1 // SPDX-License-Identifier: GPL-2.0
3 * cfg80211 scan result handling
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
25 #include "wext-compat.h"
29 * DOC: BSS tree/list structure
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
80 * struct cfg80211_colocated_ap - colocated AP information
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 struct cfg80211_colocated_ap {
102 struct list_head list;
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
108 u8 unsolicited_probe:1,
118 static void bss_free(struct cfg80211_internal_bss *bss)
120 struct cfg80211_bss_ies *ies;
122 if (WARN_ON(atomic_read(&bss->hold)))
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 kfree_rcu(ies, rcu_head);
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
136 if (!list_empty(&bss->hidden_list))
137 list_del(&bss->hidden_list);
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
145 lockdep_assert_held(&rdev->bss_lock);
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
159 lockdep_assert_held(&rdev->bss_lock);
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 if (hbss->refcount == 0)
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
173 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 if (tbss->refcount == 0)
180 if (bss->refcount == 0)
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
187 lockdep_assert_held(&rdev->bss_lock);
189 if (!list_empty(&bss->hidden_list)) {
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
194 if (!bss->pub.hidden_beacon_bss)
197 * if it's a probe response entry break its
198 * link to the other entries in the group
200 list_del_init(&bss->hidden_list);
203 list_del_init(&bss->list);
204 list_del_init(&bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
214 bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
217 u8 id_len, ext_id_len, i, loop_len, id;
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
245 if (elem->id == WLAN_EID_EXTENSION) {
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
255 list = &non_inherit_elem->data[2];
259 for (i = 0; i < loop_len; i++) {
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
276 if (elem->datalen + 2 > buf + buf_len - *pos)
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
293 if (elem->datalen + 2 > buf + buf_len - *pos)
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
299 if (elem->datalen != 255)
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
310 const struct element *non_inherit_elem, *parent, *sub;
313 unsigned int match_len;
315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 /* We copy the elements one by one from the parent to the generated
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(id, subie, subie_len,
342 &ext_id, match_len, 0);
344 /* Copy from parent if not in subie and inherited */
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(parent,
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 &ext_id, match_len, 0))
361 /* Not inheriting, copy all similar elements from subie */
363 if (!cfg80211_copy_elem_with_frags(sub,
369 sub = cfg80211_find_elem_match(id,
370 sub->data + sub->datalen,
374 &ext_id, match_len, 0);
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 if (sub->id == WLAN_EID_FRAGMENT)
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(id, ie, ielen,
406 &ext_id, match_len, 0))
409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 &pos, new_ie, new_ie_len))
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
423 if (bssid && !ether_addr_equal(a->bssid, bssid))
429 ies = rcu_access_pointer(a->ies);
432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
435 if (ssid_elem->datalen != ssid_len)
437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 ssid_elem->datalen)) {
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
471 if (!list_empty(&nontrans_bss->nontrans_list))
474 /* add to the list */
475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
485 lockdep_assert_held(&rdev->bss_lock);
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(&bss->hold))
490 if (!time_after(expire_time, bss->ts))
493 if (__cfg80211_unlink_bss(rdev, bss))
498 rdev->bss_generation++;
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
506 lockdep_assert_held(&rdev->bss_lock);
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(&bss->hold))
512 if (!list_empty(&bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
516 if (oldest && time_before(oldest->ts, bss->ts))
521 if (WARN_ON(!oldest))
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
530 ret = __cfg80211_unlink_bss(rdev, oldest);
535 static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
538 coloc_ap->oct_recommended =
539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
593 bss_params = tbtt_info->bss_params;
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
604 entry->psd_20 = tbtt_info->psd_20;
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
610 bss_params = tbtt_info->bss_params;
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
614 entry->psd_20 = tbtt_info->psd_20;
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(entry->bssid))
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(bss_params, entry))
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
629 if (!entry->same_ssid && !entry->short_ssid_valid)
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
655 int n_coloc = 0, ret;
658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
665 end = elem->data + elem->datalen;
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
673 ap_info = (void *)pos;
674 count = u8_get_bits(ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
678 pos += sizeof(*ap_info);
680 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 freq = ieee80211_channel_to_frequency(ap_info->channel,
687 if (end - pos < count * length)
690 if (u8_get_bits(ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
708 pos += count * length;
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
721 entry->center_freq = freq;
723 if (!cfg80211_parse_ap_info(entry, pos, length,
727 list_add_tail(&entry->list, &ap_list);
738 cfg80211_free_coloc_ap_list(&ap_list);
743 list_splice_tail(&ap_list, list);
747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
759 params->channel_idx = i;
764 request->channels[n_channels] = chan;
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 request->n_channels++;
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 request->ssids[i].ssid_len);
796 if (ap->short_ssid == s_ssid)
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
814 rdev_req->scan_6ghz = true;
816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 rdev_req->wdev->iftype);
821 if (!iftd || !iftd->he_cap.has_he)
824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 struct cfg80211_internal_bss *intbss;
829 spin_lock_bh(&rdev->bss_lock);
830 list_for_each_entry(intbss, &rdev->bss_list, list) {
831 struct cfg80211_bss *res = &intbss->pub;
832 const struct cfg80211_bss_ies *ies;
834 ies = rcu_access_pointer(res->ies);
835 count += cfg80211_parse_colocated_ap(ies,
838 spin_unlock_bh(&rdev->bss_lock);
841 request = kzalloc(struct_size(request, channels, n_channels) +
842 sizeof(*request->scan_6ghz_params) * count +
843 sizeof(*request->ssids) * rdev_req->n_ssids,
846 cfg80211_free_coloc_ap_list(&coloc_ap_list);
850 *request = *rdev_req;
851 request->n_channels = 0;
852 request->scan_6ghz_params =
853 (void *)&request->channels[n_channels];
856 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 * and at least one of the reported co-located APs with same SSID
858 * indicating that all APs in the same ESS are co-located
860 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 list_for_each_entry(ap, &coloc_ap_list, list) {
862 if (ap->colocated_ess &&
863 cfg80211_find_ssid_match(ap, request)) {
864 need_scan_psc = false;
871 * add to the scan request the channels that need to be scanned
872 * regardless of the collocated APs (PSC channels or all channels
873 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
875 for (i = 0; i < rdev_req->n_channels; i++) {
876 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
878 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 cfg80211_scan_req_add_chan(request,
881 rdev_req->channels[i],
886 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
889 list_for_each_entry(ap, &coloc_ap_list, list) {
891 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 &request->scan_6ghz_params[request->n_6ghz_params];
893 struct ieee80211_channel *chan =
894 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
896 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
899 for (i = 0; i < rdev_req->n_channels; i++) {
900 if (rdev_req->channels[i] == chan)
907 if (request->n_ssids > 0 &&
908 !cfg80211_find_ssid_match(ap, request))
911 if (!is_broadcast_ether_addr(request->bssid) &&
912 !ether_addr_equal(request->bssid, ap->bssid))
915 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
918 cfg80211_scan_req_add_chan(request, chan, true);
919 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
920 scan_6ghz_params->short_ssid = ap->short_ssid;
921 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
922 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
923 scan_6ghz_params->psd_20 = ap->psd_20;
926 * If a PSC channel is added to the scan and 'need_scan_psc' is
927 * set to false, then all the APs that the scan logic is
928 * interested with on the channel are collocated and thus there
929 * is no need to perform the initial PSC channel listen.
931 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
932 scan_6ghz_params->psc_no_listen = true;
934 request->n_6ghz_params++;
938 cfg80211_free_coloc_ap_list(&coloc_ap_list);
940 if (request->n_channels) {
941 struct cfg80211_scan_request *old = rdev->int_scan_req;
942 rdev->int_scan_req = request;
945 * Add the ssids from the parent scan request to the new scan
946 * request, so the driver would be able to use them in its
947 * probe requests to discover hidden APs on PSC channels.
