Merge tag 'regulator-fix-v5.15-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 /*
143  * Returns the regulatory domain associated with the wiphy.
144  *
145  * Requires any of RTNL, wiphy mutex or RCU protection.
146  */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149         return rcu_dereference_check(wiphy->regd,
150                                      lockdep_is_held(&wiphy->mtx) ||
151                                      lockdep_rtnl_is_held());
152 }
153 EXPORT_SYMBOL(get_wiphy_regdom);
154
155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
156 {
157         switch (dfs_region) {
158         case NL80211_DFS_UNSET:
159                 return "unset";
160         case NL80211_DFS_FCC:
161                 return "FCC";
162         case NL80211_DFS_ETSI:
163                 return "ETSI";
164         case NL80211_DFS_JP:
165                 return "JP";
166         }
167         return "Unknown";
168 }
169
170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
171 {
172         const struct ieee80211_regdomain *regd = NULL;
173         const struct ieee80211_regdomain *wiphy_regd = NULL;
174         enum nl80211_dfs_regions dfs_region;
175
176         rcu_read_lock();
177         regd = get_cfg80211_regdom();
178         dfs_region = regd->dfs_region;
179
180         if (!wiphy)
181                 goto out;
182
183         wiphy_regd = get_wiphy_regdom(wiphy);
184         if (!wiphy_regd)
185                 goto out;
186
187         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
188                 dfs_region = wiphy_regd->dfs_region;
189                 goto out;
190         }
191
192         if (wiphy_regd->dfs_region == regd->dfs_region)
193                 goto out;
194
195         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
196                  dev_name(&wiphy->dev),
197                  reg_dfs_region_str(wiphy_regd->dfs_region),
198                  reg_dfs_region_str(regd->dfs_region));
199
200 out:
201         rcu_read_unlock();
202
203         return dfs_region;
204 }
205
206 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
207 {
208         if (!r)
209                 return;
210         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
211 }
212
213 static struct regulatory_request *get_last_request(void)
214 {
215         return rcu_dereference_rtnl(last_request);
216 }
217
218 /* Used to queue up regulatory hints */
219 static LIST_HEAD(reg_requests_list);
220 static DEFINE_SPINLOCK(reg_requests_lock);
221
222 /* Used to queue up beacon hints for review */
223 static LIST_HEAD(reg_pending_beacons);
224 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
225
226 /* Used to keep track of processed beacon hints */
227 static LIST_HEAD(reg_beacon_list);
228
229 struct reg_beacon {
230         struct list_head list;
231         struct ieee80211_channel chan;
232 };
233
234 static void reg_check_chans_work(struct work_struct *work);
235 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
236
237 static void reg_todo(struct work_struct *work);
238 static DECLARE_WORK(reg_work, reg_todo);
239
240 /* We keep a static world regulatory domain in case of the absence of CRDA */
241 static const struct ieee80211_regdomain world_regdom = {
242         .n_reg_rules = 8,
243         .alpha2 =  "00",
244         .reg_rules = {
245                 /* IEEE 802.11b/g, channels 1..11 */
246                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
247                 /* IEEE 802.11b/g, channels 12..13. */
248                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
249                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
250                 /* IEEE 802.11 channel 14 - Only JP enables
251                  * this and for 802.11b only */
252                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
253                         NL80211_RRF_NO_IR |
254                         NL80211_RRF_NO_OFDM),
255                 /* IEEE 802.11a, channel 36..48 */
256                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
257                         NL80211_RRF_NO_IR |
258                         NL80211_RRF_AUTO_BW),
259
260                 /* IEEE 802.11a, channel 52..64 - DFS required */
261                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
262                         NL80211_RRF_NO_IR |
263                         NL80211_RRF_AUTO_BW |
264                         NL80211_RRF_DFS),
265
266                 /* IEEE 802.11a, channel 100..144 - DFS required */
267                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
268                         NL80211_RRF_NO_IR |
269                         NL80211_RRF_DFS),
270
271                 /* IEEE 802.11a, channel 149..165 */
272                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
273                         NL80211_RRF_NO_IR),
274
275                 /* IEEE 802.11ad (60GHz), channels 1..3 */
276                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
277         }
278 };
279
280 /* protected by RTNL */
281 static const struct ieee80211_regdomain *cfg80211_world_regdom =
282         &world_regdom;
283
284 static char *ieee80211_regdom = "00";
285 static char user_alpha2[2];
286 static const struct ieee80211_regdomain *cfg80211_user_regdom;
287
288 module_param(ieee80211_regdom, charp, 0444);
289 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
290
291 static void reg_free_request(struct regulatory_request *request)
292 {
293         if (request == &core_request_world)
294                 return;
295
296         if (request != get_last_request())
297                 kfree(request);
298 }
299
300 static void reg_free_last_request(void)
301 {
302         struct regulatory_request *lr = get_last_request();
303
304         if (lr != &core_request_world && lr)
305                 kfree_rcu(lr, rcu_head);
306 }
307
308 static void reg_update_last_request(struct regulatory_request *request)
309 {
310         struct regulatory_request *lr;
311
312         lr = get_last_request();
313         if (lr == request)
314                 return;
315
316         reg_free_last_request();
317         rcu_assign_pointer(last_request, request);
318 }
319
320 static void reset_regdomains(bool full_reset,
321                              const struct ieee80211_regdomain *new_regdom)
322 {
323         const struct ieee80211_regdomain *r;
324
325         ASSERT_RTNL();
326
327         r = get_cfg80211_regdom();
328
329         /* avoid freeing static information or freeing something twice */
330         if (r == cfg80211_world_regdom)
331                 r = NULL;
332         if (cfg80211_world_regdom == &world_regdom)
333                 cfg80211_world_regdom = NULL;
334         if (r == &world_regdom)
335                 r = NULL;
336
337         rcu_free_regdom(r);
338         rcu_free_regdom(cfg80211_world_regdom);
339
340         cfg80211_world_regdom = &world_regdom;
341         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
342
343         if (!full_reset)
344                 return;
345
346         reg_update_last_request(&core_request_world);
347 }
348
349 /*
350  * Dynamic world regulatory domain requested by the wireless
351  * core upon initialization
352  */
353 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
354 {
355         struct regulatory_request *lr;
356
357         lr = get_last_request();
358
359         WARN_ON(!lr);
360
361         reset_regdomains(false, rd);
362
363         cfg80211_world_regdom = rd;
364 }
365
366 bool is_world_regdom(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         return alpha2[0] == '0' && alpha2[1] == '0';
371 }
372
373 static bool is_alpha2_set(const char *alpha2)
374 {
375         if (!alpha2)
376                 return false;
377         return alpha2[0] && alpha2[1];
378 }
379
380 static bool is_unknown_alpha2(const char *alpha2)
381 {
382         if (!alpha2)
383                 return false;
384         /*
385          * Special case where regulatory domain was built by driver
386          * but a specific alpha2 cannot be determined
387          */
388         return alpha2[0] == '9' && alpha2[1] == '9';
389 }
390
391 static bool is_intersected_alpha2(const char *alpha2)
392 {
393         if (!alpha2)
394                 return false;
395         /*
396          * Special case where regulatory domain is the
397          * result of an intersection between two regulatory domain
398          * structures
399          */
400         return alpha2[0] == '9' && alpha2[1] == '8';
401 }
402
403 static bool is_an_alpha2(const char *alpha2)
404 {
405         if (!alpha2)
406                 return false;
407         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
408 }
409
410 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
411 {
412         if (!alpha2_x || !alpha2_y)
413                 return false;
414         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
415 }
416
417 static bool regdom_changes(const char *alpha2)
418 {
419         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
420
421         if (!r)
422                 return true;
423         return !alpha2_equal(r->alpha2, alpha2);
424 }
425
426 /*
427  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
428  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
429  * has ever been issued.
