Merge tag 'drm-misc-next-fixes-2023-06-29' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
744 static int __init load_builtin_regdb_keys(void)
745 {
746         builtin_regdb_keys =
747                 keyring_alloc(".builtin_regdb_keys",
748                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752         if (IS_ERR(builtin_regdb_keys))
753                 return PTR_ERR(builtin_regdb_keys);
754
755         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758         x509_load_certificate_list(shipped_regdb_certs,
759                                    shipped_regdb_certs_len,
760                                    builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764                 x509_load_certificate_list(extra_regdb_certs,
765                                            extra_regdb_certs_len,
766                                            builtin_regdb_keys);
767 #endif
768
769         return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776         const struct firmware *sig;
777         bool result;
778
779         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780                 return false;
781
782         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783                                         builtin_regdb_keys,
784                                         VERIFYING_UNSPECIFIED_SIGNATURE,
785                                         NULL, NULL) == 0;
786
787         release_firmware(sig);
788
789         return result;
790 }
791
792 static void free_regdb_keyring(void)
793 {
794         key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799         return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804         return true;
805 }
806
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814         const struct fwdb_header *hdr = (void *)data;
815         const struct fwdb_country *country;
816
817         if (size < sizeof(*hdr))
818                 return false;
819
820         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821                 return false;
822
823         if (hdr->version != cpu_to_be32(FWDB_VERSION))
824                 return false;
825
826         if (!regdb_has_valid_signature(data, size))
827                 return false;
828
829         country = &hdr->country[0];
830         while ((u8 *)(country + 1) <= data + size) {
831                 if (!country->coll_ptr)
832                         break;
833                 if (!valid_country(data, size, country))
834                         return false;
835                 country++;
836         }
837
838         return true;
839 }
840
841 static void set_wmm_rule(const struct fwdb_header *db,
842                          const struct fwdb_country *country,
843                          const struct fwdb_rule *rule,
844                          struct ieee80211_reg_rule *rrule)
845 {
846         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847         struct fwdb_wmm_rule *wmm;
848         unsigned int i, wmm_ptr;
849
850         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851         wmm = (void *)((u8 *)db + wmm_ptr);
852
853         if (!valid_wmm(wmm)) {
854                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856                        country->alpha2[0], country->alpha2[1]);
857                 return;
858         }
859
860         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861                 wmm_rule->client[i].cw_min =
862                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865                 wmm_rule->client[i].cot =
866                         1000 * be16_to_cpu(wmm->client[i].cot);
867                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871         }
872
873         rrule->has_wmm = true;
874 }
875
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877                              const struct fwdb_country *country, int freq,
878                              struct ieee80211_reg_rule *rrule)
879 {
880         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882         int i;
883
884         for (i = 0; i < coll->n_rules; i++) {
885                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890                         continue;
891
892                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894                         set_wmm_rule(db, country, rule, rrule);
895                         return 0;
896                 }
897         }
898
899         return -ENODATA;
900 }
901
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904         const struct fwdb_header *hdr = regdb;
905         const struct fwdb_country *country;
906
907         if (!regdb)
908                 return -ENODATA;
909
910         if (IS_ERR(regdb))
911                 return PTR_ERR(regdb);
912
913         country = &hdr->country[0];
914         while (country->coll_ptr) {
915                 if (alpha2_equal(alpha2, country->alpha2))
916                         return __regdb_query_wmm(regdb, country, freq, rule);
917
918                 country++;
919         }
920
921         return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925 static int regdb_query_country(const struct fwdb_header *db,
926                                const struct fwdb_country *country)
927 {
928         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930         struct ieee80211_regdomain *regdom;
931         unsigned int i;
932
933         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934                          GFP_KERNEL);
935         if (!regdom)
936                 return -ENOMEM;
937
938         regdom->n_reg_rules = coll->n_rules;
939         regdom->alpha2[0] = country->alpha2[0];
940         regdom->alpha2[1] = country->alpha2[1];
941         regdom->dfs_region = coll->dfs_region;
942
943         for (i = 0; i < regdom->n_reg_rules; i++) {
944                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953                 rrule->power_rule.max_antenna_gain = 0;
954                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956                 rrule->flags = 0;
957                 if (rule->flags & FWDB_FLAG_NO_OFDM)
958                         rrule->flags |= NL80211_RRF_NO_OFDM;
959                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961                 if (rule->flags & FWDB_FLAG_DFS)
962                         rrule->flags |= NL80211_RRF_DFS;
963                 if (rule->flags & FWDB_FLAG_NO_IR)
964                         rrule->flags |= NL80211_RRF_NO_IR;
965                 if (rule->flags & FWDB_FLAG_AUTO_BW)
966                         rrule->flags |= NL80211_RRF_AUTO_BW;
967
968                 rrule->dfs_cac_ms = 0;
969
970                 /* handle optional data */
971                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972                         rrule->dfs_cac_ms =
973                                 1000 * be16_to_cpu(rule->cac_timeout);
974                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975                         set_wmm_rule(db, country, rule, rrule);
976         }
977
978         return reg_schedule_apply(regdom);
979 }
980
981 static int query_regdb(const char *alpha2)
982 {
983         const struct fwdb_header *hdr = regdb;
984         const struct fwdb_country *country;
985
986         ASSERT_RTNL();
987
988         if (IS_ERR(regdb))
989                 return PTR_ERR(regdb);
990
991         country = &hdr->country[0];
992         while (country->coll_ptr) {
993                 if (alpha2_equal(alpha2, country->alpha2))
994                         return regdb_query_country(regdb, country);
995                 country++;
996         }
997
998         return -ENODATA;
999 }
1000
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003         int set_error = 0;
1004         bool restore = true;
1005         void *db;
1006
1007         if (!fw) {
1008                 pr_info("failed to load regulatory.db\n");
1009                 set_error = -ENODATA;
1010         } else if (!valid_regdb(fw->data, fw->size)) {
1011                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012                 set_error = -EINVAL;
1013         }
1014
1015         rtnl_lock();
1016         if (regdb && !IS_ERR(regdb)) {
1017                 /* negative case - a bug
1018                  * positive case - can happen due to race in case of multiple cb's in
1019                  * queue, due to usage of asynchronous callback
1020                  *
1021                  * Either case, just restore and free new db.
1022                  */
1023         } else if (set_error) {
1024                 regdb = ERR_PTR(set_error);
1025         } else if (fw) {
1026                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027                 if (db) {
1028                         regdb = db;
1029                         restore = context && query_regdb(context);
1030                 } else {
1031                         restore = true;
1032                 }
1033         }
1034
1035         if (restore)
1036                 restore_regulatory_settings(true, false);
1037
1038         rtnl_unlock();
1039
1040         kfree(context);
1041
1042         release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049         int err;
1050
1051         ASSERT_RTNL();
1052
1053         if (regdb)
1054                 return query_regdb(alpha2);
1055
1056         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057         if (!alpha2)
1058                 return -ENOMEM;
1059
1060         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061                                       &reg_pdev->dev, GFP_KERNEL,
1062                                       (void *)alpha2, regdb_fw_cb);
1063         if (err)
1064                 kfree(alpha2);
1065
1066         return err;
1067 }
1068
1069 int reg_reload_regdb(void)
1070 {
1071         const struct firmware *fw;
1072         void *db;
1073         int err;
1074         const struct ieee80211_regdomain *current_regdomain;
1075         struct regulatory_request *request;
1076
1077         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078         if (err)
1079                 return err;
1080
1081         if (!valid_regdb(fw->data, fw->size)) {
1082                 err = -ENODATA;
1083                 goto out;
1084         }
1085
1086         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087         if (!db) {
1088                 err = -ENOMEM;
1089                 goto out;
1090         }
1091
1092         rtnl_lock();
1093         if (!IS_ERR_OR_NULL(regdb))
1094                 kfree(regdb);
1095         regdb = db;
1096
1097         /* reset regulatory domain */
1098         current_regdomain = get_cfg80211_regdom();
1099
1100         request = kzalloc(sizeof(*request), GFP_KERNEL);
1101         if (!request) {
1102                 err = -ENOMEM;
1103                 goto out_unlock;
1104         }
1105
1106         request->wiphy_idx = WIPHY_IDX_INVALID;
1107         request->alpha2[0] = current_regdomain->alpha2[0];
1108         request->alpha2[1] = current_regdomain->alpha2[1];
1109         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112         reg_process_hint(request);
1113
1114 out_unlock:
1115         rtnl_unlock();
1116  out:
1117         release_firmware(fw);
1118         return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123         if (query_regdb_file(request->alpha2) == 0)
1124                 return true;
1125
1126         if (call_crda(request->alpha2) == 0)
1127                 return true;
1128
1129         return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134         struct regulatory_request *lr = get_last_request();
1135
1136         if (!lr || lr->processed)
1137                 return false;
1138
1139         return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144         struct regulatory_request *lr = get_last_request();
1145
1146         /*
1147          * Follow the driver's regulatory domain, if present, unless a country
1148          * IE has been processed or a user wants to help complaince further
1149          */
1150         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152             wiphy->regd)
1153                 return get_wiphy_regdom(wiphy);
1154
1155         return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160                                  const struct ieee80211_reg_rule *rule)
1161 {
1162         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163         const struct ieee80211_freq_range *freq_range_tmp;
1164         const struct ieee80211_reg_rule *tmp;
1165         u32 start_freq, end_freq, idx, no;
1166
1167         for (idx = 0; idx < rd->n_reg_rules; idx++)
1168                 if (rule == &rd->reg_rules[idx])
1169                         break;
1170
1171         if (idx == rd->n_reg_rules)
1172                 return 0;
1173
1174         /* get start_freq */
1175         no = idx;
1176
1177         while (no) {
1178                 tmp = &rd->reg_rules[--no];
1179                 freq_range_tmp = &tmp->freq_range;
1180
1181                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182                         break;
1183
1184                 freq_range = freq_range_tmp;
1185         }
1186
1187         start_freq = freq_range->start_freq_khz;
1188
1189         /* get end_freq */
1190         freq_range = &rule->freq_range;
1191         no = idx;
1192
1193         while (no < rd->n_reg_rules - 1) {
1194                 tmp = &rd->reg_rules[++no];
1195                 freq_range_tmp = &tmp->freq_range;
1196
1197                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198                         break;
1199
1200                 freq_range = freq_range_tmp;
1201         }
1202
1203         end_freq = freq_range->end_freq_khz;
1204
1205         return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209                                    const struct ieee80211_reg_rule *rule)
1210 {
1211         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213         if (rule->flags & NL80211_RRF_NO_320MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215         if (rule->flags & NL80211_RRF_NO_160MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217         if (rule->flags & NL80211_RRF_NO_80MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220         /*
1221          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222          * are not allowed.
1223          */
1224         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225             rule->flags & NL80211_RRF_NO_HT40PLUS)
1226                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228         return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235         u32 freq_diff;
1236
1237         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238                 return false;
1239
1240         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241                 return false;
1242
1243         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246             freq_range->max_bandwidth_khz > freq_diff)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254         const struct ieee80211_reg_rule *reg_rule = NULL;
1255         unsigned int i;
1256
1257         if (!rd->n_reg_rules)
1258                 return false;
1259
1260         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261                 return false;
1262
1263         for (i = 0; i < rd->n_reg_rules; i++) {
1264                 reg_rule = &rd->reg_rules[i];
1265                 if (!is_valid_reg_rule(reg_rule))
1266                         return false;
1267         }
1268
1269         return true;
1270 }
1271
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288                               u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ  1000000
1291         /*
1292          * From 802.11ad: directional multi-gigabit (DMG):
1293          * Pertaining to operation in a frequency band containing a channel
1294          * with the Channel starting frequency above 45 GHz.
1295          */
1296         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299                 return true;
1300         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301                 return true;
1302         return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313                          const enum nl80211_dfs_regions dfs_region2)
1314 {
1315         if (dfs_region1 != dfs_region2)
1316                 return NL80211_DFS_UNSET;
1317         return dfs_region1;
1318 }
1319
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321                                     const struct ieee80211_wmm_ac *wmm_ac2,
1322                                     struct ieee80211_wmm_ac *intersect)
1323 {
1324         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335                                const struct ieee80211_regdomain *rd2,
1336                                const struct ieee80211_reg_rule *rule1,
1337                                const struct ieee80211_reg_rule *rule2,
1338                                struct ieee80211_reg_rule *intersected_rule)
1339 {
1340         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341         struct ieee80211_freq_range *freq_range;
1342         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343         struct ieee80211_power_rule *power_rule;
1344         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345         struct ieee80211_wmm_rule *wmm_rule;
1346         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348         freq_range1 = &rule1->freq_range;
1349         freq_range2 = &rule2->freq_range;
1350         freq_range = &intersected_rule->freq_range;
1351
1352         power_rule1 = &rule1->power_rule;
1353         power_rule2 = &rule2->power_rule;
1354         power_rule = &intersected_rule->power_rule;
1355
1356         wmm_rule1 = &rule1->wmm_rule;
1357         wmm_rule2 = &rule2->wmm_rule;
1358         wmm_rule = &intersected_rule->wmm_rule;
1359
1360         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361                                          freq_range2->start_freq_khz);
1362         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363                                        freq_range2->end_freq_khz);
1364
1365         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368         if (rule1->flags & NL80211_RRF_AUTO_BW)
1369                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370         if (rule2->flags & NL80211_RRF_AUTO_BW)
1371                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375         intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377         /*
1378          * In case NL80211_RRF_AUTO_BW requested for both rules
1379          * set AUTO_BW in intersected rule also. Next we will
1380          * calculate BW correctly in handle_channel function.