949 request->ssids = (void *)&request->channels[request->n_channels];
950 request->n_ssids = rdev_req->n_ssids;
951 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
955 * If this scan follows a previous scan, save the scan start
956 * info from the first part of the scan
959 rdev->int_scan_req->info = old->info;
961 err = rdev_scan(rdev, request);
963 rdev->int_scan_req = old;
976 int cfg80211_scan(struct cfg80211_registered_device *rdev)
978 struct cfg80211_scan_request *request;
979 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
980 u32 n_channels = 0, idx, i;
982 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
983 return rdev_scan(rdev, rdev_req);
985 for (i = 0; i < rdev_req->n_channels; i++) {
986 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
991 return cfg80211_scan_6ghz(rdev);
993 request = kzalloc(struct_size(request, channels, n_channels),
998 *request = *rdev_req;
999 request->n_channels = n_channels;
1001 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1002 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1003 request->channels[idx++] = rdev_req->channels[i];
1006 rdev_req->scan_6ghz = false;
1007 rdev->int_scan_req = request;
1008 return rdev_scan(rdev, request);
1011 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1014 struct cfg80211_scan_request *request, *rdev_req;
1015 struct wireless_dev *wdev;
1016 struct sk_buff *msg;
1017 #ifdef CONFIG_CFG80211_WEXT
1018 union iwreq_data wrqu;
1021 lockdep_assert_held(&rdev->wiphy.mtx);
1023 if (rdev->scan_msg) {
1024 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1025 rdev->scan_msg = NULL;
1029 rdev_req = rdev->scan_req;
1033 wdev = rdev_req->wdev;
1034 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1036 if (wdev_running(wdev) &&
1037 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1038 !rdev_req->scan_6ghz && !request->info.aborted &&
1039 !cfg80211_scan_6ghz(rdev))
1043 * This must be before sending the other events!
1044 * Otherwise, wpa_supplicant gets completely confused with
1048 cfg80211_sme_scan_done(wdev->netdev);
1050 if (!request->info.aborted &&
1051 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1052 /* flush entries from previous scans */
1053 spin_lock_bh(&rdev->bss_lock);
1054 __cfg80211_bss_expire(rdev, request->scan_start);
1055 spin_unlock_bh(&rdev->bss_lock);
1058 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1060 #ifdef CONFIG_CFG80211_WEXT
1061 if (wdev->netdev && !request->info.aborted) {
1062 memset(&wrqu, 0, sizeof(wrqu));
1064 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1068 dev_put(wdev->netdev);
1070 kfree(rdev->int_scan_req);
1071 rdev->int_scan_req = NULL;
1073 kfree(rdev->scan_req);
1074 rdev->scan_req = NULL;
1077 rdev->scan_msg = msg;
1079 nl80211_send_scan_msg(rdev, msg);
1082 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1084 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1087 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1088 struct cfg80211_scan_info *info)
1090 struct cfg80211_scan_info old_info = request->info;
1092 trace_cfg80211_scan_done(request, info);
1093 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1094 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1096 request->info = *info;
1099 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1100 * be of the first part. In such a case old_info.scan_start_tsf should
1103 if (request->scan_6ghz && old_info.scan_start_tsf) {
1104 request->info.scan_start_tsf = old_info.scan_start_tsf;
1105 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1106 sizeof(request->info.tsf_bssid));
1109 request->notified = true;
1110 wiphy_work_queue(request->wiphy,
1111 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1113 EXPORT_SYMBOL(cfg80211_scan_done);
1115 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1116 struct cfg80211_sched_scan_request *req)
1118 lockdep_assert_held(&rdev->wiphy.mtx);
1120 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1123 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1124 struct cfg80211_sched_scan_request *req)
1126 lockdep_assert_held(&rdev->wiphy.mtx);
1128 list_del_rcu(&req->list);
1129 kfree_rcu(req, rcu_head);
1132 static struct cfg80211_sched_scan_request *
1133 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1135 struct cfg80211_sched_scan_request *pos;
1137 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1138 lockdep_is_held(&rdev->wiphy.mtx)) {
1139 if (pos->reqid == reqid)
1146 * Determines if a scheduled scan request can be handled. When a legacy
1147 * scheduled scan is running no other scheduled scan is allowed regardless
1148 * whether the request is for legacy or multi-support scan. When a multi-support
1149 * scheduled scan is running a request for legacy scan is not allowed. In this
1150 * case a request for multi-support scan can be handled if resources are
1151 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1153 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *pos;
1159 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1160 /* request id zero means legacy in progress */
1161 if (!i && !pos->reqid)
1162 return -EINPROGRESS;
1167 /* no legacy allowed when multi request(s) are active */
1169 return -EINPROGRESS;
1171 /* resource limit reached */
1172 if (i == rdev->wiphy.max_sched_scan_reqs)
1178 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1180 struct cfg80211_registered_device *rdev;
1181 struct cfg80211_sched_scan_request *req, *tmp;
1183 rdev = container_of(work, struct cfg80211_registered_device,
1186 wiphy_lock(&rdev->wiphy);
1187 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1188 if (req->report_results) {
1189 req->report_results = false;
1190 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1191 /* flush entries from previous scans */
1192 spin_lock_bh(&rdev->bss_lock);
1193 __cfg80211_bss_expire(rdev, req->scan_start);
1194 spin_unlock_bh(&rdev->bss_lock);
1195 req->scan_start = jiffies;
1197 nl80211_send_sched_scan(req,
1198 NL80211_CMD_SCHED_SCAN_RESULTS);
1201 wiphy_unlock(&rdev->wiphy);
1204 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1206 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1207 struct cfg80211_sched_scan_request *request;
1209 trace_cfg80211_sched_scan_results(wiphy, reqid);
1210 /* ignore if we're not scanning */
1213 request = cfg80211_find_sched_scan_req(rdev, reqid);
1215 request->report_results = true;
1216 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1220 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1222 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1226 lockdep_assert_held(&wiphy->mtx);
1228 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1230 __cfg80211_stop_sched_scan(rdev, reqid, true);
1232 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1234 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1237 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1238 wiphy_unlock(wiphy);
1240 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1242 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1243 struct cfg80211_sched_scan_request *req,
1244 bool driver_initiated)
1246 lockdep_assert_held(&rdev->wiphy.mtx);
1248 if (!driver_initiated) {
1249 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1254 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1256 cfg80211_del_sched_scan_req(rdev, req);
1261 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1262 u64 reqid, bool driver_initiated)
1264 struct cfg80211_sched_scan_request *sched_scan_req;
1266 lockdep_assert_held(&rdev->wiphy.mtx);
1268 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1269 if (!sched_scan_req)
1272 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1276 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1277 unsigned long age_secs)
1279 struct cfg80211_internal_bss *bss;
1280 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1282 spin_lock_bh(&rdev->bss_lock);
1283 list_for_each_entry(bss, &rdev->bss_list, list)
1284 bss->ts -= age_jiffies;
1285 spin_unlock_bh(&rdev->bss_lock);
1288 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1290 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1293 void cfg80211_bss_flush(struct wiphy *wiphy)
1295 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1297 spin_lock_bh(&rdev->bss_lock);
1298 __cfg80211_bss_expire(rdev, jiffies);
1299 spin_unlock_bh(&rdev->bss_lock);
1301 EXPORT_SYMBOL(cfg80211_bss_flush);
1303 const struct element *
1304 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1305 const u8 *match, unsigned int match_len,
1306 unsigned int match_offset)
1308 const struct element *elem;
1310 for_each_element_id(elem, eid, ies, len) {
1311 if (elem->datalen >= match_offset + match_len &&
1312 !memcmp(elem->data + match_offset, match, match_len))
1318 EXPORT_SYMBOL(cfg80211_find_elem_match);
1320 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1324 const struct element *elem;
1325 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1326 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1328 if (WARN_ON(oui_type > 0xff))
1331 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1332 match, match_len, 0);
1334 if (!elem || elem->datalen < 4)
1339 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1342 * enum bss_compare_mode - BSS compare mode
1343 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1344 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1345 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1347 enum bss_compare_mode {
1353 static int cmp_bss(struct cfg80211_bss *a,
1354 struct cfg80211_bss *b,
1355 enum bss_compare_mode mode)
1357 const struct cfg80211_bss_ies *a_ies, *b_ies;
1358 const u8 *ie1 = NULL;
1359 const u8 *ie2 = NULL;
1362 if (a->channel != b->channel)
1363 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1364 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1366 a_ies = rcu_access_pointer(a->ies);
1369 b_ies = rcu_access_pointer(b->ies);
1373 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1374 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1375 a_ies->data, a_ies->len);
1376 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1377 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1378 b_ies->data, b_ies->len);
1382 if (ie1[1] == ie2[1])
1383 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1385 mesh_id_cmp = ie2[1] - ie1[1];
1387 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1388 a_ies->data, a_ies->len);
1389 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1390 b_ies->data, b_ies->len);
1394 if (ie1[1] != ie2[1])
1395 return ie2[1] - ie1[1];
1396 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1400 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1404 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1405 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1411 * Note that with "hide_ssid", the function returns a match if
1412 * the already-present BSS ("b") is a hidden SSID beacon for
1413 * the new BSS ("a").
