e97d5b071ab68f4074fa2fcacaad3ff5c22f3473
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request __rcu *last_request =
86         (void __rcu *)&core_request_world;
87
88 /* To trigger userspace events */
89 static struct platform_device *reg_pdev;
90
91 static struct device_type reg_device_type = {
92         .uevent = reg_device_uevent,
93 };
94
95 /*
96  * Central wireless core regulatory domains, we only need two,
97  * the current one and a world regulatory domain in case we have no
98  * information to give us an alpha2.
99  */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103  * Protects static reg.c components:
104  *      - cfg80211_regdomain (if not used with RCU)
105  *      - cfg80211_world_regdom
106  *      - last_request (if not used with RCU)
107  *      - reg_num_devs_support_basehint
108  */
109 static DEFINE_MUTEX(reg_mutex);
110
111 /*
112  * Number of devices that registered to the core
113  * that support cellular base station regulatory hints
114  */
115 static int reg_num_devs_support_basehint;
116
117 static inline void assert_reg_lock(void)
118 {
119         lockdep_assert_held(&reg_mutex);
120 }
121
122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
123 {
124         return rcu_dereference_protected(cfg80211_regdomain,
125                                          lockdep_is_held(&reg_mutex));
126 }
127
128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
129 {
130         return rcu_dereference_protected(wiphy->regd,
131                                          lockdep_is_held(&reg_mutex));
132 }
133
134 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
135 {
136         if (!r)
137                 return;
138         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
139 }
140
141 static struct regulatory_request *get_last_request(void)
142 {
143         return rcu_dereference_check(last_request,
144                                      lockdep_is_held(&reg_mutex));
145 }
146
147 /* Used to queue up regulatory hints */
148 static LIST_HEAD(reg_requests_list);
149 static spinlock_t reg_requests_lock;
150
151 /* Used to queue up beacon hints for review */
152 static LIST_HEAD(reg_pending_beacons);
153 static spinlock_t reg_pending_beacons_lock;
154
155 /* Used to keep track of processed beacon hints */
156 static LIST_HEAD(reg_beacon_list);
157
158 struct reg_beacon {
159         struct list_head list;
160         struct ieee80211_channel chan;
161 };
162
163 static void reg_todo(struct work_struct *work);
164 static DECLARE_WORK(reg_work, reg_todo);
165
166 static void reg_timeout_work(struct work_struct *work);
167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
168
169 /* We keep a static world regulatory domain in case of the absence of CRDA */
170 static const struct ieee80211_regdomain world_regdom = {
171         .n_reg_rules = 6,
172         .alpha2 =  "00",
173         .reg_rules = {
174                 /* IEEE 802.11b/g, channels 1..11 */
175                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
176                 /* IEEE 802.11b/g, channels 12..13. */
177                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
178                         NL80211_RRF_PASSIVE_SCAN |
179                         NL80211_RRF_NO_IBSS),
180                 /* IEEE 802.11 channel 14 - Only JP enables
181                  * this and for 802.11b only */
182                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
183                         NL80211_RRF_PASSIVE_SCAN |
184                         NL80211_RRF_NO_IBSS |
185                         NL80211_RRF_NO_OFDM),
186                 /* IEEE 802.11a, channel 36..48 */
187                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
188                         NL80211_RRF_PASSIVE_SCAN |
189                         NL80211_RRF_NO_IBSS),
190
191                 /* NB: 5260 MHz - 5700 MHz requies DFS */
192
193                 /* IEEE 802.11a, channel 149..165 */
194                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
195                         NL80211_RRF_PASSIVE_SCAN |
196                         NL80211_RRF_NO_IBSS),
197
198                 /* IEEE 802.11ad (60gHz), channels 1..3 */
199                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
200         }
201 };
202
203 static const struct ieee80211_regdomain *cfg80211_world_regdom =
204         &world_regdom;
205
206 static char *ieee80211_regdom = "00";
207 static char user_alpha2[2];
208
209 module_param(ieee80211_regdom, charp, 0444);
210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211
212 static void reset_regdomains(bool full_reset,
213                              const struct ieee80211_regdomain *new_regdom)
214 {
215         const struct ieee80211_regdomain *r;
216         struct regulatory_request *lr;
217
218         assert_reg_lock();
219
220         r = get_cfg80211_regdom();
221
222         /* avoid freeing static information or freeing something twice */
223         if (r == cfg80211_world_regdom)
224                 r = NULL;
225         if (cfg80211_world_regdom == &world_regdom)
226                 cfg80211_world_regdom = NULL;
227         if (r == &world_regdom)
228                 r = NULL;
229
230         rcu_free_regdom(r);
231         rcu_free_regdom(cfg80211_world_regdom);
232
233         cfg80211_world_regdom = &world_regdom;
234         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
235
236         if (!full_reset)
237                 return;
238
239         lr = get_last_request();
240         if (lr != &core_request_world && lr)
241                 kfree_rcu(lr, rcu_head);
242         rcu_assign_pointer(last_request, &core_request_world);
243 }
244
245 /*
246  * Dynamic world regulatory domain requested by the wireless
247  * core upon initialization
248  */
249 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 {
251         struct regulatory_request *lr;
252
253         lr = get_last_request();
254
255         WARN_ON(!lr);
256
257         reset_regdomains(false, rd);
258
259         cfg80211_world_regdom = rd;
260 }
261
262 bool is_world_regdom(const char *alpha2)
263 {
264         if (!alpha2)
265                 return false;
266         return alpha2[0] == '0' && alpha2[1] == '0';
267 }
268
269 static bool is_alpha2_set(const char *alpha2)
270 {
271         if (!alpha2)
272                 return false;
273         return alpha2[0] && alpha2[1];
274 }
275
276 static bool is_unknown_alpha2(const char *alpha2)
277 {
278         if (!alpha2)
279                 return false;
280         /*
281          * Special case where regulatory domain was built by driver
282          * but a specific alpha2 cannot be determined
283          */
284         return alpha2[0] == '9' && alpha2[1] == '9';
285 }
286
287 static bool is_intersected_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain is the
293          * result of an intersection between two regulatory domain
294          * structures
295          */
296         return alpha2[0] == '9' && alpha2[1] == '8';
297 }
298
299 static bool is_an_alpha2(const char *alpha2)
300 {
301         if (!alpha2)
302                 return false;
303         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
304 }
305
306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 {
308         if (!alpha2_x || !alpha2_y)
309                 return false;
310         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
311 }
312
313 static bool regdom_changes(const char *alpha2)
314 {
315         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
316
317         if (!r)
318                 return true;
319         return !alpha2_equal(r->alpha2, alpha2);
320 }
321
322 /*
323  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
324  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
325  * has ever been issued.
