return 0;
709         }
710
711         list_splice_tail(&ap_list, list);
712         return n_coloc;
713 }
714
715 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
716                                         struct ieee80211_channel *chan,
717                                         bool add_to_6ghz)
718 {
719         int i;
720         u32 n_channels = request->n_channels;
721         struct cfg80211_scan_6ghz_params *params =
722                 &request->scan_6ghz_params[request->n_6ghz_params];
723
724         for (i = 0; i < n_channels; i++) {
725                 if (request->channels[i] == chan) {
726                         if (add_to_6ghz)
727                                 params->channel_idx = i;
728                         return;
729                 }
730         }
731
732         request->channels[n_channels] = chan;
733         if (add_to_6ghz)
734                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
735                         n_channels;
736
737         request->n_channels++;
738 }
739
740 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
741                                      struct cfg80211_scan_request *request)
742 {
743         int i;
744         u32 s_ssid;
745
746         for (i = 0; i < request->n_ssids; i++) {
747                 /* wildcard ssid in the scan request */
748                 if (!request->ssids[i].ssid_len) {
749                         if (ap->multi_bss && !ap->transmitted_bssid)
750                                 continue;
751
752                         return true;
753                 }
754
755                 if (ap->ssid_len &&
756                     ap->ssid_len == request->ssids[i].ssid_len) {
757                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
758                                     ap->ssid_len))
759                                 return true;
760                 } else if (ap->short_ssid_valid) {
761                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
762                                            request->ssids[i].ssid_len);
763
764                         if (ap->short_ssid == s_ssid)
765                                 return true;
766                 }
767         }
768
769         return false;
770 }
771
772 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
773 {
774         u8 i;
775         struct cfg80211_colocated_ap *ap;
776         int n_channels, count = 0, err;
777         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
778         LIST_HEAD(coloc_ap_list);
779         bool need_scan_psc = true;
780         const struct ieee80211_sband_iftype_data *iftd;
781
782         rdev_req->scan_6ghz = true;
783
784         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
785                 return -EOPNOTSUPP;
786
787         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
788                                                rdev_req->wdev->iftype);
789         if (!iftd || !iftd->he_cap.has_he)
790                 return -EOPNOTSUPP;
791
792         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
793
794         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
795                 struct cfg80211_internal_bss *intbss;
796
797                 spin_lock_bh(&rdev->bss_lock);
798                 list_for_each_entry(intbss, &rdev->bss_list, list) {
799                         struct cfg80211_bss *res = &intbss->pub;
800                         const struct cfg80211_bss_ies *ies;
801
802                         ies = rcu_access_pointer(res->ies);
803                         count += cfg80211_parse_colocated_ap(ies,
804                                                              &coloc_ap_list);
805                 }
806                 spin_unlock_bh(&rdev->bss_lock);
807         }
808
809         request = kzalloc(struct_size(request, channels, n_channels) +
810                           sizeof(*request->scan_6ghz_params) * count +
811                           sizeof(*request->ssids) * rdev_req->n_ssids,
812                           GFP_KERNEL);
813         if (!request) {
814                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
815                 return -ENOMEM;
816         }
817
818         *request = *rdev_req;
819         request->n_channels = 0;
820         request->scan_6ghz_params =
821                 (void *)&request->channels[n_channels];
822
823         /*
824          * PSC channels should not be scanned in case of direct scan with 1 SSID
825          * and at least one of the reported co-located APs with same SSID
826          * indicating that all APs in the same ESS are co-located
827          */
828         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
829                 list_for_each_entry(ap, &coloc_ap_list, list) {
830                         if (ap->colocated_ess &&
831                             cfg80211_find_ssid_match(ap, request)) {
832                                 need_scan_psc = false;
833                                 break;
834                         }
835                 }
836         }
837
838         /*
839          * add to the scan request the channels that need to be scanned
840          * regardless of the collocated APs (PSC channels or all channels
841          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
842          */
843         for (i = 0; i < rdev_req->n_channels; i++) {
844                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
845                     ((need_scan_psc &&
846                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
847                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
848                         cfg80211_scan_req_add_chan(request,
849                                                    rdev_req->channels[i],
850                                                    false);
851                 }
852         }
853
854         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
855                 goto skip;
856
857         list_for_each_entry(ap, &coloc_ap_list, list) {
858                 bool found = false;
859                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
860                         &request->scan_6ghz_params[request->n_6ghz_params];
861                 struct ieee80211_channel *chan =
862                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
863
864                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
865                         continue;
866
867                 for (i = 0; i < rdev_req->n_channels; i++) {
868                         if (rdev_req->channels[i] == chan)
869                                 found = true;
870                 }
871
872                 if (!found)
873                         continue;
874
875                 if (request->n_ssids > 0 &&
876                     !cfg80211_find_ssid_match(ap, request))
877                         continue;
878
879                 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
880                         continue;
881
882                 cfg80211_scan_req_add_chan(request, chan, true);
883                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
884                 scan_6ghz_params->short_ssid = ap->short_ssid;
885                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
886                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
887
888                 /*
889                  * If a PSC channel is added to the scan and 'need_scan_psc' is
890                  * set to false, then all the APs that the scan logic is
891                  * interested with on the channel are collocated and thus there
892                  * is no need to perform the initial PSC channel listen.
893                  */
894                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
895                         scan_6ghz_params->psc_no_listen = true;
896
897                 request->n_6ghz_params++;
898         }
899
900 skip:
901         cfg80211_free_coloc_ap_list(&coloc_ap_list);
902
903         if (request->n_channels) {
904                 struct cfg80211_scan_request *old = rdev->int_scan_req;
905                 rdev->int_scan_req = request;
906
907                 /*
908                  * Add the ssids from the parent scan request to the new scan
909                  * request, so the driver would be able to use them in its
910                  * probe requests to discover hidden APs on PSC channels.
911                  */
912                 request->ssids = (void *)&request->channels[request->n_channels];
913                 request->n_ssids = rdev_req->n_ssids;
914                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
915                        request->n_ssids);
916
917                 /*
918                  * If this scan follows a previous scan, save the scan start
919                  * info from the first part of the scan
920                  */
921                 if (old)
922                         rdev->int_scan_req->info = old->info;
923
924                 err = rdev_scan(rdev, request);
925                 if (err) {
926                         rdev->int_scan_req = old;
927                         kfree(request);
928                 } else {
929                         kfree(old);
930                 }
931
932                 return err;
933         }
934
935         kfree(request);
936         return -EINVAL;
937 }
938
939 int cfg80211_scan(struct cfg80211_registered_device *rdev)
940 {
941         struct cfg80211_scan_request *request;
942         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
943         u32 n_channels = 0, idx, i;
944
945         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
946                 return rdev_scan(rdev, rdev_req);
947
948         for (i = 0; i < rdev_req->n_channels; i++) {
949                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
950                         n_channels++;
951         }
952
953         if (!n_channels)
954                 return cfg80211_scan_6ghz(rdev);
955
956         request = kzalloc(struct_size(request, channels, n_channels),
957                           GFP_KERNEL);
958         if (!request)
959                 return -ENOMEM;
960
961         *request = *rdev_req;
962         request->n_channels = n_channels;
963
964         for (i = idx = 0; i < rdev_req->n_channels; i++) {
965                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
966                         request->channels[idx++] = rdev_req->channels[i];
967         }
968
969         rdev_req->scan_6ghz = false;
970         rdev->int_scan_req = request;
971         return rdev_scan(rdev, request);
972 }
973
974 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
975                            bool send_message)
976 {
977         struct cfg80211_scan_request *request, *rdev_req;
978         struct wireless_dev *wdev;
979         struct sk_buff *msg;
980 #ifdef CONFIG_CFG80211_WEXT
981         union iwreq_data wrqu;
982 #endif
983
984         lockdep_assert_held(&rdev->wiphy.mtx);
985
986         if (rdev->scan_msg) {
987                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
988                 rdev->scan_msg = NULL;
989                 return;
990         }
991
992         rdev_req = rdev->scan_req;
993         if (!rdev_req)
994                 return;
995
996         wdev = rdev_req->wdev;
997         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
998
999         if (wdev_running(wdev) &&
1000             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1001             !rdev_req->scan_6ghz && !request->info.aborted &&
1002             !cfg80211_scan_6ghz(rdev))
1003                 return;
1004
1005         /*
1006          * This must be before sending the other events!
1007          * Otherwise, wpa_supplicant gets completely confused with
1008          * wext events.
1009          */
1010         if (wdev->netdev)
1011                 cfg80211_sme_scan_done(wdev->netdev);
1012
1013         if (!request->info.aborted &&
1014             request->flags & NL80211_SCAN_FLAG_FLUSH) {
1015                 /* flush entries from previous scans */
1016                 spin_lock_bh(&rdev->bss_lock);
1017                 __cfg80211_bss_expire(rdev, request->scan_start);
1018                 spin_unlock_bh(&rdev->bss_lock);
1019         }
1020
1021         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1022
1023 #ifdef CONFIG_CFG80211_WEXT
1024         if (wdev->netdev && !request->info.aborted) {
1025                 memset(&wrqu, 0, sizeof(wrqu));
1026
1027                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1028         }
1029 #endif
1030
1031         dev_put(wdev->netdev);
1032
1033         kfree(rdev->int_scan_req);
1034         rdev->int_scan_req = NULL;
1035
1036         kfree(rdev->scan_req);
1037         rdev->scan_req = NULL;
1038
1039         if (!send_message)
1040                 rdev->scan_msg = msg;
1041         else
1042                 nl80211_send_scan_msg(rdev, msg);
1043 }
1044
1045 void __cfg80211_scan_done(struct work_struct *wk)
1046 {
1047         struct cfg80211_registered_device *rdev;
1048
1049         rdev = container_of(wk, struct cfg80211_registered_device,
1050                             scan_done_wk);
1051
1052         wiphy_lock(&rdev->wiphy);
1053         ___cfg80211_scan_done(rdev, true);
1054         wiphy_unlock(&rdev->wiphy);
1055 }
1056
1057 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1058                         struct cfg80211_scan_info *info)
1059 {
1060         struct cfg80211_scan_info old_info = request->info;
1061
1062         trace_cfg80211_scan_done(request, info);
1063         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1064                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1065
1066         request->info = *info;
1067
1068         /*
1069          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1070          * be of the first part. In such a case old_info.scan_start_tsf should
1071          * be non zero.