1416 /* sort missing IE before (left of) present IE */
1423 case BSS_CMP_HIDE_ZLEN:
1425 * In ZLEN mode we assume the BSS entry we're
1426 * looking for has a zero-length SSID. So if
1427 * the one we're looking at right now has that,
1428 * return 0. Otherwise, return the difference
1429 * in length, but since we're looking for the
1430 * 0-length it's really equivalent to returning
1431 * the length of the one we're looking at.
1433 * No content comparison is needed as we assume
1434 * the content length is zero.
1437 case BSS_CMP_REGULAR:
1439 /* sort by length first, then by contents */
1440 if (ie1[1] != ie2[1])
1441 return ie2[1] - ie1[1];
1442 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1443 case BSS_CMP_HIDE_NUL:
1444 if (ie1[1] != ie2[1])
1445 return ie2[1] - ie1[1];
1446 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1447 for (i = 0; i < ie2[1]; i++)
1454 static bool cfg80211_bss_type_match(u16 capability,
1455 enum nl80211_band band,
1456 enum ieee80211_bss_type bss_type)
1461 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1464 if (band == NL80211_BAND_60GHZ) {
1465 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1467 case IEEE80211_BSS_TYPE_ESS:
1468 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1470 case IEEE80211_BSS_TYPE_PBSS:
1471 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1473 case IEEE80211_BSS_TYPE_IBSS:
1474 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1480 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1482 case IEEE80211_BSS_TYPE_ESS:
1483 val = WLAN_CAPABILITY_ESS;
1485 case IEEE80211_BSS_TYPE_IBSS:
1486 val = WLAN_CAPABILITY_IBSS;
1488 case IEEE80211_BSS_TYPE_MBSS:
1496 ret = ((capability & mask) == val);
1500 /* Returned bss is reference counted and must be cleaned up appropriately. */
1501 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1502 struct ieee80211_channel *channel,
1504 const u8 *ssid, size_t ssid_len,
1505 enum ieee80211_bss_type bss_type,
1506 enum ieee80211_privacy privacy)
1508 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1509 struct cfg80211_internal_bss *bss, *res = NULL;
1510 unsigned long now = jiffies;
1513 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1516 spin_lock_bh(&rdev->bss_lock);
1518 list_for_each_entry(bss, &rdev->bss_list, list) {
1519 if (!cfg80211_bss_type_match(bss->pub.capability,
1520 bss->pub.channel->band, bss_type))
1523 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1524 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1525 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1527 if (channel && bss->pub.channel != channel)
1529 if (!is_valid_ether_addr(bss->pub.bssid))
1531 /* Don't get expired BSS structs */
1532 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1533 !atomic_read(&bss->hold))
1535 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1537 bss_ref_get(rdev, res);
1542 spin_unlock_bh(&rdev->bss_lock);
1545 trace_cfg80211_return_bss(&res->pub);
1548 EXPORT_SYMBOL(cfg80211_get_bss);
1550 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1551 struct cfg80211_internal_bss *bss)
1553 struct rb_node **p = &rdev->bss_tree.rb_node;
1554 struct rb_node *parent = NULL;
1555 struct cfg80211_internal_bss *tbss;
1560 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1562 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1564 if (WARN_ON(!cmp)) {
1565 /* will sort of leak this BSS */
1572 p = &(*p)->rb_right;
1575 rb_link_node(&bss->rbn, parent, p);
1576 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1579 static struct cfg80211_internal_bss *
1580 rb_find_bss(struct cfg80211_registered_device *rdev,
1581 struct cfg80211_internal_bss *res,
1582 enum bss_compare_mode mode)
1584 struct rb_node *n = rdev->bss_tree.rb_node;
1585 struct cfg80211_internal_bss *bss;
1589 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1590 r = cmp_bss(&res->pub, &bss->pub, mode);
1603 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1604 struct cfg80211_internal_bss *new)
1606 const struct cfg80211_bss_ies *ies;
1607 struct cfg80211_internal_bss *bss;
1613 ies = rcu_access_pointer(new->pub.beacon_ies);
1617 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1624 for (i = 0; i < ssidlen; i++)
1628 /* not a hidden SSID */
1632 /* This is the bad part ... */
1634 list_for_each_entry(bss, &rdev->bss_list, list) {
1636 * we're iterating all the entries anyway, so take the
1637 * opportunity to validate the list length accounting
1641 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1643 if (bss->pub.channel != new->pub.channel)
1645 if (bss->pub.scan_width != new->pub.scan_width)
1647 if (rcu_access_pointer(bss->pub.beacon_ies))
1649 ies = rcu_access_pointer(bss->pub.ies);
1652 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1655 if (ssidlen && ie[1] != ssidlen)
1657 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1659 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1660 list_del(&bss->hidden_list);
1662 list_add(&bss->hidden_list, &new->hidden_list);
1663 bss->pub.hidden_beacon_bss = &new->pub;
1664 new->refcount += bss->refcount;
1665 rcu_assign_pointer(bss->pub.beacon_ies,
1666 new->pub.beacon_ies);
1669 WARN_ONCE(n_entries != rdev->bss_entries,
1670 "rdev bss entries[%d]/list[len:%d] corruption\n",
1671 rdev->bss_entries, n_entries);
1676 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1677 const struct cfg80211_bss_ies *new_ies,
1678 const struct cfg80211_bss_ies *old_ies)
1680 struct cfg80211_internal_bss *bss;
1682 /* Assign beacon IEs to all sub entries */
1683 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1684 const struct cfg80211_bss_ies *ies;
1686 ies = rcu_access_pointer(bss->pub.beacon_ies);
1687 WARN_ON(ies != old_ies);
1689 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1694 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1695 struct cfg80211_internal_bss *known,
1696 struct cfg80211_internal_bss *new,
1699 lockdep_assert_held(&rdev->bss_lock);
1702 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1703 const struct cfg80211_bss_ies *old;
1705 old = rcu_access_pointer(known->pub.proberesp_ies);
1707 rcu_assign_pointer(known->pub.proberesp_ies,
1708 new->pub.proberesp_ies);
1709 /* Override possible earlier Beacon frame IEs */
1710 rcu_assign_pointer(known->pub.ies,
1711 new->pub.proberesp_ies);
1713 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1714 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1715 const struct cfg80211_bss_ies *old;
1717 if (known->pub.hidden_beacon_bss &&
1718 !list_empty(&known->hidden_list)) {
1719 const struct cfg80211_bss_ies *f;
1721 /* The known BSS struct is one of the probe
1722 * response members of a group, but we're
1723 * receiving a beacon (beacon_ies in the new
1724 * bss is used). This can only mean that the
1725 * AP changed its beacon from not having an
1726 * SSID to showing it, which is confusing so
1727 * drop this information.