326  */
327 static bool is_user_regdom_saved(void)
328 {
329         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
330                 return false;
331
332         /* This would indicate a mistake on the design */
333         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
334                  "Unexpected user alpha2: %c%c\n",
335                  user_alpha2[0], user_alpha2[1]))
336                 return false;
337
338         return true;
339 }
340
341 static const struct ieee80211_regdomain *
342 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 {
344         struct ieee80211_regdomain *regd;
345         int size_of_regd;
346         unsigned int i;
347
348         size_of_regd =
349                 sizeof(struct ieee80211_regdomain) +
350                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351
352         regd = kzalloc(size_of_regd, GFP_KERNEL);
353         if (!regd)
354                 return ERR_PTR(-ENOMEM);
355
356         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357
358         for (i = 0; i < src_regd->n_reg_rules; i++)
359                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
360                        sizeof(struct ieee80211_reg_rule));
361
362         return regd;
363 }
364
365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
366 struct reg_regdb_search_request {
367         char alpha2[2];
368         struct list_head list;
369 };
370
371 static LIST_HEAD(reg_regdb_search_list);
372 static DEFINE_MUTEX(reg_regdb_search_mutex);
373
374 static void reg_regdb_search(struct work_struct *work)
375 {
376         struct reg_regdb_search_request *request;
377         const struct ieee80211_regdomain *curdom, *regdom = NULL;
378         int i;
379
380         mutex_lock(&cfg80211_mutex);
381
382         mutex_lock(&reg_regdb_search_mutex);
383         while (!list_empty(&reg_regdb_search_list)) {
384                 request = list_first_entry(&reg_regdb_search_list,
385                                            struct reg_regdb_search_request,
386                                            list);
387                 list_del(&request->list);
388
389                 for (i = 0; i < reg_regdb_size; i++) {
390                         curdom = reg_regdb[i];
391
392                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
393                                 regdom = reg_copy_regd(curdom);
394                                 break;
395                         }
396                 }
397
398                 kfree(request);
399         }
400         mutex_unlock(&reg_regdb_search_mutex);
401
402         if (!IS_ERR_OR_NULL(regdom))
403                 set_regdom(regdom);
404
405         mutex_unlock(&cfg80211_mutex);
406 }
407
408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409
410 static void reg_regdb_query(const char *alpha2)
411 {
412         struct reg_regdb_search_request *request;
413
414         if (!alpha2)
415                 return;
416
417         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
418         if (!request)
419                 return;
420
421         memcpy(request->alpha2, alpha2, 2);
422
423         mutex_lock(&reg_regdb_search_mutex);
424         list_add_tail(&request->list, &reg_regdb_search_list);
425         mutex_unlock(&reg_regdb_search_mutex);
426
427         schedule_work(&reg_regdb_work);
428 }
429
430 /* Feel free to add any other sanity checks here */
431 static void reg_regdb_size_check(void)
432 {
433         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
434         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
435 }
436 #else
437 static inline void reg_regdb_size_check(void) {}
438 static inline void reg_regdb_query(const char *alpha2) {}
439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
440
441 /*
442  * This lets us keep regulatory code which is updated on a regulatory
443  * basis in userspace. Country information is filled in by
444  * reg_device_uevent
445  */
446 static int call_crda(const char *alpha2)
447 {
448         if (!is_world_regdom((char *) alpha2))
449                 pr_info("Calling CRDA for country: %c%c\n",
450                         alpha2[0], alpha2[1]);
451         else
452                 pr_info("Calling CRDA to update world regulatory domain\n");
453
454         /* query internal regulatory database (if it exists) */
455         reg_regdb_query(alpha2);
456
457         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
458 }
459
460 static bool reg_is_valid_request(const char *alpha2)
461 {
462         struct regulatory_request *lr = get_last_request();
463
464         if (!lr || lr->processed)
465                 return false;
466
467         return alpha2_equal(lr->alpha2, alpha2);
468 }
469
470 /* Sanity check on a regulatory rule */
471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 {
473         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
474         u32 freq_diff;
475
476         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
477                 return false;
478
479         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
480                 return false;
481
482         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483
484         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
485             freq_range->max_bandwidth_khz > freq_diff)
486                 return false;
487
488         return true;
489 }
490
491 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 {
493         const struct ieee80211_reg_rule *reg_rule = NULL;
494         unsigned int i;
495
496         if (!rd->n_reg_rules)
497                 return false;
498
499         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
500                 return false;
501
502         for (i = 0; i < rd->n_reg_rules; i++) {
503                 reg_rule = &rd->reg_rules[i];
504                 if (!is_valid_reg_rule(reg_rule))
505                         return false;
506         }
507
508         return true;
509 }
510
511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
512                             u32 center_freq_khz, u32 bw_khz)
513 {
514         u32 start_freq_khz, end_freq_khz;
515
516         start_freq_khz = center_freq_khz - (bw_khz/2);
517         end_freq_khz = center_freq_khz + (bw_khz/2);
518
519         if (start_freq_khz >= freq_range->start_freq_khz &&
520             end_freq_khz <= freq_range->end_freq_khz)
521                 return true;
522
523         return false;
524 }
525
526 /**
527  * freq_in_rule_band - tells us if a frequency is in a frequency band
528  * @freq_range: frequency rule we want to query
529  * @freq_khz: frequency we are inquiring about
530  *
531  * This lets us know if a specific frequency rule is or is not relevant to
532  * a specific frequency's band. Bands are device specific and artificial
533  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
534  * however it is safe for now to assume that a frequency rule should not be
535  * part of a frequency's band if the start freq or end freq are off by more
536  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537  * 60 GHz band.
538  * This resolution can be lowered and should be considered as we add
539  * regulatory rule support for other "bands".
540  **/
541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
542                               u32 freq_khz)
543 {
544 #define ONE_GHZ_IN_KHZ  1000000
545         /*
546          * From 802.11ad: directional multi-gigabit (DMG):
547          * Pertaining to operation in a frequency band containing a channel
548          * with the Channel starting frequency above 45 GHz.
549          */
550         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
551                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
552         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553                 return true;
554         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
555                 return true;
556         return false;
557 #undef ONE_GHZ_IN_KHZ
558 }
559
560 /*
561  * Helper for regdom_intersect(), this does the real
562  * mathematical intersection fun
563  */
564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
565                                const struct ieee80211_reg_rule *rule2,
566                                struct ieee80211_reg_rule *intersected_rule)
567 {
568         const struct ieee80211_freq_range *freq_range1, *freq_range2;
569         struct ieee80211_freq_range *freq_range;
570         const struct ieee80211_power_rule *power_rule1, *power_rule2;
571         struct ieee80211_power_rule *power_rule;
572         u32 freq_diff;
573
574         freq_range1 = &rule1->freq_range;
575         freq_range2 = &rule2->freq_range;
576         freq_range = &intersected_rule->freq_range;
577
578         power_rule1 = &rule1->power_rule;
579         power_rule2 = &rule2->power_rule;
580         power_rule = &intersected_rule->power_rule;
581
582         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
583                                          freq_range2->start_freq_khz);
584         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
585                                        freq_range2->end_freq_khz);
586         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
587                                             freq_range2->max_bandwidth_khz);
588
589         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
590         if (freq_range->max_bandwidth_khz > freq_diff)
591                 freq_range->max_bandwidth_khz = freq_diff;
592
593         power_rule->max_eirp = min(power_rule1->max_eirp,
594                 power_rule2->max_eirp);
595         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
596                 power_rule2->max_antenna_gain);
597
598         intersected_rule->flags = rule1->flags | rule2->flags;
599
600         if (!is_valid_reg_rule(intersected_rule))
601                 return -EINVAL;
602
603         return 0;
604 }
605
606 /**
607  * regdom_intersect - do the intersection between two regulatory domains
608  * @rd1: first regulatory domain
609  * @rd2: second regulatory domain
610  *
611  * Use this function to get the intersection between two regulatory domains.
612  * Once completed we will mark the alpha2 for the rd as intersected, "98",
613  * as no one single alpha2 can represent this regulatory domain.
614  *
615  * Returns a pointer to the regulatory domain structure which will hold the
616  * resulting intersection of rules between rd1 and rd2. We will
617  * kzalloc() this structure for you.
618  */
619 static struct ieee80211_regdomain *
620 regdom_intersect(const struct ieee80211_regdomain *rd1,
621                  const struct ieee80211_regdomain *rd2)
622 {
623         int r, size_of_regd;
624         unsigned int x, y;
625         unsigned int num_rules = 0, rule_idx = 0;
626         const struct ieee80211_reg_rule *rule1, *rule2;
627         struct ieee80211_reg_rule *intersected_rule;
628         struct ieee80211_regdomain *rd;
629         /* This is just a dummy holder to help us count */
630         struct ieee80211_reg_rule dummy_rule;
631
632         if (!rd1 || !rd2)
633                 return NULL;
634
635         /*
636          * First we get a count of the rules we'll need, then we actually
637          * build them. This is to so we can malloc() and free() a
638          * regdomain once. The reason we use reg_rules_intersect() here
639          * is it will return -EINVAL if the rule computed makes no sense.
640          * All rules that do check out OK are valid.