1381          * In other case remove AUTO_BW flag while we calculate
1382          * maximum bandwidth correctly and auto calculation is
1383          * not required.
1384          */
1385         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386             (rule2->flags & NL80211_RRF_AUTO_BW))
1387                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388         else
1389                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392         if (freq_range->max_bandwidth_khz > freq_diff)
1393                 freq_range->max_bandwidth_khz = freq_diff;
1394
1395         power_rule->max_eirp = min(power_rule1->max_eirp,
1396                 power_rule2->max_eirp);
1397         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398                 power_rule2->max_antenna_gain);
1399
1400         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401                                            rule2->dfs_cac_ms);
1402
1403         if (rule1->has_wmm && rule2->has_wmm) {
1404                 u8 ac;
1405
1406                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408                                                 &wmm_rule2->client[ac],
1409                                                 &wmm_rule->client[ac]);
1410                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411                                                 &wmm_rule2->ap[ac],
1412                                                 &wmm_rule->ap[ac]);
1413                 }
1414
1415                 intersected_rule->has_wmm = true;
1416         } else if (rule1->has_wmm) {
1417                 *wmm_rule = *wmm_rule1;
1418                 intersected_rule->has_wmm = true;
1419         } else if (rule2->has_wmm) {
1420                 *wmm_rule = *wmm_rule2;
1421                 intersected_rule->has_wmm = true;
1422         } else {
1423                 intersected_rule->has_wmm = false;
1424         }
1425
1426         if (!is_valid_reg_rule(intersected_rule))
1427                 return -EINVAL;
1428
1429         return 0;
1430 }
1431
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434                           struct ieee80211_reg_rule *r2)
1435 {
1436         /* for simplicity, currently consider only same flags */
1437         if (r1->flags != r2->flags)
1438                 return false;
1439
1440         /* verify r1 is more restrictive */
1441         if ((r1->power_rule.max_antenna_gain >
1442              r2->power_rule.max_antenna_gain) ||
1443             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444                 return false;
1445
1446         /* make sure r2's range is contained within r1 */
1447         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449                 return false;
1450
1451         /* and finally verify that r1.max_bw >= r2.max_bw */
1452         if (r1->freq_range.max_bandwidth_khz <
1453             r2->freq_range.max_bandwidth_khz)
1454                 return false;
1455
1456         return true;
1457 }
1458
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463         struct ieee80211_reg_rule *tmp_rule;
1464         int i;
1465
1466         for (i = 0; i < *n_rules; i++) {
1467                 tmp_rule = &reg_rules[i];
1468                 /* rule is already contained - do nothing */
1469                 if (rule_contains(tmp_rule, rule))
1470                         return;
1471
1472                 /* extend rule if possible */
1473                 if (rule_contains(rule, tmp_rule)) {
1474                         memcpy(tmp_rule, rule, sizeof(*rule));
1475                         return;
1476                 }
1477         }
1478
1479         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480         (*n_rules)++;
1481 }
1482
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498                  const struct ieee80211_regdomain *rd2)
1499 {
1500         int r;
1501         unsigned int x, y;
1502         unsigned int num_rules = 0;
1503         const struct ieee80211_reg_rule *rule1, *rule2;
1504         struct ieee80211_reg_rule intersected_rule;
1505         struct ieee80211_regdomain *rd;
1506
1507         if (!rd1 || !rd2)
1508                 return NULL;
1509
1510         /*
1511          * First we get a count of the rules we'll need, then we actually
1512          * build them. This is to so we can malloc() and free() a
1513          * regdomain once. The reason we use reg_rules_intersect() here
1514          * is it will return -EINVAL if the rule computed makes no sense.
1515          * All rules that do check out OK are valid.
1516          */
1517
1518         for (x = 0; x < rd1->n_reg_rules; x++) {
1519                 rule1 = &rd1->reg_rules[x];
1520                 for (y = 0; y < rd2->n_reg_rules; y++) {
1521                         rule2 = &rd2->reg_rules[y];
1522                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523                                                  &intersected_rule))
1524                                 num_rules++;
1525                 }
1526         }
1527
1528         if (!num_rules)
1529                 return NULL;
1530
1531         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532         if (!rd)
1533                 return NULL;
1534
1535         for (x = 0; x < rd1->n_reg_rules; x++) {
1536                 rule1 = &rd1->reg_rules[x];
1537                 for (y = 0; y < rd2->n_reg_rules; y++) {
1538                         rule2 = &rd2->reg_rules[y];
1539                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540                                                 &intersected_rule);
1541                         /*
1542                          * No need to memset here the intersected rule here as
1543                          * we're not using the stack anymore
1544                          */
1545                         if (r)
1546                                 continue;
1547
1548                         add_rule(&intersected_rule, rd->reg_rules,
1549                                  &rd->n_reg_rules);
1550                 }
1551         }
1552
1553         rd->alpha2[0] = '9';
1554         rd->alpha2[1] = '8';
1555         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556                                                   rd2->dfs_region);
1557
1558         return rd;
1559 }
1560
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567         u32 channel_flags = 0;
1568         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569                 channel_flags |= IEEE80211_CHAN_NO_IR;
1570         if (rd_flags & NL80211_RRF_DFS)
1571                 channel_flags |= IEEE80211_CHAN_RADAR;
1572         if (rd_flags & NL80211_RRF_NO_OFDM)
1573                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582         if (rd_flags & NL80211_RRF_NO_80MHZ)
1583                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584         if (rd_flags & NL80211_RRF_NO_160MHZ)
1585                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586         if (rd_flags & NL80211_RRF_NO_HE)
1587                 channel_flags |= IEEE80211_CHAN_NO_HE;
1588         if (rd_flags & NL80211_RRF_NO_320MHZ)
1589                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590         return channel_flags;
1591 }
1592
1593 static const struct ieee80211_reg_rule *
1594 freq_reg_info_regd(u32 center_freq,
1595                    const struct ieee80211_regdomain *regd, u32 bw)
1596 {
1597         int i;
1598         bool band_rule_found = false;
1599         bool bw_fits = false;
1600
1601         if (!regd)
1602                 return ERR_PTR(-EINVAL);
1603
1604         for (i = 0; i < regd->n_reg_rules; i++) {
1605                 const struct ieee80211_reg_rule *rr;
1606                 const struct ieee80211_freq_range *fr = NULL;
1607
1608                 rr = &regd->reg_rules[i];
1609                 fr = &rr->freq_range;
1610
1611                 /*
1612                  * We only need to know if one frequency rule was
1613                  * in center_freq's band, that's enough, so let's
1614                  * not overwrite it once found
1615                  */
1616                 if (!band_rule_found)
1617                         band_rule_found = freq_in_rule_band(fr, center_freq);
1618
1619                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1620
1621                 if (band_rule_found && bw_fits)
1622                         return rr;
1623         }
1624
1625         if (!band_rule_found)
1626                 return ERR_PTR(-ERANGE);
1627
1628         return ERR_PTR(-EINVAL);
1629 }
1630
1631 static const struct ieee80211_reg_rule *
1632 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1633 {
1634         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1635         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1636         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1637         int i = ARRAY_SIZE(bws) - 1;
1638         u32 bw;
1639
1640         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1641                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1642                 if (!IS_ERR(reg_rule))
1643                         return reg_rule;
1644         }
1645
1646         return reg_rule;
1647 }
1648
1649 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1650                                                u32 center_freq)
1651 {
1652         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1653
1654         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1655 }
1656 EXPORT_SYMBOL(freq_reg_info);
1657
1658 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1659 {
1660         switch (initiator) {
1661         case NL80211_REGDOM_SET_BY_CORE:
1662                 return "core";
1663         case NL80211_REGDOM_SET_BY_USER:
1664                 return "user";
1665         case NL80211_REGDOM_SET_BY_DRIVER:
1666                 return "driver";
1667         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1668                 return "country element";
1669         default:
1670                 WARN_ON(1);
1671                 return "bug";
1672         }
1673 }
1674 EXPORT_SYMBOL(reg_initiator_name);
1675
1676 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1677                                           const struct ieee80211_reg_rule *reg_rule,
1678                                           const struct ieee80211_channel *chan)
1679 {
1680         const struct ieee80211_freq_range *freq_range = NULL;
1681         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1682         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1683
1684         freq_range = &reg_rule->freq_range;
1685
1686         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1687         center_freq_khz = ieee80211_channel_to_khz(chan);
1688         /* Check if auto calculation requested */
1689         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1690                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1691
1692         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1693         if (!cfg80211_does_bw_fit_range(freq_range,
1694                                         center_freq_khz,
1695                                         MHZ_TO_KHZ(10)))
1696                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1697         if (!cfg80211_does_bw_fit_range(freq_range,
1698                                         center_freq_khz,
1699                                         MHZ_TO_KHZ(20)))
1700                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1701
1702         if (is_s1g) {
1703                 /* S1G is strict about non overlapping channels. We can
1704                  * calculate which bandwidth is allowed per channel by finding
1705                  * the largest bandwidth which cleanly divides the freq_range.
1706                  */
1707                 int edge_offset;
1708                 int ch_bw = max_bandwidth_khz;
1709
1710                 while (ch_bw) {
1711                         edge_offset = (center_freq_khz - ch_bw / 2) -
1712                                       freq_range->start_freq_khz;
1713                         if (edge_offset % ch_bw == 0) {
1714                                 switch (KHZ_TO_MHZ(ch_bw)) {
1715                                 case 1:
1716                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1717                                         break;
1718                                 case 2:
1719                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1720                                         break;
1721                                 case 4:
1722                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1723                                         break;
1724                                 case 8:
1725                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1726                                         break;
1727                                 case 16:
1728                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1729                                         break;
1730                                 default:
1731                                         /* If we got here, no bandwidths fit on
1732                                          * this frequency, ie. band edge.
1733                                          */
1734                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1735                                         break;
1736                                 }
1737                                 break;
1738                         }
1739                         ch_bw /= 2;
1740                 }
1741         } else {
1742                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1743                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1744                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1745                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1746                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1747                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1748                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1749                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1750                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1751                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1752                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1753                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1754         }
1755         return bw_flags;
1756 }
1757
1758 static void handle_channel_single_rule(struct wiphy *wiphy,
1759                                        enum nl80211_reg_initiator initiator,
1760                                        struct ieee80211_channel *chan,
1761                                        u32 flags,
1762                                        struct regulatory_request *lr,
1763                                        struct wiphy *request_wiphy,
1764                                        const struct ieee80211_reg_rule *reg_rule)
1765 {
1766         u32 bw_flags = 0;
1767         const struct ieee80211_power_rule *power_rule = NULL;
1768         const struct ieee80211_regdomain *regd;
1769
1770         regd = reg_get_regdomain(wiphy);
1771
1772         power_rule = &reg_rule->power_rule;
1773         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1774
1775         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1776             request_wiphy && request_wiphy == wiphy &&
1777             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1778                 /*
1779                  * This guarantees the driver's requested regulatory domain
1780                  * will always be used as a base for further regulatory
1781                  * settings
1782                  */
1783                 chan->flags = chan->orig_flags =
1784                         map_regdom_flags(reg_rule->flags) | bw_flags;
1785                 chan->max_antenna_gain = chan->orig_mag =
1786                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1787                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1788                         (int) MBM_TO_DBM(power_rule->max_eirp);
1789
1790                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1791                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1792                         if (reg_rule->dfs_cac_ms)
1793                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794                 }
1795
1796                 return;
1797         }
1798
1799         chan->dfs_state = NL80211_DFS_USABLE;
1800         chan->dfs_state_entered = jiffies;
1801
1802         chan->beacon_found = false;
1803         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1804         chan->max_antenna_gain =
1805                 min_t(int, chan->orig_mag,
1806                       MBI_TO_DBI(power_rule->max_antenna_gain));
1807         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1808
1809         if (chan->flags & IEEE80211_CHAN_RADAR) {
1810                 if (reg_rule->dfs_cac_ms)
1811                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812                 else
1813                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814         }
1815
1816         if (chan->orig_mpwr) {
1817                 /*
1818                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1819                  * will always follow the passed country IE power settings.