1730 f = rcu_access_pointer(new->pub.beacon_ies);
1731 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1735 old = rcu_access_pointer(known->pub.beacon_ies);
1737 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1739 /* Override IEs if they were from a beacon before */
1740 if (old == rcu_access_pointer(known->pub.ies))
1741 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1743 cfg80211_update_hidden_bsses(known,
1744 rcu_access_pointer(new->pub.beacon_ies),
1748 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1751 known->pub.beacon_interval = new->pub.beacon_interval;
1753 /* don't update the signal if beacon was heard on
1757 known->pub.signal = new->pub.signal;
1758 known->pub.capability = new->pub.capability;
1759 known->ts = new->ts;
1760 known->ts_boottime = new->ts_boottime;
1761 known->parent_tsf = new->parent_tsf;
1762 known->pub.chains = new->pub.chains;
1763 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1764 IEEE80211_MAX_CHAINS);
1765 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1766 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1767 known->pub.bssid_index = new->pub.bssid_index;
1772 /* Returned bss is reference counted and must be cleaned up appropriately. */
1773 static struct cfg80211_internal_bss *
1774 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1775 struct cfg80211_internal_bss *tmp,
1776 bool signal_valid, unsigned long ts)
1778 struct cfg80211_internal_bss *found = NULL;
1780 if (WARN_ON(!tmp->pub.channel))
1785 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1789 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1792 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1795 struct cfg80211_internal_bss *new;
1796 struct cfg80211_internal_bss *hidden;
1797 struct cfg80211_bss_ies *ies;
1800 * create a copy -- the "res" variable that is passed in
1801 * is allocated on the stack since it's not needed in the
1802 * more common case of an update
1804 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1807 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1809 kfree_rcu(ies, rcu_head);
1810 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1812 kfree_rcu(ies, rcu_head);
1815 memcpy(new, tmp, sizeof(*new));
1817 INIT_LIST_HEAD(&new->hidden_list);
1818 INIT_LIST_HEAD(&new->pub.nontrans_list);
1819 /* we'll set this later if it was non-NULL */
1820 new->pub.transmitted_bss = NULL;
1822 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1823 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1825 hidden = rb_find_bss(rdev, tmp,
1828 new->pub.hidden_beacon_bss = &hidden->pub;
1829 list_add(&new->hidden_list,
1830 &hidden->hidden_list);
1832 rcu_assign_pointer(new->pub.beacon_ies,
1833 hidden->pub.beacon_ies);
1837 * Ok so we found a beacon, and don't have an entry. If
1838 * it's a beacon with hidden SSID, we might be in for an
1839 * expensive search for any probe responses that should
1840 * be grouped with this beacon for updates ...
1842 if (!cfg80211_combine_bsses(rdev, new)) {
1843 bss_ref_put(rdev, new);
1848 if (rdev->bss_entries >= bss_entries_limit &&
1849 !cfg80211_bss_expire_oldest(rdev)) {
1850 bss_ref_put(rdev, new);
1854 /* This must be before the call to bss_ref_get */
1855 if (tmp->pub.transmitted_bss) {
1856 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1857 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1860 list_add_tail(&new->list, &rdev->bss_list);
1861 rdev->bss_entries++;
1862 rb_insert_bss(rdev, new);
1866 rdev->bss_generation++;
1867 bss_ref_get(rdev, found);
1872 struct cfg80211_internal_bss *
1873 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1874 struct cfg80211_internal_bss *tmp,
1875 bool signal_valid, unsigned long ts)
1877 struct cfg80211_internal_bss *res;
1879 spin_lock_bh(&rdev->bss_lock);
1880 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1881 spin_unlock_bh(&rdev->bss_lock);
1886 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1887 enum nl80211_band band)
1889 const struct element *tmp;
1891 if (band == NL80211_BAND_6GHZ) {
1892 struct ieee80211_he_operation *he_oper;
1894 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1896 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1897 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1898 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1900 he_oper = (void *)&tmp->data[1];
1902 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1906 return he_6ghz_oper->primary;
1908 } else if (band == NL80211_BAND_S1GHZ) {
1909 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1910 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1911 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1913 return s1gop->oper_ch;
1916 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1917 if (tmp && tmp->datalen == 1)
1918 return tmp->data[0];
1920 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1922 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1923 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1925 return htop->primary_chan;
1931 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1934 * Update RX channel information based on the available frame payload
1935 * information. This is mainly for the 2.4 GHz band where frames can be received
1936 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1937 * element to indicate the current (transmitting) channel, but this might also
1938 * be needed on other bands if RX frequency does not match with the actual
1939 * operating channel of a BSS, or if the AP reports a different primary channel.
1941 static struct ieee80211_channel *
1942 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1943 struct ieee80211_channel *channel,
1944 enum nl80211_bss_scan_width scan_width)
1948 struct ieee80211_channel *alt_channel;
1950 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1953 if (channel_number < 0) {
1954 /* No channel information in frame payload */
1958 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1961 * Frame info (beacon/prob res) is the same as received channel,
1962 * no need for further processing.
1964 if (freq == ieee80211_channel_to_khz(channel))
1967 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1969 if (channel->band == NL80211_BAND_2GHZ ||
1970 channel->band == NL80211_BAND_6GHZ) {
1972 * Better not allow unexpected channels when that could
1973 * be going beyond the 1-11 range (e.g., discovering
1974 * BSS on channel 12 when radio is configured for
1975 * channel 11) or beyond the 6 GHz channel range.
1980 /* No match for the payload channel number - ignore it */
1984 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1985 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1987 * Ignore channel number in 5 and 10 MHz channels where there
1988 * may not be an n:1 or 1:n mapping between frequencies and
1995 * Use the channel determined through the payload channel number
1996 * instead of the RX channel reported by the driver.
1998 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2003 struct cfg80211_inform_single_bss_data {
2004 struct cfg80211_inform_bss *drv_data;
2005 enum cfg80211_bss_frame_type ftype;
2006 struct ieee80211_channel *channel;
2010 u16 beacon_interval;
2015 BSS_SOURCE_DIRECT = 0,
2017 BSS_SOURCE_STA_PROFILE,
2019 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2020 struct cfg80211_bss *source_bss;
2021 u8 max_bssid_indicator;
2025 /* Returned bss is reference counted and must be cleaned up appropriately. */
2026 static struct cfg80211_bss *
2027 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2028 struct cfg80211_inform_single_bss_data *data,
2031 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2032 struct cfg80211_inform_bss *drv_data = data->drv_data;
2033 struct cfg80211_bss_ies *ies;
2034 struct ieee80211_channel *channel;
2035 struct cfg80211_internal_bss tmp = {}, *res;
2040 if (WARN_ON(!wiphy))
2043 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2044 (drv_data->signal < 0 || drv_data->signal > 100)))
2047 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2050 channel = data->channel;
2052 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2054 drv_data->scan_width);
2058 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2059 tmp.pub.channel = channel;
2060 tmp.pub.scan_width = drv_data->scan_width;
2061 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2062 tmp.pub.signal = drv_data->signal;
2065 tmp.pub.beacon_interval = data->beacon_interval;
2066 tmp.pub.capability = data->capability;
2067 tmp.ts_boottime = drv_data->boottime_ns;
2068 tmp.parent_tsf = drv_data->parent_tsf;
2069 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2071 if (data->bss_source != BSS_SOURCE_DIRECT) {
2072 tmp.pub.transmitted_bss = data->source_bss;
2073 ts = bss_from_pub(data->source_bss)->ts;
2074 tmp.pub.bssid_index = data->bssid_index;
2075 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2079 if (channel->band == NL80211_BAND_60GHZ) {
2080 bss_type = data->capability &
2081 WLAN_CAPABILITY_DMG_TYPE_MASK;
2082 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2083 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2084 regulatory_hint_found_beacon(wiphy, channel,
2087 if (data->capability & WLAN_CAPABILITY_ESS)
2088 regulatory_hint_found_beacon(wiphy, channel,
2094 * If we do not know here whether the IEs are from a Beacon or Probe
2095 * Response frame, we need to pick one of the options and only use it
2096 * with the driver that does not provide the full Beacon/Probe Response
2097 * frame. Use Beacon frame pointer to avoid indicating that this should
2098 * override the IEs pointer should we have received an earlier
2099 * indication of Probe Response data.