641          */
642
643         for (x = 0; x < rd1->n_reg_rules; x++) {
644                 rule1 = &rd1->reg_rules[x];
645                 for (y = 0; y < rd2->n_reg_rules; y++) {
646                         rule2 = &rd2->reg_rules[y];
647                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
648                                 num_rules++;
649                 }
650         }
651
652         if (!num_rules)
653                 return NULL;
654
655         size_of_regd = sizeof(struct ieee80211_regdomain) +
656                        num_rules * sizeof(struct ieee80211_reg_rule);
657
658         rd = kzalloc(size_of_regd, GFP_KERNEL);
659         if (!rd)
660                 return NULL;
661
662         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
663                 rule1 = &rd1->reg_rules[x];
664                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
665                         rule2 = &rd2->reg_rules[y];
666                         /*
667                          * This time around instead of using the stack lets
668                          * write to the target rule directly saving ourselves
669                          * a memcpy()
670                          */
671                         intersected_rule = &rd->reg_rules[rule_idx];
672                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
673                         /*
674                          * No need to memset here the intersected rule here as
675                          * we're not using the stack anymore
676                          */
677                         if (r)
678                                 continue;
679                         rule_idx++;
680                 }
681         }
682
683         if (rule_idx != num_rules) {
684                 kfree(rd);
685                 return NULL;
686         }
687
688         rd->n_reg_rules = num_rules;
689         rd->alpha2[0] = '9';
690         rd->alpha2[1] = '8';
691
692         return rd;
693 }
694
695 /*
696  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
697  * want to just have the channel structure use these
698  */
699 static u32 map_regdom_flags(u32 rd_flags)
700 {
701         u32 channel_flags = 0;
702         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
703                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
704         if (rd_flags & NL80211_RRF_NO_IBSS)
705                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
706         if (rd_flags & NL80211_RRF_DFS)
707                 channel_flags |= IEEE80211_CHAN_RADAR;
708         if (rd_flags & NL80211_RRF_NO_OFDM)
709                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
710         return channel_flags;
711 }
712
713 static const struct ieee80211_reg_rule *
714 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
715                    const struct ieee80211_regdomain *regd)
716 {
717         int i;
718         bool band_rule_found = false;
719         bool bw_fits = false;
720
721         if (!regd)
722                 return ERR_PTR(-EINVAL);
723
724         for (i = 0; i < regd->n_reg_rules; i++) {
725                 const struct ieee80211_reg_rule *rr;
726                 const struct ieee80211_freq_range *fr = NULL;
727
728                 rr = &regd->reg_rules[i];
729                 fr = &rr->freq_range;
730
731                 /*
732                  * We only need to know if one frequency rule was
733                  * was in center_freq's band, that's enough, so lets
734                  * not overwrite it once found
735                  */
736                 if (!band_rule_found)
737                         band_rule_found = freq_in_rule_band(fr, center_freq);
738
739                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740
741                 if (band_rule_found && bw_fits)
742                         return rr;
743         }
744
745         if (!band_rule_found)
746                 return ERR_PTR(-ERANGE);
747
748         return ERR_PTR(-EINVAL);
749 }
750
751 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
752                                                u32 center_freq)
753 {
754         const struct ieee80211_regdomain *regd;
755         struct regulatory_request *lr = get_last_request();
756
757         /*
758          * Follow the driver's regulatory domain, if present, unless a country
759          * IE has been processed or a user wants to help complaince further
760          */
761         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
762             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
763             wiphy->regd)
764                 regd = get_wiphy_regdom(wiphy);
765         else
766                 regd = get_cfg80211_regdom();
767
768         return freq_reg_info_regd(wiphy, center_freq, regd);
769 }
770 EXPORT_SYMBOL(freq_reg_info);
771
772 #ifdef CONFIG_CFG80211_REG_DEBUG
773 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
774 {
775         switch (initiator) {
776         case NL80211_REGDOM_SET_BY_CORE:
777                 return "Set by core";
778         case NL80211_REGDOM_SET_BY_USER:
779                 return "Set by user";
780         case NL80211_REGDOM_SET_BY_DRIVER:
781                 return "Set by driver";
782         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
783                 return "Set by country IE";
784         default:
785                 WARN_ON(1);
786                 return "Set by bug";
787         }
788 }
789
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791                                     const struct ieee80211_reg_rule *reg_rule)
792 {
793         const struct ieee80211_power_rule *power_rule;
794         const struct ieee80211_freq_range *freq_range;
795         char max_antenna_gain[32];
796
797         power_rule = &reg_rule->power_rule;
798         freq_range = &reg_rule->freq_range;
799
800         if (!power_rule->max_antenna_gain)
801                 snprintf(max_antenna_gain, 32, "N/A");
802         else
803                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804
805         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806                       chan->center_freq);
807
808         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809                       freq_range->start_freq_khz, freq_range->end_freq_khz,
810                       freq_range->max_bandwidth_khz, max_antenna_gain,
811                       power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815                                     const struct ieee80211_reg_rule *reg_rule)
816 {
817         return;
818 }
819 #endif
820
821 /*
822  * Note that right now we assume the desired channel bandwidth
823  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824  * per channel, the primary and the extension channel).
825  */
826 static void handle_channel(struct wiphy *wiphy,
827                            enum nl80211_reg_initiator initiator,
828                            struct ieee80211_channel *chan)
829 {
830         u32 flags, bw_flags = 0;
831         const struct ieee80211_reg_rule *reg_rule = NULL;
832         const struct ieee80211_power_rule *power_rule = NULL;
833         const struct ieee80211_freq_range *freq_range = NULL;
834         struct wiphy *request_wiphy = NULL;
835         struct regulatory_request *lr = get_last_request();
836
837         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838
839         flags = chan->orig_flags;
840
841         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842         if (IS_ERR(reg_rule)) {
843                 /*
844                  * We will disable all channels that do not match our
845                  * received regulatory rule unless the hint is coming
846                  * from a Country IE and the Country IE had no information
847                  * about a band. The IEEE 802.11 spec allows for an AP
848                  * to send only a subset of the regulatory rules allowed,
849                  * so an AP in the US that only supports 2.4 GHz may only send
850                  * a country IE with information for the 2.4 GHz band
851                  * while 5 GHz is still supported.
852                  */
853                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854                     PTR_ERR(reg_rule) == -ERANGE)
855                         return;
856
857                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858                 chan->flags = IEEE80211_CHAN_DISABLED;
859                 return;
860         }
861
862         chan_reg_rule_print_dbg(chan, reg_rule);
863
864         power_rule = &reg_rule->power_rule;
865         freq_range = &reg_rule->freq_range;
866
867         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868                 bw_flags = IEEE80211_CHAN_NO_HT40;
869
870         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
871             request_wiphy && request_wiphy == wiphy &&
872             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
873                 /*
874                  * This guarantees the driver's requested regulatory domain
875                  * will always be used as a base for further regulatory
876                  * settings
877                  */
878                 chan->flags = chan->orig_flags =
879                         map_regdom_flags(reg_rule->flags) | bw_flags;
880                 chan->max_antenna_gain = chan->orig_mag =
881                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
882                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
883                         (int) MBM_TO_DBM(power_rule->max_eirp);
884                 return;
885         }
886
887         chan->dfs_state = NL80211_DFS_USABLE;
888         chan->dfs_state_entered = jiffies;
889
890         chan->beacon_found = false;
891         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
892         chan->max_antenna_gain =
893                 min_t(int, chan->orig_mag,
894                       MBI_TO_DBI(power_rule->max_antenna_gain));
895         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
896         if (chan->orig_mpwr) {
897                 /*
898                  * Devices that have their own custom regulatory domain
899                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
900                  * passed country IE power settings.