1820                  */
1821                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1822                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1823                         chan->max_power = chan->max_reg_power;
1824                 else
1825                         chan->max_power = min(chan->orig_mpwr,
1826                                               chan->max_reg_power);
1827         } else
1828                 chan->max_power = chan->max_reg_power;
1829 }
1830
1831 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1832                                           enum nl80211_reg_initiator initiator,
1833                                           struct ieee80211_channel *chan,
1834                                           u32 flags,
1835                                           struct regulatory_request *lr,
1836                                           struct wiphy *request_wiphy,
1837                                           const struct ieee80211_reg_rule *rrule1,
1838                                           const struct ieee80211_reg_rule *rrule2,
1839                                           struct ieee80211_freq_range *comb_range)
1840 {
1841         u32 bw_flags1 = 0;
1842         u32 bw_flags2 = 0;
1843         const struct ieee80211_power_rule *power_rule1 = NULL;
1844         const struct ieee80211_power_rule *power_rule2 = NULL;
1845         const struct ieee80211_regdomain *regd;
1846
1847         regd = reg_get_regdomain(wiphy);
1848
1849         power_rule1 = &rrule1->power_rule;
1850         power_rule2 = &rrule2->power_rule;
1851         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1852         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1853
1854         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1855             request_wiphy && request_wiphy == wiphy &&
1856             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1857                 /* This guarantees the driver's requested regulatory domain
1858                  * will always be used as a base for further regulatory
1859                  * settings
1860                  */
1861                 chan->flags =
1862                         map_regdom_flags(rrule1->flags) |
1863                         map_regdom_flags(rrule2->flags) |
1864                         bw_flags1 |
1865                         bw_flags2;
1866                 chan->orig_flags = chan->flags;
1867                 chan->max_antenna_gain =
1868                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1869                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1870                 chan->orig_mag = chan->max_antenna_gain;
1871                 chan->max_reg_power =
1872                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1873                               MBM_TO_DBM(power_rule2->max_eirp));
1874                 chan->max_power = chan->max_reg_power;
1875                 chan->orig_mpwr = chan->max_reg_power;
1876
1877                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1878                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1879                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1880                                 chan->dfs_cac_ms = max_t(unsigned int,
1881                                                          rrule1->dfs_cac_ms,
1882                                                          rrule2->dfs_cac_ms);
1883                 }
1884
1885                 return;
1886         }
1887
1888         chan->dfs_state = NL80211_DFS_USABLE;
1889         chan->dfs_state_entered = jiffies;
1890
1891         chan->beacon_found = false;
1892         chan->flags = flags | bw_flags1 | bw_flags2 |
1893                       map_regdom_flags(rrule1->flags) |
1894                       map_regdom_flags(rrule2->flags);
1895
1896         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897          * (otherwise no adj. rule case), recheck therefore
1898          */
1899         if (cfg80211_does_bw_fit_range(comb_range,
1900                                        ieee80211_channel_to_khz(chan),
1901                                        MHZ_TO_KHZ(10)))
1902                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903         if (cfg80211_does_bw_fit_range(comb_range,
1904                                        ieee80211_channel_to_khz(chan),
1905                                        MHZ_TO_KHZ(20)))
1906                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907
1908         chan->max_antenna_gain =
1909                 min_t(int, chan->orig_mag,
1910                       min_t(int,
1911                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1912                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913         chan->max_reg_power = min_t(int,
1914                                     MBM_TO_DBM(power_rule1->max_eirp),
1915                                     MBM_TO_DBM(power_rule2->max_eirp));
1916
1917         if (chan->flags & IEEE80211_CHAN_RADAR) {
1918                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919                         chan->dfs_cac_ms = max_t(unsigned int,
1920                                                  rrule1->dfs_cac_ms,
1921                                                  rrule2->dfs_cac_ms);
1922                 else
1923                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924         }
1925
1926         if (chan->orig_mpwr) {
1927                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928                  * will always follow the passed country IE power settings.
1929                  */
1930                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932                         chan->max_power = chan->max_reg_power;
1933                 else
1934                         chan->max_power = min(chan->orig_mpwr,
1935                                               chan->max_reg_power);
1936         } else {
1937                 chan->max_power = chan->max_reg_power;
1938         }
1939 }
1940
1941 /* Note that right now we assume the desired channel bandwidth
1942  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943  * per channel, the primary and the extension channel).
1944  */
1945 static void handle_channel(struct wiphy *wiphy,
1946                            enum nl80211_reg_initiator initiator,
1947                            struct ieee80211_channel *chan)
1948 {
1949         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950         struct regulatory_request *lr = get_last_request();
1951         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1952         const struct ieee80211_reg_rule *rrule = NULL;
1953         const struct ieee80211_reg_rule *rrule1 = NULL;
1954         const struct ieee80211_reg_rule *rrule2 = NULL;
1955
1956         u32 flags = chan->orig_flags;
1957
1958         rrule = freq_reg_info(wiphy, orig_chan_freq);
1959         if (IS_ERR(rrule)) {
1960                 /* check for adjacent match, therefore get rules for
1961                  * chan - 20 MHz and chan + 20 MHz and test
1962                  * if reg rules are adjacent
1963                  */
1964                 rrule1 = freq_reg_info(wiphy,
1965                                        orig_chan_freq - MHZ_TO_KHZ(20));
1966                 rrule2 = freq_reg_info(wiphy,
1967                                        orig_chan_freq + MHZ_TO_KHZ(20));
1968                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1969                         struct ieee80211_freq_range comb_range;
1970
1971                         if (rrule1->freq_range.end_freq_khz !=
1972                             rrule2->freq_range.start_freq_khz)
1973                                 goto disable_chan;
1974
1975                         comb_range.start_freq_khz =
1976                                 rrule1->freq_range.start_freq_khz;
1977                         comb_range.end_freq_khz =
1978                                 rrule2->freq_range.end_freq_khz;
1979                         comb_range.max_bandwidth_khz =
1980                                 min_t(u32,
1981                                       rrule1->freq_range.max_bandwidth_khz,
1982                                       rrule2->freq_range.max_bandwidth_khz);
1983
1984                         if (!cfg80211_does_bw_fit_range(&comb_range,
1985                                                         orig_chan_freq,
1986                                                         MHZ_TO_KHZ(20)))
1987                                 goto disable_chan;
1988
1989                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1990                                                       flags, lr, request_wiphy,
1991                                                       rrule1, rrule2,
1992                                                       &comb_range);
1993                         return;
1994                 }
1995
1996 disable_chan:
1997                 /* We will disable all channels that do not match our
1998                  * received regulatory rule unless the hint is coming
1999                  * from a Country IE and the Country IE had no information
2000                  * about a band. The IEEE 802.11 spec allows for an AP
2001                  * to send only a subset of the regulatory rules allowed,
2002                  * so an AP in the US that only supports 2.4 GHz may only send
2003                  * a country IE with information for the 2.4 GHz band
2004                  * while 5 GHz is still supported.
2005                  */
2006                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007                     PTR_ERR(rrule) == -ERANGE)
2008                         return;
2009
2010                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011                     request_wiphy && request_wiphy == wiphy &&
2012                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2014                                  chan->center_freq, chan->freq_offset);
2015                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016                         chan->flags = chan->orig_flags;
2017                 } else {
2018                         pr_debug("Disabling freq %d.%03d MHz\n",
2019                                  chan->center_freq, chan->freq_offset);
2020                         chan->flags |= IEEE80211_CHAN_DISABLED;
2021                 }
2022                 return;
2023         }
2024
2025         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026                                    request_wiphy, rrule);
2027 }
2028
2029 static void handle_band(struct wiphy *wiphy,
2030                         enum nl80211_reg_initiator initiator,
2031                         struct ieee80211_supported_band *sband)
2032 {
2033         unsigned int i;
2034
2035         if (!sband)
2036                 return;
2037
2038         for (i = 0; i < sband->n_channels; i++)
2039                 handle_channel(wiphy, initiator, &sband->channels[i]);
2040 }
2041
2042 static bool reg_request_cell_base(struct regulatory_request *request)
2043 {
2044         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045                 return false;
2046         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047 }
2048
2049 bool reg_last_request_cell_base(void)
2050 {
2051         return reg_request_cell_base(get_last_request());
2052 }
2053
2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055 /* Core specific check */
2056 static enum reg_request_treatment
2057 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058 {
2059         struct regulatory_request *lr = get_last_request();
2060
2061         if (!reg_num_devs_support_basehint)
2062                 return REG_REQ_IGNORE;
2063
2064         if (reg_request_cell_base(lr) &&
2065             !regdom_changes(pending_request->alpha2))
2066                 return REG_REQ_ALREADY_SET;
2067
2068         return REG_REQ_OK;
2069 }
2070
2071 /* Device specific check */
2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073 {
2074         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075 }
2076 #else
2077 static enum reg_request_treatment
2078 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079 {
2080         return REG_REQ_IGNORE;
2081 }
2082
2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084 {
2085         return true;
2086 }
2087 #endif
2088
2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090 {
2091         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093                 return true;
2094         return false;
2095 }
2096
2097 static bool ignore_reg_update(struct wiphy *wiphy,
2098                               enum nl80211_reg_initiator initiator)
2099 {
2100         struct regulatory_request *lr = get_last_request();
2101
2102         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103                 return true;
2104
2105         if (!lr) {
2106                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107                          reg_initiator_name(initiator));
2108                 return true;
2109         }
2110
2111         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114                          reg_initiator_name(initiator));
2115                 return true;
2116         }
2117
2118         /*
2119          * wiphy->regd will be set once the device has its own
2120          * desired regulatory domain set
2121          */
2122         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124             !is_world_regdom(lr->alpha2)) {
2125                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126                          reg_initiator_name(initiator));
2127                 return true;
2128         }
2129
2130         if (reg_request_cell_base(lr))
2131                 return reg_dev_ignore_cell_hint(wiphy);
2132
2133         return false;
2134 }
2135
2136 static bool reg_is_world_roaming(struct wiphy *wiphy)
2137 {
2138         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140         struct regulatory_request *lr = get_last_request();
2141
2142         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2143                 return true;
2144
2145         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147                 return true;
2148
2149         return false;
2150 }
2151
2152 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2153                               struct reg_beacon *reg_beacon)
2154 {
2155         struct ieee80211_supported_band *sband;
2156         struct ieee80211_channel *chan;
2157         bool channel_changed = false;
2158         struct ieee80211_channel chan_before;
2159
2160         sband = wiphy->bands[reg_beacon->chan.band];
2161         chan = &sband->channels[chan_idx];
2162
2163         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2164                 return;
2165
2166         if (chan->beacon_found)
2167                 return;
2168
2169         chan->beacon_found = true;
2170
2171         if (!reg_is_world_roaming(wiphy))
2172                 return;
2173
2174         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2175                 return;
2176
2177         chan_before = *chan;
2178
2179         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2180                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2181                 channel_changed = true;
2182         }
2183
2184         if (channel_changed)
2185                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2186 }
2187
2188 /*
2189  * Called when a scan on a wiphy finds a beacon on
2190  * new channel
2191  */
2192 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2193                                     struct reg_beacon *reg_beacon)
2194 {
2195         unsigned int i;
2196         struct ieee80211_supported_band *sband;
2197
2198         if (!wiphy->bands[reg_beacon->chan.band])
2199                 return;
2200
2201         sband = wiphy->bands[reg_beacon->chan.band];
2202
2203         for (i = 0; i < sband->n_channels; i++)
2204                 handle_reg_beacon(wiphy, i, reg_beacon);
2205 }
2206
2207 /*
2208  * Called upon reg changes or a new wiphy is added
2209  */
2210 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2211 {
2212         unsigned int i;
2213         struct ieee80211_supported_band *sband;
2214         struct reg_beacon *reg_beacon;
2215
2216         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2217                 if (!wiphy->bands[reg_beacon->chan.band])
2218                         continue;
2219                 sband = wiphy->bands[reg_beacon->chan.band];
2220                 for (i = 0; i < sband->n_channels; i++)
2221                         handle_reg_beacon(wiphy, i, reg_beacon);
2222         }
2223 }
2224
2225 /* Reap the advantages of previously found beacons */
2226 static void reg_process_beacons(struct wiphy *wiphy)
2227 {
2228         /*
2229          * Means we are just firing up cfg80211, so no beacons would
2230          * have been processed yet.