1072          */
1073         if (request->scan_6ghz && old_info.scan_start_tsf) {
1074                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1075                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1076                        sizeof(request->info.tsf_bssid));
1077         }
1078
1079         request->notified = true;
1080         queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1081 }
1082 EXPORT_SYMBOL(cfg80211_scan_done);
1083
1084 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1085                                  struct cfg80211_sched_scan_request *req)
1086 {
1087         lockdep_assert_held(&rdev->wiphy.mtx);
1088
1089         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1090 }
1091
1092 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1093                                         struct cfg80211_sched_scan_request *req)
1094 {
1095         lockdep_assert_held(&rdev->wiphy.mtx);
1096
1097         list_del_rcu(&req->list);
1098         kfree_rcu(req, rcu_head);
1099 }
1100
1101 static struct cfg80211_sched_scan_request *
1102 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1103 {
1104         struct cfg80211_sched_scan_request *pos;
1105
1106         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1107                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1108                 if (pos->reqid == reqid)
1109                         return pos;
1110         }
1111         return NULL;
1112 }
1113
1114 /*
1115  * Determines if a scheduled scan request can be handled. When a legacy
1116  * scheduled scan is running no other scheduled scan is allowed regardless
1117  * whether the request is for legacy or multi-support scan. When a multi-support
1118  * scheduled scan is running a request for legacy scan is not allowed. In this
1119  * case a request for multi-support scan can be handled if resources are
1120  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1121  */
1122 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1123                                      bool want_multi)
1124 {
1125         struct cfg80211_sched_scan_request *pos;
1126         int i = 0;
1127
1128         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1129                 /* request id zero means legacy in progress */
1130                 if (!i && !pos->reqid)
1131                         return -EINPROGRESS;
1132                 i++;
1133         }
1134
1135         if (i) {
1136                 /* no legacy allowed when multi request(s) are active */
1137                 if (!want_multi)
1138                         return -EINPROGRESS;
1139
1140                 /* resource limit reached */
1141                 if (i == rdev->wiphy.max_sched_scan_reqs)
1142                         return -ENOSPC;
1143         }
1144         return 0;
1145 }
1146
1147 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1148 {
1149         struct cfg80211_registered_device *rdev;
1150         struct cfg80211_sched_scan_request *req, *tmp;
1151
1152         rdev = container_of(work, struct cfg80211_registered_device,
1153                            sched_scan_res_wk);
1154
1155         wiphy_lock(&rdev->wiphy);
1156         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1157                 if (req->report_results) {
1158                         req->report_results = false;
1159                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1160                                 /* flush entries from previous scans */
1161                                 spin_lock_bh(&rdev->bss_lock);
1162                                 __cfg80211_bss_expire(rdev, req->scan_start);
1163                                 spin_unlock_bh(&rdev->bss_lock);
1164                                 req->scan_start = jiffies;
1165                         }
1166                         nl80211_send_sched_scan(req,
1167                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1168                 }
1169         }
1170         wiphy_unlock(&rdev->wiphy);
1171 }
1172
1173 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1174 {
1175         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1176         struct cfg80211_sched_scan_request *request;
1177
1178         trace_cfg80211_sched_scan_results(wiphy, reqid);
1179         /* ignore if we're not scanning */
1180
1181         rcu_read_lock();
1182         request = cfg80211_find_sched_scan_req(rdev, reqid);
1183         if (request) {
1184                 request->report_results = true;
1185                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1186         }
1187         rcu_read_unlock();
1188 }
1189 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1190
1191 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1192 {
1193         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1194
1195         lockdep_assert_held(&wiphy->mtx);
1196
1197         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1198
1199         __cfg80211_stop_sched_scan(rdev, reqid, true);
1200 }
1201 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1202
1203 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1204 {
1205         wiphy_lock(wiphy);
1206         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1207         wiphy_unlock(wiphy);
1208 }
1209 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1210
1211 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1212                                  struct cfg80211_sched_scan_request *req,
1213                                  bool driver_initiated)
1214 {
1215         lockdep_assert_held(&rdev->wiphy.mtx);
1216
1217         if (!driver_initiated) {
1218                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1219                 if (err)
1220                         return err;
1221         }
1222
1223         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1224
1225         cfg80211_del_sched_scan_req(rdev, req);
1226
1227         return 0;
1228 }
1229
1230 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1231                                u64 reqid, bool driver_initiated)
1232 {
1233         struct cfg80211_sched_scan_request *sched_scan_req;
1234
1235         lockdep_assert_held(&rdev->wiphy.mtx);
1236
1237         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1238         if (!sched_scan_req)
1239                 return -ENOENT;
1240
1241         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1242                                             driver_initiated);
1243 }
1244
1245 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1246                       unsigned long age_secs)
1247 {
1248         struct cfg80211_internal_bss *bss;
1249         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1250
1251         spin_lock_bh(&rdev->bss_lock);
1252         list_for_each_entry(bss, &rdev->bss_list, list)
1253                 bss->ts -= age_jiffies;
1254         spin_unlock_bh(&rdev->bss_lock);
1255 }
1256
1257 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1258 {
1259         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1260 }
1261
1262 void cfg80211_bss_flush(struct wiphy *wiphy)
1263 {
1264         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266         spin_lock_bh(&rdev->bss_lock);
1267         __cfg80211_bss_expire(rdev, jiffies);
1268         spin_unlock_bh(&rdev->bss_lock);
1269 }
1270 EXPORT_SYMBOL(cfg80211_bss_flush);
1271
1272 const struct element *
1273 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1274                          const u8 *match, unsigned int match_len,
1275                          unsigned int match_offset)
1276 {
1277         const struct element *elem;
1278
1279         for_each_element_id(elem, eid, ies, len) {
1280                 if (elem->datalen >= match_offset + match_len &&
1281                     !memcmp(elem->data + match_offset, match, match_len))
1282                         return elem;
1283         }
1284
1285         return NULL;
1286 }
1287 EXPORT_SYMBOL(cfg80211_find_elem_match);
1288
1289 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1290                                                 const u8 *ies,
1291                                                 unsigned int len)
1292 {
1293         const struct element *elem;
1294         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1295         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1296
1297         if (WARN_ON(oui_type > 0xff))
1298                 return NULL;
1299
1300         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1301                                         match, match_len, 0);
1302
1303         if (!elem || elem->datalen < 4)
1304                 return NULL;
1305
1306         return elem;
1307 }
1308 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1309
1310 /**
1311  * enum bss_compare_mode - BSS compare mode
1312  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1313  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1314  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1315  */
1316 enum bss_compare_mode {
1317         BSS_CMP_REGULAR,
1318         BSS_CMP_HIDE_ZLEN,
1319         BSS_CMP_HIDE_NUL,
1320 };
1321
1322 static int cmp_bss(struct cfg80211_bss *a,
1323                    struct cfg80211_bss *b,
1324                    enum bss_compare_mode mode)
1325 {
1326         const struct cfg80211_bss_ies *a_ies, *b_ies;
1327         const u8 *ie1 = NULL;
1328         const u8 *ie2 = NULL;
1329         int i, r;
1330
1331         if (a->channel != b->channel)
1332                 return b->channel->center_freq - a->channel->center_freq;
1333
1334         a_ies = rcu_access_pointer(a->ies);
1335         if (!a_ies)
1336                 return -1;
1337         b_ies = rcu_access_pointer(b->ies);
1338         if (!b_ies)
1339                 return 1;
1340
1341         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1342                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1343                                        a_ies->data, a_ies->len);
1344         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1345                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1346                                        b_ies->data, b_ies->len);
1347         if (ie1 && ie2) {
1348                 int mesh_id_cmp;
1349
1350                 if (ie1[1] == ie2[1])
1351                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1352                 else
1353                         mesh_id_cmp = ie2[1] - ie1[1];
1354
1355                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1356                                        a_ies->data, a_ies->len);
1357                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1358                                        b_ies->data, b_ies->len);
1359                 if (ie1 && ie2) {
1360                         if (mesh_id_cmp)
1361                                 return mesh_id_cmp;
1362                         if (ie1[1] != ie2[1])
1363                                 return ie2[1] - ie1[1];
1364                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1365                 }
1366         }
1367
1368         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1369         if (r)
1370                 return r;
1371
1372         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1373         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1374
1375         if (!ie1 && !ie2)
1376                 return 0;
1377
1378         /*
1379          * Note that with "hide_ssid", the function returns a match if
1380          * the already-present BSS ("b") is a hidden SSID beacon for
1381          * the new BSS ("a").