2101 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2104 ies->len = data->ielen;
2105 ies->tsf = data->tsf;
2106 ies->from_beacon = false;
2107 memcpy(ies->data, data->ie, data->ielen);
2109 switch (data->ftype) {
2110 case CFG80211_BSS_FTYPE_BEACON:
2111 ies->from_beacon = true;
2113 case CFG80211_BSS_FTYPE_UNKNOWN:
2114 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2116 case CFG80211_BSS_FTYPE_PRESP:
2117 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2120 rcu_assign_pointer(tmp.pub.ies, ies);
2122 signal_valid = drv_data->chan == channel;
2123 spin_lock_bh(&rdev->bss_lock);
2124 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2128 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2130 if (data->bss_source == BSS_SOURCE_MBSSID) {
2131 /* this is a nontransmitting bss, we need to add it to
2132 * transmitting bss' list if it is not there
2134 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2135 if (__cfg80211_unlink_bss(rdev, res)) {
2136 rdev->bss_generation++;
2144 spin_unlock_bh(&rdev->bss_lock);
2146 trace_cfg80211_return_bss(&res->pub);
2147 /* __cfg80211_bss_update gives us a referenced result */
2151 spin_unlock_bh(&rdev->bss_lock);
2155 static const struct element
2156 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2157 const struct element *mbssid_elem,
2158 const struct element *sub_elem)
2160 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2161 const struct element *next_mbssid;
2162 const struct element *next_sub;
2164 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2166 ielen - (mbssid_end - ie));
2169 * If it is not the last subelement in current MBSSID IE or there isn't
2170 * a next MBSSID IE - profile is complete.
2172 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2176 /* For any length error, just return NULL */
2178 if (next_mbssid->datalen < 4)
2181 next_sub = (void *)&next_mbssid->data[1];
2183 if (next_mbssid->data + next_mbssid->datalen <
2184 next_sub->data + next_sub->datalen)
2187 if (next_sub->id != 0 || next_sub->datalen < 2)
2191 * Check if the first element in the next sub element is a start
2194 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2198 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2199 const struct element *mbssid_elem,
2200 const struct element *sub_elem,
2201 u8 *merged_ie, size_t max_copy_len)
2203 size_t copied_len = sub_elem->datalen;
2204 const struct element *next_mbssid;
2206 if (sub_elem->datalen > max_copy_len)
2209 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2211 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2214 const struct element *next_sub = (void *)&next_mbssid->data[1];
2216 if (copied_len + next_sub->datalen > max_copy_len)
2218 memcpy(merged_ie + copied_len, next_sub->data,
2220 copied_len += next_sub->datalen;
2225 EXPORT_SYMBOL(cfg80211_merge_profile);
2228 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2229 struct cfg80211_inform_single_bss_data *tx_data,
2230 struct cfg80211_bss *source_bss,
2233 struct cfg80211_inform_single_bss_data data = {
2234 .drv_data = tx_data->drv_data,
2235 .ftype = tx_data->ftype,
2236 .tsf = tx_data->tsf,
2237 .beacon_interval = tx_data->beacon_interval,
2238 .source_bss = source_bss,
2239 .bss_source = BSS_SOURCE_MBSSID,
2241 const u8 *mbssid_index_ie;
2242 const struct element *elem, *sub;
2243 u8 *new_ie, *profile;
2244 u64 seen_indices = 0;
2245 struct cfg80211_bss *bss;
2249 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2250 tx_data->ie, tx_data->ielen))
2252 if (!wiphy->support_mbssid)
2254 if (wiphy->support_only_he_mbssid &&
2255 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2256 tx_data->ie, tx_data->ielen))
2259 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2263 profile = kmalloc(tx_data->ielen, gfp);
2267 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2268 tx_data->ie, tx_data->ielen) {
2269 if (elem->datalen < 4)
2271 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2273 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2276 if (sub->id != 0 || sub->datalen < 4) {
2277 /* not a valid BSS profile */
2281 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2282 sub->data[1] != 2) {
2283 /* The first element within the Nontransmitted
2284 * BSSID Profile is not the Nontransmitted
2285 * BSSID Capability element.
2290 memset(profile, 0, tx_data->ielen);
2291 profile_len = cfg80211_merge_profile(tx_data->ie,
2298 /* found a Nontransmitted BSSID Profile */
2299 mbssid_index_ie = cfg80211_find_ie
2300 (WLAN_EID_MULTI_BSSID_IDX,
2301 profile, profile_len);
2302 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2303 mbssid_index_ie[2] == 0 ||
2304 mbssid_index_ie[2] > 46) {
2305 /* No valid Multiple BSSID-Index element */
2309 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2310 /* We don't support legacy split of a profile */
2311 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2312 mbssid_index_ie[2]);
2314 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2316 data.bssid_index = mbssid_index_ie[2];
2317 data.max_bssid_indicator = elem->data[0];
2319 cfg80211_gen_new_bssid(tx_data->bssid,
2320 data.max_bssid_indicator,
2324 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2326 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2331 IEEE80211_MAX_DATA_LEN);
2335 data.capability = get_unaligned_le16(profile + 2);
2336 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2339 cfg80211_put_bss(wiphy, bss);
2348 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2349 size_t ieslen, u8 *data, size_t data_len,
2352 const struct element *next;
2359 /* elem might be invalid after the memmove */
2360 next = (void *)(elem->data + elem->datalen);
2362 elem_datalen = elem->datalen;
2363 if (elem->id == WLAN_EID_EXTENSION) {
2364 copied = elem->datalen - 1;
2365 if (copied > data_len)
2368 memmove(data, elem->data + 1, copied);
2370 copied = elem->datalen;
2371 if (copied > data_len)
2374 memmove(data, elem->data, copied);
2377 /* Fragmented elements must have 255 bytes */
2378 if (elem_datalen < 255)
2382 elem->data < ies + ieslen &&
2383 elem->data + elem->datalen < ies + ieslen;
2385 /* elem might be invalid after the memmove */
2386 next = (void *)(elem->data + elem->datalen);
2388 if (elem->id != frag_id)
2391 elem_datalen = elem->datalen;
2393 if (copied + elem_datalen > data_len)
2396 memmove(data + copied, elem->data, elem_datalen);
2397 copied += elem_datalen;
2399 /* Only the last fragment may be short */
2400 if (elem_datalen != 255)
2406 EXPORT_SYMBOL(cfg80211_defragment_element);
2408 struct cfg80211_mle {
2409 struct ieee80211_multi_link_elem *mle;
2410 struct ieee80211_mle_per_sta_profile
2411 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2412 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2417 static struct cfg80211_mle *
2418 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2421 const struct element *elem;
2422 struct cfg80211_mle *res;
2425 u8 common_size, idx;
2427 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2430 /* Required length for first defragmentation */
2431 buf_len = mle->datalen - 1;
2432 for_each_element(elem, mle->data + mle->datalen,
2433 ielen - sizeof(*mle) + mle->datalen) {
2434 if (elem->id != WLAN_EID_FRAGMENT)
2437 buf_len += elem->datalen;
2440 res = kzalloc(struct_size(res, data, buf_len), gfp);
2444 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2450 res->mle = (void *)res->data;
2452 /* Find the sub-element area in the buffer */
2453 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2454 ie = res->data + common_size;
2455 ielen = mle_len - common_size;
2458 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2460 res->sta_prof[idx] = (void *)elem->data;
2461 res->sta_prof_len[idx] = elem->datalen;
2464 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2467 if (!for_each_element_completed(elem, ie, ielen))
2470 /* Defragment sta_info in-place */
2471 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2473 if (res->sta_prof_len[idx] < 255)
2476 elem = (void *)res->sta_prof[idx] - 2;
2478 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2479 res->sta_prof[idx + 1])
2480 buf_len = (u8 *)res->sta_prof[idx + 1] -
2481 (u8 *)res->sta_prof[idx];
2483 buf_len = ielen + ie - (u8 *)elem;
2485 res->sta_prof_len[idx] =
2486 cfg80211_defragment_element(elem,
2487 (u8 *)elem, buf_len,
2488 (u8 *)res->sta_prof[idx],
2490 IEEE80211_MLE_SUBELEM_FRAGMENT);
2491 if (res->sta_prof_len[idx] < 0)
2503 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2504 const struct ieee80211_neighbor_ap_info **ap_info,
2505 const u8 **tbtt_info)
2507 const struct ieee80211_neighbor_ap_info *info;
2508 const struct element *rnr;
2509 const u8 *pos, *end;
2511 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2513 end = rnr->data + rnr->datalen;
2515 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2516 while (sizeof(*info) <= end - pos) {
2517 const struct ieee80211_rnr_mld_params *mld_params;
2519 u8 length, i, count, mld_params_offset;
2523 count = u8_get_bits(info->tbtt_info_hdr,
2524 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2525 length = info->tbtt_info_len;
2527 pos += sizeof(*info);
2529 if (count * length > end - pos)
2532 type = u8_get_bits(info->tbtt_info_hdr,
2533 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2535 /* Only accept full TBTT information. NSTR mobile APs
2536 * use the shortened version, but we ignore them here.