2231          */
2232         if (!last_request)
2233                 return;
2234         wiphy_update_beacon_reg(wiphy);
2235 }
2236
2237 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2238 {
2239         if (!chan)
2240                 return false;
2241         if (chan->flags & IEEE80211_CHAN_DISABLED)
2242                 return false;
2243         /* This would happen when regulatory rules disallow HT40 completely */
2244         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2245                 return false;
2246         return true;
2247 }
2248
2249 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2250                                          struct ieee80211_channel *channel)
2251 {
2252         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2253         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2254         const struct ieee80211_regdomain *regd;
2255         unsigned int i;
2256         u32 flags;
2257
2258         if (!is_ht40_allowed(channel)) {
2259                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2260                 return;
2261         }
2262
2263         /*
2264          * We need to ensure the extension channels exist to
2265          * be able to use HT40- or HT40+, this finds them (or not)
2266          */
2267         for (i = 0; i < sband->n_channels; i++) {
2268                 struct ieee80211_channel *c = &sband->channels[i];
2269
2270                 if (c->center_freq == (channel->center_freq - 20))
2271                         channel_before = c;
2272                 if (c->center_freq == (channel->center_freq + 20))
2273                         channel_after = c;
2274         }
2275
2276         flags = 0;
2277         regd = get_wiphy_regdom(wiphy);
2278         if (regd) {
2279                 const struct ieee80211_reg_rule *reg_rule =
2280                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2281                                            regd, MHZ_TO_KHZ(20));
2282
2283                 if (!IS_ERR(reg_rule))
2284                         flags = reg_rule->flags;
2285         }
2286
2287         /*
2288          * Please note that this assumes target bandwidth is 20 MHz,
2289          * if that ever changes we also need to change the below logic
2290          * to include that as well.
2291          */
2292         if (!is_ht40_allowed(channel_before) ||
2293             flags & NL80211_RRF_NO_HT40MINUS)
2294                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2295         else
2296                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2297
2298         if (!is_ht40_allowed(channel_after) ||
2299             flags & NL80211_RRF_NO_HT40PLUS)
2300                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2301         else
2302                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2303 }
2304
2305 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2306                                       struct ieee80211_supported_band *sband)
2307 {
2308         unsigned int i;
2309
2310         if (!sband)
2311                 return;
2312
2313         for (i = 0; i < sband->n_channels; i++)
2314                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2315 }
2316
2317 static void reg_process_ht_flags(struct wiphy *wiphy)
2318 {
2319         enum nl80211_band band;
2320
2321         if (!wiphy)
2322                 return;
2323
2324         for (band = 0; band < NUM_NL80211_BANDS; band++)
2325                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2326 }
2327
2328 static void reg_call_notifier(struct wiphy *wiphy,
2329                               struct regulatory_request *request)
2330 {
2331         if (wiphy->reg_notifier)
2332                 wiphy->reg_notifier(wiphy, request);
2333 }
2334
2335 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2336 {
2337         struct cfg80211_chan_def chandef = {};
2338         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2339         enum nl80211_iftype iftype;
2340         bool ret;
2341         int link;
2342
2343         wdev_lock(wdev);
2344         iftype = wdev->iftype;
2345
2346         /* make sure the interface is active */
2347         if (!wdev->netdev || !netif_running(wdev->netdev))
2348                 goto wdev_inactive_unlock;
2349
2350         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2351                 struct ieee80211_channel *chan;
2352
2353                 if (!wdev->valid_links && link > 0)
2354                         break;
2355                 if (!(wdev->valid_links & BIT(link)))
2356                         continue;
2357                 switch (iftype) {
2358                 case NL80211_IFTYPE_AP:
2359                 case NL80211_IFTYPE_P2P_GO:
2360                         if (!wdev->links[link].ap.beacon_interval)
2361                                 continue;
2362                         chandef = wdev->links[link].ap.chandef;
2363                         break;
2364                 case NL80211_IFTYPE_MESH_POINT:
2365                         if (!wdev->u.mesh.beacon_interval)
2366                                 continue;
2367                         chandef = wdev->u.mesh.chandef;
2368                         break;
2369                 case NL80211_IFTYPE_ADHOC:
2370                         if (!wdev->u.ibss.ssid_len)
2371                                 continue;
2372                         chandef = wdev->u.ibss.chandef;
2373                         break;
2374                 case NL80211_IFTYPE_STATION:
2375                 case NL80211_IFTYPE_P2P_CLIENT:
2376                         /* Maybe we could consider disabling that link only? */
2377                         if (!wdev->links[link].client.current_bss)
2378                                 continue;
2379
2380                         chan = wdev->links[link].client.current_bss->pub.channel;
2381                         if (!chan)
2382                                 continue;
2383
2384                         if (!rdev->ops->get_channel ||
2385                             rdev_get_channel(rdev, wdev, link, &chandef))
2386                                 cfg80211_chandef_create(&chandef, chan,
2387                                                         NL80211_CHAN_NO_HT);
2388                         break;
2389                 case NL80211_IFTYPE_MONITOR:
2390                 case NL80211_IFTYPE_AP_VLAN:
2391                 case NL80211_IFTYPE_P2P_DEVICE:
2392                         /* no enforcement required */
2393                         break;
2394                 default:
2395                         /* others not implemented for now */
2396                         WARN_ON(1);
2397                         break;
2398                 }
2399
2400                 wdev_unlock(wdev);
2401
2402                 switch (iftype) {
2403                 case NL80211_IFTYPE_AP:
2404                 case NL80211_IFTYPE_P2P_GO:
2405                 case NL80211_IFTYPE_ADHOC:
2406                 case NL80211_IFTYPE_MESH_POINT:
2407                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2408                                                             iftype);
2409                         if (!ret)
2410                                 return ret;
2411                         break;
2412                 case NL80211_IFTYPE_STATION:
2413                 case NL80211_IFTYPE_P2P_CLIENT:
2414                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2415                                                       IEEE80211_CHAN_DISABLED);
2416                         if (!ret)
2417                                 return ret;
2418                         break;
2419                 default:
2420                         break;
2421                 }
2422
2423                 wdev_lock(wdev);
2424         }
2425
2426         wdev_unlock(wdev);
2427
2428         return true;
2429
2430 wdev_inactive_unlock:
2431         wdev_unlock(wdev);
2432         return true;
2433 }
2434
2435 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2436 {
2437         struct wireless_dev *wdev;
2438         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2439
2440         wiphy_lock(wiphy);
2441         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2442                 if (!reg_wdev_chan_valid(wiphy, wdev))
2443                         cfg80211_leave(rdev, wdev);
2444         wiphy_unlock(wiphy);
2445 }
2446
2447 static void reg_check_chans_work(struct work_struct *work)
2448 {
2449         struct cfg80211_registered_device *rdev;
2450
2451         pr_debug("Verifying active interfaces after reg change\n");
2452         rtnl_lock();
2453
2454         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2455                 if (!(rdev->wiphy.regulatory_flags &
2456                       REGULATORY_IGNORE_STALE_KICKOFF))
2457                         reg_leave_invalid_chans(&rdev->wiphy);
2458
2459         rtnl_unlock();
2460 }
2461
2462 static void reg_check_channels(void)
2463 {
2464         /*
2465          * Give usermode a chance to do something nicer (move to another
2466          * channel, orderly disconnection), before forcing a disconnection.
2467          */
2468         mod_delayed_work(system_power_efficient_wq,
2469                          &reg_check_chans,
2470                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2471 }
2472
2473 static void wiphy_update_regulatory(struct wiphy *wiphy,
2474                                     enum nl80211_reg_initiator initiator)
2475 {
2476         enum nl80211_band band;
2477         struct regulatory_request *lr = get_last_request();
2478
2479         if (ignore_reg_update(wiphy, initiator)) {
2480                 /*
2481                  * Regulatory updates set by CORE are ignored for custom
2482                  * regulatory cards. Let us notify the changes to the driver,
2483                  * as some drivers used this to restore its orig_* reg domain.
2484                  */
2485                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2486                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2487                     !(wiphy->regulatory_flags &
2488                       REGULATORY_WIPHY_SELF_MANAGED))
2489                         reg_call_notifier(wiphy, lr);
2490                 return;
2491         }
2492
2493         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2494
2495         for (band = 0; band < NUM_NL80211_BANDS; band++)
2496                 handle_band(wiphy, initiator, wiphy->bands[band]);
2497
2498         reg_process_beacons(wiphy);
2499         reg_process_ht_flags(wiphy);
2500         reg_call_notifier(wiphy, lr);
2501 }
2502
2503 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2504 {
2505         struct cfg80211_registered_device *rdev;
2506         struct wiphy *wiphy;
2507
2508         ASSERT_RTNL();
2509
2510         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2511                 wiphy = &rdev->wiphy;
2512                 wiphy_update_regulatory(wiphy, initiator);
2513         }
2514
2515         reg_check_channels();
2516 }
2517
2518 static void handle_channel_custom(struct wiphy *wiphy,
2519                                   struct ieee80211_channel *chan,
2520                                   const struct ieee80211_regdomain *regd,
2521                                   u32 min_bw)
2522 {
2523         u32 bw_flags = 0;
2524         const struct ieee80211_reg_rule *reg_rule = NULL;
2525         const struct ieee80211_power_rule *power_rule = NULL;
2526         u32 bw, center_freq_khz;
2527
2528         center_freq_khz = ieee80211_channel_to_khz(chan);
2529         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2530                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2531                 if (!IS_ERR(reg_rule))
2532                         break;
2533         }
2534
2535         if (IS_ERR_OR_NULL(reg_rule)) {
2536                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2537                          chan->center_freq, chan->freq_offset);
2538                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2539                         chan->flags |= IEEE80211_CHAN_DISABLED;
2540                 } else {
2541                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2542                         chan->flags = chan->orig_flags;
2543                 }
2544                 return;
2545         }
2546
2547         power_rule = &reg_rule->power_rule;
2548         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2549
2550         chan->dfs_state_entered = jiffies;
2551         chan->dfs_state = NL80211_DFS_USABLE;
2552
2553         chan->beacon_found = false;
2554
2555         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2556                 chan->flags = chan->orig_flags | bw_flags |
2557                               map_regdom_flags(reg_rule->flags);
2558         else
2559                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2560
2561         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2562         chan->max_reg_power = chan->max_power =
2563                 (int) MBM_TO_DBM(power_rule->max_eirp);
2564
2565         if (chan->flags & IEEE80211_CHAN_RADAR) {
2566                 if (reg_rule->dfs_cac_ms)
2567                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2568                 else
2569                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2570         }
2571
2572         chan->max_power = chan->max_reg_power;
2573 }
2574
2575 static void handle_band_custom(struct wiphy *wiphy,
2576                                struct ieee80211_supported_band *sband,
2577                                const struct ieee80211_regdomain *regd)
2578 {
2579         unsigned int i;
2580
2581         if (!sband)
2582                 return;
2583
2584         /*
2585          * We currently assume that you always want at least 20 MHz,
2586          * otherwise channel 12 might get enabled if this rule is
2587          * compatible to US, which permits 2402 - 2472 MHz.
2588          */
2589         for (i = 0; i < sband->n_channels; i++)
2590                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2591                                       MHZ_TO_KHZ(20));
2592 }
2593
2594 /* Used by drivers prior to wiphy registration */
2595 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2596                                    const struct ieee80211_regdomain *regd)
2597 {
2598         const struct ieee80211_regdomain *new_regd, *tmp;
2599         enum nl80211_band band;
2600         unsigned int bands_set = 0;
2601
2602         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2603              "wiphy should have REGULATORY_CUSTOM_REG\n");
2604         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2605
2606         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2607                 if (!wiphy->bands[band])
2608                         continue;
2609                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2610                 bands_set++;
2611         }
2612
2613         /*
2614          * no point in calling this if it won't have any effect
2615          * on your device's supported bands.
2616          */
2617         WARN_ON(!bands_set);
2618         new_regd = reg_copy_regd(regd);
2619         if (IS_ERR(new_regd))
2620                 return;
2621
2622         rtnl_lock();
2623         wiphy_lock(wiphy);
2624
2625         tmp = get_wiphy_regdom(wiphy);
2626         rcu_assign_pointer(wiphy->regd, new_regd);
2627         rcu_free_regdom(tmp);
2628
2629         wiphy_unlock(wiphy);
2630         rtnl_unlock();
2631 }
2632 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2633
2634 static void reg_set_request_processed(void)
2635 {
2636         bool need_more_processing = false;
2637         struct regulatory_request *lr = get_last_request();
2638
2639         lr->processed = true;
2640
2641         spin_lock(&reg_requests_lock);
2642         if (!list_empty(&reg_requests_list))
2643                 need_more_processing = true;
2644         spin_unlock(&reg_requests_lock);
2645
2646         cancel_crda_timeout();
2647
2648         if (need_more_processing)
2649                 schedule_work(&reg_work);
2650 }
2651
2652 /**
2653  * reg_process_hint_core - process core regulatory requests
2654  * @core_request: a pending core regulatory request
2655  *
2656  * The wireless subsystem can use this function to process
2657  * a regulatory request issued by the regulatory core.