1382          */
1383
1384         /* sort missing IE before (left of) present IE */
1385         if (!ie1)
1386                 return -1;
1387         if (!ie2)
1388                 return 1;
1389
1390         switch (mode) {
1391         case BSS_CMP_HIDE_ZLEN:
1392                 /*
1393                  * In ZLEN mode we assume the BSS entry we're
1394                  * looking for has a zero-length SSID. So if
1395                  * the one we're looking at right now has that,
1396                  * return 0. Otherwise, return the difference
1397                  * in length, but since we're looking for the
1398                  * 0-length it's really equivalent to returning
1399                  * the length of the one we're looking at.
1400                  *
1401                  * No content comparison is needed as we assume
1402                  * the content length is zero.
1403                  */
1404                 return ie2[1];
1405         case BSS_CMP_REGULAR:
1406         default:
1407                 /* sort by length first, then by contents */
1408                 if (ie1[1] != ie2[1])
1409                         return ie2[1] - ie1[1];
1410                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1411         case BSS_CMP_HIDE_NUL:
1412                 if (ie1[1] != ie2[1])
1413                         return ie2[1] - ie1[1];
1414                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1415                 for (i = 0; i < ie2[1]; i++)
1416                         if (ie2[i + 2])
1417                                 return -1;
1418                 return 0;
1419         }
1420 }
1421
1422 static bool cfg80211_bss_type_match(u16 capability,
1423                                     enum nl80211_band band,
1424                                     enum ieee80211_bss_type bss_type)
1425 {
1426         bool ret = true;
1427         u16 mask, val;
1428
1429         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1430                 return ret;
1431
1432         if (band == NL80211_BAND_60GHZ) {
1433                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1434                 switch (bss_type) {
1435                 case IEEE80211_BSS_TYPE_ESS:
1436                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1437                         break;
1438                 case IEEE80211_BSS_TYPE_PBSS:
1439                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1440                         break;
1441                 case IEEE80211_BSS_TYPE_IBSS:
1442                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1443                         break;
1444                 default:
1445                         return false;
1446                 }
1447         } else {
1448                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1449                 switch (bss_type) {
1450                 case IEEE80211_BSS_TYPE_ESS:
1451                         val = WLAN_CAPABILITY_ESS;
1452                         break;
1453                 case IEEE80211_BSS_TYPE_IBSS:
1454                         val = WLAN_CAPABILITY_IBSS;
1455                         break;
1456                 case IEEE80211_BSS_TYPE_MBSS:
1457                         val = 0;
1458                         break;
1459                 default:
1460                         return false;
1461                 }
1462         }
1463
1464         ret = ((capability & mask) == val);
1465         return ret;
1466 }
1467
1468 /* Returned bss is reference counted and must be cleaned up appropriately. */
1469 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1470                                       struct ieee80211_channel *channel,
1471                                       const u8 *bssid,
1472                                       const u8 *ssid, size_t ssid_len,
1473                                       enum ieee80211_bss_type bss_type,
1474                                       enum ieee80211_privacy privacy)
1475 {
1476         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1477         struct cfg80211_internal_bss *bss, *res = NULL;
1478         unsigned long now = jiffies;
1479         int bss_privacy;
1480
1481         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1482                                privacy);
1483
1484         spin_lock_bh(&rdev->bss_lock);
1485
1486         list_for_each_entry(bss, &rdev->bss_list, list) {
1487                 if (!cfg80211_bss_type_match(bss->pub.capability,
1488                                              bss->pub.channel->band, bss_type))
1489                         continue;
1490
1491                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1492                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1493                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1494                         continue;
1495                 if (channel && bss->pub.channel != channel)
1496                         continue;
1497                 if (!is_valid_ether_addr(bss->pub.bssid))
1498                         continue;
1499                 /* Don't get expired BSS structs */
1500                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1501                     !atomic_read(&bss->hold))
1502                         continue;
1503                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1504                         res = bss;
1505                         bss_ref_get(rdev, res);
1506                         break;
1507                 }
1508         }
1509
1510         spin_unlock_bh(&rdev->bss_lock);
1511         if (!res)
1512                 return NULL;
1513         trace_cfg80211_return_bss(&res->pub);
1514         return &res->pub;
1515 }
1516 EXPORT_SYMBOL(cfg80211_get_bss);
1517
1518 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1519                           struct cfg80211_internal_bss *bss)
1520 {
1521         struct rb_node **p = &rdev->bss_tree.rb_node;
1522         struct rb_node *parent = NULL;
1523         struct cfg80211_internal_bss *tbss;
1524         int cmp;
1525
1526         while (*p) {
1527                 parent = *p;
1528                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1529
1530                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1531
1532                 if (WARN_ON(!cmp)) {
1533                         /* will sort of leak this BSS */
1534                         return;
1535                 }
1536
1537                 if (cmp < 0)
1538                         p = &(*p)->rb_left;
1539                 else
1540                         p = &(*p)->rb_right;
1541         }
1542
1543         rb_link_node(&bss->rbn, parent, p);
1544         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1545 }
1546
1547 static struct cfg80211_internal_bss *
1548 rb_find_bss(struct cfg80211_registered_device *rdev,
1549             struct cfg80211_internal_bss *res,
1550             enum bss_compare_mode mode)
1551 {
1552         struct rb_node *n = rdev->bss_tree.rb_node;
1553         struct cfg80211_internal_bss *bss;
1554         int r;
1555
1556         while (n) {
1557                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1558                 r = cmp_bss(&res->pub, &bss->pub, mode);
1559
1560                 if (r == 0)
1561                         return bss;
1562                 else if (r < 0)
1563                         n = n->rb_left;
1564                 else
1565                         n = n->rb_right;
1566         }
1567
1568         return NULL;
1569 }
1570
1571 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1572                                    struct cfg80211_internal_bss *new)
1573 {
1574         const struct cfg80211_bss_ies *ies;
1575         struct cfg80211_internal_bss *bss;
1576         const u8 *ie;
1577         int i, ssidlen;
1578         u8 fold = 0;
1579         u32 n_entries = 0;
1580
1581         ies = rcu_access_pointer(new->pub.beacon_ies);
1582         if (WARN_ON(!ies))
1583                 return false;
1584
1585         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1586         if (!ie) {
1587                 /* nothing to do */
1588                 return true;
1589         }
1590
1591         ssidlen = ie[1];
1592         for (i = 0; i < ssidlen; i++)
1593                 fold |= ie[2 + i];
1594
1595         if (fold) {
1596                 /* not a hidden SSID */
1597                 return true;
1598         }
1599
1600         /* This is the bad part ... */
1601
1602         list_for_each_entry(bss, &rdev->bss_list, list) {
1603                 /*
1604                  * we're iterating all the entries anyway, so take the
1605                  * opportunity to validate the list length accounting
1606                  */
1607                 n_entries++;
1608
1609                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1610                         continue;
1611                 if (bss->pub.channel != new->pub.channel)
1612                         continue;
1613                 if (bss->pub.scan_width != new->pub.scan_width)
1614                         continue;
1615                 if (rcu_access_pointer(bss->pub.beacon_ies))
1616                         continue;
1617                 ies = rcu_access_pointer(bss->pub.ies);
1618                 if (!ies)
1619                         continue;
1620                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1621                 if (!ie)
1622                         continue;
1623                 if (ssidlen && ie[1] != ssidlen)
1624                         continue;
1625                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1626                         continue;
1627                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1628                         list_del(&bss->hidden_list);
1629                 /* combine them */
1630                 list_add(&bss->hidden_list, &new->hidden_list);
1631                 bss->pub.hidden_beacon_bss = &new->pub;
1632                 new->refcount += bss->refcount;
1633                 rcu_assign_pointer(bss->pub.beacon_ies,
1634                                    new->pub.beacon_ies);
1635         }
1636
1637         WARN_ONCE(n_entries != rdev->bss_entries,
1638                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1639                   rdev->bss_entries, n_entries);
1640
1641         return true;
1642 }
1643
1644 struct cfg80211_non_tx_bss {
1645         struct cfg80211_bss *tx_bss;
1646         u8 max_bssid_indicator;
1647         u8 bssid_index;
1648 };
1649
1650 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1651                                          const struct cfg80211_bss_ies *new_ies,
1652                                          const struct cfg80211_bss_ies *old_ies)
1653 {
1654         struct cfg80211_internal_bss *bss;
1655
1656         /* Assign beacon IEs to all sub entries */
1657         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1658                 const struct cfg80211_bss_ies *ies;
1659
1660                 ies = rcu_access_pointer(bss->pub.beacon_ies);
1661                 WARN_ON(ies != old_ies);
1662
1663                 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1664         }
1665 }
1666
1667 static bool
1668 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1669                           struct cfg80211_internal_bss *known,
1670                           struct cfg80211_internal_bss *new,
1671                           bool signal_valid)
1672 {
1673         lockdep_assert_held(&rdev->bss_lock);
1674
1675         /* Update IEs */
1676         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1677                 const struct cfg80211_bss_ies *old;
1678
1679                 old = rcu_access_pointer(known->pub.proberesp_ies);
1680
1681                 rcu_assign_pointer(known->pub.proberesp_ies,
1682                                    new->pub.proberesp_ies);
1683                 /* Override possible earlier Beacon frame IEs */
1684                 rcu_assign_pointer(known->pub.ies,
1685                                    new->pub.proberesp_ies);
1686                 if (old)
1687                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1688         } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1689                 const struct cfg80211_bss_ies *old;
1690
1691                 if (known->pub.hidden_beacon_bss &&
1692                     !list_empty(&known->hidden_list)) {
1693                         const struct cfg80211_bss_ies *f;
1694
1695                         /* The known BSS struct is one of the probe
1696                          * response members of a group, but we're
1697                          * receiving a beacon (beacon_ies in the new
1698                          * bss is used). This can only mean that the
1699                          * AP changed its beacon from not having an
1700                          * SSID to showing it, which is confusing so
1701                          * drop this information.