901                  */
902                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
904                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
905                         chan->max_power = chan->max_reg_power;
906                 else
907                         chan->max_power = min(chan->orig_mpwr,
908                                               chan->max_reg_power);
909         } else
910                 chan->max_power = chan->max_reg_power;
911 }
912
913 static void handle_band(struct wiphy *wiphy,
914                         enum nl80211_reg_initiator initiator,
915                         struct ieee80211_supported_band *sband)
916 {
917         unsigned int i;
918
919         if (!sband)
920                 return;
921
922         for (i = 0; i < sband->n_channels; i++)
923                 handle_channel(wiphy, initiator, &sband->channels[i]);
924 }
925
926 static bool reg_request_cell_base(struct regulatory_request *request)
927 {
928         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
929                 return false;
930         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
931 }
932
933 bool reg_last_request_cell_base(void)
934 {
935         bool val;
936
937         mutex_lock(&reg_mutex);
938         val = reg_request_cell_base(get_last_request());
939         mutex_unlock(&reg_mutex);
940
941         return val;
942 }
943
944 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
945 /* Core specific check */
946 static enum reg_request_treatment
947 reg_ignore_cell_hint(struct regulatory_request *pending_request)
948 {
949         struct regulatory_request *lr = get_last_request();
950
951         if (!reg_num_devs_support_basehint)
952                 return REG_REQ_IGNORE;
953
954         if (reg_request_cell_base(lr) &&
955             !regdom_changes(pending_request->alpha2))
956                 return REG_REQ_ALREADY_SET;
957
958         return REG_REQ_OK;
959 }
960
961 /* Device specific check */
962 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
963 {
964         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
965 }
966 #else
967 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
968 {
969         return REG_REQ_IGNORE;
970 }
971
972 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
973 {
974         return true;
975 }
976 #endif
977
978
979 static bool ignore_reg_update(struct wiphy *wiphy,
980                               enum nl80211_reg_initiator initiator)
981 {
982         struct regulatory_request *lr = get_last_request();
983
984         if (!lr) {
985                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
986                               reg_initiator_name(initiator));
987                 return true;
988         }
989
990         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
991             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
992                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
993                               reg_initiator_name(initiator));
994                 return true;
995         }
996
997         /*
998          * wiphy->regd will be set once the device has its own
999          * desired regulatory domain set
1000          */
1001         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1002             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1003             !is_world_regdom(lr->alpha2)) {
1004                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1005                               reg_initiator_name(initiator));
1006                 return true;
1007         }
1008
1009         if (reg_request_cell_base(lr))
1010                 return reg_dev_ignore_cell_hint(wiphy);
1011
1012         return false;
1013 }
1014
1015 static bool reg_is_world_roaming(struct wiphy *wiphy)
1016 {
1017         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1018         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1019         struct regulatory_request *lr = get_last_request();
1020
1021         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1022                 return true;
1023
1024         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1025             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1026                 return true;
1027
1028         return false;
1029 }
1030
1031 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1032                               struct reg_beacon *reg_beacon)
1033 {
1034         struct ieee80211_supported_band *sband;
1035         struct ieee80211_channel *chan;
1036         bool channel_changed = false;
1037         struct ieee80211_channel chan_before;
1038
1039         sband = wiphy->bands[reg_beacon->chan.band];
1040         chan = &sband->channels[chan_idx];
1041
1042         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1043                 return;
1044
1045         if (chan->beacon_found)
1046                 return;
1047
1048         chan->beacon_found = true;
1049
1050         if (!reg_is_world_roaming(wiphy))
1051                 return;
1052
1053         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1054                 return;
1055
1056         chan_before.center_freq = chan->center_freq;
1057         chan_before.flags = chan->flags;
1058
1059         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1060                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1061                 channel_changed = true;
1062         }
1063
1064         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1065                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1066                 channel_changed = true;
1067         }
1068
1069         if (channel_changed)
1070                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1071 }
1072
1073 /*
1074  * Called when a scan on a wiphy finds a beacon on
1075  * new channel
1076  */
1077 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1078                                     struct reg_beacon *reg_beacon)
1079 {
1080         unsigned int i;
1081         struct ieee80211_supported_band *sband;
1082
1083         if (!wiphy->bands[reg_beacon->chan.band])
1084                 return;
1085
1086         sband = wiphy->bands[reg_beacon->chan.band];
1087
1088         for (i = 0; i < sband->n_channels; i++)
1089                 handle_reg_beacon(wiphy, i, reg_beacon);
1090 }
1091
1092 /*
1093  * Called upon reg changes or a new wiphy is added
1094  */
1095 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1096 {
1097         unsigned int i;
1098         struct ieee80211_supported_band *sband;
1099         struct reg_beacon *reg_beacon;
1100
1101         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1102                 if (!wiphy->bands[reg_beacon->chan.band])
1103                         continue;
1104                 sband = wiphy->bands[reg_beacon->chan.band];
1105                 for (i = 0; i < sband->n_channels; i++)
1106                         handle_reg_beacon(wiphy, i, reg_beacon);
1107         }
1108 }
1109
1110 /* Reap the advantages of previously found beacons */
1111 static void reg_process_beacons(struct wiphy *wiphy)
1112 {
1113         /*
1114          * Means we are just firing up cfg80211, so no beacons would
1115          * have been processed yet.
1116          */
1117         if (!last_request)
1118                 return;
1119         wiphy_update_beacon_reg(wiphy);
1120 }
1121
1122 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1123 {
1124         if (!chan)
1125                 return false;
1126         if (chan->flags & IEEE80211_CHAN_DISABLED)
1127                 return false;
1128         /* This would happen when regulatory rules disallow HT40 completely */
1129         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1130                 return false;
1131         return true;
1132 }
1133
1134 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1135                                          struct ieee80211_channel *channel)
1136 {
1137         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1138         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1139         unsigned int i;
1140
1141         if (!is_ht40_allowed(channel)) {
1142                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1143                 return;
1144         }
1145
1146         /*
1147          * We need to ensure the extension channels exist to
1148          * be able to use HT40- or HT40+, this finds them (or not)
1149          */
1150         for (i = 0; i < sband->n_channels; i++) {
1151                 struct ieee80211_channel *c = &sband->channels[i];
1152
1153                 if (c->center_freq == (channel->center_freq - 20))
1154                         channel_before = c;
1155                 if (c->center_freq == (channel->center_freq + 20))
1156                         channel_after = c;
1157         }
1158
1159         /*
1160          * Please note that this assumes target bandwidth is 20 MHz,
1161          * if that ever changes we also need to change the below logic
1162          * to include that as well.
1163          */
1164         if (!is_ht40_allowed(channel_before))
1165                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1166         else
1167                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1168
1169         if (!is_ht40_allowed(channel_after))
1170                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1171         else
1172                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1173 }
1174
1175 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1176                                       struct ieee80211_supported_band *sband)
1177 {
1178         unsigned int i;
1179
1180         if (!sband)
1181                 return;
1182
1183         for (i = 0; i < sband->n_channels; i++)
1184                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1185 }
1186
1187 static void reg_process_ht_flags(struct wiphy *wiphy)
1188 {
1189         enum ieee80211_band band;
1190
1191         if (!wiphy)
1192                 return;
1193
1194         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1195                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1196 }
1197
1198 static void wiphy_update_regulatory(struct wiphy *wiphy,
1199                                     enum nl80211_reg_initiator initiator)
1200 {
1201         enum ieee80211_band band;
1202         struct regulatory_request *lr = get_last_request();
1203
1204         if (ignore_reg_update(wiphy, initiator))
1205                 return;
1206
1207         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1208
1209         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1210                 handle_band(wiphy, initiator, wiphy->bands[band]);
1211
1212         reg_process_beacons(wiphy);
1213         reg_process_ht_flags(wiphy);
1214
1215         if (wiphy->reg_notifier)
1216                 wiphy->reg_notifier(wiphy, lr);
1217 }
1218
1219 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1220 {
1221         struct cfg80211_registered_device *rdev;
1222         struct wiphy *wiphy;
1223
1224         assert_cfg80211_lock();
1225
1226         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1227                 wiphy = &rdev->wiphy;
1228                 wiphy_update_regulatory(wiphy, initiator);
1229                 /*
1230                  * Regulatory updates set by CORE are ignored for custom
1231                  * regulatory cards. Let us notify the changes to the driver,
1232                  * as some drivers used this to restore its orig_* reg domain.
1233                  */
1234                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1235                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1236                     wiphy->reg_notifier)
1237                         wiphy->reg_notifier(wiphy, get_last_request());
1238         }
1239 }
1240
1241 static void handle_channel_custom(struct wiphy *wiphy,
1242                                   struct ieee80211_channel *chan,
1243                                   const struct ieee80211_regdomain *regd)
1244 {
1245         u32 bw_flags = 0;
1246         const struct ieee80211_reg_rule *reg_rule = NULL;
1247         const struct ieee80211_power_rule *power_rule = NULL;
1248         const struct ieee80211_freq_range *freq_range = NULL;
1249
1250         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1251                                       regd);
1252
1253         if (IS_ERR(reg_rule)) {
1254                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1255                               chan->center_freq);
1256                 chan->flags = IEEE80211_CHAN_DISABLED;
1257                 return;
1258         }
1259
1260         chan_reg_rule_print_dbg(chan, reg_rule);
1261
1262         power_rule = &reg_rule->power_rule;
1263         freq_range = &reg_rule->freq_range;
1264
1265         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1266                 bw_flags = IEEE80211_CHAN_NO_HT40;
1267
1268         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1269         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1270         chan->max_reg_power = chan->max_power =
1271                 (int) MBM_TO_DBM(power_rule->max_eirp);
1272 }
1273
1274 static void handle_band_custom(struct wiphy *wiphy,
1275                                struct ieee80211_supported_band *sband,
1276                                const struct ieee80211_regdomain *regd)
1277 {
1278         unsigned int i;
1279
1280         if (!sband)
1281                 return;
1282
1283         for (i = 0; i < sband->n_channels; i++)
1284                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1285 }
1286
1287 /* Used by drivers prior to wiphy registration */
1288 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1289                                    const struct ieee80211_regdomain *regd)
1290 {
1291         enum ieee80211_band band;
1292         unsigned int bands_set = 0;
1293
1294         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1295                 if (!wiphy->bands[band])
1296                         continue;
1297                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1298                 bands_set++;
1299         }
1300
1301         /*
1302          * no point in calling this if it won't have any effect
1303          * on your device's supported bands.
