Merge branch 'rework/misc-cleanups' into for-linus
[platform/kernel/linux-rpi.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
744 static int __init load_builtin_regdb_keys(void)
745 {
746         builtin_regdb_keys =
747                 keyring_alloc(".builtin_regdb_keys",
748                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752         if (IS_ERR(builtin_regdb_keys))
753                 return PTR_ERR(builtin_regdb_keys);
754
755         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758         x509_load_certificate_list(shipped_regdb_certs,
759                                    shipped_regdb_certs_len,
760                                    builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764                 x509_load_certificate_list(extra_regdb_certs,
765                                            extra_regdb_certs_len,
766                                            builtin_regdb_keys);
767 #endif
768
769         return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776         const struct firmware *sig;
777         bool result;
778
779         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780                 return false;
781
782         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783                                         builtin_regdb_keys,
784                                         VERIFYING_UNSPECIFIED_SIGNATURE,
785                                         NULL, NULL) == 0;
786
787         release_firmware(sig);
788
789         return result;
790 }
791
792 static void free_regdb_keyring(void)
793 {
794         key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799         return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804         return true;
805 }
806
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814         const struct fwdb_header *hdr = (void *)data;
815         const struct fwdb_country *country;
816
817         if (size < sizeof(*hdr))
818                 return false;
819
820         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821                 return false;
822
823         if (hdr->version != cpu_to_be32(FWDB_VERSION))
824                 return false;
825
826         if (!regdb_has_valid_signature(data, size))
827                 return false;
828
829         country = &hdr->country[0];
830         while ((u8 *)(country + 1) <= data + size) {
831                 if (!country->coll_ptr)
832                         break;
833                 if (!valid_country(data, size, country))
834                         return false;
835                 country++;
836         }
837
838         return true;
839 }
840
841 static void set_wmm_rule(const struct fwdb_header *db,
842                          const struct fwdb_country *country,
843                          const struct fwdb_rule *rule,
844                          struct ieee80211_reg_rule *rrule)
845 {
846         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847         struct fwdb_wmm_rule *wmm;
848         unsigned int i, wmm_ptr;
849
850         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851         wmm = (void *)((u8 *)db + wmm_ptr);
852
853         if (!valid_wmm(wmm)) {
854                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856                        country->alpha2[0], country->alpha2[1]);
857                 return;
858         }
859
860         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861                 wmm_rule->client[i].cw_min =
862                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865                 wmm_rule->client[i].cot =
866                         1000 * be16_to_cpu(wmm->client[i].cot);
867                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871         }
872
873         rrule->has_wmm = true;
874 }
875
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877                              const struct fwdb_country *country, int freq,
878                              struct ieee80211_reg_rule *rrule)
879 {
880         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882         int i;
883
884         for (i = 0; i < coll->n_rules; i++) {
885                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890                         continue;
891
892                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894                         set_wmm_rule(db, country, rule, rrule);
895                         return 0;
896                 }
897         }
898
899         return -ENODATA;
900 }
901
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904         const struct fwdb_header *hdr = regdb;
905         const struct fwdb_country *country;
906
907         if (!regdb)
908                 return -ENODATA;
909
910         if (IS_ERR(regdb))
911                 return PTR_ERR(regdb);
912
913         country = &hdr->country[0];
914         while (country->coll_ptr) {
915                 if (alpha2_equal(alpha2, country->alpha2))
916                         return __regdb_query_wmm(regdb, country, freq, rule);
917
918                 country++;
919         }
920
921         return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925 static int regdb_query_country(const struct fwdb_header *db,
926                                const struct fwdb_country *country)
927 {
928         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930         struct ieee80211_regdomain *regdom;
931         unsigned int i;
932
933         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934                          GFP_KERNEL);
935         if (!regdom)
936                 return -ENOMEM;
937
938         regdom->n_reg_rules = coll->n_rules;
939         regdom->alpha2[0] = country->alpha2[0];
940         regdom->alpha2[1] = country->alpha2[1];
941         regdom->dfs_region = coll->dfs_region;
942
943         for (i = 0; i < regdom->n_reg_rules; i++) {
944                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953                 rrule->power_rule.max_antenna_gain = 0;
954                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956                 rrule->flags = 0;
957                 if (rule->flags & FWDB_FLAG_NO_OFDM)
958                         rrule->flags |= NL80211_RRF_NO_OFDM;
959                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961                 if (rule->flags & FWDB_FLAG_DFS)
962                         rrule->flags |= NL80211_RRF_DFS;
963                 if (rule->flags & FWDB_FLAG_NO_IR)
964                         rrule->flags |= NL80211_RRF_NO_IR;
965                 if (rule->flags & FWDB_FLAG_AUTO_BW)
966                         rrule->flags |= NL80211_RRF_AUTO_BW;
967
968                 rrule->dfs_cac_ms = 0;
969
970                 /* handle optional data */
971                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972                         rrule->dfs_cac_ms =
973                                 1000 * be16_to_cpu(rule->cac_timeout);
974                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975                         set_wmm_rule(db, country, rule, rrule);
976         }
977
978         return reg_schedule_apply(regdom);
979 }
980
981 static int query_regdb(const char *alpha2)
982 {
983         const struct fwdb_header *hdr = regdb;
984         const struct fwdb_country *country;
985
986         ASSERT_RTNL();
987
988         if (IS_ERR(regdb))
989                 return PTR_ERR(regdb);
990
991         country = &hdr->country[0];
992         while (country->coll_ptr) {
993                 if (alpha2_equal(alpha2, country->alpha2))
994                         return regdb_query_country(regdb, country);
995                 country++;
996         }
997
998         return -ENODATA;
999 }
1000
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003         int set_error = 0;
1004         bool restore = true;
1005         void *db;
1006
1007         if (!fw) {
1008                 pr_info("failed to load regulatory.db\n");
1009                 set_error = -ENODATA;
1010         } else if (!valid_regdb(fw->data, fw->size)) {
1011                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012                 set_error = -EINVAL;
1013         }
1014
1015         rtnl_lock();
1016         if (regdb && !IS_ERR(regdb)) {
1017                 /* negative case - a bug
1018                  * positive case - can happen due to race in case of multiple cb's in
1019                  * queue, due to usage of asynchronous callback
1020                  *
1021                  * Either case, just restore and free new db.
1022                  */
1023         } else if (set_error) {
1024                 regdb = ERR_PTR(set_error);
1025         } else if (fw) {
1026                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027                 if (db) {
1028                         regdb = db;
1029                         restore = context && query_regdb(context);
1030                 } else {
1031                         restore = true;
1032                 }
1033         }
1034
1035         if (restore)
1036                 restore_regulatory_settings(true, false);
1037
1038         rtnl_unlock();
1039
1040         kfree(context);
1041
1042         release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049         int err;
1050
1051         ASSERT_RTNL();
1052
1053         if (regdb)
1054                 return query_regdb(alpha2);
1055
1056         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057         if (!alpha2)
1058                 return -ENOMEM;
1059
1060         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061                                       &reg_pdev->dev, GFP_KERNEL,
1062                                       (void *)alpha2, regdb_fw_cb);
1063         if (err)
1064                 kfree(alpha2);
1065
1066         return err;
1067 }
1068
1069 int reg_reload_regdb(void)
1070 {
1071         const struct firmware *fw;
1072         void *db;
1073         int err;
1074         const struct ieee80211_regdomain *current_regdomain;
1075         struct regulatory_request *request;
1076
1077         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078         if (err)
1079                 return err;
1080
1081         if (!valid_regdb(fw->data, fw->size)) {
1082                 err = -ENODATA;
1083                 goto out;
1084         }
1085
1086         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087         if (!db) {
1088                 err = -ENOMEM;
1089                 goto out;
1090         }
1091
1092         rtnl_lock();
1093         if (!IS_ERR_OR_NULL(regdb))
1094                 kfree(regdb);
1095         regdb = db;
1096
1097         /* reset regulatory domain */
1098         current_regdomain = get_cfg80211_regdom();
1099
1100         request = kzalloc(sizeof(*request), GFP_KERNEL);
1101         if (!request) {
1102                 err = -ENOMEM;
1103                 goto out_unlock;
1104         }
1105
1106         request->wiphy_idx = WIPHY_IDX_INVALID;
1107         request->alpha2[0] = current_regdomain->alpha2[0];
1108         request->alpha2[1] = current_regdomain->alpha2[1];
1109         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112         reg_process_hint(request);
1113
1114 out_unlock:
1115         rtnl_unlock();
1116  out:
1117         release_firmware(fw);
1118         return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123         if (query_regdb_file(request->alpha2) == 0)
1124                 return true;
1125
1126         if (call_crda(request->alpha2) == 0)
1127                 return true;
1128
1129         return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134         struct regulatory_request *lr = get_last_request();
1135
1136         if (!lr || lr->processed)
1137                 return false;
1138
1139         return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144         struct regulatory_request *lr = get_last_request();
1145
1146         /*
1147          * Follow the driver's regulatory domain, if present, unless a country
1148          * IE has been processed or a user wants to help complaince further
1149          */
1150         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152             wiphy->regd)
1153                 return get_wiphy_regdom(wiphy);
1154
1155         return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160                                  const struct ieee80211_reg_rule *rule)
1161 {
1162         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163         const struct ieee80211_freq_range *freq_range_tmp;
1164         const struct ieee80211_reg_rule *tmp;
1165         u32 start_freq, end_freq, idx, no;
1166
1167         for (idx = 0; idx < rd->n_reg_rules; idx++)
1168                 if (rule == &rd->reg_rules[idx])
1169                         break;
1170
1171         if (idx == rd->n_reg_rules)
1172                 return 0;
1173
1174         /* get start_freq */
1175         no = idx;
1176
1177         while (no) {
1178                 tmp = &rd->reg_rules[--no];
1179                 freq_range_tmp = &tmp->freq_range;
1180
1181                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182                         break;
1183
1184                 freq_range = freq_range_tmp;
1185         }
1186
1187         start_freq = freq_range->start_freq_khz;
1188
1189         /* get end_freq */
1190         freq_range = &rule->freq_range;
1191         no = idx;
1192
1193         while (no < rd->n_reg_rules - 1) {
1194                 tmp = &rd->reg_rules[++no];
1195                 freq_range_tmp = &tmp->freq_range;
1196
1197                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198                         break;
1199
1200                 freq_range = freq_range_tmp;
1201         }
1202
1203         end_freq = freq_range->end_freq_khz;
1204
1205         return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209                                    const struct ieee80211_reg_rule *rule)
1210 {
1211         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213         if (rule->flags & NL80211_RRF_NO_320MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215         if (rule->flags & NL80211_RRF_NO_160MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217         if (rule->flags & NL80211_RRF_NO_80MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220         /*
1221          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222          * are not allowed.
1223          */
1224         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225             rule->flags & NL80211_RRF_NO_HT40PLUS)
1226                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228         return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235         u32 freq_diff;
1236
1237         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238                 return false;
1239
1240         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241                 return false;
1242
1243         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246             freq_range->max_bandwidth_khz > freq_diff)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254         const struct ieee80211_reg_rule *reg_rule = NULL;
1255         unsigned int i;
1256
1257         if (!rd->n_reg_rules)
1258                 return false;
1259
1260         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261                 return false;
1262
1263         for (i = 0; i < rd->n_reg_rules; i++) {
1264                 reg_rule = &rd->reg_rules[i];
1265                 if (!is_valid_reg_rule(reg_rule))
1266                         return false;
1267         }
1268
1269         return true;
1270 }
1271
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288                               u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ  1000000
1291         /*
1292          * From 802.11ad: directional multi-gigabit (DMG):
1293          * Pertaining to operation in a frequency band containing a channel
1294          * with the Channel starting frequency above 45 GHz.
1295          */
1296         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299                 return true;
1300         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301                 return true;
1302         return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313                          const enum nl80211_dfs_regions dfs_region2)
1314 {
1315         if (dfs_region1 != dfs_region2)
1316                 return NL80211_DFS_UNSET;
1317         return dfs_region1;
1318 }
1319
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321                                     const struct ieee80211_wmm_ac *wmm_ac2,
1322                                     struct ieee80211_wmm_ac *intersect)
1323 {
1324         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335                                const struct ieee80211_regdomain *rd2,
1336                                const struct ieee80211_reg_rule *rule1,
1337                                const struct ieee80211_reg_rule *rule2,
1338                                struct ieee80211_reg_rule *intersected_rule)
1339 {
1340         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341         struct ieee80211_freq_range *freq_range;
1342         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343         struct ieee80211_power_rule *power_rule;
1344         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345         struct ieee80211_wmm_rule *wmm_rule;
1346         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348         freq_range1 = &rule1->freq_range;
1349         freq_range2 = &rule2->freq_range;
1350         freq_range = &intersected_rule->freq_range;
1351
1352         power_rule1 = &rule1->power_rule;
1353         power_rule2 = &rule2->power_rule;
1354         power_rule = &intersected_rule->power_rule;
1355
1356         wmm_rule1 = &rule1->wmm_rule;
1357         wmm_rule2 = &rule2->wmm_rule;
1358         wmm_rule = &intersected_rule->wmm_rule;
1359
1360         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361                                          freq_range2->start_freq_khz);
1362         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363                                        freq_range2->end_freq_khz);
1364
1365         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368         if (rule1->flags & NL80211_RRF_AUTO_BW)
1369                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370         if (rule2->flags & NL80211_RRF_AUTO_BW)
1371                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375         intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377         /*
1378          * In case NL80211_RRF_AUTO_BW requested for both rules
1379          * set AUTO_BW in intersected rule also. Next we will
1380          * calculate BW correctly in handle_channel function.