1702                          */
1703
1704                         f = rcu_access_pointer(new->pub.beacon_ies);
1705                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1706                         return false;
1707                 }
1708
1709                 old = rcu_access_pointer(known->pub.beacon_ies);
1710
1711                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1712
1713                 /* Override IEs if they were from a beacon before */
1714                 if (old == rcu_access_pointer(known->pub.ies))
1715                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1716
1717                 cfg80211_update_hidden_bsses(known,
1718                                              rcu_access_pointer(new->pub.beacon_ies),
1719                                              old);
1720
1721                 if (old)
1722                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1723         }
1724
1725         known->pub.beacon_interval = new->pub.beacon_interval;
1726
1727         /* don't update the signal if beacon was heard on
1728          * adjacent channel.
1729          */
1730         if (signal_valid)
1731                 known->pub.signal = new->pub.signal;
1732         known->pub.capability = new->pub.capability;
1733         known->ts = new->ts;
1734         known->ts_boottime = new->ts_boottime;
1735         known->parent_tsf = new->parent_tsf;
1736         known->pub.chains = new->pub.chains;
1737         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1738                IEEE80211_MAX_CHAINS);
1739         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1740         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1741         known->pub.bssid_index = new->pub.bssid_index;
1742
1743         return true;
1744 }
1745
1746 /* Returned bss is reference counted and must be cleaned up appropriately. */
1747 struct cfg80211_internal_bss *
1748 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1749                     struct cfg80211_internal_bss *tmp,
1750                     bool signal_valid, unsigned long ts)
1751 {
1752         struct cfg80211_internal_bss *found = NULL;
1753
1754         if (WARN_ON(!tmp->pub.channel))
1755                 return NULL;
1756
1757         tmp->ts = ts;
1758
1759         spin_lock_bh(&rdev->bss_lock);
1760
1761         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1762                 spin_unlock_bh(&rdev->bss_lock);
1763                 return NULL;
1764         }
1765
1766         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1767
1768         if (found) {
1769                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1770                         goto drop;
1771         } else {
1772                 struct cfg80211_internal_bss *new;
1773                 struct cfg80211_internal_bss *hidden;
1774                 struct cfg80211_bss_ies *ies;
1775
1776                 /*
1777                  * create a copy -- the "res" variable that is passed in
1778                  * is allocated on the stack since it's not needed in the
1779                  * more common case of an update
1780                  */
1781                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1782                               GFP_ATOMIC);
1783                 if (!new) {
1784                         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1785                         if (ies)
1786                                 kfree_rcu(ies, rcu_head);
1787                         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1788                         if (ies)
1789                                 kfree_rcu(ies, rcu_head);
1790                         goto drop;
1791                 }
1792                 memcpy(new, tmp, sizeof(*new));
1793                 new->refcount = 1;
1794                 INIT_LIST_HEAD(&new->hidden_list);
1795                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1796                 /* we'll set this later if it was non-NULL */
1797                 new->pub.transmitted_bss = NULL;
1798
1799                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1800                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1801                         if (!hidden)
1802                                 hidden = rb_find_bss(rdev, tmp,
1803                                                      BSS_CMP_HIDE_NUL);
1804                         if (hidden) {
1805                                 new->pub.hidden_beacon_bss = &hidden->pub;
1806                                 list_add(&new->hidden_list,
1807                                          &hidden->hidden_list);
1808                                 hidden->refcount++;
1809                                 rcu_assign_pointer(new->pub.beacon_ies,
1810                                                    hidden->pub.beacon_ies);
1811                         }
1812                 } else {
1813                         /*
1814                          * Ok so we found a beacon, and don't have an entry. If
1815                          * it's a beacon with hidden SSID, we might be in for an
1816                          * expensive search for any probe responses that should
1817                          * be grouped with this beacon for updates ...
1818                          */
1819                         if (!cfg80211_combine_bsses(rdev, new)) {
1820                                 bss_ref_put(rdev, new);
1821                                 goto drop;
1822                         }
1823                 }
1824
1825                 if (rdev->bss_entries >= bss_entries_limit &&
1826                     !cfg80211_bss_expire_oldest(rdev)) {
1827                         bss_ref_put(rdev, new);
1828                         goto drop;
1829                 }
1830
1831                 /* This must be before the call to bss_ref_get */
1832                 if (tmp->pub.transmitted_bss) {
1833                         struct cfg80211_internal_bss *pbss =
1834                                 container_of(tmp->pub.transmitted_bss,
1835                                              struct cfg80211_internal_bss,
1836                                              pub);
1837
1838                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1839                         bss_ref_get(rdev, pbss);
1840                 }
1841
1842                 list_add_tail(&new->list, &rdev->bss_list);
1843                 rdev->bss_entries++;
1844                 rb_insert_bss(rdev, new);
1845                 found = new;
1846         }
1847
1848         rdev->bss_generation++;
1849         bss_ref_get(rdev, found);
1850         spin_unlock_bh(&rdev->bss_lock);
1851
1852         return found;
1853  drop:
1854         spin_unlock_bh(&rdev->bss_lock);
1855         return NULL;
1856 }
1857
1858 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1859                                     enum nl80211_band band,
1860                                     enum cfg80211_bss_frame_type ftype)
1861 {
1862         const struct element *tmp;
1863
1864         if (band == NL80211_BAND_6GHZ) {
1865                 struct ieee80211_he_operation *he_oper;
1866
1867                 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1868                                              ielen);
1869                 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1870                     tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1871                         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1872
1873                         he_oper = (void *)&tmp->data[1];
1874
1875                         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1876                         if (!he_6ghz_oper)
1877                                 return -1;
1878
1879                         if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1880                             he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1881                                 return he_6ghz_oper->primary;
1882                 }
1883         } else if (band == NL80211_BAND_S1GHZ) {
1884                 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1885                 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1886                         struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1887
1888                         return s1gop->oper_ch;
1889                 }
1890         } else {
1891                 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1892                 if (tmp && tmp->datalen == 1)
1893                         return tmp->data[0];
1894
1895                 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1896                 if (tmp &&
1897                     tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1898                         struct ieee80211_ht_operation *htop = (void *)tmp->data;
1899
1900                         return htop->primary_chan;
1901                 }
1902         }
1903
1904         return -1;
1905 }
1906 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1907
1908 /*
1909  * Update RX channel information based on the available frame payload
1910  * information. This is mainly for the 2.4 GHz band where frames can be received
1911  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1912  * element to indicate the current (transmitting) channel, but this might also
1913  * be needed on other bands if RX frequency does not match with the actual
1914  * operating channel of a BSS, or if the AP reports a different primary channel.
1915  */
1916 static struct ieee80211_channel *
1917 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1918                          struct ieee80211_channel *channel,
1919                          enum nl80211_bss_scan_width scan_width,
1920                          enum cfg80211_bss_frame_type ftype)
1921 {
1922         u32 freq;
1923         int channel_number;
1924         struct ieee80211_channel *alt_channel;
1925
1926         channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1927                                                          channel->band, ftype);
1928
1929         if (channel_number < 0) {
1930                 /* No channel information in frame payload */
1931                 return channel;
1932         }
1933
1934         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1935
1936         /*
1937          * In 6GHz, duplicated beacon indication is relevant for
1938          * beacons only.
1939          */
1940         if (channel->band == NL80211_BAND_6GHZ &&
1941             (freq == channel->center_freq ||
1942              abs(freq - channel->center_freq) > 80))
1943                 return channel;
1944
1945         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1946         if (!alt_channel) {
1947                 if (channel->band == NL80211_BAND_2GHZ) {
1948                         /*
1949                          * Better not allow unexpected channels when that could
1950                          * be going beyond the 1-11 range (e.g., discovering
1951                          * BSS on channel 12 when radio is configured for
1952                          * channel 11.
1953                          */
1954                         return NULL;
1955                 }
1956
1957                 /* No match for the payload channel number - ignore it */
1958                 return channel;
1959         }
1960
1961         if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1962             scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1963                 /*
1964                  * Ignore channel number in 5 and 10 MHz channels where there
1965                  * may not be an n:1 or 1:n mapping between frequencies and
1966                  * channel numbers.
1967                  */
1968                 return channel;
1969         }
1970
1971         /*
1972          * Use the channel determined through the payload channel number
1973          * instead of the RX channel reported by the driver.
1974          */
1975         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1976                 return NULL;
1977         return alt_channel;
1978 }
1979
1980 /* Returned bss is reference counted and must be cleaned up appropriately. */
1981 static struct cfg80211_bss *
1982 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1983                                 struct cfg80211_inform_bss *data,
1984                                 enum cfg80211_bss_frame_type ftype,
1985                                 const u8 *bssid, u64 tsf, u16 capability,
1986                                 u16 beacon_interval, const u8 *ie, size_t ielen,
1987                                 struct cfg80211_non_tx_bss *non_tx_data,
1988                                 gfp_t gfp)
1989 {
1990         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1991         struct cfg80211_bss_ies *ies;
1992         struct ieee80211_channel *channel;
1993         struct cfg80211_internal_bss tmp = {}, *res;
1994         int bss_type;
1995         bool signal_valid;
1996         unsigned long ts;
1997
1998         if (WARN_ON(!wiphy))
1999                 return NULL;
2000
2001         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2002                     (data->signal < 0 || data->signal > 100)))
2003                 return NULL;
2004
2005         channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
2006                                            data->scan_width, ftype);
2007         if (!channel)
2008                 return NULL;
2009
2010         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2011         tmp.pub.channel = channel;
2012         tmp.pub.scan_width = data->scan_width;
2013         tmp.pub.signal = data->signal;
2014         tmp.pub.beacon_interval = beacon_interval;
2015         tmp.pub.capability = capability;
2016         tmp.ts_boottime = data->boottime_ns;
2017         tmp.parent_tsf = data->parent_tsf;
2018         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2019
2020         if (non_tx_data) {
2021                 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
2022                 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
2023                 tmp.pub.bssid_index = non_tx_data->bssid_index;
2024                 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
2025         } else {
2026                 ts = jiffies;
2027         }
2028
2029         /*
2030          * If we do not know here whether the IEs are from a Beacon or Probe
2031          * Response frame, we need to pick one of the options and only use it
2032          * with the driver that does not provide the full Beacon/Probe Response
2033          * frame. Use Beacon frame pointer to avoid indicating that this should
2034          * override the IEs pointer should we have received an earlier
2035          * indication of Probe Response data.