1304          */
1305         WARN_ON(!bands_set);
1306 }
1307 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1308
1309 /* This has the logic which determines when a new request
1310  * should be ignored. */
1311 static enum reg_request_treatment
1312 get_reg_request_treatment(struct wiphy *wiphy,
1313                           struct regulatory_request *pending_request)
1314 {
1315         struct wiphy *last_wiphy = NULL;
1316         struct regulatory_request *lr = get_last_request();
1317
1318         /* All initial requests are respected */
1319         if (!lr)
1320                 return REG_REQ_OK;
1321
1322         switch (pending_request->initiator) {
1323         case NL80211_REGDOM_SET_BY_CORE:
1324                 return REG_REQ_OK;
1325         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1326                 if (reg_request_cell_base(lr)) {
1327                         /* Trust a Cell base station over the AP's country IE */
1328                         if (regdom_changes(pending_request->alpha2))
1329                                 return REG_REQ_IGNORE;
1330                         return REG_REQ_ALREADY_SET;
1331                 }
1332
1333                 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1334
1335                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1336                         return -EINVAL;
1337                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1338                         if (last_wiphy != wiphy) {
1339                                 /*
1340                                  * Two cards with two APs claiming different
1341                                  * Country IE alpha2s. We could
1342                                  * intersect them, but that seems unlikely
1343                                  * to be correct. Reject second one for now.
1344                                  */
1345                                 if (regdom_changes(pending_request->alpha2))
1346                                         return REG_REQ_IGNORE;
1347                                 return REG_REQ_ALREADY_SET;
1348                         }
1349                         /*
1350                          * Two consecutive Country IE hints on the same wiphy.
1351                          * This should be picked up early by the driver/stack
1352                          */
1353                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1354                                 return REG_REQ_OK;
1355                         return REG_REQ_ALREADY_SET;
1356                 }
1357                 return 0;
1358         case NL80211_REGDOM_SET_BY_DRIVER:
1359                 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1360                         if (regdom_changes(pending_request->alpha2))
1361                                 return REG_REQ_OK;
1362                         return REG_REQ_ALREADY_SET;
1363                 }
1364
1365                 /*
1366                  * This would happen if you unplug and plug your card
1367                  * back in or if you add a new device for which the previously
1368                  * loaded card also agrees on the regulatory domain.
1369                  */
1370                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1371                     !regdom_changes(pending_request->alpha2))
1372                         return REG_REQ_ALREADY_SET;
1373
1374                 return REG_REQ_INTERSECT;
1375         case NL80211_REGDOM_SET_BY_USER:
1376                 if (reg_request_cell_base(pending_request))
1377                         return reg_ignore_cell_hint(pending_request);
1378
1379                 if (reg_request_cell_base(lr))
1380                         return REG_REQ_IGNORE;
1381
1382                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1383                         return REG_REQ_INTERSECT;
1384                 /*
1385                  * If the user knows better the user should set the regdom
1386                  * to their country before the IE is picked up
1387                  */
1388                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1389                     lr->intersect)
1390                         return REG_REQ_IGNORE;
1391                 /*
1392                  * Process user requests only after previous user/driver/core
1393                  * requests have been processed
1394                  */
1395                 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1396                      lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1397                      lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1398                     regdom_changes(lr->alpha2))
1399                         return REG_REQ_IGNORE;
1400
1401                 if (!regdom_changes(pending_request->alpha2))
1402                         return REG_REQ_ALREADY_SET;
1403
1404                 return REG_REQ_OK;
1405         }
1406
1407         return REG_REQ_IGNORE;
1408 }
1409
1410 static void reg_set_request_processed(void)
1411 {
1412         bool need_more_processing = false;
1413         struct regulatory_request *lr = get_last_request();
1414
1415         lr->processed = true;
1416
1417         spin_lock(&reg_requests_lock);
1418         if (!list_empty(&reg_requests_list))
1419                 need_more_processing = true;
1420         spin_unlock(&reg_requests_lock);
1421
1422         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1423                 cancel_delayed_work(&reg_timeout);
1424
1425         if (need_more_processing)
1426                 schedule_work(&reg_work);
1427 }
1428
1429 /**
1430  * __regulatory_hint - hint to the wireless core a regulatory domain
1431  * @wiphy: if the hint comes from country information from an AP, this
1432  *      is required to be set to the wiphy that received the information
1433  * @pending_request: the regulatory request currently being processed
1434  *
1435  * The Wireless subsystem can use this function to hint to the wireless core
1436  * what it believes should be the current regulatory domain.
1437  *
1438  * Returns one of the different reg request treatment values.
1439  *
1440  * Caller must hold &reg_mutex
1441  */
1442 static enum reg_request_treatment
1443 __regulatory_hint(struct wiphy *wiphy,
1444                   struct regulatory_request *pending_request)
1445 {
1446         const struct ieee80211_regdomain *regd;
1447         bool intersect = false;
1448         enum reg_request_treatment treatment;
1449         struct regulatory_request *lr;
1450
1451         treatment = get_reg_request_treatment(wiphy, pending_request);
1452
1453         switch (treatment) {
1454         case REG_REQ_INTERSECT:
1455                 if (pending_request->initiator ==
1456                     NL80211_REGDOM_SET_BY_DRIVER) {
1457                         regd = reg_copy_regd(get_cfg80211_regdom());
1458                         if (IS_ERR(regd)) {
1459                                 kfree(pending_request);
1460                                 return PTR_ERR(regd);
1461                         }
1462                         rcu_assign_pointer(wiphy->regd, regd);
1463                 }
1464                 intersect = true;
1465                 break;
1466         case REG_REQ_OK:
1467                 break;
1468         default:
1469                 /*
1470                  * If the regulatory domain being requested by the
1471                  * driver has already been set just copy it to the
1472                  * wiphy
1473                  */
1474                 if (treatment == REG_REQ_ALREADY_SET &&
1475                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1476                         regd = reg_copy_regd(get_cfg80211_regdom());
1477                         if (IS_ERR(regd)) {
1478                                 kfree(pending_request);
1479                                 return REG_REQ_IGNORE;
1480                         }
1481                         treatment = REG_REQ_ALREADY_SET;
1482                         rcu_assign_pointer(wiphy->regd, regd);
1483                         goto new_request;
1484                 }
1485                 kfree(pending_request);
1486                 return treatment;
1487         }
1488
1489 new_request:
1490         lr = get_last_request();
1491         if (lr != &core_request_world && lr)
1492                 kfree_rcu(lr, rcu_head);
1493
1494         pending_request->intersect = intersect;
1495         pending_request->processed = false;
1496         rcu_assign_pointer(last_request, pending_request);
1497         lr = pending_request;
1498
1499         pending_request = NULL;
1500
1501         if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1502                 user_alpha2[0] = lr->alpha2[0];
1503                 user_alpha2[1] = lr->alpha2[1];
1504         }
1505
1506         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1507         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1508                 /*
1509                  * Since CRDA will not be called in this case as we already
1510                  * have applied the requested regulatory domain before we just
1511                  * inform userspace we have processed the request
1512                  */
1513                 if (treatment == REG_REQ_ALREADY_SET) {
1514                         nl80211_send_reg_change_event(lr);
1515                         reg_set_request_processed();
1516                 }
1517                 return treatment;
1518         }
1519
1520         if (call_crda(lr->alpha2))
1521                 return REG_REQ_IGNORE;
1522         return REG_REQ_OK;
1523 }
1524
1525 /* This processes *all* regulatory hints */
1526 static void reg_process_hint(struct regulatory_request *reg_request,
1527                              enum nl80211_reg_initiator reg_initiator)
1528 {
1529         struct wiphy *wiphy = NULL;
1530
1531         if (WARN_ON(!reg_request->alpha2))
1532                 return;
1533
1534         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1535                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1536
1537         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1538                 kfree(reg_request);
1539                 return;
1540         }
1541
1542         switch (__regulatory_hint(wiphy, reg_request)) {
1543         case REG_REQ_ALREADY_SET:
1544                 /* This is required so that the orig_* parameters are saved */
1545                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1546                         wiphy_update_regulatory(wiphy, reg_initiator);
1547                 break;
1548         default:
1549                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1550                         schedule_delayed_work(&reg_timeout,
1551                                               msecs_to_jiffies(3142));
1552                 break;
1553         }
1554 }
1555
1556 /*
1557  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1558  * Regulatory hints come on a first come first serve basis and we
1559  * must process each one atomically.