2658  */
2659 static enum reg_request_treatment
2660 reg_process_hint_core(struct regulatory_request *core_request)
2661 {
2662         if (reg_query_database(core_request)) {
2663                 core_request->intersect = false;
2664                 core_request->processed = false;
2665                 reg_update_last_request(core_request);
2666                 return REG_REQ_OK;
2667         }
2668
2669         return REG_REQ_IGNORE;
2670 }
2671
2672 static enum reg_request_treatment
2673 __reg_process_hint_user(struct regulatory_request *user_request)
2674 {
2675         struct regulatory_request *lr = get_last_request();
2676
2677         if (reg_request_cell_base(user_request))
2678                 return reg_ignore_cell_hint(user_request);
2679
2680         if (reg_request_cell_base(lr))
2681                 return REG_REQ_IGNORE;
2682
2683         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2684                 return REG_REQ_INTERSECT;
2685         /*
2686          * If the user knows better the user should set the regdom
2687          * to their country before the IE is picked up
2688          */
2689         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2690             lr->intersect)
2691                 return REG_REQ_IGNORE;
2692         /*
2693          * Process user requests only after previous user/driver/core
2694          * requests have been processed
2695          */
2696         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2697              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2698              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2699             regdom_changes(lr->alpha2))
2700                 return REG_REQ_IGNORE;
2701
2702         if (!regdom_changes(user_request->alpha2))
2703                 return REG_REQ_ALREADY_SET;
2704
2705         return REG_REQ_OK;
2706 }
2707
2708 /**
2709  * reg_process_hint_user - process user regulatory requests
2710  * @user_request: a pending user regulatory request
2711  *
2712  * The wireless subsystem can use this function to process
2713  * a regulatory request initiated by userspace.
2714  */
2715 static enum reg_request_treatment
2716 reg_process_hint_user(struct regulatory_request *user_request)
2717 {
2718         enum reg_request_treatment treatment;
2719
2720         treatment = __reg_process_hint_user(user_request);
2721         if (treatment == REG_REQ_IGNORE ||
2722             treatment == REG_REQ_ALREADY_SET)
2723                 return REG_REQ_IGNORE;
2724
2725         user_request->intersect = treatment == REG_REQ_INTERSECT;
2726         user_request->processed = false;
2727
2728         if (reg_query_database(user_request)) {
2729                 reg_update_last_request(user_request);
2730                 user_alpha2[0] = user_request->alpha2[0];
2731                 user_alpha2[1] = user_request->alpha2[1];
2732                 return REG_REQ_OK;
2733         }
2734
2735         return REG_REQ_IGNORE;
2736 }
2737
2738 static enum reg_request_treatment
2739 __reg_process_hint_driver(struct regulatory_request *driver_request)
2740 {
2741         struct regulatory_request *lr = get_last_request();
2742
2743         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2744                 if (regdom_changes(driver_request->alpha2))
2745                         return REG_REQ_OK;
2746                 return REG_REQ_ALREADY_SET;
2747         }
2748
2749         /*
2750          * This would happen if you unplug and plug your card
2751          * back in or if you add a new device for which the previously
2752          * loaded card also agrees on the regulatory domain.
2753          */
2754         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2755             !regdom_changes(driver_request->alpha2))
2756                 return REG_REQ_ALREADY_SET;
2757
2758         return REG_REQ_INTERSECT;
2759 }
2760
2761 /**
2762  * reg_process_hint_driver - process driver regulatory requests
2763  * @wiphy: the wireless device for the regulatory request
2764  * @driver_request: a pending driver regulatory request
2765  *
2766  * The wireless subsystem can use this function to process
2767  * a regulatory request issued by an 802.11 driver.
2768  *
2769  * Returns one of the different reg request treatment values.
2770  */
2771 static enum reg_request_treatment
2772 reg_process_hint_driver(struct wiphy *wiphy,
2773                         struct regulatory_request *driver_request)
2774 {
2775         const struct ieee80211_regdomain *regd, *tmp;
2776         enum reg_request_treatment treatment;
2777
2778         treatment = __reg_process_hint_driver(driver_request);
2779
2780         switch (treatment) {
2781         case REG_REQ_OK:
2782                 break;
2783         case REG_REQ_IGNORE:
2784                 return REG_REQ_IGNORE;
2785         case REG_REQ_INTERSECT:
2786         case REG_REQ_ALREADY_SET:
2787                 regd = reg_copy_regd(get_cfg80211_regdom());
2788                 if (IS_ERR(regd))
2789                         return REG_REQ_IGNORE;
2790
2791                 tmp = get_wiphy_regdom(wiphy);
2792                 ASSERT_RTNL();
2793                 wiphy_lock(wiphy);
2794                 rcu_assign_pointer(wiphy->regd, regd);
2795                 wiphy_unlock(wiphy);
2796                 rcu_free_regdom(tmp);
2797         }
2798
2799
2800         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2801         driver_request->processed = false;
2802
2803         /*
2804          * Since CRDA will not be called in this case as we already
2805          * have applied the requested regulatory domain before we just
2806          * inform userspace we have processed the request
2807          */
2808         if (treatment == REG_REQ_ALREADY_SET) {
2809                 nl80211_send_reg_change_event(driver_request);
2810                 reg_update_last_request(driver_request);
2811                 reg_set_request_processed();
2812                 return REG_REQ_ALREADY_SET;
2813         }
2814
2815         if (reg_query_database(driver_request)) {
2816                 reg_update_last_request(driver_request);
2817                 return REG_REQ_OK;
2818         }
2819
2820         return REG_REQ_IGNORE;
2821 }
2822
2823 static enum reg_request_treatment
2824 __reg_process_hint_country_ie(struct wiphy *wiphy,
2825                               struct regulatory_request *country_ie_request)
2826 {
2827         struct wiphy *last_wiphy = NULL;
2828         struct regulatory_request *lr = get_last_request();
2829
2830         if (reg_request_cell_base(lr)) {
2831                 /* Trust a Cell base station over the AP's country IE */
2832                 if (regdom_changes(country_ie_request->alpha2))
2833                         return REG_REQ_IGNORE;
2834                 return REG_REQ_ALREADY_SET;
2835         } else {
2836                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2837                         return REG_REQ_IGNORE;
2838         }
2839
2840         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2841                 return -EINVAL;
2842
2843         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2844                 return REG_REQ_OK;
2845
2846         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2847
2848         if (last_wiphy != wiphy) {
2849                 /*
2850                  * Two cards with two APs claiming different
2851                  * Country IE alpha2s. We could
2852                  * intersect them, but that seems unlikely
2853                  * to be correct. Reject second one for now.
2854                  */
2855                 if (regdom_changes(country_ie_request->alpha2))
2856                         return REG_REQ_IGNORE;
2857                 return REG_REQ_ALREADY_SET;
2858         }
2859
2860         if (regdom_changes(country_ie_request->alpha2))
2861                 return REG_REQ_OK;
2862         return REG_REQ_ALREADY_SET;
2863 }
2864
2865 /**
2866  * reg_process_hint_country_ie - process regulatory requests from country IEs
2867  * @wiphy: the wireless device for the regulatory request
2868  * @country_ie_request: a regulatory request from a country IE
2869  *
2870  * The wireless subsystem can use this function to process
2871  * a regulatory request issued by a country Information Element.
2872  *
2873  * Returns one of the different reg request treatment values.
2874  */
2875 static enum reg_request_treatment
2876 reg_process_hint_country_ie(struct wiphy *wiphy,
2877                             struct regulatory_request *country_ie_request)
2878 {
2879         enum reg_request_treatment treatment;
2880
2881         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2882
2883         switch (treatment) {
2884         case REG_REQ_OK:
2885                 break;
2886         case REG_REQ_IGNORE:
2887                 return REG_REQ_IGNORE;
2888         case REG_REQ_ALREADY_SET:
2889                 reg_free_request(country_ie_request);
2890                 return REG_REQ_ALREADY_SET;
2891         case REG_REQ_INTERSECT:
2892                 /*
2893                  * This doesn't happen yet, not sure we
2894                  * ever want to support it for this case.
2895                  */
2896                 WARN_ONCE(1, "Unexpected intersection for country elements");
2897                 return REG_REQ_IGNORE;
2898         }
2899
2900         country_ie_request->intersect = false;
2901         country_ie_request->processed = false;
2902
2903         if (reg_query_database(country_ie_request)) {
2904                 reg_update_last_request(country_ie_request);
2905                 return REG_REQ_OK;
2906         }
2907
2908         return REG_REQ_IGNORE;
2909 }
2910
2911 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2912 {
2913         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2914         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2915         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2916         bool dfs_domain_same;
2917
2918         rcu_read_lock();
2919
2920         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2921         wiphy1_regd = rcu_dereference(wiphy1->regd);
2922         if (!wiphy1_regd)
2923                 wiphy1_regd = cfg80211_regd;
2924
2925         wiphy2_regd = rcu_dereference(wiphy2->regd);
2926         if (!wiphy2_regd)
2927                 wiphy2_regd = cfg80211_regd;
2928
2929         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2930
2931         rcu_read_unlock();
2932
2933         return dfs_domain_same;
2934 }
2935
2936 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2937                                     struct ieee80211_channel *src_chan)
2938 {
2939         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2940             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2941                 return;
2942
2943         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2944             src_chan->flags & IEEE80211_CHAN_DISABLED)
2945                 return;
2946
2947         if (src_chan->center_freq == dst_chan->center_freq &&
2948             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2949                 dst_chan->dfs_state = src_chan->dfs_state;
2950                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2951         }
2952 }
2953
2954 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2955                                        struct wiphy *src_wiphy)
2956 {
2957         struct ieee80211_supported_band *src_sband, *dst_sband;
2958         struct ieee80211_channel *src_chan, *dst_chan;
2959         int i, j, band;
2960
2961         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2962                 return;
2963
2964         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2965                 dst_sband = dst_wiphy->bands[band];
2966                 src_sband = src_wiphy->bands[band];
2967                 if (!dst_sband || !src_sband)
2968                         continue;
2969
2970                 for (i = 0; i < dst_sband->n_channels; i++) {
2971                         dst_chan = &dst_sband->channels[i];
2972                         for (j = 0; j < src_sband->n_channels; j++) {
2973                                 src_chan = &src_sband->channels[j];
2974                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2975                         }
2976                 }
2977         }
2978 }
2979
2980 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2981 {
2982         struct cfg80211_registered_device *rdev;
2983
2984         ASSERT_RTNL();
2985
2986         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2987                 if (wiphy == &rdev->wiphy)
2988                         continue;
2989                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2990         }
2991 }
2992
2993 /* This processes *all* regulatory hints */
2994 static void reg_process_hint(struct regulatory_request *reg_request)
2995 {
2996         struct wiphy *wiphy = NULL;
2997         enum reg_request_treatment treatment;
2998         enum nl80211_reg_initiator initiator = reg_request->initiator;
2999
3000         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3001                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3002
3003         switch (initiator) {
3004         case NL80211_REGDOM_SET_BY_CORE:
3005                 treatment = reg_process_hint_core(reg_request);
3006                 break;
3007         case NL80211_REGDOM_SET_BY_USER:
3008                 treatment = reg_process_hint_user(reg_request);
3009                 break;
3010         case NL80211_REGDOM_SET_BY_DRIVER:
3011                 if (!wiphy)
3012                         goto out_free;
3013                 treatment = reg_process_hint_driver(wiphy, reg_request);
3014                 break;
3015         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3016                 if (!wiphy)
3017                         goto out_free;
3018                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3019                 break;
3020         default:
3021                 WARN(1, "invalid initiator %d\n", initiator);
3022                 goto out_free;
3023         }
3024
3025         if (treatment == REG_REQ_IGNORE)
3026                 goto out_free;
3027
3028         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3029              "unexpected treatment value %d\n", treatment);
3030
3031         /* This is required so that the orig_* parameters are saved.
3032          * NOTE: treatment must be set for any case that reaches here!
3033          */
3034         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3035             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3036                 wiphy_update_regulatory(wiphy, initiator);
3037                 wiphy_all_share_dfs_chan_state(wiphy);
3038                 reg_check_channels();
3039         }
3040
3041         return;
3042
3043 out_free:
3044         reg_free_request(reg_request);
3045 }
3046
3047 static void notify_self_managed_wiphys(struct regulatory_request *request)
3048 {
3049         struct cfg80211_registered_device *rdev;
3050         struct wiphy *wiphy;
3051
3052         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3053                 wiphy = &rdev->wiphy;
3054                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3055                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3056                         reg_call_notifier(wiphy, request);
3057         }
3058 }
3059
3060 /*
3061  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3062  * Regulatory hints come on a first come first serve basis and we
3063  * must process each one atomically.