2036          */
2037         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2038         if (!ies)
2039                 return NULL;
2040         ies->len = ielen;
2041         ies->tsf = tsf;
2042         ies->from_beacon = false;
2043         memcpy(ies->data, ie, ielen);
2044
2045         switch (ftype) {
2046         case CFG80211_BSS_FTYPE_BEACON:
2047                 ies->from_beacon = true;
2048                 fallthrough;
2049         case CFG80211_BSS_FTYPE_UNKNOWN:
2050                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2051                 break;
2052         case CFG80211_BSS_FTYPE_PRESP:
2053                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2054                 break;
2055         }
2056         rcu_assign_pointer(tmp.pub.ies, ies);
2057
2058         signal_valid = data->chan == channel;
2059         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2060         if (!res)
2061                 return NULL;
2062
2063         if (channel->band == NL80211_BAND_60GHZ) {
2064                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2065                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2066                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2067                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2068         } else {
2069                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2070                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2071         }
2072
2073         if (non_tx_data) {
2074                 /* this is a nontransmitting bss, we need to add it to
2075                  * transmitting bss' list if it is not there
2076                  */
2077                 spin_lock_bh(&rdev->bss_lock);
2078                 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2079                                                &res->pub)) {
2080                         if (__cfg80211_unlink_bss(rdev, res)) {
2081                                 rdev->bss_generation++;
2082                                 res = NULL;
2083                         }
2084                 }
2085                 spin_unlock_bh(&rdev->bss_lock);
2086
2087                 if (!res)
2088                         return NULL;
2089         }
2090
2091         trace_cfg80211_return_bss(&res->pub);
2092         /* cfg80211_bss_update gives us a referenced result */
2093         return &res->pub;
2094 }
2095
2096 static const struct element
2097 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2098                                    const struct element *mbssid_elem,
2099                                    const struct element *sub_elem)
2100 {
2101         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2102         const struct element *next_mbssid;
2103         const struct element *next_sub;
2104
2105         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2106                                          mbssid_end,
2107                                          ielen - (mbssid_end - ie));
2108
2109         /*
2110          * If it is not the last subelement in current MBSSID IE or there isn't
2111          * a next MBSSID IE - profile is complete.
2112         */
2113         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2114             !next_mbssid)
2115                 return NULL;
2116
2117         /* For any length error, just return NULL */
2118
2119         if (next_mbssid->datalen < 4)
2120                 return NULL;
2121
2122         next_sub = (void *)&next_mbssid->data[1];
2123
2124         if (next_mbssid->data + next_mbssid->datalen <
2125             next_sub->data + next_sub->datalen)
2126                 return NULL;
2127
2128         if (next_sub->id != 0 || next_sub->datalen < 2)
2129                 return NULL;
2130
2131         /*
2132          * Check if the first element in the next sub element is a start
2133          * of a new profile
2134          */
2135         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2136                NULL : next_mbssid;
2137 }
2138
2139 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2140                               const struct element *mbssid_elem,
2141                               const struct element *sub_elem,
2142                               u8 *merged_ie, size_t max_copy_len)
2143 {
2144         size_t copied_len = sub_elem->datalen;
2145         const struct element *next_mbssid;
2146
2147         if (sub_elem->datalen > max_copy_len)
2148                 return 0;
2149
2150         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2151
2152         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2153                                                                 mbssid_elem,
2154                                                                 sub_elem))) {
2155                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2156
2157                 if (copied_len + next_sub->datalen > max_copy_len)
2158                         break;
2159                 memcpy(merged_ie + copied_len, next_sub->data,
2160                        next_sub->datalen);
2161                 copied_len += next_sub->datalen;
2162         }
2163
2164         return copied_len;
2165 }
2166 EXPORT_SYMBOL(cfg80211_merge_profile);
2167
2168 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2169                                        struct cfg80211_inform_bss *data,
2170                                        enum cfg80211_bss_frame_type ftype,
2171                                        const u8 *bssid, u64 tsf,
2172                                        u16 beacon_interval, const u8 *ie,
2173                                        size_t ielen,
2174                                        struct cfg80211_non_tx_bss *non_tx_data,
2175                                        gfp_t gfp)
2176 {
2177         const u8 *mbssid_index_ie;
2178         const struct element *elem, *sub;
2179         size_t new_ie_len;
2180         u8 new_bssid[ETH_ALEN];
2181         u8 *new_ie, *profile;
2182         u64 seen_indices = 0;
2183         u16 capability;
2184         struct cfg80211_bss *bss;
2185
2186         if (!non_tx_data)
2187                 return;
2188         if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2189                 return;
2190         if (!wiphy->support_mbssid)
2191                 return;
2192         if (wiphy->support_only_he_mbssid &&
2193             !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2194                 return;
2195
2196         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2197         if (!new_ie)
2198                 return;
2199
2200         profile = kmalloc(ielen, gfp);
2201         if (!profile)
2202                 goto out;
2203
2204         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2205                 if (elem->datalen < 4)
2206                         continue;
2207                 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2208                         continue;
2209                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2210                         u8 profile_len;
2211
2212                         if (sub->id != 0 || sub->datalen < 4) {
2213                                 /* not a valid BSS profile */
2214                                 continue;
2215                         }
2216
2217                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2218                             sub->data[1] != 2) {
2219                                 /* The first element within the Nontransmitted
2220                                  * BSSID Profile is not the Nontransmitted
2221                                  * BSSID Capability element.
2222                                  */
2223                                 continue;
2224                         }
2225
2226                         memset(profile, 0, ielen);
2227                         profile_len = cfg80211_merge_profile(ie, ielen,
2228                                                              elem,
2229                                                              sub,
2230                                                              profile,
2231                                                              ielen);
2232
2233                         /* found a Nontransmitted BSSID Profile */
2234                         mbssid_index_ie = cfg80211_find_ie
2235                                 (WLAN_EID_MULTI_BSSID_IDX,
2236                                  profile, profile_len);
2237                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2238                             mbssid_index_ie[2] == 0 ||
2239                             mbssid_index_ie[2] > 46) {
2240                                 /* No valid Multiple BSSID-Index element */
2241                                 continue;
2242                         }
2243
2244                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2245                                 /* We don't support legacy split of a profile */
2246                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2247                                                     mbssid_index_ie[2]);
2248
2249                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2250
2251                         non_tx_data->bssid_index = mbssid_index_ie[2];
2252                         non_tx_data->max_bssid_indicator = elem->data[0];
2253
2254                         cfg80211_gen_new_bssid(bssid,
2255                                                non_tx_data->max_bssid_indicator,
2256                                                non_tx_data->bssid_index,
2257                                                new_bssid);
2258                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2259                         new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2260                                                          profile,
2261                                                          profile_len, new_ie,
2262                                                          IEEE80211_MAX_DATA_LEN);
2263                         if (!new_ie_len)
2264                                 continue;
2265
2266                         capability = get_unaligned_le16(profile + 2);
2267                         bss = cfg80211_inform_single_bss_data(wiphy, data,
2268                                                               ftype,
2269                                                               new_bssid, tsf,
2270                                                               capability,
2271                                                               beacon_interval,
2272                                                               new_ie,
2273                                                               new_ie_len,
2274                                                               non_tx_data,
2275                                                               gfp);
2276                         if (!bss)
2277                                 break;
2278                         cfg80211_put_bss(wiphy, bss);
2279                 }
2280         }
2281
2282 out:
2283         kfree(new_ie);
2284         kfree(profile);
2285 }
2286
2287 struct cfg80211_bss *
2288 cfg80211_inform_bss_data(struct wiphy *wiphy,
2289                          struct cfg80211_inform_bss *data,
2290                          enum cfg80211_bss_frame_type ftype,
2291                          const u8 *bssid, u64 tsf, u16 capability,
2292                          u16 beacon_interval, const u8 *ie, size_t ielen,
2293                          gfp_t gfp)
2294 {
2295         struct cfg80211_bss *res;
2296         struct cfg80211_non_tx_bss non_tx_data;
2297
2298         res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2299                                               capability, beacon_interval, ie,