430  */
431 static bool is_user_regdom_saved(void)
432 {
433         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
434                 return false;
435
436         /* This would indicate a mistake on the design */
437         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
438                  "Unexpected user alpha2: %c%c\n",
439                  user_alpha2[0], user_alpha2[1]))
440                 return false;
441
442         return true;
443 }
444
445 static const struct ieee80211_regdomain *
446 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
447 {
448         struct ieee80211_regdomain *regd;
449         unsigned int i;
450
451         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
452                        GFP_KERNEL);
453         if (!regd)
454                 return ERR_PTR(-ENOMEM);
455
456         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
457
458         for (i = 0; i < src_regd->n_reg_rules; i++)
459                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
460                        sizeof(struct ieee80211_reg_rule));
461
462         return regd;
463 }
464
465 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
466 {
467         ASSERT_RTNL();
468
469         if (!IS_ERR(cfg80211_user_regdom))
470                 kfree(cfg80211_user_regdom);
471         cfg80211_user_regdom = reg_copy_regd(rd);
472 }
473
474 struct reg_regdb_apply_request {
475         struct list_head list;
476         const struct ieee80211_regdomain *regdom;
477 };
478
479 static LIST_HEAD(reg_regdb_apply_list);
480 static DEFINE_MUTEX(reg_regdb_apply_mutex);
481
482 static void reg_regdb_apply(struct work_struct *work)
483 {
484         struct reg_regdb_apply_request *request;
485
486         rtnl_lock();
487
488         mutex_lock(&reg_regdb_apply_mutex);
489         while (!list_empty(&reg_regdb_apply_list)) {
490                 request = list_first_entry(&reg_regdb_apply_list,
491                                            struct reg_regdb_apply_request,
492                                            list);
493                 list_del(&request->list);
494
495                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
496                 kfree(request);
497         }
498         mutex_unlock(&reg_regdb_apply_mutex);
499
500         rtnl_unlock();
501 }
502
503 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
504
505 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
506 {
507         struct reg_regdb_apply_request *request;
508
509         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
510         if (!request) {
511                 kfree(regdom);
512                 return -ENOMEM;
513         }
514
515         request->regdom = regdom;
516
517         mutex_lock(&reg_regdb_apply_mutex);
518         list_add_tail(&request->list, &reg_regdb_apply_list);
519         mutex_unlock(&reg_regdb_apply_mutex);
520
521         schedule_work(&reg_regdb_work);
522         return 0;
523 }
524
525 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
526 /* Max number of consecutive attempts to communicate with CRDA  */
527 #define REG_MAX_CRDA_TIMEOUTS 10
528
529 static u32 reg_crda_timeouts;
530
531 static void crda_timeout_work(struct work_struct *work);
532 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
533
534 static void crda_timeout_work(struct work_struct *work)
535 {
536         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
537         rtnl_lock();
538         reg_crda_timeouts++;
539         restore_regulatory_settings(true, false);
540         rtnl_unlock();
541 }
542
543 static void cancel_crda_timeout(void)
544 {
545         cancel_delayed_work(&crda_timeout);
546 }
547
548 static void cancel_crda_timeout_sync(void)
549 {
550         cancel_delayed_work_sync(&crda_timeout);
551 }
552
553 static void reset_crda_timeouts(void)
554 {
555         reg_crda_timeouts = 0;
556 }
557
558 /*
559  * This lets us keep regulatory code which is updated on a regulatory
560  * basis in userspace.
561  */
562 static int call_crda(const char *alpha2)
563 {
564         char country[12];
565         char *env[] = { country, NULL };
566         int ret;
567
568         snprintf(country, sizeof(country), "COUNTRY=%c%c",
569                  alpha2[0], alpha2[1]);
570
571         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
572                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
573                 return -EINVAL;
574         }
575
576         if (!is_world_regdom((char *) alpha2))
577                 pr_debug("Calling CRDA for country: %c%c\n",
578                          alpha2[0], alpha2[1]);
579         else
580                 pr_debug("Calling CRDA to update world regulatory domain\n");
581
582         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
583         if (ret)
584                 return ret;
585
586         queue_delayed_work(system_power_efficient_wq,
587                            &crda_timeout, msecs_to_jiffies(3142));
588         return 0;
589 }
590 #else
591 static inline void cancel_crda_timeout(void) {}
592 static inline void cancel_crda_timeout_sync(void) {}
593 static inline void reset_crda_timeouts(void) {}
594 static inline int call_crda(const char *alpha2)
595 {
596         return -ENODATA;
597 }
598 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
599
600 /* code to directly load a firmware database through request_firmware */
601 static const struct fwdb_header *regdb;
602
603 struct fwdb_country {
604         u8 alpha2[2];
605         __be16 coll_ptr;
606         /* this struct cannot be extended */
607 } __packed __aligned(4);
608
609 struct fwdb_collection {
610         u8 len;
611         u8 n_rules;
612         u8 dfs_region;
613         /* no optional data yet */
614         /* aligned to 2, then followed by __be16 array of rule pointers */
615 } __packed __aligned(4);
616
617 enum fwdb_flags {
618         FWDB_FLAG_NO_OFDM       = BIT(0),
619         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
620         FWDB_FLAG_DFS           = BIT(2),
621         FWDB_FLAG_NO_IR         = BIT(3),
622         FWDB_FLAG_AUTO_BW       = BIT(4),
623 };
624
625 struct fwdb_wmm_ac {
626         u8 ecw;
627         u8 aifsn;
628         __be16 cot;
629 } __packed;
630
631 struct fwdb_wmm_rule {
632         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
633         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
634 } __packed;
635
636 struct fwdb_rule {
637         u8 len;
638         u8 flags;
639         __be16 max_eirp;
640         __be32 start, end, max_bw;
641         /* start of optional data */
642         __be16 cac_timeout;
643         __be16 wmm_ptr;
644 } __packed __aligned(4);
645
646 #define FWDB_MAGIC 0x52474442
647 #define FWDB_VERSION 20
648
649 struct fwdb_header {
650         __be32 magic;
651         __be32 version;
652         struct fwdb_country country[];
653 } __packed __aligned(4);
654
655 static int ecw2cw(int ecw)
656 {
657         return (1 << ecw) - 1;
658 }
659
660 static bool valid_wmm(struct fwdb_wmm_rule *rule)
661 {
662         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
663         int i;
664
665         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
666                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
667                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
668                 u8 aifsn = ac[i].aifsn;
669
670                 if (cw_min >= cw_max)
671                         return false;
672
673                 if (aifsn < 1)
674                         return false;
675         }
676
677         return true;
678 }
679
680 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
681 {
682         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
683
684         if ((u8 *)rule + sizeof(rule->len) > data + size)
685                 return false;
686
687         /* mandatory fields */
688         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
689                 return false;
690         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
691                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
692                 struct fwdb_wmm_rule *wmm;
693
694                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
695                         return false;
696
697                 wmm = (void *)(data + wmm_ptr);
698
699                 if (!valid_wmm(wmm))
700                         return false;
701         }
702         return true;
703 }
704
705 static bool valid_country(const u8 *data, unsigned int size,
706                           const struct fwdb_country *country)
707 {
708         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
709         struct fwdb_collection *coll = (void *)(data + ptr);
710         __be16 *rules_ptr;
711         unsigned int i;
712
713         /* make sure we can read len/n_rules */
714         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
715                 return false;
716
717         /* make sure base struct and all rules fit */
718         if ((u8 *)coll + ALIGN(coll->len, 2) +
719             (coll->n_rules * 2) > data + size)
720                 return false;
721
722         /* mandatory fields must exist */
723         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
724                 return false;
725
726         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
727
728         for (i = 0; i < coll->n_rules; i++) {
729                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
730
731                 if (!valid_rule(data, size, rule_ptr))
732                         return false;
733         }
734
735         return true;
736 }
737
738 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
739 static struct key *builtin_regdb_keys;
740
741 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
742 {
743         const u8 *end = p + buflen;
744         size_t plen;
745         key_ref_t key;
746
747         while (p < end) {
748                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
749                  * than 256 bytes in size.