3064  */
3065 static void reg_process_pending_hints(void)
3066 {
3067         struct regulatory_request *reg_request, *lr;
3068
3069         lr = get_last_request();
3070
3071         /* When last_request->processed becomes true this will be rescheduled */
3072         if (lr && !lr->processed) {
3073                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3074                 return;
3075         }
3076
3077         spin_lock(&reg_requests_lock);
3078
3079         if (list_empty(&reg_requests_list)) {
3080                 spin_unlock(&reg_requests_lock);
3081                 return;
3082         }
3083
3084         reg_request = list_first_entry(&reg_requests_list,
3085                                        struct regulatory_request,
3086                                        list);
3087         list_del_init(&reg_request->list);
3088
3089         spin_unlock(&reg_requests_lock);
3090
3091         notify_self_managed_wiphys(reg_request);
3092
3093         reg_process_hint(reg_request);
3094
3095         lr = get_last_request();
3096
3097         spin_lock(&reg_requests_lock);
3098         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3099                 schedule_work(&reg_work);
3100         spin_unlock(&reg_requests_lock);
3101 }
3102
3103 /* Processes beacon hints -- this has nothing to do with country IEs */
3104 static void reg_process_pending_beacon_hints(void)
3105 {
3106         struct cfg80211_registered_device *rdev;
3107         struct reg_beacon *pending_beacon, *tmp;
3108
3109         /* This goes through the _pending_ beacon list */
3110         spin_lock_bh(&reg_pending_beacons_lock);
3111
3112         list_for_each_entry_safe(pending_beacon, tmp,
3113                                  &reg_pending_beacons, list) {
3114                 list_del_init(&pending_beacon->list);
3115
3116                 /* Applies the beacon hint to current wiphys */
3117                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3118                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3119
3120                 /* Remembers the beacon hint for new wiphys or reg changes */
3121                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3122         }
3123
3124         spin_unlock_bh(&reg_pending_beacons_lock);
3125 }
3126
3127 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3128 {
3129         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3130         const struct ieee80211_regdomain *tmp;
3131         const struct ieee80211_regdomain *regd;
3132         enum nl80211_band band;
3133         struct regulatory_request request = {};
3134
3135         ASSERT_RTNL();
3136         lockdep_assert_wiphy(wiphy);
3137
3138         spin_lock(&reg_requests_lock);
3139         regd = rdev->requested_regd;
3140         rdev->requested_regd = NULL;
3141         spin_unlock(&reg_requests_lock);
3142
3143         if (!regd)
3144                 return;
3145
3146         tmp = get_wiphy_regdom(wiphy);
3147         rcu_assign_pointer(wiphy->regd, regd);
3148         rcu_free_regdom(tmp);
3149
3150         for (band = 0; band < NUM_NL80211_BANDS; band++)
3151                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3152
3153         reg_process_ht_flags(wiphy);
3154
3155         request.wiphy_idx = get_wiphy_idx(wiphy);
3156         request.alpha2[0] = regd->alpha2[0];
3157         request.alpha2[1] = regd->alpha2[1];
3158         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3159
3160         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3161                 reg_call_notifier(wiphy, &request);
3162
3163         nl80211_send_wiphy_reg_change_event(&request);
3164 }
3165
3166 static void reg_process_self_managed_hints(void)
3167 {
3168         struct cfg80211_registered_device *rdev;
3169
3170         ASSERT_RTNL();
3171
3172         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3173                 wiphy_lock(&rdev->wiphy);
3174                 reg_process_self_managed_hint(&rdev->wiphy);
3175                 wiphy_unlock(&rdev->wiphy);
3176         }
3177
3178         reg_check_channels();
3179 }
3180
3181 static void reg_todo(struct work_struct *work)
3182 {
3183         rtnl_lock();
3184         reg_process_pending_hints();
3185         reg_process_pending_beacon_hints();
3186         reg_process_self_managed_hints();
3187         rtnl_unlock();
3188 }
3189
3190 static void queue_regulatory_request(struct regulatory_request *request)
3191 {
3192         request->alpha2[0] = toupper(request->alpha2[0]);
3193         request->alpha2[1] = toupper(request->alpha2[1]);
3194
3195         spin_lock(&reg_requests_lock);
3196         list_add_tail(&request->list, &reg_requests_list);
3197         spin_unlock(&reg_requests_lock);
3198
3199         schedule_work(&reg_work);
3200 }
3201
3202 /*
3203  * Core regulatory hint -- happens during cfg80211_init()
3204  * and when we restore regulatory settings.
3205  */
3206 static int regulatory_hint_core(const char *alpha2)
3207 {
3208         struct regulatory_request *request;
3209
3210         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3211         if (!request)
3212                 return -ENOMEM;
3213
3214         request->alpha2[0] = alpha2[0];
3215         request->alpha2[1] = alpha2[1];
3216         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3217         request->wiphy_idx = WIPHY_IDX_INVALID;
3218
3219         queue_regulatory_request(request);
3220
3221         return 0;
3222 }
3223
3224 /* User hints */
3225 int regulatory_hint_user(const char *alpha2,
3226                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3227 {
3228         struct regulatory_request *request;
3229
3230         if (WARN_ON(!alpha2))
3231                 return -EINVAL;
3232
3233         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3234                 return -EINVAL;
3235
3236         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3237         if (!request)
3238                 return -ENOMEM;
3239
3240         request->wiphy_idx = WIPHY_IDX_INVALID;
3241         request->alpha2[0] = alpha2[0];
3242         request->alpha2[1] = alpha2[1];
3243         request->initiator = NL80211_REGDOM_SET_BY_USER;
3244         request->user_reg_hint_type = user_reg_hint_type;
3245
3246         /* Allow calling CRDA again */
3247         reset_crda_timeouts();
3248
3249         queue_regulatory_request(request);
3250
3251         return 0;
3252 }
3253
3254 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3255 {
3256         spin_lock(&reg_indoor_lock);
3257
3258         /* It is possible that more than one user space process is trying to
3259          * configure the indoor setting. To handle such cases, clear the indoor
3260          * setting in case that some process does not think that the device
3261          * is operating in an indoor environment. In addition, if a user space
3262          * process indicates that it is controlling the indoor setting, save its
3263          * portid, i.e., make it the owner.
3264          */
3265         reg_is_indoor = is_indoor;
3266         if (reg_is_indoor) {
3267                 if (!reg_is_indoor_portid)
3268                         reg_is_indoor_portid = portid;
3269         } else {
3270                 reg_is_indoor_portid = 0;
3271         }
3272
3273         spin_unlock(&reg_indoor_lock);
3274
3275         if (!is_indoor)
3276                 reg_check_channels();
3277
3278         return 0;
3279 }
3280
3281 void regulatory_netlink_notify(u32 portid)
3282 {
3283         spin_lock(&reg_indoor_lock);
3284
3285         if (reg_is_indoor_portid != portid) {
3286                 spin_unlock(&reg_indoor_lock);
3287                 return;
3288         }
3289
3290         reg_is_indoor = false;
3291         reg_is_indoor_portid = 0;
3292
3293         spin_unlock(&reg_indoor_lock);
3294
3295         reg_check_channels();
3296 }
3297
3298 /* Driver hints */
3299 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3300 {
3301         struct regulatory_request *request;
3302
3303         if (WARN_ON(!alpha2 || !wiphy))
3304                 return -EINVAL;
3305
3306         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3307
3308         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3309         if (!request)
3310                 return -ENOMEM;
3311
3312         request->wiphy_idx = get_wiphy_idx(wiphy);
3313
3314         request->alpha2[0] = alpha2[0];
3315         request->alpha2[1] = alpha2[1];
3316         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3317
3318         /* Allow calling CRDA again */
3319         reset_crda_timeouts();
3320
3321         queue_regulatory_request(request);
3322
3323         return 0;
3324 }
3325 EXPORT_SYMBOL(regulatory_hint);
3326
3327 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3328                                 const u8 *country_ie, u8 country_ie_len)
3329 {
3330         char alpha2[2];
3331         enum environment_cap env = ENVIRON_ANY;
3332         struct regulatory_request *request = NULL, *lr;
3333
3334         /* IE len must be evenly divisible by 2 */
3335         if (country_ie_len & 0x01)
3336                 return;
3337
3338         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3339                 return;
3340
3341         request = kzalloc(sizeof(*request), GFP_KERNEL);
3342         if (!request)
3343                 return;
3344
3345         alpha2[0] = country_ie[0];
3346         alpha2[1] = country_ie[1];
3347
3348         if (country_ie[2] == 'I')
3349                 env = ENVIRON_INDOOR;
3350         else if (country_ie[2] == 'O')
3351                 env = ENVIRON_OUTDOOR;
3352
3353         rcu_read_lock();
3354         lr = get_last_request();
3355
3356         if (unlikely(!lr))
3357                 goto out;
3358
3359         /*
3360          * We will run this only upon a successful connection on cfg80211.
3361          * We leave conflict resolution to the workqueue, where can hold
3362          * the RTNL.
3363          */
3364         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3365             lr->wiphy_idx != WIPHY_IDX_INVALID)
3366                 goto out;
3367
3368         request->wiphy_idx = get_wiphy_idx(wiphy);
3369         request->alpha2[0] = alpha2[0];
3370         request->alpha2[1] = alpha2[1];
3371         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3372         request->country_ie_env = env;
3373
3374         /* Allow calling CRDA again */
3375         reset_crda_timeouts();
3376
3377         queue_regulatory_request(request);
3378         request = NULL;
3379 out:
3380         kfree(request);
3381         rcu_read_unlock();
3382 }
3383
3384 static void restore_alpha2(char *alpha2, bool reset_user)
3385 {
3386         /* indicates there is no alpha2 to consider for restoration */
3387         alpha2[0] = '9';
3388         alpha2[1] = '7';
3389
3390         /* The user setting has precedence over the module parameter */
3391         if (is_user_regdom_saved()) {
3392                 /* Unless we're asked to ignore it and reset it */
3393                 if (reset_user) {
3394                         pr_debug("Restoring regulatory settings including user preference\n");
3395                         user_alpha2[0] = '9';
3396                         user_alpha2[1] = '7';
3397
3398                         /*
3399                          * If we're ignoring user settings, we still need to
3400                          * check the module parameter to ensure we put things
3401                          * back as they were for a full restore.
3402                          */
3403                         if (!is_world_regdom(ieee80211_regdom)) {
3404                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3405                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3406                                 alpha2[0] = ieee80211_regdom[0];
3407                                 alpha2[1] = ieee80211_regdom[1];
3408                         }
3409                 } else {
3410                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3411                                  user_alpha2[0], user_alpha2[1]);
3412                         alpha2[0] = user_alpha2[0];
3413                         alpha2[1] = user_alpha2[1];
3414                 }
3415         } else if (!is_world_regdom(ieee80211_regdom)) {
3416                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3417                          ieee80211_regdom[0], ieee80211_regdom[1]);
3418                 alpha2[0] = ieee80211_regdom[0];
3419                 alpha2[1] = ieee80211_regdom[1];
3420         } else
3421                 pr_debug("Restoring regulatory settings\n");
3422 }
3423
3424 static void restore_custom_reg_settings(struct wiphy *wiphy)
3425 {
3426         struct ieee80211_supported_band *sband;
3427         enum nl80211_band band;
3428         struct ieee80211_channel *chan;
3429         int i;
3430
3431         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3432                 sband = wiphy->bands[band];
3433                 if (!sband)
3434                         continue;
3435                 for (i = 0; i < sband->n_channels; i++) {
3436                         chan = &sband->channels[i];
3437                         chan->flags = chan->orig_flags;
3438                         chan->max_antenna_gain = chan->orig_mag;
3439                         chan->max_power = chan->orig_mpwr;
3440                         chan->beacon_found = false;
3441                 }
3442         }
3443 }
3444
3445 /*
3446  * Restoring regulatory settings involves ignoring any
3447  * possibly stale country IE information and user regulatory
3448  * settings if so desired, this includes any beacon hints
3449  * learned as we could have traveled outside to another country
3450  * after disconnection. To restore regulatory settings we do
3451  * exactly what we did at bootup:
3452  *
3453  *   - send a core regulatory hint
3454  *   - send a user regulatory hint if applicable
3455  *
3456  * Device drivers that send a regulatory hint for a specific country
3457  * keep their own regulatory domain on wiphy->regd so that does
3458  * not need to be remembered.
3459  */
3460 static void restore_regulatory_settings(bool reset_user, bool cached)
3461 {
3462         char alpha2[2];
3463         char world_alpha2[2];
3464         struct reg_beacon *reg_beacon, *btmp;
3465         LIST_HEAD(tmp_reg_req_list);
3466         struct cfg80211_registered_device *rdev;
3467
3468         ASSERT_RTNL();
3469
3470         /*
3471          * Clear the indoor setting in case that it is not controlled by user
3472          * space, as otherwise there is no guarantee that the device is still
3473          * operating in an indoor environment.
3474          */
3475         spin_lock(&reg_indoor_lock);
3476         if (reg_is_indoor && !reg_is_indoor_portid) {
3477                 reg_is_indoor = false;
3478                 reg_check_channels();
3479         }
3480         spin_unlock(&reg_indoor_lock);
3481
3482         reset_regdomains(true, &world_regdom);
3483         restore_alpha2(alpha2, reset_user);
3484
3485         /*
3486          * If there's any pending requests we simply
3487          * stash them to a temporary pending queue and
3488          * add then after we've restored regulatory
3489          * settings.