1381          * In other case remove AUTO_BW flag while we calculate
1382          * maximum bandwidth correctly and auto calculation is
1383          * not required.
1384          */
1385         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386             (rule2->flags & NL80211_RRF_AUTO_BW))
1387                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388         else
1389                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392         if (freq_range->max_bandwidth_khz > freq_diff)
1393                 freq_range->max_bandwidth_khz = freq_diff;
1394
1395         power_rule->max_eirp = min(power_rule1->max_eirp,
1396                 power_rule2->max_eirp);
1397         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398                 power_rule2->max_antenna_gain);
1399
1400         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401                                            rule2->dfs_cac_ms);
1402
1403         if (rule1->has_wmm && rule2->has_wmm) {
1404                 u8 ac;
1405
1406                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408                                                 &wmm_rule2->client[ac],
1409                                                 &wmm_rule->client[ac]);
1410                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411                                                 &wmm_rule2->ap[ac],
1412                                                 &wmm_rule->ap[ac]);
1413                 }
1414
1415                 intersected_rule->has_wmm = true;
1416         } else if (rule1->has_wmm) {
1417                 *wmm_rule = *wmm_rule1;
1418                 intersected_rule->has_wmm = true;
1419         } else if (rule2->has_wmm) {
1420                 *wmm_rule = *wmm_rule2;
1421                 intersected_rule->has_wmm = true;
1422         } else {
1423                 intersected_rule->has_wmm = false;
1424         }
1425
1426         if (!is_valid_reg_rule(intersected_rule))
1427                 return -EINVAL;
1428
1429         return 0;
1430 }
1431
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434                           struct ieee80211_reg_rule *r2)
1435 {
1436         /* for simplicity, currently consider only same flags */
1437         if (r1->flags != r2->flags)
1438                 return false;
1439
1440         /* verify r1 is more restrictive */
1441         if ((r1->power_rule.max_antenna_gain >
1442              r2->power_rule.max_antenna_gain) ||
1443             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444                 return false;
1445
1446         /* make sure r2's range is contained within r1 */
1447         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449                 return false;
1450
1451         /* and finally verify that r1.max_bw >= r2.max_bw */
1452         if (r1->freq_range.max_bandwidth_khz <
1453             r2->freq_range.max_bandwidth_khz)
1454                 return false;
1455
1456         return true;
1457 }
1458
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463         struct ieee80211_reg_rule *tmp_rule;
1464         int i;
1465
1466         for (i = 0; i < *n_rules; i++) {
1467                 tmp_rule = &reg_rules[i];
1468                 /* rule is already contained - do nothing */
1469                 if (rule_contains(tmp_rule, rule))
1470                         return;
1471
1472                 /* extend rule if possible */
1473                 if (rule_contains(rule, tmp_rule)) {
1474                         memcpy(tmp_rule, rule, sizeof(*rule));
1475                         return;
1476                 }
1477         }
1478
1479         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480         (*n_rules)++;
1481 }
1482
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498                  const struct ieee80211_regdomain *rd2)
1499 {
1500         int r;
1501         unsigned int x, y;
1502         unsigned int num_rules = 0;
1503         const struct ieee80211_reg_rule *rule1, *rule2;
1504         struct ieee80211_reg_rule intersected_rule;
1505         struct ieee80211_regdomain *rd;
1506
1507         if (!rd1 || !rd2)
1508                 return NULL;
1509
1510         /*
1511          * First we get a count of the rules we'll need, then we actually
1512          * build them. This is to so we can malloc() and free() a
1513          * regdomain once. The reason we use reg_rules_intersect() here
1514          * is it will return -EINVAL if the rule computed makes no sense.
1515          * All rules that do check out OK are valid.
1516          */
1517
1518         for (x = 0; x < rd1->n_reg_rules; x++) {
1519                 rule1 = &rd1->reg_rules[x];
1520                 for (y = 0; y < rd2->n_reg_rules; y++) {
1521                         rule2 = &rd2->reg_rules[y];
1522                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523                                                  &intersected_rule))
1524                                 num_rules++;
1525                 }
1526         }
1527
1528         if (!num_rules)
1529                 return NULL;
1530
1531         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532         if (!rd)
1533                 return NULL;
1534
1535         for (x = 0; x < rd1->n_reg_rules; x++) {
1536                 rule1 = &rd1->reg_rules[x];
1537                 for (y = 0; y < rd2->n_reg_rules; y++) {
1538                         rule2 = &rd2->reg_rules[y];
1539                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540                                                 &intersected_rule);
1541                         /*
1542                          * No need to memset here the intersected rule here as
1543                          * we're not using the stack anymore
1544                          */
1545                         if (r)
1546                                 continue;
1547
1548                         add_rule(&intersected_rule, rd->reg_rules,
1549                                  &rd->n_reg_rules);
1550                 }
1551         }
1552
1553         rd->alpha2[0] = '9';
1554         rd->alpha2[1] = '8';
1555         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556                                                   rd2->dfs_region);
1557
1558         return rd;
1559 }
1560
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567         u32 channel_flags = 0;
1568         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569                 channel_flags |= IEEE80211_CHAN_NO_IR;
1570         if (rd_flags & NL80211_RRF_DFS)
1571                 channel_flags |= IEEE80211_CHAN_RADAR;
1572         if (rd_flags & NL80211_RRF_NO_OFDM)
1573                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582         if (rd_flags & NL80211_RRF_NO_80MHZ)
1583                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584         if (rd_flags & NL80211_RRF_NO_160MHZ)
1585                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586         if (rd_flags & NL80211_RRF_NO_HE)
1587                 channel_flags |= IEEE80211_CHAN_NO_HE;
1588         if (rd_flags & NL80211_RRF_NO_320MHZ)
1589                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590         if (rd_flags & NL80211_RRF_NO_EHT)
1591                 channel_flags |= IEEE80211_CHAN_NO_EHT;
1592         return channel_flags;
1593 }
1594
1595 static const struct ieee80211_reg_rule *
1596 freq_reg_info_regd(u32 center_freq,
1597                    const struct ieee80211_regdomain *regd, u32 bw)
1598 {
1599         int i;
1600         bool band_rule_found = false;
1601         bool bw_fits = false;
1602
1603         if (!regd)
1604                 return ERR_PTR(-EINVAL);
1605
1606         for (i = 0; i < regd->n_reg_rules; i++) {
1607                 const struct ieee80211_reg_rule *rr;
1608                 const struct ieee80211_freq_range *fr = NULL;
1609
1610                 rr = &regd->reg_rules[i];
1611                 fr = &rr->freq_range;
1612
1613                 /*
1614                  * We only need to know if one frequency rule was
1615                  * in center_freq's band, that's enough, so let's
1616                  * not overwrite it once found
1617                  */
1618                 if (!band_rule_found)
1619                         band_rule_found = freq_in_rule_band(fr, center_freq);
1620
1621                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1622
1623                 if (band_rule_found && bw_fits)
1624                         return rr;
1625         }
1626
1627         if (!band_rule_found)
1628                 return ERR_PTR(-ERANGE);
1629
1630         return ERR_PTR(-EINVAL);
1631 }
1632
1633 static const struct ieee80211_reg_rule *
1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1635 {
1636         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1637         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1638         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1639         int i = ARRAY_SIZE(bws) - 1;
1640         u32 bw;
1641
1642         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1643                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1644                 if (!IS_ERR(reg_rule))
1645                         return reg_rule;
1646         }
1647
1648         return reg_rule;
1649 }
1650
1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1652                                                u32 center_freq)
1653 {
1654         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1655
1656         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1657 }
1658 EXPORT_SYMBOL(freq_reg_info);
1659
1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1661 {
1662         switch (initiator) {
1663         case NL80211_REGDOM_SET_BY_CORE:
1664                 return "core";
1665         case NL80211_REGDOM_SET_BY_USER:
1666                 return "user";
1667         case NL80211_REGDOM_SET_BY_DRIVER:
1668                 return "driver";
1669         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1670                 return "country element";
1671         default:
1672                 WARN_ON(1);
1673                 return "bug";
1674         }
1675 }
1676 EXPORT_SYMBOL(reg_initiator_name);
1677
1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1679                                           const struct ieee80211_reg_rule *reg_rule,
1680                                           const struct ieee80211_channel *chan)
1681 {
1682         const struct ieee80211_freq_range *freq_range = NULL;
1683         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1684         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1685
1686         freq_range = &reg_rule->freq_range;
1687
1688         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1689         center_freq_khz = ieee80211_channel_to_khz(chan);
1690         /* Check if auto calculation requested */
1691         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1692                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1693
1694         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1695         if (!cfg80211_does_bw_fit_range(freq_range,
1696                                         center_freq_khz,
1697                                         MHZ_TO_KHZ(10)))
1698                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1699         if (!cfg80211_does_bw_fit_range(freq_range,
1700                                         center_freq_khz,
1701                                         MHZ_TO_KHZ(20)))
1702                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1703
1704         if (is_s1g) {
1705                 /* S1G is strict about non overlapping channels. We can
1706                  * calculate which bandwidth is allowed per channel by finding
1707                  * the largest bandwidth which cleanly divides the freq_range.
1708                  */
1709                 int edge_offset;
1710                 int ch_bw = max_bandwidth_khz;
1711
1712                 while (ch_bw) {
1713                         edge_offset = (center_freq_khz - ch_bw / 2) -
1714                                       freq_range->start_freq_khz;
1715                         if (edge_offset % ch_bw == 0) {
1716                                 switch (KHZ_TO_MHZ(ch_bw)) {
1717                                 case 1:
1718                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1719                                         break;
1720                                 case 2:
1721                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1722                                         break;
1723                                 case 4:
1724                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1725                                         break;
1726                                 case 8:
1727                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1728                                         break;
1729                                 case 16:
1730                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1731                                         break;
1732                                 default:
1733                                         /* If we got here, no bandwidths fit on
1734                                          * this frequency, ie. band edge.
1735                                          */
1736                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1737                                         break;
1738                                 }
1739                                 break;
1740                         }
1741                         ch_bw /= 2;
1742                 }
1743         } else {
1744                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1745                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1746                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1747                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1748                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1749                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1750                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1751                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1752                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1753                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1754                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1755                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1756         }
1757         return bw_flags;
1758 }
1759
1760 static void handle_channel_single_rule(struct wiphy *wiphy,
1761                                        enum nl80211_reg_initiator initiator,
1762                                        struct ieee80211_channel *chan,
1763                                        u32 flags,
1764                                        struct regulatory_request *lr,
1765                                        struct wiphy *request_wiphy,
1766                                        const struct ieee80211_reg_rule *reg_rule)
1767 {
1768         u32 bw_flags = 0;
1769         const struct ieee80211_power_rule *power_rule = NULL;
1770         const struct ieee80211_regdomain *regd;
1771
1772         regd = reg_get_regdomain(wiphy);
1773
1774         power_rule = &reg_rule->power_rule;
1775         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1776
1777         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1778             request_wiphy && request_wiphy == wiphy &&
1779             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1780                 /*
1781                  * This guarantees the driver's requested regulatory domain
1782                  * will always be used as a base for further regulatory
1783                  * settings
1784                  */
1785                 chan->flags = chan->orig_flags =
1786                         map_regdom_flags(reg_rule->flags) | bw_flags;
1787                 chan->max_antenna_gain = chan->orig_mag =
1788                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1789                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1790                         (int) MBM_TO_DBM(power_rule->max_eirp);
1791
1792                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1793                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1794                         if (reg_rule->dfs_cac_ms)
1795                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1796                 }
1797
1798                 return;
1799         }
1800
1801         chan->dfs_state = NL80211_DFS_USABLE;
1802         chan->dfs_state_entered = jiffies;
1803
1804         chan->beacon_found = false;
1805         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1806         chan->max_antenna_gain =
1807                 min_t(int, chan->orig_mag,
1808                       MBI_TO_DBI(power_rule->max_antenna_gain));
1809         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1810
1811         if (chan->flags & IEEE80211_CHAN_RADAR) {
1812                 if (reg_rule->dfs_cac_ms)
1813                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1814                 else
1815                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1816         }
1817
1818         if (chan->orig_mpwr) {
1819                 /*
1820                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1821                  * will always follow the passed country IE power settings.