2538 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2540 offsetofend(struct ieee80211_tbtt_info_ge_11,
2543 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2545 pos += count * length;
2549 for (i = 0; i < count; i++) {
2550 mld_params = (void *)pos + mld_params_offset;
2551 params = le16_to_cpu(mld_params->params);
2553 lid = u16_get_bits(params,
2554 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2556 if (mld_id == mld_params->mld_id &&
2572 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2573 struct cfg80211_inform_single_bss_data *tx_data,
2574 struct cfg80211_bss *source_bss,
2577 struct cfg80211_inform_single_bss_data data = {
2578 .drv_data = tx_data->drv_data,
2579 .ftype = tx_data->ftype,
2580 .source_bss = source_bss,
2581 .bss_source = BSS_SOURCE_STA_PROFILE,
2583 struct ieee80211_multi_link_elem *ml_elem;
2584 const struct element *elem;
2585 struct cfg80211_mle *mle;
2588 struct cfg80211_bss *bss;
2597 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2600 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2601 tx_data->ie, tx_data->ielen);
2602 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2605 ml_elem = (void *)elem->data + 1;
2606 control = le16_to_cpu(ml_elem->control);
2607 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2608 IEEE80211_ML_CONTROL_TYPE_BASIC)
2611 /* Must be present when transmitted by an AP (in a probe response) */
2612 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2613 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2614 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2617 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2618 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2620 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2622 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2625 /* MLD capabilities and operations */
2628 /* Not included when the (nontransmitted) AP is responding itself,
2629 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2631 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2638 /* Extended MLD capabilities and operations */
2641 /* Fully defrag the ML element for sta information/profile iteration */
2642 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2646 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2650 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2651 const struct ieee80211_neighbor_ap_info *ap_info;
2652 enum nl80211_band band;
2655 const u8 *tbtt_info;
2656 ssize_t profile_len;
2659 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2660 mle->sta_prof_len[i]))
2663 control = le16_to_cpu(mle->sta_prof[i]->control);
2665 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2668 link_id = u16_get_bits(control,
2669 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2670 if (seen_links & BIT(link_id))
2672 seen_links |= BIT(link_id);
2674 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2675 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2676 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2679 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2680 data.beacon_interval =
2681 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2682 data.tsf = tx_data->tsf +
2683 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2685 /* sta_info_len counts itself */
2686 profile = mle->sta_prof[i]->variable +
2687 mle->sta_prof[i]->sta_info_len - 1;
2688 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2691 if (profile_len < 2)
2694 data.capability = get_unaligned_le16(profile);
2698 /* Find in RNR to look up channel information */
2699 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2701 &ap_info, &tbtt_info))
2704 /* We could sanity check the BSSID is included */
2706 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2710 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2711 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2713 /* Generate new elements */
2714 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2716 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2717 profile, profile_len,
2719 IEEE80211_MAX_DATA_LEN);
2723 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2726 cfg80211_put_bss(wiphy, bss);
2734 struct cfg80211_bss *
2735 cfg80211_inform_bss_data(struct wiphy *wiphy,
2736 struct cfg80211_inform_bss *data,
2737 enum cfg80211_bss_frame_type ftype,
2738 const u8 *bssid, u64 tsf, u16 capability,
2739 u16 beacon_interval, const u8 *ie, size_t ielen,
2742 struct cfg80211_inform_single_bss_data inform_data = {
2746 .capability = capability,
2747 .beacon_interval = beacon_interval,
2751 struct cfg80211_bss *res;
2753 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2755 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2759 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2761 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2765 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2767 /* cfg80211_inform_bss_width_frame helper */
2768 static struct cfg80211_bss *
2769 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2770 struct cfg80211_inform_bss *data,
2771 struct ieee80211_mgmt *mgmt, size_t len,
2774 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2775 struct cfg80211_internal_bss tmp = {}, *res;
2776 struct cfg80211_bss_ies *ies;
2777 struct ieee80211_channel *channel;
2779 struct ieee80211_ext *ext = NULL;
2780 u8 *bssid, *variable;
2781 u16 capability, beacon_int;
2782 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2783 u.probe_resp.variable);
2786 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2787 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2789 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2794 if (WARN_ON(!wiphy))
2797 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2798 (data->signal < 0 || data->signal > 100)))
2801 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2802 ext = (void *) mgmt;
2803 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2804 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2805 min_hdr_len = offsetof(struct ieee80211_ext,
2806 u.s1g_short_beacon.variable);
2809 if (WARN_ON(len < min_hdr_len))
2812 ielen = len - min_hdr_len;
2813 variable = mgmt->u.probe_resp.variable;
2815 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2816 variable = ext->u.s1g_short_beacon.variable;
2818 variable = ext->u.s1g_beacon.variable;
2821 channel = cfg80211_get_bss_channel(wiphy, variable,
2822 ielen, data->chan, data->scan_width);
2827 const struct ieee80211_s1g_bcn_compat_ie *compat;
2828 const struct element *elem;
2830 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2834 if (elem->datalen < sizeof(*compat))
2836 compat = (void *)elem->data;
2837 bssid = ext->u.s1g_beacon.sa;
2838 capability = le16_to_cpu(compat->compat_info);
2839 beacon_int = le16_to_cpu(compat->beacon_int);
2841 bssid = mgmt->bssid;
2842 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2843 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2846 if (channel->band == NL80211_BAND_60GHZ) {
2847 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2848 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2849 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2850 regulatory_hint_found_beacon(wiphy, channel, gfp);
2852 if (capability & WLAN_CAPABILITY_ESS)
2853 regulatory_hint_found_beacon(wiphy, channel, gfp);
2856 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2860 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2861 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2862 ieee80211_is_s1g_beacon(mgmt->frame_control);
2863 memcpy(ies->data, variable, ielen);
2865 if (ieee80211_is_probe_resp(mgmt->frame_control))