750                  */
751                 if (end - p < 4)
752                         goto dodgy_cert;
753                 if (p[0] != 0x30 &&
754                     p[1] != 0x82)
755                         goto dodgy_cert;
756                 plen = (p[2] << 8) | p[3];
757                 plen += 4;
758                 if (plen > end - p)
759                         goto dodgy_cert;
760
761                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
762                                            "asymmetric", NULL, p, plen,
763                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
764                                             KEY_USR_VIEW | KEY_USR_READ),
765                                            KEY_ALLOC_NOT_IN_QUOTA |
766                                            KEY_ALLOC_BUILT_IN |
767                                            KEY_ALLOC_BYPASS_RESTRICTION);
768                 if (IS_ERR(key)) {
769                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
770                                PTR_ERR(key));
771                 } else {
772                         pr_notice("Loaded X.509 cert '%s'\n",
773                                   key_ref_to_ptr(key)->description);
774                         key_ref_put(key);
775                 }
776                 p += plen;
777         }
778
779         return;
780
781 dodgy_cert:
782         pr_err("Problem parsing in-kernel X.509 certificate list\n");
783 }
784
785 static int __init load_builtin_regdb_keys(void)
786 {
787         builtin_regdb_keys =
788                 keyring_alloc(".builtin_regdb_keys",
789                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
790                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
791                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
792                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
793         if (IS_ERR(builtin_regdb_keys))
794                 return PTR_ERR(builtin_regdb_keys);
795
796         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
797
798 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
799         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
800 #endif
801 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
802         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
803                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
804 #endif
805
806         return 0;
807 }
808
809 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
810 {
811         const struct firmware *sig;
812         bool result;
813
814         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
815                 return false;
816
817         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
818                                         builtin_regdb_keys,
819                                         VERIFYING_UNSPECIFIED_SIGNATURE,
820                                         NULL, NULL) == 0;
821
822         release_firmware(sig);
823
824         return result;
825 }
826
827 static void free_regdb_keyring(void)
828 {
829         key_put(builtin_regdb_keys);
830 }
831 #else
832 static int load_builtin_regdb_keys(void)
833 {
834         return 0;
835 }
836
837 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
838 {
839         return true;
840 }
841
842 static void free_regdb_keyring(void)
843 {
844 }
845 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
846
847 static bool valid_regdb(const u8 *data, unsigned int size)
848 {
849         const struct fwdb_header *hdr = (void *)data;
850         const struct fwdb_country *country;
851
852         if (size < sizeof(*hdr))
853                 return false;
854
855         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
856                 return false;
857
858         if (hdr->version != cpu_to_be32(FWDB_VERSION))
859                 return false;
860
861         if (!regdb_has_valid_signature(data, size))
862                 return false;
863
864         country = &hdr->country[0];
865         while ((u8 *)(country + 1) <= data + size) {
866                 if (!country->coll_ptr)
867                         break;
868                 if (!valid_country(data, size, country))
869                         return false;
870                 country++;
871         }
872
873         return true;
874 }
875
876 static void set_wmm_rule(const struct fwdb_header *db,
877                          const struct fwdb_country *country,
878                          const struct fwdb_rule *rule,
879                          struct ieee80211_reg_rule *rrule)
880 {
881         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
882         struct fwdb_wmm_rule *wmm;
883         unsigned int i, wmm_ptr;
884
885         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
886         wmm = (void *)((u8 *)db + wmm_ptr);
887
888         if (!valid_wmm(wmm)) {
889                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
890                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
891                        country->alpha2[0], country->alpha2[1]);
892                 return;
893         }
894
895         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
896                 wmm_rule->client[i].cw_min =
897                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
898                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
899                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
900                 wmm_rule->client[i].cot =
901                         1000 * be16_to_cpu(wmm->client[i].cot);
902                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
903                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
904                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
905                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
906         }
907
908         rrule->has_wmm = true;
909 }
910
911 static int __regdb_query_wmm(const struct fwdb_header *db,
912                              const struct fwdb_country *country, int freq,
913                              struct ieee80211_reg_rule *rrule)
914 {
915         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
916         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
917         int i;
918
919         for (i = 0; i < coll->n_rules; i++) {
920                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
921                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
922                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
923
924                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
925                         continue;
926
927                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
928                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
929                         set_wmm_rule(db, country, rule, rrule);
930                         return 0;
931                 }
932         }
933
934         return -ENODATA;
935 }
936
937 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
938 {
939         const struct fwdb_header *hdr = regdb;
940         const struct fwdb_country *country;
941
942         if (!regdb)
943                 return -ENODATA;
944
945         if (IS_ERR(regdb))
946                 return PTR_ERR(regdb);
947
948         country = &hdr->country[0];
949         while (country->coll_ptr) {
950                 if (alpha2_equal(alpha2, country->alpha2))
951                         return __regdb_query_wmm(regdb, country, freq, rule);
952
953                 country++;
954         }
955
956         return -ENODATA;
957 }
958 EXPORT_SYMBOL(reg_query_regdb_wmm);
959
960 static int regdb_query_country(const struct fwdb_header *db,
961                                const struct fwdb_country *country)
962 {
963         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
964         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
965         struct ieee80211_regdomain *regdom;
966         unsigned int i;
967
968         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
969                          GFP_KERNEL);
970         if (!regdom)
971                 return -ENOMEM;
972
973         regdom->n_reg_rules = coll->n_rules;
974         regdom->alpha2[0] = country->alpha2[0];
975         regdom->alpha2[1] = country->alpha2[1];
976         regdom->dfs_region = coll->dfs_region;
977
978         for (i = 0; i < regdom->n_reg_rules; i++) {
979                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
980                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
981                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
982                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
983
984                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
985                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
986                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
987
988                 rrule->power_rule.max_antenna_gain = 0;
989                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
990
991                 rrule->flags = 0;
992                 if (rule->flags & FWDB_FLAG_NO_OFDM)
993                         rrule->flags |= NL80211_RRF_NO_OFDM;
994                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
995                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
996                 if (rule->flags & FWDB_FLAG_DFS)
997                         rrule->flags |= NL80211_RRF_DFS;
998                 if (rule->flags & FWDB_FLAG_NO_IR)
999                         rrule->flags |= NL80211_RRF_NO_IR;
1000                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1001                         rrule->flags |= NL80211_RRF_AUTO_BW;
1002
1003                 rrule->dfs_cac_ms = 0;
1004
1005                 /* handle optional data */
1006                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1007                         rrule->dfs_cac_ms =
1008                                 1000 * be16_to_cpu(rule->cac_timeout);
1009                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1010                         set_wmm_rule(db, country, rule, rrule);
1011         }
1012
1013         return reg_schedule_apply(regdom);
1014 }
1015
1016 static int query_regdb(const char *alpha2)
1017 {
1018         const struct fwdb_header *hdr = regdb;
1019         const struct fwdb_country *country;
1020
1021         ASSERT_RTNL();
1022
1023         if (IS_ERR(regdb))
1024                 return PTR_ERR(regdb);
1025
1026         country = &hdr->country[0];
1027         while (country->coll_ptr) {
1028                 if (alpha2_equal(alpha2, country->alpha2))
1029                         return regdb_query_country(regdb, country);
1030                 country++;
1031         }
1032
1033         return -ENODATA;
1034 }
1035
1036 static void regdb_fw_cb(const struct firmware *fw, void *context)
1037 {
1038         int set_error = 0;
1039         bool restore = true;
1040         void *db;
1041
1042         if (!fw) {
1043                 pr_info("failed to load regulatory.db\n");
1044                 set_error = -ENODATA;
1045         } else if (!valid_regdb(fw->data, fw->size)) {
1046                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1047                 set_error = -EINVAL;
1048         }
1049
1050         rtnl_lock();
1051         if (regdb && !IS_ERR(regdb)) {
1052                 /* negative case - a bug
1053                  * positive case - can happen due to race in case of multiple cb's in
1054                  * queue, due to usage of asynchronous callback
1055                  *
1056                  * Either case, just restore and free new db.
1057                  */
1058         } else if (set_error) {
1059                 regdb = ERR_PTR(set_error);
1060         } else if (fw) {
1061                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1062                 if (db) {
1063                         regdb = db;
1064                         restore = context && query_regdb(context);
1065                 } else {
1066                         restore = true;
1067                 }
1068         }
1069
1070         if (restore)
1071                 restore_regulatory_settings(true, false);
1072
1073         rtnl_unlock();
1074
1075         kfree(context);
1076
1077         release_firmware(fw);
1078 }
1079
1080 static int query_regdb_file(const char *alpha2)
1081 {
1082         ASSERT_RTNL();
1083
1084         if (regdb)
1085                 return query_regdb(alpha2);
1086
1087         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1088         if (!alpha2)
1089                 return -ENOMEM;
1090
1091         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1092                                        &reg_pdev->dev, GFP_KERNEL,
1093                                        (void *)alpha2, regdb_fw_cb);
1094 }
1095
1096 int reg_reload_regdb(void)
1097 {
1098         const struct firmware *fw;
1099         void *db;
1100         int err;
1101
1102         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1103         if (err)
1104                 return err;
1105
1106         if (!valid_regdb(fw->data, fw->size)) {
1107                 err = -ENODATA;
1108                 goto out;
1109         }
1110
1111         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1112         if (!db) {
1113                 err = -ENOMEM;
1114                 goto out;
1115         }
1116
1117         rtnl_lock();
1118         if (!IS_ERR_OR_NULL(regdb))
1119                 kfree(regdb);
1120         regdb = db;
1121         rtnl_unlock();
1122
1123  out:
1124         release_firmware(fw);
1125         return err;
1126 }
1127
1128 static bool reg_query_database(struct regulatory_request *request)
1129 {
1130         if (query_regdb_file(request->alpha2) == 0)
1131                 return true;
1132
1133         if (call_crda(request->alpha2) == 0)
1134                 return true;
1135
1136         return false;
1137 }
1138
1139 bool reg_is_valid_request(const char *alpha2)
1140 {
1141         struct regulatory_request *lr = get_last_request();
1142
1143         if (!lr || lr->processed)
1144                 return false;
1145
1146         return alpha2_equal(lr->alpha2, alpha2);
1147 }
1148
1149 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1150 {
1151         struct regulatory_request *lr = get_last_request();
1152
1153         /*
1154          * Follow the driver's regulatory domain, if present, unless a country
1155          * IE has been processed or a user wants to help complaince further
1156          */
1157         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1158             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1159             wiphy->regd)
1160                 return get_wiphy_regdom(wiphy);
1161
1162         return get_cfg80211_regdom();
1163 }
1164
1165 static unsigned int
1166 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1167                                  const struct ieee80211_reg_rule *rule)
1168 {
1169         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1170         const struct ieee80211_freq_range *freq_range_tmp;
1171         const struct ieee80211_reg_rule *tmp;
1172         u32 start_freq, end_freq, idx, no;
1173
1174         for (idx = 0; idx < rd->n_reg_rules; idx++)
1175                 if (rule == &rd->reg_rules[idx])
1176                         break;
1177
1178         if (idx == rd->n_reg_rules)
1179                 return 0;
1180
1181         /* get start_freq */
1182         no = idx;
1183
1184         while (no) {
1185                 tmp = &rd->reg_rules[--no];
1186                 freq_range_tmp = &tmp->freq_range;
1187
1188                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1189                         break;
1190
1191                 freq_range = freq_range_tmp;
1192         }
1193
1194         start_freq = freq_range->start_freq_khz;
1195
1196         /* get end_freq */
1197         freq_range = &rule->freq_range;
1198         no = idx;
1199
1200         while (no < rd->n_reg_rules - 1) {
1201                 tmp = &rd->reg_rules[++no];
1202                 freq_range_tmp = &tmp->freq_range;
1203
1204                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1205                         break;
1206
1207                 freq_range = freq_range_tmp;
1208         }
1209
1210         end_freq = freq_range->end_freq_khz;
1211
1212         return end_freq - start_freq;
1213 }
1214
1215 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1216                                    const struct ieee80211_reg_rule *rule)
1217 {
1218         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1219
1220         if (rule->flags & NL80211_RRF_NO_160MHZ)
1221                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1222         if (rule->flags & NL80211_RRF_NO_80MHZ)
1223                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1224
1225         /*
1226          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1227          * are not allowed.