1822                  */
1823                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1825                         chan->max_power = chan->max_reg_power;
1826                 else
1827                         chan->max_power = min(chan->orig_mpwr,
1828                                               chan->max_reg_power);
1829         } else
1830                 chan->max_power = chan->max_reg_power;
1831 }
1832
1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1834                                           enum nl80211_reg_initiator initiator,
1835                                           struct ieee80211_channel *chan,
1836                                           u32 flags,
1837                                           struct regulatory_request *lr,
1838                                           struct wiphy *request_wiphy,
1839                                           const struct ieee80211_reg_rule *rrule1,
1840                                           const struct ieee80211_reg_rule *rrule2,
1841                                           struct ieee80211_freq_range *comb_range)
1842 {
1843         u32 bw_flags1 = 0;
1844         u32 bw_flags2 = 0;
1845         const struct ieee80211_power_rule *power_rule1 = NULL;
1846         const struct ieee80211_power_rule *power_rule2 = NULL;
1847         const struct ieee80211_regdomain *regd;
1848
1849         regd = reg_get_regdomain(wiphy);
1850
1851         power_rule1 = &rrule1->power_rule;
1852         power_rule2 = &rrule2->power_rule;
1853         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1854         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1855
1856         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1857             request_wiphy && request_wiphy == wiphy &&
1858             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1859                 /* This guarantees the driver's requested regulatory domain
1860                  * will always be used as a base for further regulatory
1861                  * settings
1862                  */
1863                 chan->flags =
1864                         map_regdom_flags(rrule1->flags) |
1865                         map_regdom_flags(rrule2->flags) |
1866                         bw_flags1 |
1867                         bw_flags2;
1868                 chan->orig_flags = chan->flags;
1869                 chan->max_antenna_gain =
1870                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1871                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1872                 chan->orig_mag = chan->max_antenna_gain;
1873                 chan->max_reg_power =
1874                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1875                               MBM_TO_DBM(power_rule2->max_eirp));
1876                 chan->max_power = chan->max_reg_power;
1877                 chan->orig_mpwr = chan->max_reg_power;
1878
1879                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1880                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1881                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1882                                 chan->dfs_cac_ms = max_t(unsigned int,
1883                                                          rrule1->dfs_cac_ms,
1884                                                          rrule2->dfs_cac_ms);
1885                 }
1886
1887                 return;
1888         }
1889
1890         chan->dfs_state = NL80211_DFS_USABLE;
1891         chan->dfs_state_entered = jiffies;
1892
1893         chan->beacon_found = false;
1894         chan->flags = flags | bw_flags1 | bw_flags2 |
1895                       map_regdom_flags(rrule1->flags) |
1896                       map_regdom_flags(rrule2->flags);
1897
1898         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899          * (otherwise no adj. rule case), recheck therefore
1900          */
1901         if (cfg80211_does_bw_fit_range(comb_range,
1902                                        ieee80211_channel_to_khz(chan),
1903                                        MHZ_TO_KHZ(10)))
1904                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905         if (cfg80211_does_bw_fit_range(comb_range,
1906                                        ieee80211_channel_to_khz(chan),
1907                                        MHZ_TO_KHZ(20)))
1908                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1909
1910         chan->max_antenna_gain =
1911                 min_t(int, chan->orig_mag,
1912                       min_t(int,
1913                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1914                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915         chan->max_reg_power = min_t(int,
1916                                     MBM_TO_DBM(power_rule1->max_eirp),
1917                                     MBM_TO_DBM(power_rule2->max_eirp));
1918
1919         if (chan->flags & IEEE80211_CHAN_RADAR) {
1920                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921                         chan->dfs_cac_ms = max_t(unsigned int,
1922                                                  rrule1->dfs_cac_ms,
1923                                                  rrule2->dfs_cac_ms);
1924                 else
1925                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1926         }
1927
1928         if (chan->orig_mpwr) {
1929                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930                  * will always follow the passed country IE power settings.
1931                  */
1932                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934                         chan->max_power = chan->max_reg_power;
1935                 else
1936                         chan->max_power = min(chan->orig_mpwr,
1937                                               chan->max_reg_power);
1938         } else {
1939                 chan->max_power = chan->max_reg_power;
1940         }
1941 }
1942
1943 /* Note that right now we assume the desired channel bandwidth
1944  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945  * per channel, the primary and the extension channel).
1946  */
1947 static void handle_channel(struct wiphy *wiphy,
1948                            enum nl80211_reg_initiator initiator,
1949                            struct ieee80211_channel *chan)
1950 {
1951         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952         struct regulatory_request *lr = get_last_request();
1953         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954         const struct ieee80211_reg_rule *rrule = NULL;
1955         const struct ieee80211_reg_rule *rrule1 = NULL;
1956         const struct ieee80211_reg_rule *rrule2 = NULL;
1957
1958         u32 flags = chan->orig_flags;
1959
1960         rrule = freq_reg_info(wiphy, orig_chan_freq);
1961         if (IS_ERR(rrule)) {
1962                 /* check for adjacent match, therefore get rules for
1963                  * chan - 20 MHz and chan + 20 MHz and test
1964                  * if reg rules are adjacent
1965                  */
1966                 rrule1 = freq_reg_info(wiphy,
1967                                        orig_chan_freq - MHZ_TO_KHZ(20));
1968                 rrule2 = freq_reg_info(wiphy,
1969                                        orig_chan_freq + MHZ_TO_KHZ(20));
1970                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971                         struct ieee80211_freq_range comb_range;
1972
1973                         if (rrule1->freq_range.end_freq_khz !=
1974                             rrule2->freq_range.start_freq_khz)
1975                                 goto disable_chan;
1976
1977                         comb_range.start_freq_khz =
1978                                 rrule1->freq_range.start_freq_khz;
1979                         comb_range.end_freq_khz =
1980                                 rrule2->freq_range.end_freq_khz;
1981                         comb_range.max_bandwidth_khz =
1982                                 min_t(u32,
1983                                       rrule1->freq_range.max_bandwidth_khz,
1984                                       rrule2->freq_range.max_bandwidth_khz);
1985
1986                         if (!cfg80211_does_bw_fit_range(&comb_range,
1987                                                         orig_chan_freq,
1988                                                         MHZ_TO_KHZ(20)))
1989                                 goto disable_chan;
1990
1991                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1992                                                       flags, lr, request_wiphy,
1993                                                       rrule1, rrule2,
1994                                                       &comb_range);
1995                         return;
1996                 }
1997
1998 disable_chan:
1999                 /* We will disable all channels that do not match our
2000                  * received regulatory rule unless the hint is coming
2001                  * from a Country IE and the Country IE had no information
2002                  * about a band. The IEEE 802.11 spec allows for an AP
2003                  * to send only a subset of the regulatory rules allowed,
2004                  * so an AP in the US that only supports 2.4 GHz may only send
2005                  * a country IE with information for the 2.4 GHz band
2006                  * while 5 GHz is still supported.
2007                  */
2008                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009                     PTR_ERR(rrule) == -ERANGE)
2010                         return;
2011
2012                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013                     request_wiphy && request_wiphy == wiphy &&
2014                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2016                                  chan->center_freq, chan->freq_offset);
2017                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018                         chan->flags = chan->orig_flags;
2019                 } else {
2020                         pr_debug("Disabling freq %d.%03d MHz\n",
2021                                  chan->center_freq, chan->freq_offset);
2022                         chan->flags |= IEEE80211_CHAN_DISABLED;
2023                 }
2024                 return;
2025         }
2026
2027         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028                                    request_wiphy, rrule);
2029 }
2030
2031 static void handle_band(struct wiphy *wiphy,
2032                         enum nl80211_reg_initiator initiator,
2033                         struct ieee80211_supported_band *sband)
2034 {
2035         unsigned int i;
2036
2037         if (!sband)
2038                 return;
2039
2040         for (i = 0; i < sband->n_channels; i++)
2041                 handle_channel(wiphy, initiator, &sband->channels[i]);
2042 }
2043
2044 static bool reg_request_cell_base(struct regulatory_request *request)
2045 {
2046         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2047                 return false;
2048         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2049 }
2050
2051 bool reg_last_request_cell_base(void)
2052 {
2053         return reg_request_cell_base(get_last_request());
2054 }
2055
2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057 /* Core specific check */
2058 static enum reg_request_treatment
2059 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2060 {
2061         struct regulatory_request *lr = get_last_request();
2062
2063         if (!reg_num_devs_support_basehint)
2064                 return REG_REQ_IGNORE;
2065
2066         if (reg_request_cell_base(lr) &&
2067             !regdom_changes(pending_request->alpha2))
2068                 return REG_REQ_ALREADY_SET;
2069
2070         return REG_REQ_OK;
2071 }
2072
2073 /* Device specific check */
2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2075 {
2076         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2077 }
2078 #else
2079 static enum reg_request_treatment
2080 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081 {
2082         return REG_REQ_IGNORE;
2083 }
2084
2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2086 {
2087         return true;
2088 }
2089 #endif
2090
2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2092 {
2093         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2095                 return true;
2096         return false;
2097 }
2098
2099 static bool ignore_reg_update(struct wiphy *wiphy,
2100                               enum nl80211_reg_initiator initiator)
2101 {
2102         struct regulatory_request *lr = get_last_request();
2103
2104         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2105                 return true;
2106
2107         if (!lr) {
2108                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109                          reg_initiator_name(initiator));
2110                 return true;
2111         }
2112
2113         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116                          reg_initiator_name(initiator));
2117                 return true;
2118         }
2119
2120         /*
2121          * wiphy->regd will be set once the device has its own
2122          * desired regulatory domain set
2123          */
2124         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126             !is_world_regdom(lr->alpha2)) {
2127                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128                          reg_initiator_name(initiator));
2129                 return true;
2130         }
2131
2132         if (reg_request_cell_base(lr))
2133                 return reg_dev_ignore_cell_hint(wiphy);
2134
2135         return false;
2136 }
2137
2138 static bool reg_is_world_roaming(struct wiphy *wiphy)
2139 {
2140         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142         struct regulatory_request *lr = get_last_request();
2143
2144         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2145                 return true;
2146
2147         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2149                 return true;
2150
2151         return false;
2152 }
2153
2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2155                               struct reg_beacon *reg_beacon)
2156 {
2157         struct ieee80211_supported_band *sband;
2158         struct ieee80211_channel *chan;
2159         bool channel_changed = false;
2160         struct ieee80211_channel chan_before;
2161
2162         sband = wiphy->bands[reg_beacon->chan.band];
2163         chan = &sband->channels[chan_idx];
2164
2165         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2166                 return;
2167
2168         if (chan->beacon_found)
2169                 return;
2170
2171         chan->beacon_found = true;
2172
2173         if (!reg_is_world_roaming(wiphy))
2174                 return;
2175
2176         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2177                 return;
2178
2179         chan_before = *chan;
2180
2181         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2182                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2183                 channel_changed = true;
2184         }
2185
2186         if (channel_changed)
2187                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2188 }
2189
2190 /*
2191  * Called when a scan on a wiphy finds a beacon on
2192  * new channel
2193  */
2194 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2195                                     struct reg_beacon *reg_beacon)
2196 {
2197         unsigned int i;
2198         struct ieee80211_supported_band *sband;
2199
2200         if (!wiphy->bands[reg_beacon->chan.band])
2201                 return;
2202
2203         sband = wiphy->bands[reg_beacon->chan.band];
2204
2205         for (i = 0; i < sband->n_channels; i++)
2206                 handle_reg_beacon(wiphy, i, reg_beacon);
2207 }
2208
2209 /*
2210  * Called upon reg changes or a new wiphy is added
2211  */
2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2213 {
2214         unsigned int i;
2215         struct ieee80211_supported_band *sband;
2216         struct reg_beacon *reg_beacon;
2217
2218         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2219                 if (!wiphy->bands[reg_beacon->chan.band])
2220                         continue;
2221                 sband = wiphy->bands[reg_beacon->chan.band];
2222                 for (i = 0; i < sband->n_channels; i++)
2223                         handle_reg_beacon(wiphy, i, reg_beacon);
2224         }
2225 }
2226
2227 /* Reap the advantages of previously found beacons */
2228 static void reg_process_beacons(struct wiphy *wiphy)
2229 {
2230         /*
2231          * Means we are just firing up cfg80211, so no beacons would
2232          * have been processed yet.