2300                                               ielen, NULL, gfp);
2301         if (!res)
2302                 return NULL;
2303         non_tx_data.tx_bss = res;
2304         cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2305                                    beacon_interval, ie, ielen, &non_tx_data,
2306                                    gfp);
2307         return res;
2308 }
2309 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2310
2311 /* cfg80211_inform_bss_width_frame helper */
2312 static struct cfg80211_bss *
2313 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2314                                       struct cfg80211_inform_bss *data,
2315                                       struct ieee80211_mgmt *mgmt, size_t len,
2316                                       gfp_t gfp)
2317 {
2318         struct cfg80211_internal_bss tmp = {}, *res;
2319         struct cfg80211_bss_ies *ies;
2320         struct ieee80211_channel *channel;
2321         bool signal_valid;
2322         struct ieee80211_ext *ext = NULL;
2323         u8 *bssid, *variable;
2324         u16 capability, beacon_int;
2325         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2326                                              u.probe_resp.variable);
2327         int bss_type;
2328         enum cfg80211_bss_frame_type ftype;
2329
2330         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2331                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2332
2333         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2334
2335         if (WARN_ON(!mgmt))
2336                 return NULL;
2337
2338         if (WARN_ON(!wiphy))
2339                 return NULL;
2340
2341         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2342                     (data->signal < 0 || data->signal > 100)))
2343                 return NULL;
2344
2345         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2346                 ext = (void *) mgmt;
2347                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2348                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2349                         min_hdr_len = offsetof(struct ieee80211_ext,
2350                                                u.s1g_short_beacon.variable);
2351         }
2352
2353         if (WARN_ON(len < min_hdr_len))
2354                 return NULL;
2355
2356         ielen = len - min_hdr_len;
2357         variable = mgmt->u.probe_resp.variable;
2358         if (ext) {
2359                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2360                         variable = ext->u.s1g_short_beacon.variable;
2361                 else
2362                         variable = ext->u.s1g_beacon.variable;
2363         }
2364
2365         if (ieee80211_is_beacon(mgmt->frame_control))
2366                 ftype = CFG80211_BSS_FTYPE_BEACON;
2367         else if (ieee80211_is_probe_resp(mgmt->frame_control))
2368                 ftype = CFG80211_BSS_FTYPE_PRESP;
2369         else
2370                 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2371
2372         channel = cfg80211_get_bss_channel(wiphy, variable,
2373                                            ielen, data->chan, data->scan_width,
2374                                            ftype);
2375         if (!channel)
2376                 return NULL;
2377
2378         if (ext) {
2379                 const struct ieee80211_s1g_bcn_compat_ie *compat;
2380                 const struct element *elem;
2381
2382                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2383                                           variable, ielen);
2384                 if (!elem)
2385                         return NULL;
2386                 if (elem->datalen < sizeof(*compat))
2387                         return NULL;
2388                 compat = (void *)elem->data;
2389                 bssid = ext->u.s1g_beacon.sa;
2390                 capability = le16_to_cpu(compat->compat_info);
2391                 beacon_int = le16_to_cpu(compat->beacon_int);
2392         } else {
2393                 bssid = mgmt->bssid;
2394                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2395                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2396         }
2397
2398         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2399         if (!ies)
2400                 return NULL;
2401         ies->len = ielen;
2402         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2403         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2404                            ieee80211_is_s1g_beacon(mgmt->frame_control);
2405         memcpy(ies->data, variable, ielen);
2406
2407         if (ieee80211_is_probe_resp(mgmt->frame_control))
2408                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2409         else
2410                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2411         rcu_assign_pointer(tmp.pub.ies, ies);
2412
2413         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2414         tmp.pub.beacon_interval = beacon_int;
2415         tmp.pub.capability = capability;
2416         tmp.pub.channel = channel;
2417         tmp.pub.scan_width = data->scan_width;
2418         tmp.pub.signal = data->signal;
2419         tmp.ts_boottime = data->boottime_ns;
2420         tmp.parent_tsf = data->parent_tsf;
2421         tmp.pub.chains = data->chains;
2422         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2423         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2424
2425         signal_valid = data->chan == channel;
2426         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2427                                   jiffies);
2428         if (!res)
2429                 return NULL;
2430
2431         if (channel->band == NL80211_BAND_60GHZ) {
2432                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2433                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2434                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2435                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2436         } else {
2437                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2438                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2439         }
2440
2441         trace_cfg80211_return_bss(&res->pub);
2442         /* cfg80211_bss_update gives us a referenced result */
2443         return &res->pub;
2444 }
2445
2446 struct cfg80211_bss *
2447 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2448                                struct cfg80211_inform_bss *data,
2449                                struct ieee80211_mgmt *mgmt, size_t len,
2450                                gfp_t gfp)
2451 {
2452         struct cfg80211_bss *res;
2453         const u8 *ie = mgmt->u.probe_resp.variable;
2454         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2455                                       u.probe_resp.variable);
2456         enum cfg80211_bss_frame_type ftype;
2457         struct cfg80211_non_tx_bss non_tx_data = {};
2458
2459         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2460                                                     len, gfp);
2461         if (!res)
2462                 return NULL;
2463
2464         /* don't do any further MBSSID handling for S1G */
2465         if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2466                 return res;
2467
2468         ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2469                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2470         non_tx_data.tx_bss = res;
2471
2472         /* process each non-transmitting bss */
2473         cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2474                                    le64_to_cpu(mgmt->u.probe_resp.timestamp),
2475                                    le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2476                                    ie, ielen, &non_tx_data, gfp);
2477
2478         return res;
2479 }
2480 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2481
2482 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2483 {
2484         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2485         struct cfg80211_internal_bss *bss;
2486
2487         if (!pub)
2488                 return;
2489
2490         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2491
2492         spin_lock_bh(&rdev->bss_lock);
2493         bss_ref_get(rdev, bss);
2494         spin_unlock_bh(&rdev->bss_lock);
2495 }
2496 EXPORT_SYMBOL(cfg80211_ref_bss);
2497
2498 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2499 {
2500         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2501         struct cfg80211_internal_bss *bss;
2502
2503         if (!pub)
2504                 return;
2505
2506         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2507
2508         spin_lock_bh(&rdev->bss_lock);
2509         bss_ref_put(rdev, bss);
2510         spin_unlock_bh(&rdev->bss_lock);
2511 }
2512 EXPORT_SYMBOL(cfg80211_put_bss);
2513
2514 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2515 {
2516         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2517         struct cfg80211_internal_bss *bss, *tmp1;
2518         struct cfg80211_bss *nontrans_bss, *tmp;
2519
2520         if (WARN_ON(!pub))
2521                 return;
2522
2523         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2524
2525         spin_lock_bh(&rdev->bss_lock);
2526         if (list_empty(&bss->list))
2527                 goto out;
2528
2529         list_for_each_entry_safe(nontrans_bss, tmp,
2530                                  &pub->nontrans_list,
2531                                  nontrans_list) {
2532                 tmp1 = container_of(nontrans_bss,
2533                                     struct cfg80211_internal_bss, pub);
2534                 if (__cfg80211_unlink_bss(rdev, tmp1))
2535                         rdev->bss_generation++;
2536         }
2537
2538         if (__cfg80211_unlink_bss(rdev, bss))
2539                 rdev->bss_generation++;
2540 out:
2541         spin_unlock_bh(&rdev->bss_lock);
2542 }
2543 EXPORT_SYMBOL(cfg80211_unlink_bss);
2544
2545 void cfg80211_bss_iter(struct wiphy *wiphy,
2546                        struct cfg80211_chan_def *chandef,
2547                        void (*iter)(struct wiphy *wiphy,
2548                                     struct cfg80211_bss *bss,
2549                                     void *data),
2550                        void *iter_data)
2551 {
2552         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2553         struct cfg80211_internal_bss *bss;
2554
2555         spin_lock_bh(&rdev->bss_lock);
2556
2557         list_for_each_entry(bss, &rdev->bss_list, list) {
2558                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2559                                                      false))
2560                         iter(wiphy, &bss->pub, iter_data);
2561         }
2562
2563         spin_unlock_bh(&rdev->bss_lock);
2564 }
2565 EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2568                                      unsigned int link_id,
2569                                      struct ieee80211_channel *chan)
2570 {
2571         struct wiphy *wiphy = wdev->wiphy;
2572         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2573         struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2574         struct cfg80211_internal_bss *new = NULL;
2575         struct cfg80211_internal_bss *bss;
2576         struct cfg80211_bss *nontrans_bss;
2577         struct cfg80211_bss *tmp;
2578
2579         spin_lock_bh(&rdev->bss_lock);
2580
2581         /*
2582          * Some APs use CSA also for bandwidth changes, i.e., without actually
2583          * changing the control channel, so no need to update in such a case.