1228          */
1229         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1230             rule->flags & NL80211_RRF_NO_HT40PLUS)
1231                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1232
1233         return bw;
1234 }
1235
1236 /* Sanity check on a regulatory rule */
1237 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1238 {
1239         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1240         u32 freq_diff;
1241
1242         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1243                 return false;
1244
1245         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1246                 return false;
1247
1248         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1249
1250         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1251             freq_range->max_bandwidth_khz > freq_diff)
1252                 return false;
1253
1254         return true;
1255 }
1256
1257 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1258 {
1259         const struct ieee80211_reg_rule *reg_rule = NULL;
1260         unsigned int i;
1261
1262         if (!rd->n_reg_rules)
1263                 return false;
1264
1265         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1266                 return false;
1267
1268         for (i = 0; i < rd->n_reg_rules; i++) {
1269                 reg_rule = &rd->reg_rules[i];
1270                 if (!is_valid_reg_rule(reg_rule))
1271                         return false;
1272         }
1273
1274         return true;
1275 }
1276
1277 /**
1278  * freq_in_rule_band - tells us if a frequency is in a frequency band
1279  * @freq_range: frequency rule we want to query
1280  * @freq_khz: frequency we are inquiring about
1281  *
1282  * This lets us know if a specific frequency rule is or is not relevant to
1283  * a specific frequency's band. Bands are device specific and artificial
1284  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1285  * however it is safe for now to assume that a frequency rule should not be
1286  * part of a frequency's band if the start freq or end freq are off by more
1287  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1288  * 60 GHz band.
1289  * This resolution can be lowered and should be considered as we add
1290  * regulatory rule support for other "bands".
1291  **/
1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293                               u32 freq_khz)
1294 {
1295 #define ONE_GHZ_IN_KHZ  1000000
1296         /*
1297          * From 802.11ad: directional multi-gigabit (DMG):
1298          * Pertaining to operation in a frequency band containing a channel
1299          * with the Channel starting frequency above 45 GHz.
1300          */
1301         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1302                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1303         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1304                 return true;
1305         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1306                 return true;
1307         return false;
1308 #undef ONE_GHZ_IN_KHZ
1309 }
1310
1311 /*
1312  * Later on we can perhaps use the more restrictive DFS
1313  * region but we don't have information for that yet so
1314  * for now simply disallow conflicts.
1315  */
1316 static enum nl80211_dfs_regions
1317 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1318                          const enum nl80211_dfs_regions dfs_region2)
1319 {
1320         if (dfs_region1 != dfs_region2)
1321                 return NL80211_DFS_UNSET;
1322         return dfs_region1;
1323 }
1324
1325 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1326                                     const struct ieee80211_wmm_ac *wmm_ac2,
1327                                     struct ieee80211_wmm_ac *intersect)
1328 {
1329         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1330         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1331         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1332         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1333 }
1334
1335 /*
1336  * Helper for regdom_intersect(), this does the real
1337  * mathematical intersection fun
1338  */
1339 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1340                                const struct ieee80211_regdomain *rd2,
1341                                const struct ieee80211_reg_rule *rule1,
1342                                const struct ieee80211_reg_rule *rule2,
1343                                struct ieee80211_reg_rule *intersected_rule)
1344 {
1345         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1346         struct ieee80211_freq_range *freq_range;
1347         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1348         struct ieee80211_power_rule *power_rule;
1349         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1350         struct ieee80211_wmm_rule *wmm_rule;
1351         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1352
1353         freq_range1 = &rule1->freq_range;
1354         freq_range2 = &rule2->freq_range;
1355         freq_range = &intersected_rule->freq_range;
1356
1357         power_rule1 = &rule1->power_rule;
1358         power_rule2 = &rule2->power_rule;
1359         power_rule = &intersected_rule->power_rule;
1360
1361         wmm_rule1 = &rule1->wmm_rule;
1362         wmm_rule2 = &rule2->wmm_rule;
1363         wmm_rule = &intersected_rule->wmm_rule;
1364
1365         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1366                                          freq_range2->start_freq_khz);
1367         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1368                                        freq_range2->end_freq_khz);
1369
1370         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1371         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1372
1373         if (rule1->flags & NL80211_RRF_AUTO_BW)
1374                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1375         if (rule2->flags & NL80211_RRF_AUTO_BW)
1376                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1377
1378         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1379
1380         intersected_rule->flags = rule1->flags | rule2->flags;
1381
1382         /*
1383          * In case NL80211_RRF_AUTO_BW requested for both rules
1384          * set AUTO_BW in intersected rule also. Next we will
1385          * calculate BW correctly in handle_channel function.
1386          * In other case remove AUTO_BW flag while we calculate
1387          * maximum bandwidth correctly and auto calculation is
1388          * not required.
1389          */
1390         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1391             (rule2->flags & NL80211_RRF_AUTO_BW))
1392                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1393         else
1394                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1395
1396         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1397         if (freq_range->max_bandwidth_khz > freq_diff)
1398                 freq_range->max_bandwidth_khz = freq_diff;
1399
1400         power_rule->max_eirp = min(power_rule1->max_eirp,
1401                 power_rule2->max_eirp);
1402         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1403                 power_rule2->max_antenna_gain);
1404
1405         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1406                                            rule2->dfs_cac_ms);
1407
1408         if (rule1->has_wmm && rule2->has_wmm) {
1409                 u8 ac;
1410
1411                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1412                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1413                                                 &wmm_rule2->client[ac],
1414                                                 &wmm_rule->client[ac]);
1415                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1416                                                 &wmm_rule2->ap[ac],
1417                                                 &wmm_rule->ap[ac]);
1418                 }
1419
1420                 intersected_rule->has_wmm = true;
1421         } else if (rule1->has_wmm) {
1422                 *wmm_rule = *wmm_rule1;
1423                 intersected_rule->has_wmm = true;
1424         } else if (rule2->has_wmm) {
1425                 *wmm_rule = *wmm_rule2;
1426                 intersected_rule->has_wmm = true;
1427         } else {
1428                 intersected_rule->has_wmm = false;
1429         }
1430
1431         if (!is_valid_reg_rule(intersected_rule))
1432                 return -EINVAL;
1433
1434         return 0;
1435 }
1436
1437 /* check whether old rule contains new rule */
1438 static bool rule_contains(struct ieee80211_reg_rule *r1,
1439                           struct ieee80211_reg_rule *r2)
1440 {
1441         /* for simplicity, currently consider only same flags */
1442         if (r1->flags != r2->flags)
1443                 return false;
1444
1445         /* verify r1 is more restrictive */
1446         if ((r1->power_rule.max_antenna_gain >
1447              r2->power_rule.max_antenna_gain) ||
1448             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1449                 return false;
1450
1451         /* make sure r2's range is contained within r1 */
1452         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1453             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1454                 return false;
1455
1456         /* and finally verify that r1.max_bw >= r2.max_bw */
1457         if (r1->freq_range.max_bandwidth_khz <
1458             r2->freq_range.max_bandwidth_khz)
1459                 return false;
1460
1461         return true;
1462 }
1463
1464 /* add or extend current rules. do nothing if rule is already contained */
1465 static void add_rule(struct ieee80211_reg_rule *rule,
1466                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1467 {
1468         struct ieee80211_reg_rule *tmp_rule;
1469         int i;
1470
1471         for (i = 0; i < *n_rules; i++) {
1472                 tmp_rule = &reg_rules[i];
1473                 /* rule is already contained - do nothing */
1474                 if (rule_contains(tmp_rule, rule))
1475                         return;
1476
1477                 /* extend rule if possible */
1478                 if (rule_contains(rule, tmp_rule)) {
1479                         memcpy(tmp_rule, rule, sizeof(*rule));
1480                         return;
1481                 }
1482         }
1483
1484         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1485         (*n_rules)++;
1486 }
1487
1488 /**
1489  * regdom_intersect - do the intersection between two regulatory domains
1490  * @rd1: first regulatory domain
1491  * @rd2: second regulatory domain
1492  *
1493  * Use this function to get the intersection between two regulatory domains.