2866 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2868 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2869 rcu_assign_pointer(tmp.pub.ies, ies);
2871 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2872 tmp.pub.beacon_interval = beacon_int;
2873 tmp.pub.capability = capability;
2874 tmp.pub.channel = channel;
2875 tmp.pub.scan_width = data->scan_width;
2876 tmp.pub.signal = data->signal;
2877 tmp.ts_boottime = data->boottime_ns;
2878 tmp.parent_tsf = data->parent_tsf;
2879 tmp.pub.chains = data->chains;
2880 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2881 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2883 signal_valid = data->chan == channel;
2884 spin_lock_bh(&rdev->bss_lock);
2885 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2889 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2891 spin_unlock_bh(&rdev->bss_lock);
2893 trace_cfg80211_return_bss(&res->pub);
2894 /* __cfg80211_bss_update gives us a referenced result */
2898 spin_unlock_bh(&rdev->bss_lock);
2902 struct cfg80211_bss *
2903 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2904 struct cfg80211_inform_bss *data,
2905 struct ieee80211_mgmt *mgmt, size_t len,
2908 struct cfg80211_inform_single_bss_data inform_data = {
2910 .ie = mgmt->u.probe_resp.variable,
2911 .ielen = len - offsetof(struct ieee80211_mgmt,
2912 u.probe_resp.variable),
2914 struct cfg80211_bss *res;
2916 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2921 /* don't do any further MBSSID/ML handling for S1G */
2922 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2925 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2926 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2927 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2928 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2929 inform_data.beacon_interval =
2930 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2932 /* process each non-transmitting bss */
2933 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2935 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2939 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2941 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2943 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2948 spin_lock_bh(&rdev->bss_lock);
2949 bss_ref_get(rdev, bss_from_pub(pub));
2950 spin_unlock_bh(&rdev->bss_lock);
2952 EXPORT_SYMBOL(cfg80211_ref_bss);
2954 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2956 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2961 spin_lock_bh(&rdev->bss_lock);
2962 bss_ref_put(rdev, bss_from_pub(pub));
2963 spin_unlock_bh(&rdev->bss_lock);
2965 EXPORT_SYMBOL(cfg80211_put_bss);
2967 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970 struct cfg80211_internal_bss *bss, *tmp1;
2971 struct cfg80211_bss *nontrans_bss, *tmp;
2976 bss = bss_from_pub(pub);
2978 spin_lock_bh(&rdev->bss_lock);
2979 if (list_empty(&bss->list))
2982 list_for_each_entry_safe(nontrans_bss, tmp,
2983 &pub->nontrans_list,
2985 tmp1 = bss_from_pub(nontrans_bss);
2986 if (__cfg80211_unlink_bss(rdev, tmp1))
2987 rdev->bss_generation++;
2990 if (__cfg80211_unlink_bss(rdev, bss))
2991 rdev->bss_generation++;
2993 spin_unlock_bh(&rdev->bss_lock);
2995 EXPORT_SYMBOL(cfg80211_unlink_bss);
2997 void cfg80211_bss_iter(struct wiphy *wiphy,
2998 struct cfg80211_chan_def *chandef,
2999 void (*iter)(struct wiphy *wiphy,
3000 struct cfg80211_bss *bss,
3004 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3005 struct cfg80211_internal_bss *bss;
3007 spin_lock_bh(&rdev->bss_lock);
3009 list_for_each_entry(bss, &rdev->bss_list, list) {
3010 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3012 iter(wiphy, &bss->pub, iter_data);
3015 spin_unlock_bh(&rdev->bss_lock);
3017 EXPORT_SYMBOL(cfg80211_bss_iter);
3019 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3020 unsigned int link_id,
3021 struct ieee80211_channel *chan)
3023 struct wiphy *wiphy = wdev->wiphy;
3024 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3025 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3026 struct cfg80211_internal_bss *new = NULL;
3027 struct cfg80211_internal_bss *bss;
3028 struct cfg80211_bss *nontrans_bss;
3029 struct cfg80211_bss *tmp;
3031 spin_lock_bh(&rdev->bss_lock);
3034 * Some APs use CSA also for bandwidth changes, i.e., without actually
3035 * changing the control channel, so no need to update in such a case.
3037 if (cbss->pub.channel == chan)
3040 /* use transmitting bss */
3041 if (cbss->pub.transmitted_bss)
3042 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3044 cbss->pub.channel = chan;
3046 list_for_each_entry(bss, &rdev->bss_list, list) {
3047 if (!cfg80211_bss_type_match(bss->pub.capability,
3048 bss->pub.channel->band,
3049 wdev->conn_bss_type))
3055 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3062 /* to save time, update IEs for transmitting bss only */
3063 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3064 new->pub.proberesp_ies = NULL;
3065 new->pub.beacon_ies = NULL;
3068 list_for_each_entry_safe(nontrans_bss, tmp,
3069 &new->pub.nontrans_list,
3071 bss = bss_from_pub(nontrans_bss);
3072 if (__cfg80211_unlink_bss(rdev, bss))
3073 rdev->bss_generation++;
3076 WARN_ON(atomic_read(&new->hold));
3077 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3078 rdev->bss_generation++;
3081 rb_erase(&cbss->rbn, &rdev->bss_tree);
3082 rb_insert_bss(rdev, cbss);
3083 rdev->bss_generation++;
3085 list_for_each_entry_safe(nontrans_bss, tmp,
3086 &cbss->pub.nontrans_list,
3088 bss = bss_from_pub(nontrans_bss);
3089 bss->pub.channel = chan;
3090 rb_erase(&bss->rbn, &rdev->bss_tree);
3091 rb_insert_bss(rdev, bss);
3092 rdev->bss_generation++;
3096 spin_unlock_bh(&rdev->bss_lock);
3099 #ifdef CONFIG_CFG80211_WEXT
3100 static struct cfg80211_registered_device *
3101 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3103 struct cfg80211_registered_device *rdev;
3104 struct net_device *dev;
3108 dev = dev_get_by_index(net, ifindex);
3110 return ERR_PTR(-ENODEV);
3111 if (dev->ieee80211_ptr)
3112 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3114 rdev = ERR_PTR(-ENODEV);
3119 int cfg80211_wext_siwscan(struct net_device *dev,
3120 struct iw_request_info *info,
3121 union iwreq_data *wrqu, char *extra)
3123 struct cfg80211_registered_device *rdev;
3124 struct wiphy *wiphy;
3125 struct iw_scan_req *wreq = NULL;
3126 struct cfg80211_scan_request *creq;
3127 int i, err, n_channels = 0;
3128 enum nl80211_band band;
3130 if (!netif_running(dev))
3133 if (wrqu->data.length == sizeof(struct iw_scan_req))
3134 wreq = (struct iw_scan_req *)extra;
3136 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3139 return PTR_ERR(rdev);
3141 if (rdev->scan_req || rdev->scan_msg)
3144 wiphy = &rdev->wiphy;
3146 /* Determine number of channels, needed to allocate creq */
3147 if (wreq && wreq->num_channels)
3148 n_channels = wreq->num_channels;
3150 n_channels = ieee80211_get_num_supported_channels(wiphy);
3152 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3153 n_channels * sizeof(void *),
3158 creq->wiphy = wiphy;
3159 creq->wdev = dev->ieee80211_ptr;
3160 /* SSIDs come after channels */
3161 creq->ssids = (void *)&creq->channels[n_channels];
3162 creq->n_channels = n_channels;
3164 creq->scan_start = jiffies;
3166 /* translate "Scan on frequencies" request */
3168 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3171 if (!wiphy->bands[band])
3174 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3175 /* ignore disabled channels */
3176 if (wiphy->bands[band]->channels[j].flags &
3177 IEEE80211_CHAN_DISABLED)
3180 /* If we have a wireless request structure and the
3181 * wireless request specifies frequencies, then search
3182 * for the matching hardware channel.