2584          */
2585         if (cbss->pub.channel == chan)
2586                 goto done;
2587
2588         /* use transmitting bss */
2589         if (cbss->pub.transmitted_bss)
2590                 cbss = container_of(cbss->pub.transmitted_bss,
2591                                     struct cfg80211_internal_bss,
2592                                     pub);
2593
2594         cbss->pub.channel = chan;
2595
2596         list_for_each_entry(bss, &rdev->bss_list, list) {
2597                 if (!cfg80211_bss_type_match(bss->pub.capability,
2598                                              bss->pub.channel->band,
2599                                              wdev->conn_bss_type))
2600                         continue;
2601
2602                 if (bss == cbss)
2603                         continue;
2604
2605                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2606                         new = bss;
2607                         break;
2608                 }
2609         }
2610
2611         if (new) {
2612                 /* to save time, update IEs for transmitting bss only */
2613                 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2614                         new->pub.proberesp_ies = NULL;
2615                         new->pub.beacon_ies = NULL;
2616                 }
2617
2618                 list_for_each_entry_safe(nontrans_bss, tmp,
2619                                          &new->pub.nontrans_list,
2620                                          nontrans_list) {
2621                         bss = container_of(nontrans_bss,
2622                                            struct cfg80211_internal_bss, pub);
2623                         if (__cfg80211_unlink_bss(rdev, bss))
2624                                 rdev->bss_generation++;
2625                 }
2626
2627                 WARN_ON(atomic_read(&new->hold));
2628                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2629                         rdev->bss_generation++;
2630         }
2631
2632         rb_erase(&cbss->rbn, &rdev->bss_tree);
2633         rb_insert_bss(rdev, cbss);
2634         rdev->bss_generation++;
2635
2636         list_for_each_entry_safe(nontrans_bss, tmp,
2637                                  &cbss->pub.nontrans_list,
2638                                  nontrans_list) {
2639                 bss = container_of(nontrans_bss,
2640                                    struct cfg80211_internal_bss, pub);
2641                 bss->pub.channel = chan;
2642                 rb_erase(&bss->rbn, &rdev->bss_tree);
2643                 rb_insert_bss(rdev, bss);
2644                 rdev->bss_generation++;
2645         }
2646
2647 done:
2648         spin_unlock_bh(&rdev->bss_lock);
2649 }
2650
2651 #ifdef CONFIG_CFG80211_WEXT
2652 static struct cfg80211_registered_device *
2653 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2654 {
2655         struct cfg80211_registered_device *rdev;
2656         struct net_device *dev;
2657
2658         ASSERT_RTNL();
2659
2660         dev = dev_get_by_index(net, ifindex);
2661         if (!dev)
2662                 return ERR_PTR(-ENODEV);
2663         if (dev->ieee80211_ptr)
2664                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2665         else
2666                 rdev = ERR_PTR(-ENODEV);
2667         dev_put(dev);
2668         return rdev;
2669 }
2670
2671 int cfg80211_wext_siwscan(struct net_device *dev,
2672                           struct iw_request_info *info,
2673                           union iwreq_data *wrqu, char *extra)
2674 {
2675         struct cfg80211_registered_device *rdev;
2676         struct wiphy *wiphy;
2677         struct iw_scan_req *wreq = NULL;
2678         struct cfg80211_scan_request *creq;
2679         int i, err, n_channels = 0;
2680         enum nl80211_band band;
2681
2682         if (!netif_running(dev))
2683                 return -ENETDOWN;
2684
2685         if (wrqu->data.length == sizeof(struct iw_scan_req))
2686                 wreq = (struct iw_scan_req *)extra;
2687
2688         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2689
2690         if (IS_ERR(rdev))
2691                 return PTR_ERR(rdev);
2692
2693         if (rdev->scan_req || rdev->scan_msg)
2694                 return -EBUSY;
2695
2696         wiphy = &rdev->wiphy;
2697
2698         /* Determine number of channels, needed to allocate creq */
2699         if (wreq && wreq->num_channels)
2700                 n_channels = wreq->num_channels;
2701         else
2702                 n_channels = ieee80211_get_num_supported_channels(wiphy);
2703
2704         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2705                        n_channels * sizeof(void *),
2706                        GFP_ATOMIC);
2707         if (!creq)
2708                 return -ENOMEM;
2709
2710         creq->wiphy = wiphy;
2711         creq->wdev = dev->ieee80211_ptr;
2712         /* SSIDs come after channels */
2713         creq->ssids = (void *)&creq->channels[n_channels];
2714         creq->n_channels = n_channels;
2715         creq->n_ssids = 1;
2716         creq->scan_start = jiffies;
2717
2718         /* translate "Scan on frequencies" request */
2719         i = 0;
2720         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2721                 int j;
2722
2723                 if (!wiphy->bands[band])
2724                         continue;
2725
2726                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2727                         /* ignore disabled channels */
2728                         if (wiphy->bands[band]->channels[j].flags &
2729                                                 IEEE80211_CHAN_DISABLED)
2730                                 continue;
2731
2732                         /* If we have a wireless request structure and the
2733                          * wireless request specifies frequencies, then search
2734                          * for the matching hardware channel.
2735                          */
2736                         if (wreq && wreq->num_channels) {
2737                                 int k;
2738                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2739                                 for (k = 0; k < wreq->num_channels; k++) {
2740                                         struct iw_freq *freq =
2741                                                 &wreq->channel_list[k];
2742                                         int wext_freq =
2743                                                 cfg80211_wext_freq(freq);
2744
2745                                         if (wext_freq == wiphy_freq)
2746                                                 goto wext_freq_found;
2747                                 }
2748                                 goto wext_freq_not_found;
2749                         }
2750
2751                 wext_freq_found:
2752                         creq->channels[i] = &wiphy->bands[band]->channels[j];
2753                         i++;
2754                 wext_freq_not_found: ;
2755                 }
2756         }
2757         /* No channels found? */
2758         if (!i) {
2759                 err = -EINVAL;
2760                 goto out;
2761         }
2762
2763         /* Set real number of channels specified in creq->channels[] */
2764         creq->n_channels = i;
2765
2766         /* translate "Scan for SSID" request */
2767         if (wreq) {
2768                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2769                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2770                                 err = -EINVAL;
2771                                 goto out;
2772                         }
2773                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2774                         creq->ssids[0].ssid_len = wreq->essid_len;
2775                 }
2776                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2777                         creq->n_ssids = 0;
2778         }
2779
2780         for (i = 0; i < NUM_NL80211_BANDS; i++)
2781                 if (wiphy->bands[i])
2782                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2783
2784         eth_broadcast_addr(creq->bssid);
2785
2786         wiphy_lock(&rdev->wiphy);
2787
2788         rdev->scan_req = creq;
2789         err = rdev_scan(rdev, creq);
2790         if (err) {
2791                 rdev->scan_req = NULL;
2792                 /* creq will be freed below */
2793         } else {
2794                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2795                 /* creq now owned by driver */
2796                 creq = NULL;
2797                 dev_hold(dev);
2798         }
2799         wiphy_unlock(&rdev->wiphy);
2800  out:
2801         kfree(creq);
2802         return err;
2803 }
2804 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2805
2806 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2807                                     const struct cfg80211_bss_ies *ies,
2808                                     char *current_ev, char *end_buf)
2809 {
2810         const u8 *pos, *end, *next;
2811         struct iw_event iwe;
2812
2813         if (!ies)
2814                 return current_ev;
2815
2816         /*
2817          * If needed, fragment the IEs buffer (at IE boundaries) into short
2818          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2819          */
2820         pos = ies->data;
2821         end = pos + ies->len;
2822
2823         while (end - pos > IW_GENERIC_IE_MAX) {
2824                 next = pos + 2 + pos[1];
2825                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2826                         next = next + 2 + next[1];
2827
2828                 memset(&iwe, 0, sizeof(iwe));
2829                 iwe.cmd = IWEVGENIE;
2830                 iwe.u.data.length = next - pos;
2831                 current_ev = iwe_stream_add_point_check(info, current_ev,
2832                                                         end_buf, &iwe,
2833                                                         (void *)pos);
2834                 if (IS_ERR(current_ev))
2835                         return current_ev;
2836                 pos = next;
2837         }
2838
2839         if (end > pos) {
2840                 memset(&iwe, 0, sizeof(iwe));
2841                 iwe.cmd = IWEVGENIE;
2842                 iwe.u.data.length = end - pos;
2843                 current_ev = iwe_stream_add_point_check(info, current_ev,
2844                                                         end_buf, &iwe,
2845                                                         (void *)pos);
2846                 if (IS_ERR(current_ev))
2847                         return current_ev;
2848         }
2849
2850         return current_ev;
2851 }
2852
2853 static char *
2854 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2855               struct cfg80211_internal_bss *bss, char *current_ev,
2856               char *end_buf)
2857 {
2858         const struct cfg80211_bss_ies *ies;
2859         struct iw_event iwe;
2860         const u8 *ie;
2861         u8 buf[50];
2862         u8 *cfg, *p, *tmp;
2863         int rem, i, sig;
2864         bool ismesh = false;
2865
2866         memset(&iwe, 0, sizeof(iwe));
2867         iwe.cmd = SIOCGIWAP;
2868         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2869         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2870         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2871                                                 IW_EV_ADDR_LEN);
2872         if (IS_ERR(current_ev))
2873                 return current_ev;
2874
2875         memset(&iwe, 0, sizeof(iwe));
2876         iwe.cmd = SIOCGIWFREQ;
2877         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2878         iwe.u.freq.e = 0;
2879         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2880                                                 IW_EV_FREQ_LEN);
2881         if (IS_ERR(current_ev))
2882                 return current_ev;
2883
2884         memset(&iwe, 0, sizeof(iwe));
2885         iwe.cmd = SIOCGIWFREQ;
2886         iwe.u.freq.m = bss->pub.channel->center_freq;
2887         iwe.u.freq.e = 6;
2888         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2889                                                 IW_EV_FREQ_LEN);
2890         if (IS_ERR(current_ev))
2891                 return current_ev;
2892
2893         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2894                 memset(&iwe, 0, sizeof(iwe));
2895                 iwe.cmd = IWEVQUAL;
2896                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2897                                      IW_QUAL_NOISE_INVALID |
2898                                      IW_QUAL_QUAL_UPDATED;
2899                 switch (wiphy->signal_type) {
2900                 case CFG80211_SIGNAL_TYPE_MBM:
2901                         sig = bss->pub.signal / 100;
2902                         iwe.u.qual.level = sig;
2903                         iwe.u.qual.updated |= IW_QUAL_DBM;
2904                         if (sig < -110)         /* rather bad */
2905                                 sig = -110;