2233          */
2234         if (!last_request)
2235                 return;
2236         wiphy_update_beacon_reg(wiphy);
2237 }
2238
2239 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2240 {
2241         if (!chan)
2242                 return false;
2243         if (chan->flags & IEEE80211_CHAN_DISABLED)
2244                 return false;
2245         /* This would happen when regulatory rules disallow HT40 completely */
2246         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2247                 return false;
2248         return true;
2249 }
2250
2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2252                                          struct ieee80211_channel *channel)
2253 {
2254         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2255         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2256         const struct ieee80211_regdomain *regd;
2257         unsigned int i;
2258         u32 flags;
2259
2260         if (!is_ht40_allowed(channel)) {
2261                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2262                 return;
2263         }
2264
2265         /*
2266          * We need to ensure the extension channels exist to
2267          * be able to use HT40- or HT40+, this finds them (or not)
2268          */
2269         for (i = 0; i < sband->n_channels; i++) {
2270                 struct ieee80211_channel *c = &sband->channels[i];
2271
2272                 if (c->center_freq == (channel->center_freq - 20))
2273                         channel_before = c;
2274                 if (c->center_freq == (channel->center_freq + 20))
2275                         channel_after = c;
2276         }
2277
2278         flags = 0;
2279         regd = get_wiphy_regdom(wiphy);
2280         if (regd) {
2281                 const struct ieee80211_reg_rule *reg_rule =
2282                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2283                                            regd, MHZ_TO_KHZ(20));
2284
2285                 if (!IS_ERR(reg_rule))
2286                         flags = reg_rule->flags;
2287         }
2288
2289         /*
2290          * Please note that this assumes target bandwidth is 20 MHz,
2291          * if that ever changes we also need to change the below logic
2292          * to include that as well.
2293          */
2294         if (!is_ht40_allowed(channel_before) ||
2295             flags & NL80211_RRF_NO_HT40MINUS)
2296                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2297         else
2298                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2299
2300         if (!is_ht40_allowed(channel_after) ||
2301             flags & NL80211_RRF_NO_HT40PLUS)
2302                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2303         else
2304                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2305 }
2306
2307 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2308                                       struct ieee80211_supported_band *sband)
2309 {
2310         unsigned int i;
2311
2312         if (!sband)
2313                 return;
2314
2315         for (i = 0; i < sband->n_channels; i++)
2316                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2317 }
2318
2319 static void reg_process_ht_flags(struct wiphy *wiphy)
2320 {
2321         enum nl80211_band band;
2322
2323         if (!wiphy)
2324                 return;
2325
2326         for (band = 0; band < NUM_NL80211_BANDS; band++)
2327                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2328 }
2329
2330 static void reg_call_notifier(struct wiphy *wiphy,
2331                               struct regulatory_request *request)
2332 {
2333         if (wiphy->reg_notifier)
2334                 wiphy->reg_notifier(wiphy, request);
2335 }
2336
2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2338 {
2339         struct cfg80211_chan_def chandef = {};
2340         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2341         enum nl80211_iftype iftype;
2342         bool ret;
2343         int link;
2344
2345         wdev_lock(wdev);
2346         iftype = wdev->iftype;
2347
2348         /* make sure the interface is active */
2349         if (!wdev->netdev || !netif_running(wdev->netdev))
2350                 goto wdev_inactive_unlock;
2351
2352         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2353                 struct ieee80211_channel *chan;
2354
2355                 if (!wdev->valid_links && link > 0)
2356                         break;
2357                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2358                         continue;
2359                 switch (iftype) {
2360                 case NL80211_IFTYPE_AP:
2361                 case NL80211_IFTYPE_P2P_GO:
2362                         if (!wdev->links[link].ap.beacon_interval)
2363                                 continue;
2364                         chandef = wdev->links[link].ap.chandef;
2365                         break;
2366                 case NL80211_IFTYPE_MESH_POINT:
2367                         if (!wdev->u.mesh.beacon_interval)
2368                                 continue;
2369                         chandef = wdev->u.mesh.chandef;
2370                         break;
2371                 case NL80211_IFTYPE_ADHOC:
2372                         if (!wdev->u.ibss.ssid_len)
2373                                 continue;
2374                         chandef = wdev->u.ibss.chandef;
2375                         break;
2376                 case NL80211_IFTYPE_STATION:
2377                 case NL80211_IFTYPE_P2P_CLIENT:
2378                         /* Maybe we could consider disabling that link only? */
2379                         if (!wdev->links[link].client.current_bss)
2380                                 continue;
2381
2382                         chan = wdev->links[link].client.current_bss->pub.channel;
2383                         if (!chan)
2384                                 continue;
2385
2386                         if (!rdev->ops->get_channel ||
2387                             rdev_get_channel(rdev, wdev, link, &chandef))
2388                                 cfg80211_chandef_create(&chandef, chan,
2389                                                         NL80211_CHAN_NO_HT);
2390                         break;
2391                 case NL80211_IFTYPE_MONITOR:
2392                 case NL80211_IFTYPE_AP_VLAN:
2393                 case NL80211_IFTYPE_P2P_DEVICE:
2394                         /* no enforcement required */
2395                         break;
2396                 case NL80211_IFTYPE_OCB:
2397                         if (!wdev->u.ocb.chandef.chan)
2398                                 continue;
2399                         chandef = wdev->u.ocb.chandef;
2400                         break;
2401                 case NL80211_IFTYPE_NAN:
2402                         /* we have no info, but NAN is also pretty universal */
2403                         continue;
2404                 default:
2405                         /* others not implemented for now */
2406                         WARN_ON_ONCE(1);
2407                         break;
2408                 }
2409
2410                 wdev_unlock(wdev);
2411
2412                 switch (iftype) {
2413                 case NL80211_IFTYPE_AP:
2414                 case NL80211_IFTYPE_P2P_GO:
2415                 case NL80211_IFTYPE_ADHOC:
2416                 case NL80211_IFTYPE_MESH_POINT:
2417                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2418                                                             iftype);
2419                         if (!ret)
2420                                 return ret;
2421                         break;
2422                 case NL80211_IFTYPE_STATION:
2423                 case NL80211_IFTYPE_P2P_CLIENT:
2424                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2425                                                       IEEE80211_CHAN_DISABLED);
2426                         if (!ret)
2427                                 return ret;
2428                         break;
2429                 default:
2430                         break;
2431                 }
2432
2433                 wdev_lock(wdev);
2434         }
2435
2436         wdev_unlock(wdev);
2437
2438         return true;
2439
2440 wdev_inactive_unlock:
2441         wdev_unlock(wdev);
2442         return true;
2443 }
2444
2445 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2446 {
2447         struct wireless_dev *wdev;
2448         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2449
2450         wiphy_lock(wiphy);
2451         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452                 if (!reg_wdev_chan_valid(wiphy, wdev))
2453                         cfg80211_leave(rdev, wdev);
2454         wiphy_unlock(wiphy);
2455 }
2456
2457 static void reg_check_chans_work(struct work_struct *work)
2458 {
2459         struct cfg80211_registered_device *rdev;
2460
2461         pr_debug("Verifying active interfaces after reg change\n");
2462         rtnl_lock();
2463
2464         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2465                 reg_leave_invalid_chans(&rdev->wiphy);
2466
2467         rtnl_unlock();
2468 }
2469
2470 static void reg_check_channels(void)
2471 {
2472         /*
2473          * Give usermode a chance to do something nicer (move to another
2474          * channel, orderly disconnection), before forcing a disconnection.
2475          */
2476         mod_delayed_work(system_power_efficient_wq,
2477                          &reg_check_chans,
2478                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2479 }
2480
2481 static void wiphy_update_regulatory(struct wiphy *wiphy,
2482                                     enum nl80211_reg_initiator initiator)
2483 {
2484         enum nl80211_band band;
2485         struct regulatory_request *lr = get_last_request();
2486
2487         if (ignore_reg_update(wiphy, initiator)) {
2488                 /*
2489                  * Regulatory updates set by CORE are ignored for custom
2490                  * regulatory cards. Let us notify the changes to the driver,
2491                  * as some drivers used this to restore its orig_* reg domain.
2492                  */
2493                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2494                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2495                     !(wiphy->regulatory_flags &
2496                       REGULATORY_WIPHY_SELF_MANAGED))
2497                         reg_call_notifier(wiphy, lr);
2498                 return;
2499         }
2500
2501         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2502
2503         for (band = 0; band < NUM_NL80211_BANDS; band++)
2504                 handle_band(wiphy, initiator, wiphy->bands[band]);
2505
2506         reg_process_beacons(wiphy);
2507         reg_process_ht_flags(wiphy);
2508         reg_call_notifier(wiphy, lr);
2509 }
2510
2511 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2512 {
2513         struct cfg80211_registered_device *rdev;
2514         struct wiphy *wiphy;
2515
2516         ASSERT_RTNL();
2517
2518         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2519                 wiphy = &rdev->wiphy;
2520                 wiphy_update_regulatory(wiphy, initiator);
2521         }
2522
2523         reg_check_channels();
2524 }
2525
2526 static void handle_channel_custom(struct wiphy *wiphy,
2527                                   struct ieee80211_channel *chan,
2528                                   const struct ieee80211_regdomain *regd,
2529                                   u32 min_bw)
2530 {
2531         u32 bw_flags = 0;
2532         const struct ieee80211_reg_rule *reg_rule = NULL;
2533         const struct ieee80211_power_rule *power_rule = NULL;
2534         u32 bw, center_freq_khz;
2535
2536         center_freq_khz = ieee80211_channel_to_khz(chan);
2537         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2538                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2539                 if (!IS_ERR(reg_rule))
2540                         break;
2541         }
2542
2543         if (IS_ERR_OR_NULL(reg_rule)) {
2544                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2545                          chan->center_freq, chan->freq_offset);
2546                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2547                         chan->flags |= IEEE80211_CHAN_DISABLED;
2548                 } else {
2549                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2550                         chan->flags = chan->orig_flags;
2551                 }
2552                 return;
2553         }
2554
2555         power_rule = &reg_rule->power_rule;
2556         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2557
2558         chan->dfs_state_entered = jiffies;
2559         chan->dfs_state = NL80211_DFS_USABLE;
2560
2561         chan->beacon_found = false;
2562
2563         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2564                 chan->flags = chan->orig_flags | bw_flags |
2565                               map_regdom_flags(reg_rule->flags);
2566         else
2567                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2568
2569         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2570         chan->max_reg_power = chan->max_power =
2571                 (int) MBM_TO_DBM(power_rule->max_eirp);
2572
2573         if (chan->flags & IEEE80211_CHAN_RADAR) {
2574                 if (reg_rule->dfs_cac_ms)
2575                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2576                 else
2577                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2578         }
2579
2580         chan->max_power = chan->max_reg_power;
2581 }
2582
2583 static void handle_band_custom(struct wiphy *wiphy,
2584                                struct ieee80211_supported_band *sband,
2585                                const struct ieee80211_regdomain *regd)
2586 {
2587         unsigned int i;
2588
2589         if (!sband)
2590                 return;
2591
2592         /*
2593          * We currently assume that you always want at least 20 MHz,
2594          * otherwise channel 12 might get enabled if this rule is
2595          * compatible to US, which permits 2402 - 2472 MHz.
2596          */
2597         for (i = 0; i < sband->n_channels; i++)
2598                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2599                                       MHZ_TO_KHZ(20));
2600 }
2601
2602 /* Used by drivers prior to wiphy registration */
2603 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2604                                    const struct ieee80211_regdomain *regd)
2605 {
2606         const struct ieee80211_regdomain *new_regd, *tmp;
2607         enum nl80211_band band;
2608         unsigned int bands_set = 0;
2609
2610         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2611              "wiphy should have REGULATORY_CUSTOM_REG\n");
2612         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2613
2614         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2615                 if (!wiphy->bands[band])
2616                         continue;
2617                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2618                 bands_set++;
2619         }
2620
2621         /*
2622          * no point in calling this if it won't have any effect
2623          * on your device's supported bands.
2624          */
2625         WARN_ON(!bands_set);
2626         new_regd = reg_copy_regd(regd);
2627         if (IS_ERR(new_regd))
2628                 return;
2629
2630         rtnl_lock();
2631         wiphy_lock(wiphy);
2632
2633         tmp = get_wiphy_regdom(wiphy);
2634         rcu_assign_pointer(wiphy->regd, new_regd);
2635         rcu_free_regdom(tmp);
2636
2637         wiphy_unlock(wiphy);
2638         rtnl_unlock();
2639 }
2640 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2641
2642 static void reg_set_request_processed(void)
2643 {
2644         bool need_more_processing = false;
2645         struct regulatory_request *lr = get_last_request();
2646
2647         lr->processed = true;
2648
2649         spin_lock(&reg_requests_lock);
2650         if (!list_empty(&reg_requests_list))
2651                 need_more_processing = true;
2652         spin_unlock(&reg_requests_lock);
2653
2654         cancel_crda_timeout();
2655
2656         if (need_more_processing)
2657                 schedule_work(&reg_work);
2658 }
2659
2660 /**
2661  * reg_process_hint_core - process core regulatory requests
2662  * @core_request: a pending core regulatory request
2663  *
2664  * The wireless subsystem can use this function to process
2665  * a regulatory request issued by the regulatory core.