1560  */
1561 static void reg_process_pending_hints(void)
1562 {
1563         struct regulatory_request *reg_request, *lr;
1564
1565         mutex_lock(&cfg80211_mutex);
1566         mutex_lock(&reg_mutex);
1567         lr = get_last_request();
1568
1569         /* When last_request->processed becomes true this will be rescheduled */
1570         if (lr && !lr->processed) {
1571                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1572                 goto out;
1573         }
1574
1575         spin_lock(&reg_requests_lock);
1576
1577         if (list_empty(&reg_requests_list)) {
1578                 spin_unlock(&reg_requests_lock);
1579                 goto out;
1580         }
1581
1582         reg_request = list_first_entry(&reg_requests_list,
1583                                        struct regulatory_request,
1584                                        list);
1585         list_del_init(&reg_request->list);
1586
1587         spin_unlock(&reg_requests_lock);
1588
1589         reg_process_hint(reg_request, reg_request->initiator);
1590
1591 out:
1592         mutex_unlock(&reg_mutex);
1593         mutex_unlock(&cfg80211_mutex);
1594 }
1595
1596 /* Processes beacon hints -- this has nothing to do with country IEs */
1597 static void reg_process_pending_beacon_hints(void)
1598 {
1599         struct cfg80211_registered_device *rdev;
1600         struct reg_beacon *pending_beacon, *tmp;
1601
1602         mutex_lock(&cfg80211_mutex);
1603         mutex_lock(&reg_mutex);
1604
1605         /* This goes through the _pending_ beacon list */
1606         spin_lock_bh(&reg_pending_beacons_lock);
1607
1608         list_for_each_entry_safe(pending_beacon, tmp,
1609                                  &reg_pending_beacons, list) {
1610                 list_del_init(&pending_beacon->list);
1611
1612                 /* Applies the beacon hint to current wiphys */
1613                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1614                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1615
1616                 /* Remembers the beacon hint for new wiphys or reg changes */
1617                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1618         }
1619
1620         spin_unlock_bh(&reg_pending_beacons_lock);
1621         mutex_unlock(&reg_mutex);
1622         mutex_unlock(&cfg80211_mutex);
1623 }
1624
1625 static void reg_todo(struct work_struct *work)
1626 {
1627         reg_process_pending_hints();
1628         reg_process_pending_beacon_hints();
1629 }
1630
1631 static void queue_regulatory_request(struct regulatory_request *request)
1632 {
1633         request->alpha2[0] = toupper(request->alpha2[0]);
1634         request->alpha2[1] = toupper(request->alpha2[1]);
1635
1636         spin_lock(&reg_requests_lock);
1637         list_add_tail(&request->list, &reg_requests_list);
1638         spin_unlock(&reg_requests_lock);
1639
1640         schedule_work(&reg_work);
1641 }
1642
1643 /*
1644  * Core regulatory hint -- happens during cfg80211_init()
1645  * and when we restore regulatory settings.
1646  */
1647 static int regulatory_hint_core(const char *alpha2)
1648 {
1649         struct regulatory_request *request;
1650
1651         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1652         if (!request)
1653                 return -ENOMEM;
1654
1655         request->alpha2[0] = alpha2[0];
1656         request->alpha2[1] = alpha2[1];
1657         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1658
1659         queue_regulatory_request(request);
1660
1661         return 0;
1662 }
1663
1664 /* User hints */
1665 int regulatory_hint_user(const char *alpha2,
1666                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1667 {
1668         struct regulatory_request *request;
1669
1670         if (WARN_ON(!alpha2))
1671                 return -EINVAL;
1672
1673         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1674         if (!request)
1675                 return -ENOMEM;
1676
1677         request->wiphy_idx = WIPHY_IDX_INVALID;
1678         request->alpha2[0] = alpha2[0];
1679         request->alpha2[1] = alpha2[1];
1680         request->initiator = NL80211_REGDOM_SET_BY_USER;
1681         request->user_reg_hint_type = user_reg_hint_type;
1682
1683         queue_regulatory_request(request);
1684
1685         return 0;
1686 }
1687
1688 /* Driver hints */
1689 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1690 {
1691         struct regulatory_request *request;
1692
1693         if (WARN_ON(!alpha2 || !wiphy))
1694                 return -EINVAL;
1695
1696         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1697         if (!request)
1698                 return -ENOMEM;
1699
1700         request->wiphy_idx = get_wiphy_idx(wiphy);
1701
1702         request->alpha2[0] = alpha2[0];
1703         request->alpha2[1] = alpha2[1];
1704         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1705
1706         queue_regulatory_request(request);
1707
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(regulatory_hint);
1711
1712 /*
1713  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1714  * therefore cannot iterate over the rdev list here.
1715  */
1716 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1717                          const u8 *country_ie, u8 country_ie_len)
1718 {
1719         char alpha2[2];
1720         enum environment_cap env = ENVIRON_ANY;
1721         struct regulatory_request *request, *lr;
1722
1723         mutex_lock(&reg_mutex);
1724         lr = get_last_request();
1725
1726         if (unlikely(!lr))
1727                 goto out;
1728
1729         /* IE len must be evenly divisible by 2 */
1730         if (country_ie_len & 0x01)
1731                 goto out;
1732
1733         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1734                 goto out;
1735
1736         alpha2[0] = country_ie[0];
1737         alpha2[1] = country_ie[1];
1738
1739         if (country_ie[2] == 'I')
1740                 env = ENVIRON_INDOOR;
1741         else if (country_ie[2] == 'O')
1742                 env = ENVIRON_OUTDOOR;
1743
1744         /*
1745          * We will run this only upon a successful connection on cfg80211.
1746          * We leave conflict resolution to the workqueue, where can hold
1747          * cfg80211_mutex.
1748          */
1749         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1750             lr->wiphy_idx != WIPHY_IDX_INVALID)
1751                 goto out;
1752
1753         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1754         if (!request)
1755                 goto out;
1756
1757         request->wiphy_idx = get_wiphy_idx(wiphy);
1758         request->alpha2[0] = alpha2[0];
1759         request->alpha2[1] = alpha2[1];
1760         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1761         request->country_ie_env = env;
1762
1763         queue_regulatory_request(request);
1764 out:
1765         mutex_unlock(&reg_mutex);
1766 }
1767
1768 static void restore_alpha2(char *alpha2, bool reset_user)
1769 {
1770         /* indicates there is no alpha2 to consider for restoration */
1771         alpha2[0] = '9';
1772         alpha2[1] = '7';
1773
1774         /* The user setting has precedence over the module parameter */
1775         if (is_user_regdom_saved()) {
1776                 /* Unless we're asked to ignore it and reset it */
1777                 if (reset_user) {
1778                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1779                         user_alpha2[0] = '9';
1780                         user_alpha2[1] = '7';
1781
1782                         /*
1783                          * If we're ignoring user settings, we still need to
1784                          * check the module parameter to ensure we put things
1785                          * back as they were for a full restore.
1786                          */
1787                         if (!is_world_regdom(ieee80211_regdom)) {
1788                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1789                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1790                                 alpha2[0] = ieee80211_regdom[0];
1791                                 alpha2[1] = ieee80211_regdom[1];
1792                         }
1793                 } else {
1794                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1795                                       user_alpha2[0], user_alpha2[1]);
1796                         alpha2[0] = user_alpha2[0];
1797                         alpha2[1] = user_alpha2[1];
1798                 }
1799         } else if (!is_world_regdom(ieee80211_regdom)) {
1800                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1801                               ieee80211_regdom[0], ieee80211_regdom[1]);
1802                 alpha2[0] = ieee80211_regdom[0];
1803                 alpha2[1] = ieee80211_regdom[1];
1804         } else
1805                 REG_DBG_PRINT("Restoring regulatory settings\n");
1806 }
1807
1808 static void restore_custom_reg_settings(struct wiphy *wiphy)
1809 {
1810         struct ieee80211_supported_band *sband;
1811         enum ieee80211_band band;
1812         struct ieee80211_channel *chan;
1813         int i;
1814
1815         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1816                 sband = wiphy->bands[band];
1817                 if (!sband)
1818                         continue;
1819                 for (i = 0; i < sband->n_channels; i++) {
1820                         chan = &sband->channels[i];
1821                         chan->flags = chan->orig_flags;
1822                         chan->max_antenna_gain = chan->orig_mag;
1823                         chan->max_power = chan->orig_mpwr;
1824                         chan->beacon_found = false;
1825                 }
1826         }
1827 }
1828
1829 /*
1830  * Restoring regulatory settings involves ingoring any
1831  * possibly stale country IE information and user regulatory
1832  * settings if so desired, this includes any beacon hints
1833  * learned as we could have traveled outside to another country
1834  * after disconnection. To restore regulatory settings we do
1835  * exactly what we did at bootup:
1836  *
1837  *   - send a core regulatory hint
1838  *   - send a user regulatory hint if applicable
1839  *
1840  * Device drivers that send a regulatory hint for a specific country
1841  * keep their own regulatory domain on wiphy->regd so that does does
1842  * not need to be remembered.