2906                         else if (sig > -40)     /* perfect */
2907                                 sig = -40;
2908                         /* will give a range of 0 .. 70 */
2909                         iwe.u.qual.qual = sig + 110;
2910                         break;
2911                 case CFG80211_SIGNAL_TYPE_UNSPEC:
2912                         iwe.u.qual.level = bss->pub.signal;
2913                         /* will give range 0 .. 100 */
2914                         iwe.u.qual.qual = bss->pub.signal;
2915                         break;
2916                 default:
2917                         /* not reached */
2918                         break;
2919                 }
2920                 current_ev = iwe_stream_add_event_check(info, current_ev,
2921                                                         end_buf, &iwe,
2922                                                         IW_EV_QUAL_LEN);
2923                 if (IS_ERR(current_ev))
2924                         return current_ev;
2925         }
2926
2927         memset(&iwe, 0, sizeof(iwe));
2928         iwe.cmd = SIOCGIWENCODE;
2929         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2930                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2931         else
2932                 iwe.u.data.flags = IW_ENCODE_DISABLED;
2933         iwe.u.data.length = 0;
2934         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2935                                                 &iwe, "");
2936         if (IS_ERR(current_ev))
2937                 return current_ev;
2938
2939         rcu_read_lock();
2940         ies = rcu_dereference(bss->pub.ies);
2941         rem = ies->len;
2942         ie = ies->data;
2943
2944         while (rem >= 2) {
2945                 /* invalid data */
2946                 if (ie[1] > rem - 2)
2947                         break;
2948
2949                 switch (ie[0]) {
2950                 case WLAN_EID_SSID:
2951                         memset(&iwe, 0, sizeof(iwe));
2952                         iwe.cmd = SIOCGIWESSID;
2953                         iwe.u.data.length = ie[1];
2954                         iwe.u.data.flags = 1;
2955                         current_ev = iwe_stream_add_point_check(info,
2956                                                                 current_ev,
2957                                                                 end_buf, &iwe,
2958                                                                 (u8 *)ie + 2);
2959                         if (IS_ERR(current_ev))
2960                                 goto unlock;
2961                         break;
2962                 case WLAN_EID_MESH_ID:
2963                         memset(&iwe, 0, sizeof(iwe));
2964                         iwe.cmd = SIOCGIWESSID;
2965                         iwe.u.data.length = ie[1];
2966                         iwe.u.data.flags = 1;
2967                         current_ev = iwe_stream_add_point_check(info,
2968                                                                 current_ev,
2969                                                                 end_buf, &iwe,
2970                                                                 (u8 *)ie + 2);
2971                         if (IS_ERR(current_ev))
2972                                 goto unlock;
2973                         break;
2974                 case WLAN_EID_MESH_CONFIG:
2975                         ismesh = true;
2976                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2977                                 break;
2978                         cfg = (u8 *)ie + 2;
2979                         memset(&iwe, 0, sizeof(iwe));
2980                         iwe.cmd = IWEVCUSTOM;
2981                         sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2982                                 "0x%02X", cfg[0]);
2983                         iwe.u.data.length = strlen(buf);
2984                         current_ev = iwe_stream_add_point_check(info,
2985                                                                 current_ev,
2986                                                                 end_buf,
2987                                                                 &iwe, buf);
2988                         if (IS_ERR(current_ev))
2989                                 goto unlock;
2990                         sprintf(buf, "Path Selection Metric ID: 0x%02X",
2991                                 cfg[1]);
2992                         iwe.u.data.length = strlen(buf);
2993                         current_ev = iwe_stream_add_point_check(info,
2994                                                                 current_ev,
2995                                                                 end_buf,
2996                                                                 &iwe, buf);
2997                         if (IS_ERR(current_ev))
2998                                 goto unlock;
2999                         sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3000                                 cfg[2]);
3001                         iwe.u.data.length = strlen(buf);
3002                         current_ev = iwe_stream_add_point_check(info,
3003                                                                 current_ev,
3004                                                                 end_buf,
3005                                                                 &iwe, buf);
3006                         if (IS_ERR(current_ev))
3007                                 goto unlock;
3008                         sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3009                         iwe.u.data.length = strlen(buf);
3010                         current_ev = iwe_stream_add_point_check(info,
3011                                                                 current_ev,
3012                                                                 end_buf,
3013                                                                 &iwe, buf);
3014                         if (IS_ERR(current_ev))
3015                                 goto unlock;
3016                         sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3017                         iwe.u.data.length = strlen(buf);
3018                         current_ev = iwe_stream_add_point_check(info,
3019                                                                 current_ev,
3020                                                                 end_buf,
3021                                                                 &iwe, buf);
3022                         if (IS_ERR(current_ev))
3023                                 goto unlock;
3024                         sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3025                         iwe.u.data.length = strlen(buf);
3026                         current_ev = iwe_stream_add_point_check(info,
3027                                                                 current_ev,
3028                                                                 end_buf,
3029                                                                 &iwe, buf);
3030                         if (IS_ERR(current_ev))
3031                                 goto unlock;
3032                         sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3033                         iwe.u.data.length = strlen(buf);
3034                         current_ev = iwe_stream_add_point_check(info,
3035                                                                 current_ev,
3036                                                                 end_buf,
3037                                                                 &iwe, buf);
3038                         if (IS_ERR(current_ev))
3039                                 goto unlock;
3040                         break;
3041                 case WLAN_EID_SUPP_RATES:
3042                 case WLAN_EID_EXT_SUPP_RATES:
3043                         /* display all supported rates in readable format */
3044                         p = current_ev + iwe_stream_lcp_len(info);
3045
3046                         memset(&iwe, 0, sizeof(iwe));
3047                         iwe.cmd = SIOCGIWRATE;
3048                         /* Those two flags are ignored... */
3049                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3050
3051                         for (i = 0; i < ie[1]; i++) {
3052                                 iwe.u.bitrate.value =
3053                                         ((ie[i + 2] & 0x7f) * 500000);
3054                                 tmp = p;
3055                                 p = iwe_stream_add_value(info, current_ev, p,
3056                                                          end_buf, &iwe,
3057                                                          IW_EV_PARAM_LEN);
3058                                 if (p == tmp) {
3059                                         current_ev = ERR_PTR(-E2BIG);
3060                                         goto unlock;
3061                                 }
3062                         }
3063                         current_ev = p;
3064                         break;
3065                 }
3066                 rem -= ie[1] + 2;
3067                 ie += ie[1] + 2;
3068         }
3069
3070         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3071             ismesh) {
3072                 memset(&iwe, 0, sizeof(iwe));
3073                 iwe.cmd = SIOCGIWMODE;
3074                 if (ismesh)
3075                         iwe.u.mode = IW_MODE_MESH;
3076                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3077                         iwe.u.mode = IW_MODE_MASTER;
3078                 else
3079                         iwe.u.mode = IW_MODE_ADHOC;
3080                 current_ev = iwe_stream_add_event_check(info, current_ev,
3081                                                         end_buf, &iwe,
3082                                                         IW_EV_UINT_LEN);
3083                 if (IS_ERR(current_ev))
3084                         goto unlock;
3085         }
3086
3087         memset(&iwe, 0, sizeof(iwe));
3088         iwe.cmd = IWEVCUSTOM;
3089         sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3090         iwe.u.data.length = strlen(buf);
3091         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3092                                                 &iwe, buf);
3093         if (IS_ERR(current_ev))
3094                 goto unlock;
3095         memset(&iwe, 0, sizeof(iwe));
3096         iwe.cmd = IWEVCUSTOM;
3097         sprintf(buf, " Last beacon: %ums ago",
3098                 elapsed_jiffies_msecs(bss->ts));
3099         iwe.u.data.length = strlen(buf);
3100         current_ev = iwe_stream_add_point_check(info, current_ev,
3101                                                 end_buf, &iwe, buf);
3102         if (IS_ERR(current_ev))
3103                 goto unlock;
3104
3105         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3106
3107  unlock:
3108         rcu_read_unlock();
3109         return current_ev;
3110 }
3111
3112
3113 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3114                                   struct iw_request_info *info,
3115                                   char *buf, size_t len)
3116 {
3117         char *current_ev = buf;
3118         char *end_buf = buf + len;
3119         struct cfg80211_internal_bss *bss;
3120         int err = 0;
3121
3122         spin_lock_bh(&rdev->bss_lock);
3123         cfg80211_bss_expire(rdev);
3124
3125         list_for_each_entry(bss, &rdev->bss_list, list) {
3126                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3127                         err = -E2BIG;
3128                         break;
3129                 }
3130                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3131                                            current_ev, end_buf);
3132                 if (IS_ERR(current_ev)) {
3133                         err = PTR_ERR(current_ev);
3134                         break;
3135                 }
3136         }
3137         spin_unlock_bh(&rdev->bss_lock);
3138
3139         if (err)
3140                 return err;
3141         return current_ev - buf;
3142 }
3143
3144
3145 int cfg80211_wext_giwscan(struct net_device *dev,
3146                           struct iw_request_info *info,
3147                           struct iw_point *data, char *extra)
3148 {
3149         struct cfg80211_registered_device *rdev;
3150         int res;
3151
3152         if (!netif_running(dev))
3153                 return -ENETDOWN;
3154
3155         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3156
3157         if (IS_ERR(rdev))
3158                 return PTR_ERR(rdev);
3159
3160         if (rdev->scan_req || rdev->scan_msg)
3161                 return -EAGAIN;
3162
3163         res = ieee80211_scan_results(rdev, info, extra, data->length);
3164         data->length = 0;
3165         if (res >= 0) {
3166                 data->length = res;
3167                 res = 0;
3168         }
3169
3170         return res;
3171 }
3172 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3173 #endif