1494  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1495  * as no one single alpha2 can represent this regulatory domain.
1496  *
1497  * Returns a pointer to the regulatory domain structure which will hold the
1498  * resulting intersection of rules between rd1 and rd2. We will
1499  * kzalloc() this structure for you.
1500  */
1501 static struct ieee80211_regdomain *
1502 regdom_intersect(const struct ieee80211_regdomain *rd1,
1503                  const struct ieee80211_regdomain *rd2)
1504 {
1505         int r;
1506         unsigned int x, y;
1507         unsigned int num_rules = 0;
1508         const struct ieee80211_reg_rule *rule1, *rule2;
1509         struct ieee80211_reg_rule intersected_rule;
1510         struct ieee80211_regdomain *rd;
1511
1512         if (!rd1 || !rd2)
1513                 return NULL;
1514
1515         /*
1516          * First we get a count of the rules we'll need, then we actually
1517          * build them. This is to so we can malloc() and free() a
1518          * regdomain once. The reason we use reg_rules_intersect() here
1519          * is it will return -EINVAL if the rule computed makes no sense.
1520          * All rules that do check out OK are valid.
1521          */
1522
1523         for (x = 0; x < rd1->n_reg_rules; x++) {
1524                 rule1 = &rd1->reg_rules[x];
1525                 for (y = 0; y < rd2->n_reg_rules; y++) {
1526                         rule2 = &rd2->reg_rules[y];
1527                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1528                                                  &intersected_rule))
1529                                 num_rules++;
1530                 }
1531         }
1532
1533         if (!num_rules)
1534                 return NULL;
1535
1536         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1537         if (!rd)
1538                 return NULL;
1539
1540         for (x = 0; x < rd1->n_reg_rules; x++) {
1541                 rule1 = &rd1->reg_rules[x];
1542                 for (y = 0; y < rd2->n_reg_rules; y++) {
1543                         rule2 = &rd2->reg_rules[y];
1544                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1545                                                 &intersected_rule);
1546                         /*
1547                          * No need to memset here the intersected rule here as
1548                          * we're not using the stack anymore
1549                          */
1550                         if (r)
1551                                 continue;
1552
1553                         add_rule(&intersected_rule, rd->reg_rules,
1554                                  &rd->n_reg_rules);
1555                 }
1556         }
1557
1558         rd->alpha2[0] = '9';
1559         rd->alpha2[1] = '8';
1560         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1561                                                   rd2->dfs_region);
1562
1563         return rd;
1564 }
1565
1566 /*
1567  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1568  * want to just have the channel structure use these
1569  */
1570 static u32 map_regdom_flags(u32 rd_flags)
1571 {
1572         u32 channel_flags = 0;
1573         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1574                 channel_flags |= IEEE80211_CHAN_NO_IR;
1575         if (rd_flags & NL80211_RRF_DFS)
1576                 channel_flags |= IEEE80211_CHAN_RADAR;
1577         if (rd_flags & NL80211_RRF_NO_OFDM)
1578                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1579         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1580                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1581         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1582                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1583         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1584                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1585         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1586                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1587         if (rd_flags & NL80211_RRF_NO_80MHZ)
1588                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1589         if (rd_flags & NL80211_RRF_NO_160MHZ)
1590                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1591         if (rd_flags & NL80211_RRF_NO_HE)
1592                 channel_flags |= IEEE80211_CHAN_NO_HE;
1593         return channel_flags;
1594 }
1595
1596 static const struct ieee80211_reg_rule *
1597 freq_reg_info_regd(u32 center_freq,
1598                    const struct ieee80211_regdomain *regd, u32 bw)
1599 {
1600         int i;
1601         bool band_rule_found = false;
1602         bool bw_fits = false;
1603
1604         if (!regd)
1605                 return ERR_PTR(-EINVAL);
1606
1607         for (i = 0; i < regd->n_reg_rules; i++) {
1608                 const struct ieee80211_reg_rule *rr;
1609                 const struct ieee80211_freq_range *fr = NULL;
1610
1611                 rr = &regd->reg_rules[i];
1612                 fr = &rr->freq_range;
1613
1614                 /*
1615                  * We only need to know if one frequency rule was
1616                  * in center_freq's band, that's enough, so let's
1617                  * not overwrite it once found
1618                  */
1619                 if (!band_rule_found)
1620                         band_rule_found = freq_in_rule_band(fr, center_freq);
1621
1622                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1623
1624                 if (band_rule_found && bw_fits)
1625                         return rr;
1626         }
1627
1628         if (!band_rule_found)
1629                 return ERR_PTR(-ERANGE);
1630
1631         return ERR_PTR(-EINVAL);
1632 }
1633
1634 static const struct ieee80211_reg_rule *
1635 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1636 {
1637         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1638         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1639         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1640         int i = ARRAY_SIZE(bws) - 1;
1641         u32 bw;
1642
1643         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1644                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1645                 if (!IS_ERR(reg_rule))
1646                         return reg_rule;
1647         }
1648
1649         return reg_rule;
1650 }
1651
1652 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1653                                                u32 center_freq)
1654 {
1655         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1656
1657         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1658 }
1659 EXPORT_SYMBOL(freq_reg_info);
1660
1661 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1662 {
1663         switch (initiator) {
1664         case NL80211_REGDOM_SET_BY_CORE:
1665                 return "core";
1666         case NL80211_REGDOM_SET_BY_USER:
1667                 return "user";
1668         case NL80211_REGDOM_SET_BY_DRIVER:
1669                 return "driver";
1670         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1671                 return "country element";
1672         default:
1673                 WARN_ON(1);
1674                 return "bug";
1675         }
1676 }
1677 EXPORT_SYMBOL(reg_initiator_name);
1678
1679 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1680                                           const struct ieee80211_reg_rule *reg_rule,
1681                                           const struct ieee80211_channel *chan)
1682 {
1683         const struct ieee80211_freq_range *freq_range = NULL;
1684         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1685         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1686
1687         freq_range = &reg_rule->freq_range;
1688
1689         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1690         center_freq_khz = ieee80211_channel_to_khz(chan);
1691         /* Check if auto calculation requested */
1692         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694
1695         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1696         if (!cfg80211_does_bw_fit_range(freq_range,
1697                                         center_freq_khz,
1698                                         MHZ_TO_KHZ(10)))
1699                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1700         if (!cfg80211_does_bw_fit_range(freq_range,
1701                                         center_freq_khz,
1702                                         MHZ_TO_KHZ(20)))
1703                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1704
1705         if (is_s1g) {
1706                 /* S1G is strict about non overlapping channels. We can
1707                  * calculate which bandwidth is allowed per channel by finding
1708                  * the largest bandwidth which cleanly divides the freq_range.
1709                  */
1710                 int edge_offset;
1711                 int ch_bw = max_bandwidth_khz;
1712
1713                 while (ch_bw) {
1714                         edge_offset = (center_freq_khz - ch_bw / 2) -
1715                                       freq_range->start_freq_khz;
1716                         if (edge_offset % ch_bw == 0) {
1717                                 switch (KHZ_TO_MHZ(ch_bw)) {
1718                                 case 1:
1719                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1720                                         break;
1721                                 case 2:
1722                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1723                                         break;
1724                                 case 4:
1725                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1726                                         break;
1727                                 case 8:
1728                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1729                                         break;
1730                                 case 16:
1731                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1732                                         break;
1733                                 default:
1734                                         /* If we got here, no bandwidths fit on
1735                                          * this frequency, ie. band edge.