1843  */
1844 static void restore_regulatory_settings(bool reset_user)
1845 {
1846         char alpha2[2];
1847         char world_alpha2[2];
1848         struct reg_beacon *reg_beacon, *btmp;
1849         struct regulatory_request *reg_request, *tmp;
1850         LIST_HEAD(tmp_reg_req_list);
1851         struct cfg80211_registered_device *rdev;
1852
1853         mutex_lock(&cfg80211_mutex);
1854         mutex_lock(&reg_mutex);
1855
1856         reset_regdomains(true, &world_regdom);
1857         restore_alpha2(alpha2, reset_user);
1858
1859         /*
1860          * If there's any pending requests we simply
1861          * stash them to a temporary pending queue and
1862          * add then after we've restored regulatory
1863          * settings.
1864          */
1865         spin_lock(&reg_requests_lock);
1866         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1867                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1868                         continue;
1869                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1870         }
1871         spin_unlock(&reg_requests_lock);
1872
1873         /* Clear beacon hints */
1874         spin_lock_bh(&reg_pending_beacons_lock);
1875         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1876                 list_del(&reg_beacon->list);
1877                 kfree(reg_beacon);
1878         }
1879         spin_unlock_bh(&reg_pending_beacons_lock);
1880
1881         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1882                 list_del(&reg_beacon->list);
1883                 kfree(reg_beacon);
1884         }
1885
1886         /* First restore to the basic regulatory settings */
1887         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1888         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1889
1890         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892                         restore_custom_reg_settings(&rdev->wiphy);
1893         }
1894
1895         regulatory_hint_core(world_alpha2);
1896
1897         /*
1898          * This restores the ieee80211_regdom module parameter
1899          * preference or the last user requested regulatory
1900          * settings, user regulatory settings takes precedence.
1901          */
1902         if (is_an_alpha2(alpha2))
1903                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1904
1905         spin_lock(&reg_requests_lock);
1906         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1907         spin_unlock(&reg_requests_lock);
1908
1909         mutex_unlock(&reg_mutex);
1910         mutex_unlock(&cfg80211_mutex);
1911
1912         REG_DBG_PRINT("Kicking the queue\n");
1913
1914         schedule_work(&reg_work);
1915 }
1916
1917 void regulatory_hint_disconnect(void)
1918 {
1919         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1920         restore_regulatory_settings(false);
1921 }
1922
1923 static bool freq_is_chan_12_13_14(u16 freq)
1924 {
1925         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1926             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1927             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1928                 return true;
1929         return false;
1930 }
1931
1932 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1933 {
1934         struct reg_beacon *pending_beacon;
1935
1936         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1937                 if (beacon_chan->center_freq ==
1938                     pending_beacon->chan.center_freq)
1939                         return true;
1940         return false;
1941 }
1942
1943 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1944                                  struct ieee80211_channel *beacon_chan,
1945                                  gfp_t gfp)
1946 {
1947         struct reg_beacon *reg_beacon;
1948         bool processing;
1949
1950         if (beacon_chan->beacon_found ||
1951             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1952             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1953              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1954                 return 0;
1955
1956         spin_lock_bh(&reg_pending_beacons_lock);
1957         processing = pending_reg_beacon(beacon_chan);
1958         spin_unlock_bh(&reg_pending_beacons_lock);
1959
1960         if (processing)
1961                 return 0;
1962
1963         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1964         if (!reg_beacon)
1965                 return -ENOMEM;
1966
1967         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1968                       beacon_chan->center_freq,
1969                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1970                       wiphy_name(wiphy));
1971
1972         memcpy(&reg_beacon->chan, beacon_chan,
1973                sizeof(struct ieee80211_channel));
1974
1975         /*
1976          * Since we can be called from BH or and non-BH context
1977          * we must use spin_lock_bh()
1978          */
1979         spin_lock_bh(&reg_pending_beacons_lock);
1980         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1981         spin_unlock_bh(&reg_pending_beacons_lock);
1982
1983         schedule_work(&reg_work);
1984
1985         return 0;
1986 }
1987
1988 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1989 {
1990         unsigned int i;
1991         const struct ieee80211_reg_rule *reg_rule = NULL;
1992         const struct ieee80211_freq_range *freq_range = NULL;
1993         const struct ieee80211_power_rule *power_rule = NULL;
1994
1995         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1996
1997         for (i = 0; i < rd->n_reg_rules; i++) {
1998                 reg_rule = &rd->reg_rules[i];
1999                 freq_range = &reg_rule->freq_range;
2000                 power_rule = &reg_rule->power_rule;
2001
2002                 /*
2003                  * There may not be documentation for max antenna gain
2004                  * in certain regions
2005                  */
2006                 if (power_rule->max_antenna_gain)
2007                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2008                                 freq_range->start_freq_khz,
2009                                 freq_range->end_freq_khz,
2010                                 freq_range->max_bandwidth_khz,
2011                                 power_rule->max_antenna_gain,
2012                                 power_rule->max_eirp);
2013                 else
2014                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2015                                 freq_range->start_freq_khz,
2016                                 freq_range->end_freq_khz,
2017                                 freq_range->max_bandwidth_khz,
2018                                 power_rule->max_eirp);
2019         }
2020 }
2021
2022 bool reg_supported_dfs_region(u8 dfs_region)
2023 {
2024         switch (dfs_region) {
2025         case NL80211_DFS_UNSET:
2026         case NL80211_DFS_FCC:
2027         case NL80211_DFS_ETSI:
2028         case NL80211_DFS_JP:
2029                 return true;
2030         default:
2031                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2032                               dfs_region);
2033                 return false;
2034         }
2035 }
2036
2037 static void print_dfs_region(u8 dfs_region)
2038 {
2039         if (!dfs_region)
2040                 return;
2041
2042         switch (dfs_region) {
2043         case NL80211_DFS_FCC:
2044                 pr_info(" DFS Master region FCC");
2045                 break;
2046         case NL80211_DFS_ETSI:
2047                 pr_info(" DFS Master region ETSI");
2048                 break;
2049         case NL80211_DFS_JP:
2050                 pr_info(" DFS Master region JP");
2051                 break;
2052         default:
2053                 pr_info(" DFS Master region Unknown");
2054                 break;
2055         }
2056 }
2057
2058 static void print_regdomain(const struct ieee80211_regdomain *rd)
2059 {
2060         struct regulatory_request *lr = get_last_request();
2061
2062         if (is_intersected_alpha2(rd->alpha2)) {
2063                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2064                         struct cfg80211_registered_device *rdev;
2065                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2066                         if (rdev) {
2067                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2068                                         rdev->country_ie_alpha2[0],
2069                                         rdev->country_ie_alpha2[1]);
2070                         } else
2071                                 pr_info("Current regulatory domain intersected:\n");
2072                 } else
2073                         pr_info("Current regulatory domain intersected:\n");
2074         } else if (is_world_regdom(rd->alpha2)) {
2075                 pr_info("World regulatory domain updated:\n");
2076         } else {
2077                 if (is_unknown_alpha2(rd->alpha2))
2078                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2079                 else {
2080                         if (reg_request_cell_base(lr))
2081                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2082                                         rd->alpha2[0], rd->alpha2[1]);
2083                         else
2084                                 pr_info("Regulatory domain changed to country: %c%c\n",
2085                                         rd->alpha2[0], rd->alpha2[1]);
2086                 }
2087         }
2088
2089         print_dfs_region(rd->dfs_region);
2090         print_rd_rules(rd);
2091 }
2092
2093 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2094 {
2095         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2096         print_rd_rules(rd);
2097 }
2098
2099 /* Takes ownership of rd only if it doesn't fail */
2100 static int __set_regdom(const struct ieee80211_regdomain *rd)
2101 {
2102         const struct ieee80211_regdomain *regd;
2103         const struct ieee80211_regdomain *intersected_rd = NULL;
2104         struct wiphy *request_wiphy;
2105         struct regulatory_request *lr = get_last_request();
2106
2107         /* Some basic sanity checks first */
2108
2109         if (!reg_is_valid_request(rd->alpha2))
2110                 return -EINVAL;
2111
2112         if (is_world_regdom(rd->alpha2)) {
2113                 update_world_regdomain(rd);
2114                 return 0;
2115         }
2116
2117         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2118             !is_unknown_alpha2(rd->alpha2))
2119                 return -EINVAL;
2120
2121         /*
2122          * Lets only bother proceeding on the same alpha2 if the current
2123          * rd is non static (it means CRDA was present and was used last)
2124          * and the pending request came in from a country IE
2125          */
2126         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2127                 /*
2128                  * If someone else asked us to change the rd lets only bother
2129                  * checking if the alpha2 changes if CRDA was already called
2130                  */
2131                 if (!regdom_changes(rd->alpha2))
2132                         return -EALREADY;
2133         }
2134
2135         /*
2136          * Now lets set the regulatory domain, update all driver channels
2137          * and finally inform them of what we have done, in case they want
2138          * to review or adjust their own settings based on their own
2139          * internal EEPROM data
2140          */
2141
2142         if (!is_valid_rd(rd)) {
2143                 pr_err("Invalid regulatory domain detected:\n");
2144                 print_regdomain_info(rd);
2145                 return -EINVAL;
2146         }
2147
2148         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2149         if (!request_wiphy &&
2150             (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2151              lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2152                 schedule_delayed_work(&reg_timeout, 0);
2153                 return -ENODEV;
2154         }
2155
2156         if (!lr->intersect) {
2157                 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2158                         reset_regdomains(false, rd);
2159                         return 0;
2160                 }
2161
2162                 /*
2163                  * For a driver hint, lets copy the regulatory domain the
2164                  * driver wanted to the wiphy to deal with conflicts
2165                  */
2166
2167                 /*
2168                  * Userspace could have sent two replies with only
2169                  * one kernel request.