2666  */
2667 static enum reg_request_treatment
2668 reg_process_hint_core(struct regulatory_request *core_request)
2669 {
2670         if (reg_query_database(core_request)) {
2671                 core_request->intersect = false;
2672                 core_request->processed = false;
2673                 reg_update_last_request(core_request);
2674                 return REG_REQ_OK;
2675         }
2676
2677         return REG_REQ_IGNORE;
2678 }
2679
2680 static enum reg_request_treatment
2681 __reg_process_hint_user(struct regulatory_request *user_request)
2682 {
2683         struct regulatory_request *lr = get_last_request();
2684
2685         if (reg_request_cell_base(user_request))
2686                 return reg_ignore_cell_hint(user_request);
2687
2688         if (reg_request_cell_base(lr))
2689                 return REG_REQ_IGNORE;
2690
2691         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2692                 return REG_REQ_INTERSECT;
2693         /*
2694          * If the user knows better the user should set the regdom
2695          * to their country before the IE is picked up
2696          */
2697         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2698             lr->intersect)
2699                 return REG_REQ_IGNORE;
2700         /*
2701          * Process user requests only after previous user/driver/core
2702          * requests have been processed
2703          */
2704         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2705              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2706              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2707             regdom_changes(lr->alpha2))
2708                 return REG_REQ_IGNORE;
2709
2710         if (!regdom_changes(user_request->alpha2))
2711                 return REG_REQ_ALREADY_SET;
2712
2713         return REG_REQ_OK;
2714 }
2715
2716 /**
2717  * reg_process_hint_user - process user regulatory requests
2718  * @user_request: a pending user regulatory request
2719  *
2720  * The wireless subsystem can use this function to process
2721  * a regulatory request initiated by userspace.
2722  */
2723 static enum reg_request_treatment
2724 reg_process_hint_user(struct regulatory_request *user_request)
2725 {
2726         enum reg_request_treatment treatment;
2727
2728         treatment = __reg_process_hint_user(user_request);
2729         if (treatment == REG_REQ_IGNORE ||
2730             treatment == REG_REQ_ALREADY_SET)
2731                 return REG_REQ_IGNORE;
2732
2733         user_request->intersect = treatment == REG_REQ_INTERSECT;
2734         user_request->processed = false;
2735
2736         if (reg_query_database(user_request)) {
2737                 reg_update_last_request(user_request);
2738                 user_alpha2[0] = user_request->alpha2[0];
2739                 user_alpha2[1] = user_request->alpha2[1];
2740                 return REG_REQ_OK;
2741         }
2742
2743         return REG_REQ_IGNORE;
2744 }
2745
2746 static enum reg_request_treatment
2747 __reg_process_hint_driver(struct regulatory_request *driver_request)
2748 {
2749         struct regulatory_request *lr = get_last_request();
2750
2751         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2752                 if (regdom_changes(driver_request->alpha2))
2753                         return REG_REQ_OK;
2754                 return REG_REQ_ALREADY_SET;
2755         }
2756
2757         /*
2758          * This would happen if you unplug and plug your card
2759          * back in or if you add a new device for which the previously
2760          * loaded card also agrees on the regulatory domain.
2761          */
2762         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2763             !regdom_changes(driver_request->alpha2))
2764                 return REG_REQ_ALREADY_SET;
2765
2766         return REG_REQ_INTERSECT;
2767 }
2768
2769 /**
2770  * reg_process_hint_driver - process driver regulatory requests
2771  * @wiphy: the wireless device for the regulatory request
2772  * @driver_request: a pending driver regulatory request
2773  *
2774  * The wireless subsystem can use this function to process
2775  * a regulatory request issued by an 802.11 driver.
2776  *
2777  * Returns one of the different reg request treatment values.
2778  */
2779 static enum reg_request_treatment
2780 reg_process_hint_driver(struct wiphy *wiphy,
2781                         struct regulatory_request *driver_request)
2782 {
2783         const struct ieee80211_regdomain *regd, *tmp;
2784         enum reg_request_treatment treatment;
2785
2786         treatment = __reg_process_hint_driver(driver_request);
2787
2788         switch (treatment) {
2789         case REG_REQ_OK:
2790                 break;
2791         case REG_REQ_IGNORE:
2792                 return REG_REQ_IGNORE;
2793         case REG_REQ_INTERSECT:
2794         case REG_REQ_ALREADY_SET:
2795                 regd = reg_copy_regd(get_cfg80211_regdom());
2796                 if (IS_ERR(regd))
2797                         return REG_REQ_IGNORE;
2798
2799                 tmp = get_wiphy_regdom(wiphy);
2800                 ASSERT_RTNL();
2801                 wiphy_lock(wiphy);
2802                 rcu_assign_pointer(wiphy->regd, regd);
2803                 wiphy_unlock(wiphy);
2804                 rcu_free_regdom(tmp);
2805         }
2806
2807
2808         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2809         driver_request->processed = false;
2810
2811         /*
2812          * Since CRDA will not be called in this case as we already
2813          * have applied the requested regulatory domain before we just
2814          * inform userspace we have processed the request
2815          */
2816         if (treatment == REG_REQ_ALREADY_SET) {
2817                 nl80211_send_reg_change_event(driver_request);
2818                 reg_update_last_request(driver_request);
2819                 reg_set_request_processed();
2820                 return REG_REQ_ALREADY_SET;
2821         }
2822
2823         if (reg_query_database(driver_request)) {
2824                 reg_update_last_request(driver_request);
2825                 return REG_REQ_OK;
2826         }
2827
2828         return REG_REQ_IGNORE;
2829 }
2830
2831 static enum reg_request_treatment
2832 __reg_process_hint_country_ie(struct wiphy *wiphy,
2833                               struct regulatory_request *country_ie_request)
2834 {
2835         struct wiphy *last_wiphy = NULL;
2836         struct regulatory_request *lr = get_last_request();
2837
2838         if (reg_request_cell_base(lr)) {
2839                 /* Trust a Cell base station over the AP's country IE */
2840                 if (regdom_changes(country_ie_request->alpha2))
2841                         return REG_REQ_IGNORE;
2842                 return REG_REQ_ALREADY_SET;
2843         } else {
2844                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2845                         return REG_REQ_IGNORE;
2846         }
2847
2848         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2849                 return -EINVAL;
2850
2851         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2852                 return REG_REQ_OK;
2853
2854         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2855
2856         if (last_wiphy != wiphy) {
2857                 /*
2858                  * Two cards with two APs claiming different
2859                  * Country IE alpha2s. We could
2860                  * intersect them, but that seems unlikely
2861                  * to be correct. Reject second one for now.
2862                  */
2863                 if (regdom_changes(country_ie_request->alpha2))
2864                         return REG_REQ_IGNORE;
2865                 return REG_REQ_ALREADY_SET;
2866         }
2867
2868         if (regdom_changes(country_ie_request->alpha2))
2869                 return REG_REQ_OK;
2870         return REG_REQ_ALREADY_SET;
2871 }
2872
2873 /**
2874  * reg_process_hint_country_ie - process regulatory requests from country IEs
2875  * @wiphy: the wireless device for the regulatory request
2876  * @country_ie_request: a regulatory request from a country IE
2877  *
2878  * The wireless subsystem can use this function to process
2879  * a regulatory request issued by a country Information Element.
2880  *
2881  * Returns one of the different reg request treatment values.
2882  */
2883 static enum reg_request_treatment
2884 reg_process_hint_country_ie(struct wiphy *wiphy,
2885                             struct regulatory_request *country_ie_request)
2886 {
2887         enum reg_request_treatment treatment;
2888
2889         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2890
2891         switch (treatment) {
2892         case REG_REQ_OK:
2893                 break;
2894         case REG_REQ_IGNORE:
2895                 return REG_REQ_IGNORE;
2896         case REG_REQ_ALREADY_SET:
2897                 reg_free_request(country_ie_request);
2898                 return REG_REQ_ALREADY_SET;
2899         case REG_REQ_INTERSECT:
2900                 /*
2901                  * This doesn't happen yet, not sure we
2902                  * ever want to support it for this case.
2903                  */
2904                 WARN_ONCE(1, "Unexpected intersection for country elements");
2905                 return REG_REQ_IGNORE;
2906         }
2907
2908         country_ie_request->intersect = false;
2909         country_ie_request->processed = false;
2910
2911         if (reg_query_database(country_ie_request)) {
2912                 reg_update_last_request(country_ie_request);
2913                 return REG_REQ_OK;
2914         }
2915
2916         return REG_REQ_IGNORE;
2917 }
2918
2919 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2920 {
2921         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2922         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2923         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2924         bool dfs_domain_same;
2925
2926         rcu_read_lock();
2927
2928         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2929         wiphy1_regd = rcu_dereference(wiphy1->regd);
2930         if (!wiphy1_regd)
2931                 wiphy1_regd = cfg80211_regd;
2932
2933         wiphy2_regd = rcu_dereference(wiphy2->regd);
2934         if (!wiphy2_regd)
2935                 wiphy2_regd = cfg80211_regd;
2936
2937         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2938
2939         rcu_read_unlock();
2940
2941         return dfs_domain_same;
2942 }
2943
2944 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2945                                     struct ieee80211_channel *src_chan)
2946 {
2947         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2948             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2949                 return;
2950
2951         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2952             src_chan->flags & IEEE80211_CHAN_DISABLED)
2953                 return;
2954
2955         if (src_chan->center_freq == dst_chan->center_freq &&
2956             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2957                 dst_chan->dfs_state = src_chan->dfs_state;
2958                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2959         }
2960 }
2961
2962 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2963                                        struct wiphy *src_wiphy)
2964 {
2965         struct ieee80211_supported_band *src_sband, *dst_sband;
2966         struct ieee80211_channel *src_chan, *dst_chan;
2967         int i, j, band;
2968
2969         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2970                 return;
2971
2972         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2973                 dst_sband = dst_wiphy->bands[band];
2974                 src_sband = src_wiphy->bands[band];
2975                 if (!dst_sband || !src_sband)
2976                         continue;
2977
2978                 for (i = 0; i < dst_sband->n_channels; i++) {
2979                         dst_chan = &dst_sband->channels[i];
2980                         for (j = 0; j < src_sband->n_channels; j++) {
2981                                 src_chan = &src_sband->channels[j];
2982                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2983                         }
2984                 }
2985         }
2986 }
2987
2988 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2989 {
2990         struct cfg80211_registered_device *rdev;
2991
2992         ASSERT_RTNL();
2993
2994         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2995                 if (wiphy == &rdev->wiphy)
2996                         continue;
2997                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2998         }
2999 }
3000
3001 /* This processes *all* regulatory hints */
3002 static void reg_process_hint(struct regulatory_request *reg_request)
3003 {
3004         struct wiphy *wiphy = NULL;
3005         enum reg_request_treatment treatment;
3006         enum nl80211_reg_initiator initiator = reg_request->initiator;
3007
3008         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3009                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3010
3011         switch (initiator) {
3012         case NL80211_REGDOM_SET_BY_CORE:
3013                 treatment = reg_process_hint_core(reg_request);
3014                 break;
3015         case NL80211_REGDOM_SET_BY_USER:
3016                 treatment = reg_process_hint_user(reg_request);
3017                 break;
3018         case NL80211_REGDOM_SET_BY_DRIVER:
3019                 if (!wiphy)
3020                         goto out_free;
3021                 treatment = reg_process_hint_driver(wiphy, reg_request);
3022                 break;
3023         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3024                 if (!wiphy)
3025                         goto out_free;
3026                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3027                 break;
3028         default:
3029                 WARN(1, "invalid initiator %d\n", initiator);
3030                 goto out_free;
3031         }
3032
3033         if (treatment == REG_REQ_IGNORE)
3034                 goto out_free;
3035
3036         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3037              "unexpected treatment value %d\n", treatment);
3038
3039         /* This is required so that the orig_* parameters are saved.
3040          * NOTE: treatment must be set for any case that reaches here!
3041          */
3042         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3043             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3044                 wiphy_update_regulatory(wiphy, initiator);
3045                 wiphy_all_share_dfs_chan_state(wiphy);
3046                 reg_check_channels();
3047         }
3048
3049         return;
3050
3051 out_free:
3052         reg_free_request(reg_request);
3053 }
3054
3055 static void notify_self_managed_wiphys(struct regulatory_request *request)
3056 {
3057         struct cfg80211_registered_device *rdev;
3058         struct wiphy *wiphy;
3059
3060         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3061                 wiphy = &rdev->wiphy;
3062                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3063                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3064                         reg_call_notifier(wiphy, request);
3065         }
3066 }
3067
3068 /*
3069  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3070  * Regulatory hints come on a first come first serve basis and we
3071  * must process each one atomically.