1736                                          */
1737                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1738                                         break;
1739                                 }
1740                                 break;
1741                         }
1742                         ch_bw /= 2;
1743                 }
1744         } else {
1745                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1746                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1747                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1748                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1749                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1750                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1751                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1752                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1753                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1754                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1755         }
1756         return bw_flags;
1757 }
1758
1759 static void handle_channel_single_rule(struct wiphy *wiphy,
1760                                        enum nl80211_reg_initiator initiator,
1761                                        struct ieee80211_channel *chan,
1762                                        u32 flags,
1763                                        struct regulatory_request *lr,
1764                                        struct wiphy *request_wiphy,
1765                                        const struct ieee80211_reg_rule *reg_rule)
1766 {
1767         u32 bw_flags = 0;
1768         const struct ieee80211_power_rule *power_rule = NULL;
1769         const struct ieee80211_regdomain *regd;
1770
1771         regd = reg_get_regdomain(wiphy);
1772
1773         power_rule = &reg_rule->power_rule;
1774         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1775
1776         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1777             request_wiphy && request_wiphy == wiphy &&
1778             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1779                 /*
1780                  * This guarantees the driver's requested regulatory domain
1781                  * will always be used as a base for further regulatory
1782                  * settings
1783                  */
1784                 chan->flags = chan->orig_flags =
1785                         map_regdom_flags(reg_rule->flags) | bw_flags;
1786                 chan->max_antenna_gain = chan->orig_mag =
1787                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1788                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1789                         (int) MBM_TO_DBM(power_rule->max_eirp);
1790
1791                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1792                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793                         if (reg_rule->dfs_cac_ms)
1794                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1795                 }
1796
1797                 return;
1798         }
1799
1800         chan->dfs_state = NL80211_DFS_USABLE;
1801         chan->dfs_state_entered = jiffies;
1802
1803         chan->beacon_found = false;
1804         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1805         chan->max_antenna_gain =
1806                 min_t(int, chan->orig_mag,
1807                       MBI_TO_DBI(power_rule->max_antenna_gain));
1808         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1809
1810         if (chan->flags & IEEE80211_CHAN_RADAR) {
1811                 if (reg_rule->dfs_cac_ms)
1812                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1813                 else
1814                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1815         }
1816
1817         if (chan->orig_mpwr) {
1818                 /*
1819                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1820                  * will always follow the passed country IE power settings.
1821                  */
1822                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1823                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1824                         chan->max_power = chan->max_reg_power;
1825                 else
1826                         chan->max_power = min(chan->orig_mpwr,
1827                                               chan->max_reg_power);
1828         } else
1829                 chan->max_power = chan->max_reg_power;
1830 }
1831
1832 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1833                                           enum nl80211_reg_initiator initiator,
1834                                           struct ieee80211_channel *chan,
1835                                           u32 flags,
1836                                           struct regulatory_request *lr,
1837                                           struct wiphy *request_wiphy,
1838                                           const struct ieee80211_reg_rule *rrule1,
1839                                           const struct ieee80211_reg_rule *rrule2,
1840                                           struct ieee80211_freq_range *comb_range)
1841 {
1842         u32 bw_flags1 = 0;
1843         u32 bw_flags2 = 0;
1844         const struct ieee80211_power_rule *power_rule1 = NULL;
1845         const struct ieee80211_power_rule *power_rule2 = NULL;
1846         const struct ieee80211_regdomain *regd;
1847
1848         regd = reg_get_regdomain(wiphy);
1849
1850         power_rule1 = &rrule1->power_rule;
1851         power_rule2 = &rrule2->power_rule;
1852         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1853         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1854
1855         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1856             request_wiphy && request_wiphy == wiphy &&
1857             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1858                 /* This guarantees the driver's requested regulatory domain
1859                  * will always be used as a base for further regulatory
1860                  * settings
1861                  */
1862                 chan->flags =
1863                         map_regdom_flags(rrule1->flags) |
1864                         map_regdom_flags(rrule2->flags) |
1865                         bw_flags1 |
1866                         bw_flags2;
1867                 chan->orig_flags = chan->flags;
1868                 chan->max_antenna_gain =
1869                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1870                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1871                 chan->orig_mag = chan->max_antenna_gain;
1872                 chan->max_reg_power =
1873                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1874                               MBM_TO_DBM(power_rule2->max_eirp));
1875                 chan->max_power = chan->max_reg_power;
1876                 chan->orig_mpwr = chan->max_reg_power;
1877
1878                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1879                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1880                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1881                                 chan->dfs_cac_ms = max_t(unsigned int,
1882                                                          rrule1->dfs_cac_ms,
1883                                                          rrule2->dfs_cac_ms);
1884                 }
1885
1886                 return;
1887         }
1888
1889         chan->dfs_state = NL80211_DFS_USABLE;
1890         chan->dfs_state_entered = jiffies;
1891
1892         chan->beacon_found = false;
1893         chan->flags = flags | bw_flags1 | bw_flags2 |
1894                       map_regdom_flags(rrule1->flags) |
1895                       map_regdom_flags(rrule2->flags);
1896
1897         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1898          * (otherwise no adj. rule case), recheck therefore
1899          */
1900         if (cfg80211_does_bw_fit_range(comb_range,
1901                                        ieee80211_channel_to_khz(chan),
1902                                        MHZ_TO_KHZ(10)))
1903                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1904         if (cfg80211_does_bw_fit_range(comb_range,
1905                                        ieee80211_channel_to_khz(chan),
1906                                        MHZ_TO_KHZ(20)))
1907                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1908
1909         chan->max_antenna_gain =
1910                 min_t(int, chan->orig_mag,
1911                       min_t(int,
1912                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1913                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1914         chan->max_reg_power = min_t(int,
1915                                     MBM_TO_DBM(power_rule1->max_eirp),
1916                                     MBM_TO_DBM(power_rule2->max_eirp));
1917
1918         if (chan->flags & IEEE80211_CHAN_RADAR) {
1919                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1920                         chan->dfs_cac_ms = max_t(unsigned int,
1921                                                  rrule1->dfs_cac_ms,
1922                                                  rrule2->dfs_cac_ms);
1923                 else
1924                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1925         }
1926
1927         if (chan->orig_mpwr) {
1928                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1929                  * will always follow the passed country IE power settings.
1930                  */
1931                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1932                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1933                         chan->max_power = chan->max_reg_power;
1934                 else
1935                         chan->max_power = min(chan->orig_mpwr,
1936                                               chan->max_reg_power);
1937         } else {
1938                 chan->max_power = chan->max_reg_power;
1939         }
1940 }
1941
1942 /* Note that right now we assume the desired channel bandwidth
1943  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1944  * per channel, the primary and the extension channel).
1945  */
1946 static void handle_channel(struct wiphy *wiphy,
1947                            enum nl80211_reg_initiator initiator,
1948                            struct ieee80211_channel *chan)
1949 {
1950         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1951         struct regulatory_request *lr = get_last_request();
1952         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1953         const struct ieee80211_reg_rule *rrule = NULL;
1954         const struct ieee80211_reg_rule *rrule1 = NULL;
1955         const struct ieee80211_reg_rule *rrule2 = NULL;
1956
1957         u32 flags = chan->orig_flags;
1958
1959         rrule = freq_reg_info(wiphy, orig_chan_freq);
1960         if (IS_ERR(rrule)) {
1961                 /* check for adjacent match, therefore get rules for
1962                  * chan - 20 MHz and chan + 20 MHz and test
1963                  * if reg rules are adjacent
1964                  */
1965                 rrule1 = freq_reg_info(wiphy,
1966                                        orig_chan_freq - MHZ_TO_KHZ(20));
1967                 rrule2 = freq_reg_info(wiphy,
1968                                        orig_chan_freq + MHZ_TO_KHZ(20));
1969                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1970                         struct ieee80211_freq_range comb_range;
1971
1972                         if (rrule1->freq_range.end_freq_khz !=
1973                             rrule2->freq_range.start_freq_khz)
1974                                 goto disable_chan;
1975
1976                         comb_range.start_freq_khz =
1977                                 rrule1->freq_range.start_freq_khz;
1978                         comb_range.end_freq_khz =
1979                                 rrule2->freq_range.end_freq_khz;
1980                         comb_range.max_bandwidth_khz =
1981                                 min_t(u32,
1982                                       rrule1->freq_range.max_bandwidth_khz,
1983                                       rrule2->freq_range.max_bandwidth_khz);
1984
1985                         if (!cfg80211_does_bw_fit_range(&comb_range,
1986                                                         orig_chan_freq,
1987                                                         MHZ_TO_KHZ(20)))
1988                                 goto disable_chan;
1989
1990                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1991                                                       flags, lr, request_wiphy,
1992                                                       rrule1, rrule2,
1993                                                       &comb_range);
1994                         return;
1995                 }
1996
1997 disable_chan:
1998                 /* We will disable all channels that do not match our
1999                  * received regulatory rule unless the hint is coming
2000                  * from a Country IE and the Country IE had no information
2001                  * about a band. The IEEE 802.11 spec allows for an AP
2002                  * to send only a subset of the regulatory rules allowed,
2003                  * so an AP in the US that only supports 2.4 GHz may only send
2004                  * a country IE with information for the 2.4 GHz band
2005                  * while 5 GHz is still supported.