3490          */
3491         spin_lock(&reg_requests_lock);
3492         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3493         spin_unlock(&reg_requests_lock);
3494
3495         /* Clear beacon hints */
3496         spin_lock_bh(&reg_pending_beacons_lock);
3497         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3498                 list_del(&reg_beacon->list);
3499                 kfree(reg_beacon);
3500         }
3501         spin_unlock_bh(&reg_pending_beacons_lock);
3502
3503         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3504                 list_del(&reg_beacon->list);
3505                 kfree(reg_beacon);
3506         }
3507
3508         /* First restore to the basic regulatory settings */
3509         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3510         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3511
3512         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3513                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3514                         continue;
3515                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3516                         restore_custom_reg_settings(&rdev->wiphy);
3517         }
3518
3519         if (cached && (!is_an_alpha2(alpha2) ||
3520                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3521                 reset_regdomains(false, cfg80211_world_regdom);
3522                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3523                 print_regdomain(get_cfg80211_regdom());
3524                 nl80211_send_reg_change_event(&core_request_world);
3525                 reg_set_request_processed();
3526
3527                 if (is_an_alpha2(alpha2) &&
3528                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3529                         struct regulatory_request *ureq;
3530
3531                         spin_lock(&reg_requests_lock);
3532                         ureq = list_last_entry(&reg_requests_list,
3533                                                struct regulatory_request,
3534                                                list);
3535                         list_del(&ureq->list);
3536                         spin_unlock(&reg_requests_lock);
3537
3538                         notify_self_managed_wiphys(ureq);
3539                         reg_update_last_request(ureq);
3540                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3541                                    REGD_SOURCE_CACHED);
3542                 }
3543         } else {
3544                 regulatory_hint_core(world_alpha2);
3545
3546                 /*
3547                  * This restores the ieee80211_regdom module parameter
3548                  * preference or the last user requested regulatory
3549                  * settings, user regulatory settings takes precedence.
3550                  */
3551                 if (is_an_alpha2(alpha2))
3552                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3553         }
3554
3555         spin_lock(&reg_requests_lock);
3556         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3557         spin_unlock(&reg_requests_lock);
3558
3559         pr_debug("Kicking the queue\n");
3560
3561         schedule_work(&reg_work);
3562 }
3563
3564 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3565 {
3566         struct cfg80211_registered_device *rdev;
3567         struct wireless_dev *wdev;
3568
3569         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3570                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3571                         wdev_lock(wdev);
3572                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3573                                 wdev_unlock(wdev);
3574                                 return false;
3575                         }
3576                         wdev_unlock(wdev);
3577                 }
3578         }
3579
3580         return true;
3581 }
3582
3583 void regulatory_hint_disconnect(void)
3584 {
3585         /* Restore of regulatory settings is not required when wiphy(s)
3586          * ignore IE from connected access point but clearance of beacon hints
3587          * is required when wiphy(s) supports beacon hints.
3588          */
3589         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3590                 struct reg_beacon *reg_beacon, *btmp;
3591
3592                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3593                         return;
3594
3595                 spin_lock_bh(&reg_pending_beacons_lock);
3596                 list_for_each_entry_safe(reg_beacon, btmp,
3597                                          &reg_pending_beacons, list) {
3598                         list_del(&reg_beacon->list);
3599                         kfree(reg_beacon);
3600                 }
3601                 spin_unlock_bh(&reg_pending_beacons_lock);
3602
3603                 list_for_each_entry_safe(reg_beacon, btmp,
3604                                          &reg_beacon_list, list) {
3605                         list_del(&reg_beacon->list);
3606                         kfree(reg_beacon);
3607                 }
3608
3609                 return;
3610         }
3611
3612         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3613         restore_regulatory_settings(false, true);
3614 }
3615
3616 static bool freq_is_chan_12_13_14(u32 freq)
3617 {
3618         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3619             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3620             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3621                 return true;
3622         return false;
3623 }
3624
3625 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3626 {
3627         struct reg_beacon *pending_beacon;
3628
3629         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3630                 if (ieee80211_channel_equal(beacon_chan,
3631                                             &pending_beacon->chan))
3632                         return true;
3633         return false;
3634 }
3635
3636 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3637                                  struct ieee80211_channel *beacon_chan,
3638                                  gfp_t gfp)
3639 {
3640         struct reg_beacon *reg_beacon;
3641         bool processing;
3642
3643         if (beacon_chan->beacon_found ||
3644             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3645             (beacon_chan->band == NL80211_BAND_2GHZ &&
3646              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3647                 return 0;
3648
3649         spin_lock_bh(&reg_pending_beacons_lock);
3650         processing = pending_reg_beacon(beacon_chan);
3651         spin_unlock_bh(&reg_pending_beacons_lock);
3652
3653         if (processing)
3654                 return 0;
3655
3656         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3657         if (!reg_beacon)
3658                 return -ENOMEM;
3659
3660         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3661                  beacon_chan->center_freq, beacon_chan->freq_offset,
3662                  ieee80211_freq_khz_to_channel(
3663                          ieee80211_channel_to_khz(beacon_chan)),
3664                  wiphy_name(wiphy));
3665
3666         memcpy(&reg_beacon->chan, beacon_chan,
3667                sizeof(struct ieee80211_channel));
3668
3669         /*
3670          * Since we can be called from BH or and non-BH context
3671          * we must use spin_lock_bh()
3672          */
3673         spin_lock_bh(&reg_pending_beacons_lock);
3674         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3675         spin_unlock_bh(&reg_pending_beacons_lock);
3676
3677         schedule_work(&reg_work);
3678
3679         return 0;
3680 }
3681
3682 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3683 {
3684         unsigned int i;
3685         const struct ieee80211_reg_rule *reg_rule = NULL;
3686         const struct ieee80211_freq_range *freq_range = NULL;
3687         const struct ieee80211_power_rule *power_rule = NULL;
3688         char bw[32], cac_time[32];
3689
3690         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3691
3692         for (i = 0; i < rd->n_reg_rules; i++) {
3693                 reg_rule = &rd->reg_rules[i];
3694                 freq_range = &reg_rule->freq_range;
3695                 power_rule = &reg_rule->power_rule;
3696
3697                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3698                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3699                                  freq_range->max_bandwidth_khz,
3700                                  reg_get_max_bandwidth(rd, reg_rule));
3701                 else
3702                         snprintf(bw, sizeof(bw), "%d KHz",
3703                                  freq_range->max_bandwidth_khz);
3704
3705                 if (reg_rule->flags & NL80211_RRF_DFS)
3706                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3707                                   reg_rule->dfs_cac_ms/1000);
3708                 else
3709                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3710
3711
3712                 /*
3713                  * There may not be documentation for max antenna gain
3714                  * in certain regions
3715                  */
3716                 if (power_rule->max_antenna_gain)
3717                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3718                                 freq_range->start_freq_khz,
3719                                 freq_range->end_freq_khz,
3720                                 bw,
3721                                 power_rule->max_antenna_gain,
3722                                 power_rule->max_eirp,
3723                                 cac_time);
3724                 else
3725                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3726                                 freq_range->start_freq_khz,
3727                                 freq_range->end_freq_khz,
3728                                 bw,
3729                                 power_rule->max_eirp,
3730                                 cac_time);
3731         }
3732 }
3733
3734 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3735 {
3736         switch (dfs_region) {
3737         case NL80211_DFS_UNSET:
3738         case NL80211_DFS_FCC:
3739         case NL80211_DFS_ETSI:
3740         case NL80211_DFS_JP:
3741                 return true;
3742         default:
3743                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3744                 return false;
3745         }
3746 }
3747
3748 static void print_regdomain(const struct ieee80211_regdomain *rd)
3749 {
3750         struct regulatory_request *lr = get_last_request();
3751
3752         if (is_intersected_alpha2(rd->alpha2)) {
3753                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3754                         struct cfg80211_registered_device *rdev;
3755                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3756                         if (rdev) {
3757                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3758                                         rdev->country_ie_alpha2[0],
3759                                         rdev->country_ie_alpha2[1]);
3760                         } else
3761                                 pr_debug("Current regulatory domain intersected:\n");
3762                 } else
3763                         pr_debug("Current regulatory domain intersected:\n");
3764         } else if (is_world_regdom(rd->alpha2)) {
3765                 pr_debug("World regulatory domain updated:\n");
3766         } else {
3767                 if (is_unknown_alpha2(rd->alpha2))
3768                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3769                 else {
3770                         if (reg_request_cell_base(lr))
3771                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3772                                         rd->alpha2[0], rd->alpha2[1]);
3773                         else
3774                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3775                                         rd->alpha2[0], rd->alpha2[1]);
3776                 }
3777         }
3778
3779         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3780         print_rd_rules(rd);
3781 }
3782
3783 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3784 {
3785         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3786         print_rd_rules(rd);
3787 }
3788
3789 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3790 {
3791         if (!is_world_regdom(rd->alpha2))
3792                 return -EINVAL;
3793         update_world_regdomain(rd);
3794         return 0;
3795 }
3796
3797 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3798                            struct regulatory_request *user_request)
3799 {
3800         const struct ieee80211_regdomain *intersected_rd = NULL;
3801
3802         if (!regdom_changes(rd->alpha2))
3803                 return -EALREADY;
3804
3805         if (!is_valid_rd(rd)) {
3806                 pr_err("Invalid regulatory domain detected: %c%c\n",
3807                        rd->alpha2[0], rd->alpha2[1]);
3808                 print_regdomain_info(rd);
3809                 return -EINVAL;
3810         }
3811
3812         if (!user_request->intersect) {
3813                 reset_regdomains(false, rd);
3814                 return 0;
3815         }
3816
3817         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3818         if (!intersected_rd)
3819                 return -EINVAL;
3820
3821         kfree(rd);
3822         rd = NULL;
3823         reset_regdomains(false, intersected_rd);
3824
3825         return 0;
3826 }
3827
3828 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3829                              struct regulatory_request *driver_request)
3830 {
3831         const struct ieee80211_regdomain *regd;
3832         const struct ieee80211_regdomain *intersected_rd = NULL;
3833         const struct ieee80211_regdomain *tmp;
3834         struct wiphy *request_wiphy;
3835
3836         if (is_world_regdom(rd->alpha2))
3837                 return -EINVAL;
3838
3839         if (!regdom_changes(rd->alpha2))
3840                 return -EALREADY;
3841
3842         if (!is_valid_rd(rd)) {
3843                 pr_err("Invalid regulatory domain detected: %c%c\n",
3844                        rd->alpha2[0], rd->alpha2[1]);
3845                 print_regdomain_info(rd);
3846                 return -EINVAL;
3847         }
3848
3849         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3850         if (!request_wiphy)
3851                 return -ENODEV;
3852
3853         if (!driver_request->intersect) {
3854                 ASSERT_RTNL();
3855                 wiphy_lock(request_wiphy);
3856                 if (request_wiphy->regd) {
3857                         wiphy_unlock(request_wiphy);
3858                         return -EALREADY;
3859                 }
3860
3861                 regd = reg_copy_regd(rd);
3862                 if (IS_ERR(regd)) {
3863                         wiphy_unlock(request_wiphy);
3864                         return PTR_ERR(regd);
3865                 }
3866
3867                 rcu_assign_pointer(request_wiphy->regd, regd);
3868                 wiphy_unlock(request_wiphy);
3869                 reset_regdomains(false, rd);
3870                 return 0;
3871         }
3872
3873         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3874         if (!intersected_rd)
3875                 return -EINVAL;
3876
3877         /*
3878          * We can trash what CRDA provided now.
3879          * However if a driver requested this specific regulatory
3880          * domain we keep it for its private use
3881          */
3882         tmp = get_wiphy_regdom(request_wiphy);
3883         rcu_assign_pointer(request_wiphy->regd, rd);
3884         rcu_free_regdom(tmp);
3885
3886         rd = NULL;
3887
3888         reset_regdomains(false, intersected_rd);
3889
3890         return 0;
3891 }
3892
3893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3894                                  struct regulatory_request *country_ie_request)
3895 {
3896         struct wiphy *request_wiphy;
3897
3898         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3899             !is_unknown_alpha2(rd->alpha2))
3900                 return -EINVAL;
3901
3902         /*
3903          * Lets only bother proceeding on the same alpha2 if the current
3904          * rd is non static (it means CRDA was present and was used last)
3905          * and the pending request came in from a country IE
3906          */
3907
3908         if (!is_valid_rd(rd)) {
3909                 pr_err("Invalid regulatory domain detected: %c%c\n",
3910                        rd->alpha2[0], rd->alpha2[1]);
3911                 print_regdomain_info(rd);
3912                 return -EINVAL;
3913         }
3914
3915         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3916         if (!request_wiphy)
3917                 return -ENODEV;
3918
3919         if (country_ie_request->intersect)
3920                 return -EINVAL;
3921
3922         reset_regdomains(false, rd);
3923         return 0;
3924 }
3925
3926 /*
3927  * Use this call to set the current regulatory domain. Conflicts with
3928  * multiple drivers can be ironed out later. Caller must've already
3929  * kmalloc'd the rd structure.