3184 if (wreq && wreq->num_channels) {
3186 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3187 for (k = 0; k < wreq->num_channels; k++) {
3188 struct iw_freq *freq =
3189 &wreq->channel_list[k];
3191 cfg80211_wext_freq(freq);
3193 if (wext_freq == wiphy_freq)
3194 goto wext_freq_found;
3196 goto wext_freq_not_found;
3200 creq->channels[i] = &wiphy->bands[band]->channels[j];
3202 wext_freq_not_found: ;
3205 /* No channels found? */
3211 /* Set real number of channels specified in creq->channels[] */
3212 creq->n_channels = i;
3214 /* translate "Scan for SSID" request */
3216 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3217 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3221 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3222 creq->ssids[0].ssid_len = wreq->essid_len;
3224 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3228 for (i = 0; i < NUM_NL80211_BANDS; i++)
3229 if (wiphy->bands[i])
3230 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3232 eth_broadcast_addr(creq->bssid);
3234 wiphy_lock(&rdev->wiphy);
3236 rdev->scan_req = creq;
3237 err = rdev_scan(rdev, creq);
3239 rdev->scan_req = NULL;
3240 /* creq will be freed below */
3242 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3243 /* creq now owned by driver */
3247 wiphy_unlock(&rdev->wiphy);
3252 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3254 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3255 const struct cfg80211_bss_ies *ies,
3256 char *current_ev, char *end_buf)
3258 const u8 *pos, *end, *next;
3259 struct iw_event iwe;
3265 * If needed, fragment the IEs buffer (at IE boundaries) into short
3266 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3269 end = pos + ies->len;
3271 while (end - pos > IW_GENERIC_IE_MAX) {
3272 next = pos + 2 + pos[1];
3273 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3274 next = next + 2 + next[1];
3276 memset(&iwe, 0, sizeof(iwe));
3277 iwe.cmd = IWEVGENIE;
3278 iwe.u.data.length = next - pos;
3279 current_ev = iwe_stream_add_point_check(info, current_ev,
3282 if (IS_ERR(current_ev))
3288 memset(&iwe, 0, sizeof(iwe));
3289 iwe.cmd = IWEVGENIE;
3290 iwe.u.data.length = end - pos;
3291 current_ev = iwe_stream_add_point_check(info, current_ev,
3294 if (IS_ERR(current_ev))
3302 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3303 struct cfg80211_internal_bss *bss, char *current_ev,
3306 const struct cfg80211_bss_ies *ies;
3307 struct iw_event iwe;
3312 bool ismesh = false;
3314 memset(&iwe, 0, sizeof(iwe));
3315 iwe.cmd = SIOCGIWAP;
3316 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3317 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3318 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3320 if (IS_ERR(current_ev))
3323 memset(&iwe, 0, sizeof(iwe));
3324 iwe.cmd = SIOCGIWFREQ;
3325 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3327 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3329 if (IS_ERR(current_ev))
3332 memset(&iwe, 0, sizeof(iwe));
3333 iwe.cmd = SIOCGIWFREQ;
3334 iwe.u.freq.m = bss->pub.channel->center_freq;
3336 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3338 if (IS_ERR(current_ev))
3341 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3342 memset(&iwe, 0, sizeof(iwe));
3344 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3345 IW_QUAL_NOISE_INVALID |
3346 IW_QUAL_QUAL_UPDATED;
3347 switch (wiphy->signal_type) {
3348 case CFG80211_SIGNAL_TYPE_MBM:
3349 sig = bss->pub.signal / 100;
3350 iwe.u.qual.level = sig;
3351 iwe.u.qual.updated |= IW_QUAL_DBM;
3352 if (sig < -110) /* rather bad */
3354 else if (sig > -40) /* perfect */
3356 /* will give a range of 0 .. 70 */
3357 iwe.u.qual.qual = sig + 110;
3359 case CFG80211_SIGNAL_TYPE_UNSPEC:
3360 iwe.u.qual.level = bss->pub.signal;
3361 /* will give range 0 .. 100 */
3362 iwe.u.qual.qual = bss->pub.signal;
3368 current_ev = iwe_stream_add_event_check(info, current_ev,
3371 if (IS_ERR(current_ev))
3375 memset(&iwe, 0, sizeof(iwe));
3376 iwe.cmd = SIOCGIWENCODE;
3377 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3378 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3380 iwe.u.data.flags = IW_ENCODE_DISABLED;
3381 iwe.u.data.length = 0;
3382 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3384 if (IS_ERR(current_ev))
3388 ies = rcu_dereference(bss->pub.ies);
3394 if (ie[1] > rem - 2)
3399 memset(&iwe, 0, sizeof(iwe));
3400 iwe.cmd = SIOCGIWESSID;
3401 iwe.u.data.length = ie[1];
3402 iwe.u.data.flags = 1;
3403 current_ev = iwe_stream_add_point_check(info,
3407 if (IS_ERR(current_ev))
3410 case WLAN_EID_MESH_ID:
3411 memset(&iwe, 0, sizeof(iwe));
3412 iwe.cmd = SIOCGIWESSID;
3413 iwe.u.data.length = ie[1];
3414 iwe.u.data.flags = 1;
3415 current_ev = iwe_stream_add_point_check(info,
3419 if (IS_ERR(current_ev))
3422 case WLAN_EID_MESH_CONFIG:
3424 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3427 memset(&iwe, 0, sizeof(iwe));
3428 iwe.cmd = IWEVCUSTOM;
3429 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3431 iwe.u.data.length = strlen(buf);
3432 current_ev = iwe_stream_add_point_check(info,
3436 if (IS_ERR(current_ev))
3438 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3440 iwe.u.data.length = strlen(buf);
3441 current_ev = iwe_stream_add_point_check(info,
3445 if (IS_ERR(current_ev))
3447 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3449 iwe.u.data.length = strlen(buf);
3450 current_ev = iwe_stream_add_point_check(info,
3454 if (IS_ERR(current_ev))
3456 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3457 iwe.u.data.length = strlen(buf);
3458 current_ev = iwe_stream_add_point_check(info,
3462 if (IS_ERR(current_ev))
3464 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3465 iwe.u.data.length = strlen(buf);
3466 current_ev = iwe_stream_add_point_check(info,
3470 if (IS_ERR(current_ev))
3472 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3473 iwe.u.data.length = strlen(buf);
3474 current_ev = iwe_stream_add_point_check(info,
3478 if (IS_ERR(current_ev))
3480 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3481 iwe.u.data.length = strlen(buf);
3482 current_ev = iwe_stream_add_point_check(info,
3486 if (IS_ERR(current_ev))
3489 case WLAN_EID_SUPP_RATES:
3490 case WLAN_EID_EXT_SUPP_RATES:
3491 /* display all supported rates in readable format */
3492 p = current_ev + iwe_stream_lcp_len(info);
3494 memset(&iwe, 0, sizeof(iwe));
3495 iwe.cmd = SIOCGIWRATE;
3496 /* Those two flags are ignored... */
3497 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3499 for (i = 0; i < ie[1]; i++) {
3500 iwe.u.bitrate.value =
3501 ((ie[i + 2] & 0x7f) * 500000);
3503 p = iwe_stream_add_value(info, current_ev, p,
3507 current_ev = ERR_PTR(-E2BIG);
3518 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3520 memset(&iwe, 0, sizeof(iwe));
3521 iwe.cmd = SIOCGIWMODE;
3523 iwe.u.mode = IW_MODE_MESH;
3524 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3525 iwe.u.mode = IW_MODE_MASTER;
3527 iwe.u.mode = IW_MODE_ADHOC;
3528 current_ev = iwe_stream_add_event_check(info, current_ev,
3531 if (IS_ERR(current_ev))
3535 memset(&iwe, 0, sizeof(iwe));
3536 iwe.cmd = IWEVCUSTOM;
3537 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3538 iwe.u.data.length = strlen(buf);
3539 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3541 if (IS_ERR(current_ev))
3543 memset(&iwe, 0, sizeof(iwe));
3544 iwe.cmd = IWEVCUSTOM;
3545 sprintf(buf, " Last beacon: %ums ago",
3546 elapsed_jiffies_msecs(bss->ts));
3547 iwe.u.data.length = strlen(buf);
3548 current_ev = iwe_stream_add_point_check(info, current_ev,
3549 end_buf, &iwe, buf);
3550 if (IS_ERR(current_ev))
3553 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3561 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3562 struct iw_request_info *info,
3563 char *buf, size_t len)
3565 char *current_ev = buf;
3566 char *end_buf = buf + len;
3567 struct cfg80211_internal_bss *bss;
3570 spin_lock_bh(&rdev->bss_lock);
3571 cfg80211_bss_expire(rdev);
3573 list_for_each_entry(bss, &rdev->bss_list, list) {
3574 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3578 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3579 current_ev, end_buf);
3580 if (IS_ERR(current_ev)) {
3581 err = PTR_ERR(current_ev);
3585 spin_unlock_bh(&rdev->bss_lock);
3589 return current_ev - buf;
3593 int cfg80211_wext_giwscan(struct net_device *dev,
3594 struct iw_request_info *info,
3595 union iwreq_data *wrqu, char *extra)
3597 struct iw_point *data = &wrqu->data;
3598 struct cfg80211_registered_device *rdev;
3601 if (!netif_running(dev))
3604 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3607 return PTR_ERR(rdev);
3609 if (rdev->scan_req || rdev->scan_msg)
3612 res = ieee80211_scan_results(rdev, info, extra, data->length);
3621 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);