2006                  */
2007                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2008                     PTR_ERR(rrule) == -ERANGE)
2009                         return;
2010
2011                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2012                     request_wiphy && request_wiphy == wiphy &&
2013                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2014                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2015                                  chan->center_freq, chan->freq_offset);
2016                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2017                         chan->flags = chan->orig_flags;
2018                 } else {
2019                         pr_debug("Disabling freq %d.%03d MHz\n",
2020                                  chan->center_freq, chan->freq_offset);
2021                         chan->flags |= IEEE80211_CHAN_DISABLED;
2022                 }
2023                 return;
2024         }
2025
2026         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2027                                    request_wiphy, rrule);
2028 }
2029
2030 static void handle_band(struct wiphy *wiphy,
2031                         enum nl80211_reg_initiator initiator,
2032                         struct ieee80211_supported_band *sband)
2033 {
2034         unsigned int i;
2035
2036         if (!sband)
2037                 return;
2038
2039         for (i = 0; i < sband->n_channels; i++)
2040                 handle_channel(wiphy, initiator, &sband->channels[i]);
2041 }
2042
2043 static bool reg_request_cell_base(struct regulatory_request *request)
2044 {
2045         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2046                 return false;
2047         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2048 }
2049
2050 bool reg_last_request_cell_base(void)
2051 {
2052         return reg_request_cell_base(get_last_request());
2053 }
2054
2055 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2056 /* Core specific check */
2057 static enum reg_request_treatment
2058 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2059 {
2060         struct regulatory_request *lr = get_last_request();
2061
2062         if (!reg_num_devs_support_basehint)
2063                 return REG_REQ_IGNORE;
2064
2065         if (reg_request_cell_base(lr) &&
2066             !regdom_changes(pending_request->alpha2))
2067                 return REG_REQ_ALREADY_SET;
2068
2069         return REG_REQ_OK;
2070 }
2071
2072 /* Device specific check */
2073 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2074 {
2075         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2076 }
2077 #else
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081         return REG_REQ_IGNORE;
2082 }
2083
2084 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2085 {
2086         return true;
2087 }
2088 #endif
2089
2090 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2091 {
2092         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2093             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2094                 return true;
2095         return false;
2096 }
2097
2098 static bool ignore_reg_update(struct wiphy *wiphy,
2099                               enum nl80211_reg_initiator initiator)
2100 {
2101         struct regulatory_request *lr = get_last_request();
2102
2103         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2104                 return true;
2105
2106         if (!lr) {
2107                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2108                          reg_initiator_name(initiator));
2109                 return true;
2110         }
2111
2112         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2113             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2114                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2115                          reg_initiator_name(initiator));
2116                 return true;
2117         }
2118
2119         /*
2120          * wiphy->regd will be set once the device has its own
2121          * desired regulatory domain set
2122          */
2123         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2124             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2125             !is_world_regdom(lr->alpha2)) {
2126                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2127                          reg_initiator_name(initiator));
2128                 return true;
2129         }
2130
2131         if (reg_request_cell_base(lr))
2132                 return reg_dev_ignore_cell_hint(wiphy);
2133
2134         return false;
2135 }
2136
2137 static bool reg_is_world_roaming(struct wiphy *wiphy)
2138 {
2139         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2140         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2141         struct regulatory_request *lr = get_last_request();
2142
2143         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2144                 return true;
2145
2146         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2147             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2148                 return true;
2149
2150         return false;
2151 }
2152
2153 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2154                               struct reg_beacon *reg_beacon)
2155 {
2156         struct ieee80211_supported_band *sband;
2157         struct ieee80211_channel *chan;
2158         bool channel_changed = false;
2159         struct ieee80211_channel chan_before;
2160
2161         sband = wiphy->bands[reg_beacon->chan.band];
2162         chan = &sband->channels[chan_idx];
2163
2164         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2165                 return;
2166
2167         if (chan->beacon_found)
2168                 return;
2169
2170         chan->beacon_found = true;
2171
2172         if (!reg_is_world_roaming(wiphy))
2173                 return;
2174
2175         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2176                 return;
2177
2178         chan_before = *chan;
2179
2180         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2181                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2182                 channel_changed = true;
2183         }
2184
2185         if (channel_changed)
2186                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2187 }
2188
2189 /*
2190  * Called when a scan on a wiphy finds a beacon on
2191  * new channel
2192  */
2193 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2194                                     struct reg_beacon *reg_beacon)
2195 {
2196         unsigned int i;
2197         struct ieee80211_supported_band *sband;
2198
2199         if (!wiphy->bands[reg_beacon->chan.band])
2200                 return;
2201
2202         sband = wiphy->bands[reg_beacon->chan.band];
2203
2204         for (i = 0; i < sband->n_channels; i++)
2205                 handle_reg_beacon(wiphy, i, reg_beacon);
2206 }
2207
2208 /*
2209  * Called upon reg changes or a new wiphy is added
2210  */
2211 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2212 {
2213         unsigned int i;
2214         struct ieee80211_supported_band *sband;
2215         struct reg_beacon *reg_beacon;
2216
2217         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2218                 if (!wiphy->bands[reg_beacon->chan.band])
2219                         continue;
2220                 sband = wiphy->bands[reg_beacon->chan.band];
2221                 for (i = 0; i < sband->n_channels; i++)
2222                         handle_reg_beacon(wiphy, i, reg_beacon);
2223         }
2224 }
2225
2226 /* Reap the advantages of previously found beacons */
2227 static void reg_process_beacons(struct wiphy *wiphy)
2228 {
2229         /*
2230          * Means we are just firing up cfg80211, so no beacons would
2231          * have been processed yet.
2232          */
2233         if (!last_request)
2234                 return;
2235         wiphy_update_beacon_reg(wiphy);
2236 }
2237
2238 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2239 {
2240         if (!chan)
2241                 return false;
2242         if (chan->flags & IEEE80211_CHAN_DISABLED)
2243                 return false;
2244         /* This would happen when regulatory rules disallow HT40 completely */
2245         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2246                 return false;
2247         return true;
2248 }
2249
2250 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2251                                          struct ieee80211_channel *channel)
2252 {
2253         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2254         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2255         const struct ieee80211_regdomain *regd;
2256         unsigned int i;
2257         u32 flags;
2258
2259         if (!is_ht40_allowed(channel)) {
2260                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2261                 return;
2262         }
2263
2264         /*
2265          * We need to ensure the extension channels exist to
2266          * be able to use HT40- or HT40+, this finds them (or not)
2267          */
2268         for (i = 0; i < sband->n_channels; i++) {
2269                 struct ieee80211_channel *c = &sband->channels[i];
2270
2271                 if (c->center_freq == (channel->center_freq - 20))
2272                         channel_before = c;
2273                 if (c->center_freq == (channel->center_freq + 20))
2274                         channel_after = c;
2275         }
2276
2277         flags = 0;
2278         regd = get_wiphy_regdom(wiphy);
2279         if (regd) {
2280                 const struct ieee80211_reg_rule *reg_rule =
2281                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2282                                            regd, MHZ_TO_KHZ(20));
2283
2284                 if (!IS_ERR(reg_rule))
2285                         flags = reg_rule->flags;
2286         }
2287
2288         /*
2289          * Please note that this assumes target bandwidth is 20 MHz,
2290          * if that ever changes we also need to change the below logic
2291          * to include that as well.