3930  */
3931 int set_regdom(const struct ieee80211_regdomain *rd,
3932                enum ieee80211_regd_source regd_src)
3933 {
3934         struct regulatory_request *lr;
3935         bool user_reset = false;
3936         int r;
3937
3938         if (IS_ERR_OR_NULL(rd))
3939                 return -ENODATA;
3940
3941         if (!reg_is_valid_request(rd->alpha2)) {
3942                 kfree(rd);
3943                 return -EINVAL;
3944         }
3945
3946         if (regd_src == REGD_SOURCE_CRDA)
3947                 reset_crda_timeouts();
3948
3949         lr = get_last_request();
3950
3951         /* Note that this doesn't update the wiphys, this is done below */
3952         switch (lr->initiator) {
3953         case NL80211_REGDOM_SET_BY_CORE:
3954                 r = reg_set_rd_core(rd);
3955                 break;
3956         case NL80211_REGDOM_SET_BY_USER:
3957                 cfg80211_save_user_regdom(rd);
3958                 r = reg_set_rd_user(rd, lr);
3959                 user_reset = true;
3960                 break;
3961         case NL80211_REGDOM_SET_BY_DRIVER:
3962                 r = reg_set_rd_driver(rd, lr);
3963                 break;
3964         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3965                 r = reg_set_rd_country_ie(rd, lr);
3966                 break;
3967         default:
3968                 WARN(1, "invalid initiator %d\n", lr->initiator);
3969                 kfree(rd);
3970                 return -EINVAL;
3971         }
3972
3973         if (r) {
3974                 switch (r) {
3975                 case -EALREADY:
3976                         reg_set_request_processed();
3977                         break;
3978                 default:
3979                         /* Back to world regulatory in case of errors */
3980                         restore_regulatory_settings(user_reset, false);
3981                 }
3982
3983                 kfree(rd);
3984                 return r;
3985         }
3986
3987         /* This would make this whole thing pointless */
3988         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3989                 return -EINVAL;
3990
3991         /* update all wiphys now with the new established regulatory domain */
3992         update_all_wiphy_regulatory(lr->initiator);
3993
3994         print_regdomain(get_cfg80211_regdom());
3995
3996         nl80211_send_reg_change_event(lr);
3997
3998         reg_set_request_processed();
3999
4000         return 0;
4001 }
4002
4003 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4004                                        struct ieee80211_regdomain *rd)
4005 {
4006         const struct ieee80211_regdomain *regd;
4007         const struct ieee80211_regdomain *prev_regd;
4008         struct cfg80211_registered_device *rdev;
4009
4010         if (WARN_ON(!wiphy || !rd))
4011                 return -EINVAL;
4012
4013         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4014                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4015                 return -EPERM;
4016
4017         if (WARN(!is_valid_rd(rd),
4018                  "Invalid regulatory domain detected: %c%c\n",
4019                  rd->alpha2[0], rd->alpha2[1])) {
4020                 print_regdomain_info(rd);
4021                 return -EINVAL;
4022         }
4023
4024         regd = reg_copy_regd(rd);
4025         if (IS_ERR(regd))
4026                 return PTR_ERR(regd);
4027
4028         rdev = wiphy_to_rdev(wiphy);
4029
4030         spin_lock(&reg_requests_lock);
4031         prev_regd = rdev->requested_regd;
4032         rdev->requested_regd = regd;
4033         spin_unlock(&reg_requests_lock);
4034
4035         kfree(prev_regd);
4036         return 0;
4037 }
4038
4039 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4040                               struct ieee80211_regdomain *rd)
4041 {
4042         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4043
4044         if (ret)
4045                 return ret;
4046
4047         schedule_work(&reg_work);
4048         return 0;
4049 }
4050 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4051
4052 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4053                                    struct ieee80211_regdomain *rd)
4054 {
4055         int ret;
4056
4057         ASSERT_RTNL();
4058
4059         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4060         if (ret)
4061                 return ret;
4062
4063         /* process the request immediately */
4064         reg_process_self_managed_hint(wiphy);
4065         reg_check_channels();
4066         return 0;
4067 }
4068 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4069
4070 void wiphy_regulatory_register(struct wiphy *wiphy)
4071 {
4072         struct regulatory_request *lr = get_last_request();
4073
4074         /* self-managed devices ignore beacon hints and country IE */
4075         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4076                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4077                                            REGULATORY_COUNTRY_IE_IGNORE;
4078
4079                 /*
4080                  * The last request may have been received before this
4081                  * registration call. Call the driver notifier if
4082                  * initiator is USER.
4083                  */
4084                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4085                         reg_call_notifier(wiphy, lr);
4086         }
4087
4088         if (!reg_dev_ignore_cell_hint(wiphy))
4089                 reg_num_devs_support_basehint++;
4090
4091         wiphy_update_regulatory(wiphy, lr->initiator);
4092         wiphy_all_share_dfs_chan_state(wiphy);
4093         reg_process_self_managed_hints();
4094 }
4095
4096 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4097 {
4098         struct wiphy *request_wiphy = NULL;
4099         struct regulatory_request *lr;
4100
4101         lr = get_last_request();
4102
4103         if (!reg_dev_ignore_cell_hint(wiphy))
4104                 reg_num_devs_support_basehint--;
4105
4106         rcu_free_regdom(get_wiphy_regdom(wiphy));
4107         RCU_INIT_POINTER(wiphy->regd, NULL);
4108
4109         if (lr)
4110                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4111
4112         if (!request_wiphy || request_wiphy != wiphy)
4113                 return;
4114
4115         lr->wiphy_idx = WIPHY_IDX_INVALID;
4116         lr->country_ie_env = ENVIRON_ANY;
4117 }
4118
4119 /*
4120  * See FCC notices for UNII band definitions
4121  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4122  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4123  */
4124 int cfg80211_get_unii(int freq)
4125 {
4126         /* UNII-1 */
4127         if (freq >= 5150 && freq <= 5250)
4128                 return 0;
4129
4130         /* UNII-2A */
4131         if (freq > 5250 && freq <= 5350)
4132                 return 1;
4133
4134         /* UNII-2B */
4135         if (freq > 5350 && freq <= 5470)
4136                 return 2;
4137
4138         /* UNII-2C */
4139         if (freq > 5470 && freq <= 5725)
4140                 return 3;
4141
4142         /* UNII-3 */
4143         if (freq > 5725 && freq <= 5825)
4144                 return 4;
4145
4146         /* UNII-5 */
4147         if (freq > 5925 && freq <= 6425)
4148                 return 5;
4149
4150         /* UNII-6 */
4151         if (freq > 6425 && freq <= 6525)
4152                 return 6;
4153
4154         /* UNII-7 */
4155         if (freq > 6525 && freq <= 6875)
4156                 return 7;
4157
4158         /* UNII-8 */
4159         if (freq > 6875 && freq <= 7125)
4160                 return 8;
4161
4162         return -EINVAL;
4163 }
4164
4165 bool regulatory_indoor_allowed(void)
4166 {
4167         return reg_is_indoor;
4168 }
4169
4170 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4171 {
4172         const struct ieee80211_regdomain *regd = NULL;
4173         const struct ieee80211_regdomain *wiphy_regd = NULL;
4174         bool pre_cac_allowed = false;
4175
4176         rcu_read_lock();
4177
4178         regd = rcu_dereference(cfg80211_regdomain);
4179         wiphy_regd = rcu_dereference(wiphy->regd);
4180         if (!wiphy_regd) {
4181                 if (regd->dfs_region == NL80211_DFS_ETSI)
4182                         pre_cac_allowed = true;
4183
4184                 rcu_read_unlock();
4185
4186                 return pre_cac_allowed;
4187         }
4188
4189         if (regd->dfs_region == wiphy_regd->dfs_region &&
4190             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4191                 pre_cac_allowed = true;
4192
4193         rcu_read_unlock();
4194
4195         return pre_cac_allowed;
4196 }
4197 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4198
4199 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4200 {
4201         struct wireless_dev *wdev;
4202         /* If we finished CAC or received radar, we should end any
4203          * CAC running on the same channels.
4204          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4205          * either all channels are available - those the CAC_FINISHED
4206          * event has effected another wdev state, or there is a channel
4207          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4208          * event has effected another wdev state.
4209          * In both cases we should end the CAC on the wdev.
4210          */
4211         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4212                 struct cfg80211_chan_def *chandef;
4213
4214                 if (!wdev->cac_started)
4215                         continue;
4216
4217                 /* FIXME: radar detection is tied to link 0 for now */
4218                 chandef = wdev_chandef(wdev, 0);
4219                 if (!chandef)
4220                         continue;
4221
4222                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4223                         rdev_end_cac(rdev, wdev->netdev);
4224         }
4225 }
4226
4227 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4228                                     struct cfg80211_chan_def *chandef,
4229                                     enum nl80211_dfs_state dfs_state,
4230                                     enum nl80211_radar_event event)
4231 {
4232         struct cfg80211_registered_device *rdev;
4233
4234         ASSERT_RTNL();
4235
4236         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4237                 return;
4238
4239         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4240                 if (wiphy == &rdev->wiphy)
4241                         continue;
4242
4243                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4244                         continue;
4245
4246                 if (!ieee80211_get_channel(&rdev->wiphy,
4247                                            chandef->chan->center_freq))
4248                         continue;
4249
4250                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4251
4252                 if (event == NL80211_RADAR_DETECTED ||
4253                     event == NL80211_RADAR_CAC_FINISHED) {
4254                         cfg80211_sched_dfs_chan_update(rdev);
4255                         cfg80211_check_and_end_cac(rdev);
4256                 }
4257
4258                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4259         }
4260 }
4261
4262 static int __init regulatory_init_db(void)
4263 {
4264         int err;
4265
4266         /*
4267          * It's possible that - due to other bugs/issues - cfg80211
4268          * never called regulatory_init() below, or that it failed;
4269          * in that case, don't try to do any further work here as
4270          * it's doomed to lead to crashes.
4271          */
4272         if (IS_ERR_OR_NULL(reg_pdev))
4273                 return -EINVAL;
4274
4275         err = load_builtin_regdb_keys();
4276         if (err) {
4277                 platform_device_unregister(reg_pdev);
4278                 return err;
4279         }
4280
4281         /* We always try to get an update for the static regdomain */
4282         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4283         if (err) {
4284                 if (err == -ENOMEM) {
4285                         platform_device_unregister(reg_pdev);
4286                         return err;
4287                 }
4288                 /*
4289                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4290                  * memory which is handled and propagated appropriately above
4291                  * but it can also fail during a netlink_broadcast() or during
4292                  * early boot for call_usermodehelper(). For now treat these
4293                  * errors as non-fatal.
4294                  */
4295                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4296         }
4297
4298         /*
4299          * Finally, if the user set the module parameter treat it
4300          * as a user hint.
4301          */
4302         if (!is_world_regdom(ieee80211_regdom))
4303                 regulatory_hint_user(ieee80211_regdom,
4304                                      NL80211_USER_REG_HINT_USER);
4305
4306         return 0;
4307 }
4308 #ifndef MODULE
4309 late_initcall(regulatory_init_db);
4310 #endif
4311
4312 int __init regulatory_init(void)
4313 {
4314         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4315         if (IS_ERR(reg_pdev))
4316                 return PTR_ERR(reg_pdev);
4317
4318         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4319
4320         user_alpha2[0] = '9';
4321         user_alpha2[1] = '7';
4322
4323 #ifdef MODULE
4324         return regulatory_init_db();
4325 #else
4326         return 0;
4327 #endif
4328 }
4329
4330 void regulatory_exit(void)
4331 {
4332         struct regulatory_request *reg_request, *tmp;
4333         struct reg_beacon *reg_beacon, *btmp;
4334
4335         cancel_work_sync(&reg_work);
4336         cancel_crda_timeout_sync();
4337         cancel_delayed_work_sync(&reg_check_chans);
4338
4339         /* Lock to suppress warnings */
4340         rtnl_lock();
4341         reset_regdomains(true, NULL);
4342         rtnl_unlock();
4343
4344         dev_set_uevent_suppress(&reg_pdev->dev, true);
4345
4346         platform_device_unregister(reg_pdev);
4347
4348         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4349                 list_del(&reg_beacon->list);
4350                 kfree(reg_beacon);
4351         }
4352
4353         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4354                 list_del(&reg_beacon->list);
4355                 kfree(reg_beacon);
4356         }
4357
4358         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4359                 list_del(&reg_request->list);
4360                 kfree(reg_request);
4361         }
4362
4363         if (!IS_ERR_OR_NULL(regdb))
4364                 kfree(regdb);
4365         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4366                 kfree(cfg80211_user_regdom);
4367
4368         free_regdb_keyring();
4369 }