3072  */
3073 static void reg_process_pending_hints(void)
3074 {
3075         struct regulatory_request *reg_request, *lr;
3076
3077         lr = get_last_request();
3078
3079         /* When last_request->processed becomes true this will be rescheduled */
3080         if (lr && !lr->processed) {
3081                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3082                 return;
3083         }
3084
3085         spin_lock(&reg_requests_lock);
3086
3087         if (list_empty(&reg_requests_list)) {
3088                 spin_unlock(&reg_requests_lock);
3089                 return;
3090         }
3091
3092         reg_request = list_first_entry(&reg_requests_list,
3093                                        struct regulatory_request,
3094                                        list);
3095         list_del_init(&reg_request->list);
3096
3097         spin_unlock(&reg_requests_lock);
3098
3099         notify_self_managed_wiphys(reg_request);
3100
3101         reg_process_hint(reg_request);
3102
3103         lr = get_last_request();
3104
3105         spin_lock(&reg_requests_lock);
3106         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3107                 schedule_work(&reg_work);
3108         spin_unlock(&reg_requests_lock);
3109 }
3110
3111 /* Processes beacon hints -- this has nothing to do with country IEs */
3112 static void reg_process_pending_beacon_hints(void)
3113 {
3114         struct cfg80211_registered_device *rdev;
3115         struct reg_beacon *pending_beacon, *tmp;
3116
3117         /* This goes through the _pending_ beacon list */
3118         spin_lock_bh(&reg_pending_beacons_lock);
3119
3120         list_for_each_entry_safe(pending_beacon, tmp,
3121                                  &reg_pending_beacons, list) {
3122                 list_del_init(&pending_beacon->list);
3123
3124                 /* Applies the beacon hint to current wiphys */
3125                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3126                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3127
3128                 /* Remembers the beacon hint for new wiphys or reg changes */
3129                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3130         }
3131
3132         spin_unlock_bh(&reg_pending_beacons_lock);
3133 }
3134
3135 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3136 {
3137         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3138         const struct ieee80211_regdomain *tmp;
3139         const struct ieee80211_regdomain *regd;
3140         enum nl80211_band band;
3141         struct regulatory_request request = {};
3142
3143         ASSERT_RTNL();
3144         lockdep_assert_wiphy(wiphy);
3145
3146         spin_lock(&reg_requests_lock);
3147         regd = rdev->requested_regd;
3148         rdev->requested_regd = NULL;
3149         spin_unlock(&reg_requests_lock);
3150
3151         if (!regd)
3152                 return;
3153
3154         tmp = get_wiphy_regdom(wiphy);
3155         rcu_assign_pointer(wiphy->regd, regd);
3156         rcu_free_regdom(tmp);
3157
3158         for (band = 0; band < NUM_NL80211_BANDS; band++)
3159                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3160
3161         reg_process_ht_flags(wiphy);
3162
3163         request.wiphy_idx = get_wiphy_idx(wiphy);
3164         request.alpha2[0] = regd->alpha2[0];
3165         request.alpha2[1] = regd->alpha2[1];
3166         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3167
3168         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3169                 reg_call_notifier(wiphy, &request);
3170
3171         nl80211_send_wiphy_reg_change_event(&request);
3172 }
3173
3174 static void reg_process_self_managed_hints(void)
3175 {
3176         struct cfg80211_registered_device *rdev;
3177
3178         ASSERT_RTNL();
3179
3180         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3181                 wiphy_lock(&rdev->wiphy);
3182                 reg_process_self_managed_hint(&rdev->wiphy);
3183                 wiphy_unlock(&rdev->wiphy);
3184         }
3185
3186         reg_check_channels();
3187 }
3188
3189 static void reg_todo(struct work_struct *work)
3190 {
3191         rtnl_lock();
3192         reg_process_pending_hints();
3193         reg_process_pending_beacon_hints();
3194         reg_process_self_managed_hints();
3195         rtnl_unlock();
3196 }
3197
3198 static void queue_regulatory_request(struct regulatory_request *request)
3199 {
3200         request->alpha2[0] = toupper(request->alpha2[0]);
3201         request->alpha2[1] = toupper(request->alpha2[1]);
3202
3203         spin_lock(&reg_requests_lock);
3204         list_add_tail(&request->list, &reg_requests_list);
3205         spin_unlock(&reg_requests_lock);
3206
3207         schedule_work(&reg_work);
3208 }
3209
3210 /*
3211  * Core regulatory hint -- happens during cfg80211_init()
3212  * and when we restore regulatory settings.
3213  */
3214 static int regulatory_hint_core(const char *alpha2)
3215 {
3216         struct regulatory_request *request;
3217
3218         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3219         if (!request)
3220                 return -ENOMEM;
3221
3222         request->alpha2[0] = alpha2[0];
3223         request->alpha2[1] = alpha2[1];
3224         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3225         request->wiphy_idx = WIPHY_IDX_INVALID;
3226
3227         queue_regulatory_request(request);
3228
3229         return 0;
3230 }
3231
3232 /* User hints */
3233 int regulatory_hint_user(const char *alpha2,
3234                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3235 {
3236         struct regulatory_request *request;
3237
3238         if (WARN_ON(!alpha2))
3239                 return -EINVAL;
3240
3241         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3242                 return -EINVAL;
3243
3244         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245         if (!request)
3246                 return -ENOMEM;
3247
3248         request->wiphy_idx = WIPHY_IDX_INVALID;
3249         request->alpha2[0] = alpha2[0];
3250         request->alpha2[1] = alpha2[1];
3251         request->initiator = NL80211_REGDOM_SET_BY_USER;
3252         request->user_reg_hint_type = user_reg_hint_type;
3253
3254         /* Allow calling CRDA again */
3255         reset_crda_timeouts();
3256
3257         queue_regulatory_request(request);
3258
3259         return 0;
3260 }
3261
3262 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3263 {
3264         spin_lock(&reg_indoor_lock);
3265
3266         /* It is possible that more than one user space process is trying to
3267          * configure the indoor setting. To handle such cases, clear the indoor
3268          * setting in case that some process does not think that the device
3269          * is operating in an indoor environment. In addition, if a user space
3270          * process indicates that it is controlling the indoor setting, save its
3271          * portid, i.e., make it the owner.
3272          */
3273         reg_is_indoor = is_indoor;
3274         if (reg_is_indoor) {
3275                 if (!reg_is_indoor_portid)
3276                         reg_is_indoor_portid = portid;
3277         } else {
3278                 reg_is_indoor_portid = 0;
3279         }
3280
3281         spin_unlock(&reg_indoor_lock);
3282
3283         if (!is_indoor)
3284                 reg_check_channels();
3285
3286         return 0;
3287 }
3288
3289 void regulatory_netlink_notify(u32 portid)
3290 {
3291         spin_lock(&reg_indoor_lock);
3292
3293         if (reg_is_indoor_portid != portid) {
3294                 spin_unlock(&reg_indoor_lock);
3295                 return;
3296         }
3297
3298         reg_is_indoor = false;
3299         reg_is_indoor_portid = 0;
3300
3301         spin_unlock(&reg_indoor_lock);
3302
3303         reg_check_channels();
3304 }
3305
3306 /* Driver hints */
3307 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3308 {
3309         struct regulatory_request *request;
3310
3311         if (WARN_ON(!alpha2 || !wiphy))
3312                 return -EINVAL;
3313
3314         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3315
3316         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3317         if (!request)
3318                 return -ENOMEM;
3319
3320         request->wiphy_idx = get_wiphy_idx(wiphy);
3321
3322         request->alpha2[0] = alpha2[0];
3323         request->alpha2[1] = alpha2[1];
3324         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3325
3326         /* Allow calling CRDA again */
3327         reset_crda_timeouts();
3328
3329         queue_regulatory_request(request);
3330
3331         return 0;
3332 }
3333 EXPORT_SYMBOL(regulatory_hint);
3334
3335 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3336                                 const u8 *country_ie, u8 country_ie_len)
3337 {
3338         char alpha2[2];
3339         enum environment_cap env = ENVIRON_ANY;
3340         struct regulatory_request *request = NULL, *lr;
3341
3342         /* IE len must be evenly divisible by 2 */
3343         if (country_ie_len & 0x01)
3344                 return;
3345
3346         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3347                 return;
3348
3349         request = kzalloc(sizeof(*request), GFP_KERNEL);
3350         if (!request)
3351                 return;
3352
3353         alpha2[0] = country_ie[0];
3354         alpha2[1] = country_ie[1];
3355
3356         if (country_ie[2] == 'I')
3357                 env = ENVIRON_INDOOR;
3358         else if (country_ie[2] == 'O')
3359                 env = ENVIRON_OUTDOOR;
3360
3361         rcu_read_lock();
3362         lr = get_last_request();
3363
3364         if (unlikely(!lr))
3365                 goto out;
3366
3367         /*
3368          * We will run this only upon a successful connection on cfg80211.
3369          * We leave conflict resolution to the workqueue, where can hold
3370          * the RTNL.
3371          */
3372         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3373             lr->wiphy_idx != WIPHY_IDX_INVALID)
3374                 goto out;
3375
3376         request->wiphy_idx = get_wiphy_idx(wiphy);
3377         request->alpha2[0] = alpha2[0];
3378         request->alpha2[1] = alpha2[1];
3379         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3380         request->country_ie_env = env;
3381
3382         /* Allow calling CRDA again */
3383         reset_crda_timeouts();
3384
3385         queue_regulatory_request(request);
3386         request = NULL;
3387 out:
3388         kfree(request);
3389         rcu_read_unlock();
3390 }
3391
3392 static void restore_alpha2(char *alpha2, bool reset_user)
3393 {
3394         /* indicates there is no alpha2 to consider for restoration */
3395         alpha2[0] = '9';
3396         alpha2[1] = '7';
3397
3398         /* The user setting has precedence over the module parameter */
3399         if (is_user_regdom_saved()) {
3400                 /* Unless we're asked to ignore it and reset it */
3401                 if (reset_user) {
3402                         pr_debug("Restoring regulatory settings including user preference\n");
3403                         user_alpha2[0] = '9';
3404                         user_alpha2[1] = '7';
3405
3406                         /*
3407                          * If we're ignoring user settings, we still need to
3408                          * check the module parameter to ensure we put things
3409                          * back as they were for a full restore.
3410                          */
3411                         if (!is_world_regdom(ieee80211_regdom)) {
3412                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3414                                 alpha2[0] = ieee80211_regdom[0];
3415                                 alpha2[1] = ieee80211_regdom[1];
3416                         }
3417                 } else {
3418                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3419                                  user_alpha2[0], user_alpha2[1]);
3420                         alpha2[0] = user_alpha2[0];
3421                         alpha2[1] = user_alpha2[1];
3422                 }
3423         } else if (!is_world_regdom(ieee80211_regdom)) {
3424                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3425                          ieee80211_regdom[0], ieee80211_regdom[1]);
3426                 alpha2[0] = ieee80211_regdom[0];
3427                 alpha2[1] = ieee80211_regdom[1];
3428         } else
3429                 pr_debug("Restoring regulatory settings\n");
3430 }
3431
3432 static void restore_custom_reg_settings(struct wiphy *wiphy)
3433 {
3434         struct ieee80211_supported_band *sband;
3435         enum nl80211_band band;
3436         struct ieee80211_channel *chan;
3437         int i;
3438
3439         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3440                 sband = wiphy->bands[band];
3441                 if (!sband)
3442                         continue;
3443                 for (i = 0; i < sband->n_channels; i++) {
3444                         chan = &sband->channels[i];
3445                         chan->flags = chan->orig_flags;
3446                         chan->max_antenna_gain = chan->orig_mag;
3447                         chan->max_power = chan->orig_mpwr;
3448                         chan->beacon_found = false;
3449                 }
3450         }
3451 }
3452
3453 /*
3454  * Restoring regulatory settings involves ignoring any
3455  * possibly stale country IE information and user regulatory
3456  * settings if so desired, this includes any beacon hints
3457  * learned as we could have traveled outside to another country
3458  * after disconnection. To restore regulatory settings we do
3459  * exactly what we did at bootup:
3460  *
3461  *   - send a core regulatory hint
3462  *   - send a user regulatory hint if applicable
3463  *
3464  * Device drivers that send a regulatory hint for a specific country
3465  * keep their own regulatory domain on wiphy->regd so that does
3466  * not need to be remembered.
3467  */
3468 static void restore_regulatory_settings(bool reset_user, bool cached)
3469 {
3470         char alpha2[2];
3471         char world_alpha2[2];
3472         struct reg_beacon *reg_beacon, *btmp;
3473         LIST_HEAD(tmp_reg_req_list);
3474         struct cfg80211_registered_device *rdev;
3475
3476         ASSERT_RTNL();
3477
3478         /*
3479          * Clear the indoor setting in case that it is not controlled by user
3480          * space, as otherwise there is no guarantee that the device is still
3481          * operating in an indoor environment.
3482          */
3483         spin_lock(&reg_indoor_lock);
3484         if (reg_is_indoor && !reg_is_indoor_portid) {
3485                 reg_is_indoor = false;
3486                 reg_check_channels();
3487         }
3488         spin_unlock(&reg_indoor_lock);
3489
3490         reset_regdomains(true, &world_regdom);
3491         restore_alpha2(alpha2, reset_user);
3492
3493         /*
3494          * If there's any pending requests we simply
3495          * stash them to a temporary pending queue and
3496          * add then after we've restored regulatory
3497          * settings.