2170                  */
2171                 if (request_wiphy->regd)
2172                         return -EALREADY;
2173
2174                 regd = reg_copy_regd(rd);
2175                 if (IS_ERR(regd))
2176                         return PTR_ERR(regd);
2177
2178                 rcu_assign_pointer(request_wiphy->regd, regd);
2179                 reset_regdomains(false, rd);
2180                 return 0;
2181         }
2182
2183         /* Intersection requires a bit more work */
2184
2185         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2186                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2187                 if (!intersected_rd)
2188                         return -EINVAL;
2189
2190                 /*
2191                  * We can trash what CRDA provided now.
2192                  * However if a driver requested this specific regulatory
2193                  * domain we keep it for its private use
2194                  */
2195                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2196                         const struct ieee80211_regdomain *tmp;
2197
2198                         tmp = get_wiphy_regdom(request_wiphy);
2199                         rcu_assign_pointer(request_wiphy->regd, rd);
2200                         rcu_free_regdom(tmp);
2201                 } else {
2202                         kfree(rd);
2203                 }
2204
2205                 rd = NULL;
2206
2207                 reset_regdomains(false, intersected_rd);
2208
2209                 return 0;
2210         }
2211
2212         return -EINVAL;
2213 }
2214
2215
2216 /*
2217  * Use this call to set the current regulatory domain. Conflicts with
2218  * multiple drivers can be ironed out later. Caller must've already
2219  * kmalloc'd the rd structure.
2220  */
2221 int set_regdom(const struct ieee80211_regdomain *rd)
2222 {
2223         struct regulatory_request *lr;
2224         int r;
2225
2226         mutex_lock(&reg_mutex);
2227         lr = get_last_request();
2228
2229         /* Note that this doesn't update the wiphys, this is done below */
2230         r = __set_regdom(rd);
2231         if (r) {
2232                 if (r == -EALREADY)
2233                         reg_set_request_processed();
2234
2235                 kfree(rd);
2236                 goto out;
2237         }
2238
2239         /* This would make this whole thing pointless */
2240         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) {
2241                 r = -EINVAL;
2242                 goto out;
2243         }
2244
2245         /* update all wiphys now with the new established regulatory domain */
2246         update_all_wiphy_regulatory(lr->initiator);
2247
2248         print_regdomain(get_cfg80211_regdom());
2249
2250         nl80211_send_reg_change_event(lr);
2251
2252         reg_set_request_processed();
2253
2254  out:
2255         mutex_unlock(&reg_mutex);
2256
2257         return r;
2258 }
2259
2260 #ifdef CONFIG_HOTPLUG
2261 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2262 {
2263         struct regulatory_request *lr;
2264         u8 alpha2[2];
2265         bool add = false;
2266
2267         rcu_read_lock();
2268         lr = get_last_request();
2269         if (lr && !lr->processed) {
2270                 memcpy(alpha2, lr->alpha2, 2);
2271                 add = true;
2272         }
2273         rcu_read_unlock();
2274
2275         if (add)
2276                 return add_uevent_var(env, "COUNTRY=%c%c",
2277                                       alpha2[0], alpha2[1]);
2278         return 0;
2279 }
2280 #else
2281 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2282 {
2283         return -ENODEV;
2284 }
2285 #endif /* CONFIG_HOTPLUG */
2286
2287 void wiphy_regulatory_register(struct wiphy *wiphy)
2288 {
2289         mutex_lock(&reg_mutex);
2290
2291         if (!reg_dev_ignore_cell_hint(wiphy))
2292                 reg_num_devs_support_basehint++;
2293
2294         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2295
2296         mutex_unlock(&reg_mutex);
2297 }
2298
2299 /* Caller must hold cfg80211_mutex */
2300 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2301 {
2302         struct wiphy *request_wiphy = NULL;
2303         struct regulatory_request *lr;
2304
2305         mutex_lock(&reg_mutex);
2306         lr = get_last_request();
2307
2308         if (!reg_dev_ignore_cell_hint(wiphy))
2309                 reg_num_devs_support_basehint--;
2310
2311         rcu_free_regdom(get_wiphy_regdom(wiphy));
2312         rcu_assign_pointer(wiphy->regd, NULL);
2313
2314         if (lr)
2315                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2316
2317         if (!request_wiphy || request_wiphy != wiphy)
2318                 goto out;
2319
2320         lr->wiphy_idx = WIPHY_IDX_INVALID;
2321         lr->country_ie_env = ENVIRON_ANY;
2322 out:
2323         mutex_unlock(&reg_mutex);
2324 }
2325
2326 static void reg_timeout_work(struct work_struct *work)
2327 {
2328         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2329         restore_regulatory_settings(true);
2330 }
2331
2332 int __init regulatory_init(void)
2333 {
2334         int err = 0;
2335
2336         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2337         if (IS_ERR(reg_pdev))
2338                 return PTR_ERR(reg_pdev);
2339
2340         reg_pdev->dev.type = &reg_device_type;
2341
2342         spin_lock_init(&reg_requests_lock);
2343         spin_lock_init(&reg_pending_beacons_lock);
2344
2345         reg_regdb_size_check();
2346
2347         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2348
2349         user_alpha2[0] = '9';
2350         user_alpha2[1] = '7';
2351
2352         /* We always try to get an update for the static regdomain */
2353         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2354         if (err) {
2355                 if (err == -ENOMEM)
2356                         return err;
2357                 /*
2358                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2359                  * memory which is handled and propagated appropriately above
2360                  * but it can also fail during a netlink_broadcast() or during
2361                  * early boot for call_usermodehelper(). For now treat these
2362                  * errors as non-fatal.
2363                  */
2364                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2365         }
2366
2367         /*
2368          * Finally, if the user set the module parameter treat it
2369          * as a user hint.
2370          */
2371         if (!is_world_regdom(ieee80211_regdom))
2372                 regulatory_hint_user(ieee80211_regdom,
2373                                      NL80211_USER_REG_HINT_USER);
2374
2375         return 0;
2376 }
2377
2378 void regulatory_exit(void)
2379 {
2380         struct regulatory_request *reg_request, *tmp;
2381         struct reg_beacon *reg_beacon, *btmp;
2382
2383         cancel_work_sync(&reg_work);
2384         cancel_delayed_work_sync(&reg_timeout);
2385
2386         /* Lock to suppress warnings */
2387         mutex_lock(&reg_mutex);
2388         reset_regdomains(true, NULL);
2389         mutex_unlock(&reg_mutex);
2390
2391         dev_set_uevent_suppress(&reg_pdev->dev, true);
2392
2393         platform_device_unregister(reg_pdev);
2394
2395         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2396                 list_del(&reg_beacon->list);
2397                 kfree(reg_beacon);
2398         }
2399
2400         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2401                 list_del(&reg_beacon->list);
2402                 kfree(reg_beacon);
2403         }
2404
2405         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2406                 list_del(&reg_request->list);
2407                 kfree(reg_request);
2408         }
2409 }