3498          */
3499         spin_lock(&reg_requests_lock);
3500         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3501         spin_unlock(&reg_requests_lock);
3502
3503         /* Clear beacon hints */
3504         spin_lock_bh(&reg_pending_beacons_lock);
3505         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3506                 list_del(&reg_beacon->list);
3507                 kfree(reg_beacon);
3508         }
3509         spin_unlock_bh(&reg_pending_beacons_lock);
3510
3511         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3512                 list_del(&reg_beacon->list);
3513                 kfree(reg_beacon);
3514         }
3515
3516         /* First restore to the basic regulatory settings */
3517         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3518         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3519
3520         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3521                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3522                         continue;
3523                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3524                         restore_custom_reg_settings(&rdev->wiphy);
3525         }
3526
3527         if (cached && (!is_an_alpha2(alpha2) ||
3528                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3529                 reset_regdomains(false, cfg80211_world_regdom);
3530                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3531                 print_regdomain(get_cfg80211_regdom());
3532                 nl80211_send_reg_change_event(&core_request_world);
3533                 reg_set_request_processed();
3534
3535                 if (is_an_alpha2(alpha2) &&
3536                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3537                         struct regulatory_request *ureq;
3538
3539                         spin_lock(&reg_requests_lock);
3540                         ureq = list_last_entry(&reg_requests_list,
3541                                                struct regulatory_request,
3542                                                list);
3543                         list_del(&ureq->list);
3544                         spin_unlock(&reg_requests_lock);
3545
3546                         notify_self_managed_wiphys(ureq);
3547                         reg_update_last_request(ureq);
3548                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3549                                    REGD_SOURCE_CACHED);
3550                 }
3551         } else {
3552                 regulatory_hint_core(world_alpha2);
3553
3554                 /*
3555                  * This restores the ieee80211_regdom module parameter
3556                  * preference or the last user requested regulatory
3557                  * settings, user regulatory settings takes precedence.
3558                  */
3559                 if (is_an_alpha2(alpha2))
3560                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3561         }
3562
3563         spin_lock(&reg_requests_lock);
3564         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3565         spin_unlock(&reg_requests_lock);
3566
3567         pr_debug("Kicking the queue\n");
3568
3569         schedule_work(&reg_work);
3570 }
3571
3572 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3573 {
3574         struct cfg80211_registered_device *rdev;
3575         struct wireless_dev *wdev;
3576
3577         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3578                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3579                         wdev_lock(wdev);
3580                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3581                                 wdev_unlock(wdev);
3582                                 return false;
3583                         }
3584                         wdev_unlock(wdev);
3585                 }
3586         }
3587
3588         return true;
3589 }
3590
3591 void regulatory_hint_disconnect(void)
3592 {
3593         /* Restore of regulatory settings is not required when wiphy(s)
3594          * ignore IE from connected access point but clearance of beacon hints
3595          * is required when wiphy(s) supports beacon hints.
3596          */
3597         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3598                 struct reg_beacon *reg_beacon, *btmp;
3599
3600                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3601                         return;
3602
3603                 spin_lock_bh(&reg_pending_beacons_lock);
3604                 list_for_each_entry_safe(reg_beacon, btmp,
3605                                          &reg_pending_beacons, list) {
3606                         list_del(&reg_beacon->list);
3607                         kfree(reg_beacon);
3608                 }
3609                 spin_unlock_bh(&reg_pending_beacons_lock);
3610
3611                 list_for_each_entry_safe(reg_beacon, btmp,
3612                                          &reg_beacon_list, list) {
3613                         list_del(&reg_beacon->list);
3614                         kfree(reg_beacon);
3615                 }
3616
3617                 return;
3618         }
3619
3620         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3621         restore_regulatory_settings(false, true);
3622 }
3623
3624 static bool freq_is_chan_12_13_14(u32 freq)
3625 {
3626         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3627             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3628             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3629                 return true;
3630         return false;
3631 }
3632
3633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3634 {
3635         struct reg_beacon *pending_beacon;
3636
3637         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3638                 if (ieee80211_channel_equal(beacon_chan,
3639                                             &pending_beacon->chan))
3640                         return true;
3641         return false;
3642 }
3643
3644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3645                                  struct ieee80211_channel *beacon_chan,
3646                                  gfp_t gfp)
3647 {
3648         struct reg_beacon *reg_beacon;
3649         bool processing;
3650
3651         if (beacon_chan->beacon_found ||
3652             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3653             (beacon_chan->band == NL80211_BAND_2GHZ &&
3654              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3655                 return 0;
3656
3657         spin_lock_bh(&reg_pending_beacons_lock);
3658         processing = pending_reg_beacon(beacon_chan);
3659         spin_unlock_bh(&reg_pending_beacons_lock);
3660
3661         if (processing)
3662                 return 0;
3663
3664         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3665         if (!reg_beacon)
3666                 return -ENOMEM;
3667
3668         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3669                  beacon_chan->center_freq, beacon_chan->freq_offset,
3670                  ieee80211_freq_khz_to_channel(
3671                          ieee80211_channel_to_khz(beacon_chan)),
3672                  wiphy_name(wiphy));
3673
3674         memcpy(&reg_beacon->chan, beacon_chan,
3675                sizeof(struct ieee80211_channel));
3676
3677         /*
3678          * Since we can be called from BH or and non-BH context
3679          * we must use spin_lock_bh()
3680          */
3681         spin_lock_bh(&reg_pending_beacons_lock);
3682         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3683         spin_unlock_bh(&reg_pending_beacons_lock);
3684
3685         schedule_work(&reg_work);
3686
3687         return 0;
3688 }
3689
3690 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3691 {
3692         unsigned int i;
3693         const struct ieee80211_reg_rule *reg_rule = NULL;
3694         const struct ieee80211_freq_range *freq_range = NULL;
3695         const struct ieee80211_power_rule *power_rule = NULL;
3696         char bw[32], cac_time[32];
3697
3698         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3699
3700         for (i = 0; i < rd->n_reg_rules; i++) {
3701                 reg_rule = &rd->reg_rules[i];
3702                 freq_range = &reg_rule->freq_range;
3703                 power_rule = &reg_rule->power_rule;
3704
3705                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3706                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3707                                  freq_range->max_bandwidth_khz,
3708                                  reg_get_max_bandwidth(rd, reg_rule));
3709                 else
3710                         snprintf(bw, sizeof(bw), "%d KHz",
3711                                  freq_range->max_bandwidth_khz);
3712
3713                 if (reg_rule->flags & NL80211_RRF_DFS)
3714                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3715                                   reg_rule->dfs_cac_ms/1000);
3716                 else
3717                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3718
3719
3720                 /*
3721                  * There may not be documentation for max antenna gain
3722                  * in certain regions
3723                  */
3724                 if (power_rule->max_antenna_gain)
3725                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3726                                 freq_range->start_freq_khz,
3727                                 freq_range->end_freq_khz,
3728                                 bw,
3729                                 power_rule->max_antenna_gain,
3730                                 power_rule->max_eirp,
3731                                 cac_time);
3732                 else
3733                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3734                                 freq_range->start_freq_khz,
3735                                 freq_range->end_freq_khz,
3736                                 bw,
3737                                 power_rule->max_eirp,
3738                                 cac_time);
3739         }
3740 }
3741
3742 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3743 {
3744         switch (dfs_region) {
3745         case NL80211_DFS_UNSET:
3746         case NL80211_DFS_FCC:
3747         case NL80211_DFS_ETSI:
3748         case NL80211_DFS_JP:
3749                 return true;
3750         default:
3751                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3752                 return false;
3753         }
3754 }
3755
3756 static void print_regdomain(const struct ieee80211_regdomain *rd)
3757 {
3758         struct regulatory_request *lr = get_last_request();
3759
3760         if (is_intersected_alpha2(rd->alpha2)) {
3761                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3762                         struct cfg80211_registered_device *rdev;
3763                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3764                         if (rdev) {
3765                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3766                                         rdev->country_ie_alpha2[0],
3767                                         rdev->country_ie_alpha2[1]);
3768                         } else
3769                                 pr_debug("Current regulatory domain intersected:\n");
3770                 } else
3771                         pr_debug("Current regulatory domain intersected:\n");
3772         } else if (is_world_regdom(rd->alpha2)) {
3773                 pr_debug("World regulatory domain updated:\n");
3774         } else {
3775                 if (is_unknown_alpha2(rd->alpha2))
3776                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3777                 else {
3778                         if (reg_request_cell_base(lr))
3779                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3780                                         rd->alpha2[0], rd->alpha2[1]);
3781                         else
3782                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3783                                         rd->alpha2[0], rd->alpha2[1]);
3784                 }
3785         }
3786
3787         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3788         print_rd_rules(rd);
3789 }
3790
3791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3792 {
3793         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3794         print_rd_rules(rd);
3795 }
3796
3797 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3798 {
3799         if (!is_world_regdom(rd->alpha2))
3800                 return -EINVAL;
3801         update_world_regdomain(rd);
3802         return 0;
3803 }
3804
3805 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3806                            struct regulatory_request *user_request)
3807 {
3808         const struct ieee80211_regdomain *intersected_rd = NULL;
3809
3810         if (!regdom_changes(rd->alpha2))
3811                 return -EALREADY;
3812
3813         if (!is_valid_rd(rd)) {
3814                 pr_err("Invalid regulatory domain detected: %c%c\n",
3815                        rd->alpha2[0], rd->alpha2[1]);
3816                 print_regdomain_info(rd);
3817                 return -EINVAL;
3818         }
3819
3820         if (!user_request->intersect) {
3821                 reset_regdomains(false, rd);
3822                 return 0;
3823         }
3824
3825         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3826         if (!intersected_rd)
3827                 return -EINVAL;
3828
3829         kfree(rd);
3830         rd = NULL;
3831         reset_regdomains(false, intersected_rd);
3832
3833         return 0;
3834 }
3835
3836 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3837                              struct regulatory_request *driver_request)
3838 {
3839         const struct ieee80211_regdomain *regd;
3840         const struct ieee80211_regdomain *intersected_rd = NULL;
3841         const struct ieee80211_regdomain *tmp;
3842         struct wiphy *request_wiphy;
3843
3844         if (is_world_regdom(rd->alpha2))
3845                 return -EINVAL;
3846
3847         if (!regdom_changes(rd->alpha2))
3848                 return -EALREADY;
3849
3850         if (!is_valid_rd(rd)) {
3851                 pr_err("Invalid regulatory domain detected: %c%c\n",
3852                        rd->alpha2[0], rd->alpha2[1]);
3853                 print_regdomain_info(rd);
3854                 return -EINVAL;
3855         }
3856
3857         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3858         if (!request_wiphy)
3859                 return -ENODEV;
3860
3861         if (!driver_request->intersect) {
3862                 ASSERT_RTNL();
3863                 wiphy_lock(request_wiphy);
3864                 if (request_wiphy->regd) {
3865                         wiphy_unlock(request_wiphy);
3866                         return -EALREADY;
3867                 }
3868
3869                 regd = reg_copy_regd(rd);
3870                 if (IS_ERR(regd)) {
3871                         wiphy_unlock(request_wiphy);
3872                         return PTR_ERR(regd);
3873                 }
3874
3875                 rcu_assign_pointer(request_wiphy->regd, regd);
3876                 wiphy_unlock(request_wiphy);
3877                 reset_regdomains(false, rd);
3878                 return 0;
3879         }
3880
3881         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3882         if (!intersected_rd)
3883                 return -EINVAL;
3884
3885         /*
3886          * We can trash what CRDA provided now.
3887          * However if a driver requested this specific regulatory
3888          * domain we keep it for its private use
3889          */
3890         tmp = get_wiphy_regdom(request_wiphy);
3891         rcu_assign_pointer(request_wiphy->regd, rd);
3892         rcu_free_regdom(tmp);
3893
3894         rd = NULL;
3895
3896         reset_regdomains(false, intersected_rd);
3897
3898         return 0;
3899 }
3900
3901 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3902                                  struct regulatory_request *country_ie_request)
3903 {
3904         struct wiphy *request_wiphy;
3905
3906         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3907             !is_unknown_alpha2(rd->alpha2))
3908                 return -EINVAL;
3909
3910         /*
3911          * Lets only bother proceeding on the same alpha2 if the current
3912          * rd is non static (it means CRDA was present and was used last)
3913          * and the pending request came in from a country IE
3914          */
3915
3916         if (!is_valid_rd(rd)) {
3917                 pr_err("Invalid regulatory domain detected: %c%c\n",
3918                        rd->alpha2[0], rd->alpha2[1]);
3919                 print_regdomain_info(rd);
3920                 return -EINVAL;
3921         }
3922
3923         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3924         if (!request_wiphy)
3925                 return -ENODEV;
3926
3927         if (country_ie_request->intersect)
3928                 return -EINVAL;
3929
3930         reset_regdomains(false, rd);
3931         return 0;
3932 }
3933
3934 /*
3935  * Use this call to set the current regulatory domain. Conflicts with
3936  * multiple drivers can be ironed out later. Caller must've already
3937  * kmalloc'd the rd structure.
3938  */
3939 int set_regdom(const struct ieee80211_regdomain *rd,
3940                enum ieee80211_regd_source regd_src)
3941 {
3942         struct regulatory_request *lr;
3943         bool user_reset = false;
3944         int r;
3945
3946         if (IS_ERR_OR_NULL(rd))
3947                 return -ENODATA;
3948
3949         if (!reg_is_valid_request(rd->alpha2)) {
3950                 kfree(rd);
3951                 return -EINVAL;
3952         }
3953
3954         if (regd_src == REGD_SOURCE_CRDA)
3955                 reset_crda_timeouts();
3956
3957         lr = get_last_request();
3958
3959         /* Note that this doesn't update the wiphys, this is done below */
3960         switch (lr->initiator) {
3961         case NL80211_REGDOM_SET_BY_CORE:
3962                 r = reg_set_rd_core(rd);
3963                 break;
3964         case NL80211_REGDOM_SET_BY_USER:
3965                 cfg80211_save_user_regdom(rd);
3966                 r = reg_set_rd_user(rd, lr);
3967                 user_reset = true;
3968                 break;
3969         case NL80211_REGDOM_SET_BY_DRIVER:
3970                 r = reg_set_rd_driver(rd, lr);
3971                 break;
3972         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3973                 r = reg_set_rd_country_ie(rd, lr);
3974                 break;
3975         default:
3976                 WARN(1, "invalid initiator %d\n", lr->initiator);
3977                 kfree(rd);
3978                 return -EINVAL;
3979         }
3980
3981         if (r) {
3982                 switch (r) {
3983                 case -EALREADY:
3984                         reg_set_request_processed();
3985                         break;
3986                 default:
3987                         /* Back to world regulatory in case of errors */
3988                         restore_regulatory_settings(user_reset, false);
3989                 }
3990
3991                 kfree(rd);
3992                 return r;
3993         }
3994
3995         /* This would make this whole thing pointless */
3996         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3997                 return -EINVAL;
3998
3999         /* update all wiphys now with the new established regulatory domain */
4000         update_all_wiphy_regulatory(lr->initiator);
4001
4002         print_regdomain(get_cfg80211_regdom());
4003
4004         nl80211_send_reg_change_event(lr);
4005
4006         reg_set_request_processed();
4007
4008         return 0;
4009 }
4010
4011 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4012                                        struct ieee80211_regdomain *rd)
4013 {
4014         const struct ieee80211_regdomain *regd;
4015         const struct ieee80211_regdomain *prev_regd;
4016         struct cfg80211_registered_device *rdev;
4017
4018         if (WARN_ON(!wiphy || !rd))
4019                 return -EINVAL;
4020
4021         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4022                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4023                 return -EPERM;
4024
4025         if (WARN(!is_valid_rd(rd),
4026                  "Invalid regulatory domain detected: %c%c\n",
4027                  rd->alpha2[0], rd->alpha2[1])) {
4028                 print_regdomain_info(rd);
4029                 return -EINVAL;
4030         }
4031
4032         regd = reg_copy_regd(rd);
4033         if (IS_ERR(regd))
4034                 return PTR_ERR(regd);
4035
4036         rdev = wiphy_to_rdev(wiphy);
4037
4038         spin_lock(&reg_requests_lock);
4039         prev_regd = rdev->requested_regd;
4040         rdev->requested_regd = regd;
4041         spin_unlock(&reg_requests_lock);
4042
4043         kfree(prev_regd);
4044         return 0;
4045 }
4046
4047 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4048                               struct ieee80211_regdomain *rd)
4049 {
4050         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4051
4052         if (ret)
4053                 return ret;
4054
4055         schedule_work(&reg_work);
4056         return 0;
4057 }
4058 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4059
4060 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4061                                    struct ieee80211_regdomain *rd)
4062 {
4063         int ret;
4064
4065         ASSERT_RTNL();
4066
4067         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4068         if (ret)
4069                 return ret;
4070
4071         /* process the request immediately */
4072         reg_process_self_managed_hint(wiphy);
4073         reg_check_channels();
4074         return 0;
4075 }
4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4077
4078 void wiphy_regulatory_register(struct wiphy *wiphy)
4079 {
4080         struct regulatory_request *lr = get_last_request();
4081
4082         /* self-managed devices ignore beacon hints and country IE */
4083         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4084                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4085                                            REGULATORY_COUNTRY_IE_IGNORE;
4086
4087                 /*
4088                  * The last request may have been received before this
4089                  * registration call. Call the driver notifier if
4090                  * initiator is USER.
4091                  */
4092                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4093                         reg_call_notifier(wiphy, lr);
4094         }
4095
4096         if (!reg_dev_ignore_cell_hint(wiphy))
4097                 reg_num_devs_support_basehint++;
4098
4099         wiphy_update_regulatory(wiphy, lr->initiator);
4100         wiphy_all_share_dfs_chan_state(wiphy);
4101         reg_process_self_managed_hints();
4102 }
4103
4104 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4105 {
4106         struct wiphy *request_wiphy = NULL;
4107         struct regulatory_request *lr;
4108
4109         lr = get_last_request();
4110
4111         if (!reg_dev_ignore_cell_hint(wiphy))
4112                 reg_num_devs_support_basehint--;
4113
4114         rcu_free_regdom(get_wiphy_regdom(wiphy));
4115         RCU_INIT_POINTER(wiphy->regd, NULL);
4116
4117         if (lr)
4118                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4119
4120         if (!request_wiphy || request_wiphy != wiphy)
4121                 return;
4122
4123         lr->wiphy_idx = WIPHY_IDX_INVALID;
4124         lr->country_ie_env = ENVIRON_ANY;
4125 }
4126
4127 /*
4128  * See FCC notices for UNII band definitions
4129  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4130  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4131  */
4132 int cfg80211_get_unii(int freq)
4133 {
4134         /* UNII-1 */
4135         if (freq >= 5150 && freq <= 5250)
4136                 return 0;
4137
4138         /* UNII-2A */
4139         if (freq > 5250 && freq <= 5350)
4140                 return 1;
4141
4142         /* UNII-2B */
4143         if (freq > 5350 && freq <= 5470)
4144                 return 2;
4145
4146         /* UNII-2C */
4147         if (freq > 5470 && freq <= 5725)
4148                 return 3;
4149
4150         /* UNII-3 */
4151         if (freq > 5725 && freq <= 5825)
4152                 return 4;
4153
4154         /* UNII-5 */
4155         if (freq > 5925 && freq <= 6425)
4156                 return 5;
4157
4158         /* UNII-6 */
4159         if (freq > 6425 && freq <= 6525)
4160                 return 6;
4161
4162         /* UNII-7 */
4163         if (freq > 6525 && freq <= 6875)
4164                 return 7;
4165
4166         /* UNII-8 */
4167         if (freq > 6875 && freq <= 7125)
4168                 return 8;
4169
4170         return -EINVAL;
4171 }
4172
4173 bool regulatory_indoor_allowed(void)
4174 {
4175         return reg_is_indoor;
4176 }
4177
4178 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4179 {
4180         const struct ieee80211_regdomain *regd = NULL;
4181         const struct ieee80211_regdomain *wiphy_regd = NULL;
4182         bool pre_cac_allowed = false;
4183
4184         rcu_read_lock();
4185
4186         regd = rcu_dereference(cfg80211_regdomain);
4187         wiphy_regd = rcu_dereference(wiphy->regd);
4188         if (!wiphy_regd) {
4189                 if (regd->dfs_region == NL80211_DFS_ETSI)
4190                         pre_cac_allowed = true;
4191
4192                 rcu_read_unlock();
4193
4194                 return pre_cac_allowed;
4195         }
4196
4197         if (regd->dfs_region == wiphy_regd->dfs_region &&
4198             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4199                 pre_cac_allowed = true;
4200
4201         rcu_read_unlock();
4202
4203         return pre_cac_allowed;
4204 }
4205 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4206
4207 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4208 {
4209         struct wireless_dev *wdev;
4210         /* If we finished CAC or received radar, we should end any
4211          * CAC running on the same channels.
4212          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4213          * either all channels are available - those the CAC_FINISHED
4214          * event has effected another wdev state, or there is a channel
4215          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4216          * event has effected another wdev state.
4217          * In both cases we should end the CAC on the wdev.
4218          */
4219         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4220                 struct cfg80211_chan_def *chandef;
4221
4222                 if (!wdev->cac_started)
4223                         continue;
4224
4225                 /* FIXME: radar detection is tied to link 0 for now */
4226                 chandef = wdev_chandef(wdev, 0);
4227                 if (!chandef)
4228                         continue;
4229
4230                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4231                         rdev_end_cac(rdev, wdev->netdev);
4232         }
4233 }
4234
4235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4236                                     struct cfg80211_chan_def *chandef,
4237                                     enum nl80211_dfs_state dfs_state,
4238                                     enum nl80211_radar_event event)
4239 {
4240         struct cfg80211_registered_device *rdev;
4241
4242         ASSERT_RTNL();
4243
4244         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4245                 return;
4246
4247         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4248                 if (wiphy == &rdev->wiphy)
4249                         continue;
4250
4251                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4252                         continue;
4253
4254                 if (!ieee80211_get_channel(&rdev->wiphy,
4255                                            chandef->chan->center_freq))
4256                         continue;
4257
4258                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4259
4260                 if (event == NL80211_RADAR_DETECTED ||
4261                     event == NL80211_RADAR_CAC_FINISHED) {
4262                         cfg80211_sched_dfs_chan_update(rdev);
4263                         cfg80211_check_and_end_cac(rdev);
4264                 }
4265
4266                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4267         }
4268 }
4269
4270 static int __init regulatory_init_db(void)
4271 {
4272         int err;
4273
4274         /*
4275          * It's possible that - due to other bugs/issues - cfg80211
4276          * never called regulatory_init() below, or that it failed;
4277          * in that case, don't try to do any further work here as
4278          * it's doomed to lead to crashes.
4279          */
4280         if (IS_ERR_OR_NULL(reg_pdev))
4281                 return -EINVAL;
4282
4283         err = load_builtin_regdb_keys();
4284         if (err) {
4285                 platform_device_unregister(reg_pdev);
4286                 return err;
4287         }
4288
4289         /* We always try to get an update for the static regdomain */
4290         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4291         if (err) {
4292                 if (err == -ENOMEM) {
4293                         platform_device_unregister(reg_pdev);
4294                         return err;
4295                 }
4296                 /*
4297                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4298                  * memory which is handled and propagated appropriately above
4299                  * but it can also fail during a netlink_broadcast() or during
4300                  * early boot for call_usermodehelper(). For now treat these
4301                  * errors as non-fatal.
4302                  */
4303                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4304         }
4305
4306         /*
4307          * Finally, if the user set the module parameter treat it
4308          * as a user hint.
4309          */
4310         if (!is_world_regdom(ieee80211_regdom))
4311                 regulatory_hint_user(ieee80211_regdom,
4312                                      NL80211_USER_REG_HINT_USER);
4313
4314         return 0;
4315 }
4316 #ifndef MODULE
4317 late_initcall(regulatory_init_db);
4318 #endif
4319
4320 int __init regulatory_init(void)
4321 {
4322         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4323         if (IS_ERR(reg_pdev))
4324                 return PTR_ERR(reg_pdev);
4325
4326         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4327
4328         user_alpha2[0] = '9';
4329         user_alpha2[1] = '7';
4330
4331 #ifdef MODULE
4332         return regulatory_init_db();
4333 #else
4334         return 0;
4335 #endif
4336 }
4337
4338 void regulatory_exit(void)
4339 {
4340         struct regulatory_request *reg_request, *tmp;
4341         struct reg_beacon *reg_beacon, *btmp;
4342
4343         cancel_work_sync(&reg_work);
4344         cancel_crda_timeout_sync();
4345         cancel_delayed_work_sync(&reg_check_chans);
4346
4347         /* Lock to suppress warnings */
4348         rtnl_lock();
4349         reset_regdomains(true, NULL);
4350         rtnl_unlock();
4351
4352         dev_set_uevent_suppress(&reg_pdev->dev, true);
4353
4354         platform_device_unregister(reg_pdev);
4355
4356         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4357                 list_del(&reg_beacon->list);
4358                 kfree(reg_beacon);
4359         }
4360
4361         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4362                 list_del(&reg_beacon->list);
4363                 kfree(reg_beacon);
4364         }
4365
4366         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4367                 list_del(&reg_request->list);
4368                 kfree(reg_request);
4369         }
4370
4371         if (!IS_ERR_OR_NULL(regdb))
4372                 kfree(regdb);
4373         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4374                 kfree(cfg80211_user_regdom);
4375
4376         free_regdb_keyring();
4377 }