2292          */
2293         if (!is_ht40_allowed(channel_before) ||
2294             flags & NL80211_RRF_NO_HT40MINUS)
2295                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2296         else
2297                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2298
2299         if (!is_ht40_allowed(channel_after) ||
2300             flags & NL80211_RRF_NO_HT40PLUS)
2301                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2302         else
2303                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2304 }
2305
2306 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2307                                       struct ieee80211_supported_band *sband)
2308 {
2309         unsigned int i;
2310
2311         if (!sband)
2312                 return;
2313
2314         for (i = 0; i < sband->n_channels; i++)
2315                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2316 }
2317
2318 static void reg_process_ht_flags(struct wiphy *wiphy)
2319 {
2320         enum nl80211_band band;
2321
2322         if (!wiphy)
2323                 return;
2324
2325         for (band = 0; band < NUM_NL80211_BANDS; band++)
2326                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2327 }
2328
2329 static void reg_call_notifier(struct wiphy *wiphy,
2330                               struct regulatory_request *request)
2331 {
2332         if (wiphy->reg_notifier)
2333                 wiphy->reg_notifier(wiphy, request);
2334 }
2335
2336 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2337 {
2338         struct cfg80211_chan_def chandef = {};
2339         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2340         enum nl80211_iftype iftype;
2341
2342         wdev_lock(wdev);
2343         iftype = wdev->iftype;
2344
2345         /* make sure the interface is active */
2346         if (!wdev->netdev || !netif_running(wdev->netdev))
2347                 goto wdev_inactive_unlock;
2348
2349         switch (iftype) {
2350         case NL80211_IFTYPE_AP:
2351         case NL80211_IFTYPE_P2P_GO:
2352                 if (!wdev->beacon_interval)
2353                         goto wdev_inactive_unlock;
2354                 chandef = wdev->chandef;
2355                 break;
2356         case NL80211_IFTYPE_ADHOC:
2357                 if (!wdev->ssid_len)
2358                         goto wdev_inactive_unlock;
2359                 chandef = wdev->chandef;
2360                 break;
2361         case NL80211_IFTYPE_STATION:
2362         case NL80211_IFTYPE_P2P_CLIENT:
2363                 if (!wdev->current_bss ||
2364                     !wdev->current_bss->pub.channel)
2365                         goto wdev_inactive_unlock;
2366
2367                 if (!rdev->ops->get_channel ||
2368                     rdev_get_channel(rdev, wdev, &chandef))
2369                         cfg80211_chandef_create(&chandef,
2370                                                 wdev->current_bss->pub.channel,
2371                                                 NL80211_CHAN_NO_HT);
2372                 break;
2373         case NL80211_IFTYPE_MONITOR:
2374         case NL80211_IFTYPE_AP_VLAN:
2375         case NL80211_IFTYPE_P2P_DEVICE:
2376                 /* no enforcement required */
2377                 break;
2378         default:
2379                 /* others not implemented for now */
2380                 WARN_ON(1);
2381                 break;
2382         }
2383
2384         wdev_unlock(wdev);
2385
2386         switch (iftype) {
2387         case NL80211_IFTYPE_AP:
2388         case NL80211_IFTYPE_P2P_GO:
2389         case NL80211_IFTYPE_ADHOC:
2390                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2391         case NL80211_IFTYPE_STATION:
2392         case NL80211_IFTYPE_P2P_CLIENT:
2393                 return cfg80211_chandef_usable(wiphy, &chandef,
2394                                                IEEE80211_CHAN_DISABLED);
2395         default:
2396                 break;
2397         }
2398
2399         return true;
2400
2401 wdev_inactive_unlock:
2402         wdev_unlock(wdev);
2403         return true;
2404 }
2405
2406 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2407 {
2408         struct wireless_dev *wdev;
2409         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2410
2411         ASSERT_RTNL();
2412
2413         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2414                 if (!reg_wdev_chan_valid(wiphy, wdev))
2415                         cfg80211_leave(rdev, wdev);
2416 }
2417
2418 static void reg_check_chans_work(struct work_struct *work)
2419 {
2420         struct cfg80211_registered_device *rdev;
2421
2422         pr_debug("Verifying active interfaces after reg change\n");
2423         rtnl_lock();
2424
2425         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2426                 if (!(rdev->wiphy.regulatory_flags &
2427                       REGULATORY_IGNORE_STALE_KICKOFF))
2428                         reg_leave_invalid_chans(&rdev->wiphy);
2429
2430         rtnl_unlock();
2431 }
2432
2433 static void reg_check_channels(void)
2434 {
2435         /*
2436          * Give usermode a chance to do something nicer (move to another
2437          * channel, orderly disconnection), before forcing a disconnection.
2438          */
2439         mod_delayed_work(system_power_efficient_wq,
2440                          &reg_check_chans,
2441                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2442 }
2443
2444 static void wiphy_update_regulatory(struct wiphy *wiphy,
2445                                     enum nl80211_reg_initiator initiator)
2446 {
2447         enum nl80211_band band;
2448         struct regulatory_request *lr = get_last_request();
2449
2450         if (ignore_reg_update(wiphy, initiator)) {
2451                 /*
2452                  * Regulatory updates set by CORE are ignored for custom
2453                  * regulatory cards. Let us notify the changes to the driver,
2454                  * as some drivers used this to restore its orig_* reg domain.
2455                  */
2456                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2457                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2458                     !(wiphy->regulatory_flags &
2459                       REGULATORY_WIPHY_SELF_MANAGED))
2460                         reg_call_notifier(wiphy, lr);
2461                 return;
2462         }
2463
2464         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2465
2466         for (band = 0; band < NUM_NL80211_BANDS; band++)
2467                 handle_band(wiphy, initiator, wiphy->bands[band]);
2468
2469         reg_process_beacons(wiphy);
2470         reg_process_ht_flags(wiphy);
2471         reg_call_notifier(wiphy, lr);
2472 }
2473
2474 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2475 {
2476         struct cfg80211_registered_device *rdev;
2477         struct wiphy *wiphy;
2478
2479         ASSERT_RTNL();
2480
2481         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2482                 wiphy = &rdev->wiphy;
2483                 wiphy_update_regulatory(wiphy, initiator);
2484         }
2485
2486         reg_check_channels();
2487 }
2488
2489 static void handle_channel_custom(struct wiphy *wiphy,
2490                                   struct ieee80211_channel *chan,
2491                                   const struct ieee80211_regdomain *regd,
2492                                   u32 min_bw)
2493 {
2494         u32 bw_flags = 0;
2495         const struct ieee80211_reg_rule *reg_rule = NULL;
2496         const struct ieee80211_power_rule *power_rule = NULL;
2497         u32 bw, center_freq_khz;
2498
2499         center_freq_khz = ieee80211_channel_to_khz(chan);
2500         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2501                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2502                 if (!IS_ERR(reg_rule))
2503                         break;
2504         }
2505
2506         if (IS_ERR_OR_NULL(reg_rule)) {
2507                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2508                          chan->center_freq, chan->freq_offset);
2509                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2510                         chan->flags |= IEEE80211_CHAN_DISABLED;
2511                 } else {
2512                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2513                         chan->flags = chan->orig_flags;
2514                 }
2515                 return;
2516         }
2517
2518         power_rule = &reg_rule->power_rule;
2519         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2520
2521         chan->dfs_state_entered = jiffies;
2522         chan->dfs_state = NL80211_DFS_USABLE;
2523
2524         chan->beacon_found = false;
2525
2526         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2527                 chan->flags = chan->orig_flags | bw_flags |
2528                               map_regdom_flags(reg_rule->flags);
2529         else
2530                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2531
2532         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2533         chan->max_reg_power = chan->max_power =
2534                 (int) MBM_TO_DBM(power_rule->max_eirp);
2535
2536         if (chan->flags & IEEE80211_CHAN_RADAR) {
2537                 if (reg_rule->dfs_cac_ms)
2538                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2539                 else
2540                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2541         }
2542
2543         chan->max_power = chan->max_reg_power;
2544 }
2545
2546 static void handle_band_custom(struct wiphy *wiphy,
2547                                struct ieee80211_supported_band *sband,
2548                                const struct ieee80211_regdomain *regd)
2549 {
2550         unsigned int i;
2551
2552         if (!sband)
2553                 return;
2554
2555         /*
2556          * We currently assume that you always want at least 20 MHz,
2557          * otherwise channel 12 might get enabled if this rule is
2558          * compatible to US, which permits 2402 - 2472 MHz.
2559          */
2560         for (i = 0; i < sband->n_channels; i++)
2561                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2562                                       MHZ_TO_KHZ(20));
2563 }
2564
2565 /* Used by drivers prior to wiphy registration */
2566 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2567                                    const struct ieee80211_regdomain *regd)
2568 {
2569         const struct ieee80211_regdomain *new_regd, *tmp;
2570         enum nl80211_band band;
2571         unsigned int bands_set = 0;
2572
2573         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2574              "wiphy should have REGULATORY_CUSTOM_REG\n");
2575         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2576
2577         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2578                 if (!wiphy->bands[band])
2579                         continue;
2580                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2581                 bands_set++;
2582         }
2583
2584         /*
2585          * no point in calling this if it won't have any effect
2586          * on your device's supported bands.
2587          */
2588         WARN_ON(!bands_set);
2589         new_regd = reg_copy_regd(regd);
2590         if (IS_ERR(new_regd))
2591                 return;
2592
2593         rtnl_lock();
2594         wiphy_lock(wiphy);
2595
2596         tmp = get_wiphy_regdom(wiphy);
2597         rcu_assign_pointer(wiphy->regd, new_regd);
2598         rcu_free_regdom(tmp);
2599
2600         wiphy_unlock(wiphy);
2601         rtnl_unlock();
2602 }
2603 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2604
2605 static void reg_set_request_processed(void)
2606 {
2607         bool need_more_processing = false;
2608         struct regulatory_request *lr = get_last_request();
2609
2610         lr->processed = true;
2611
2612         spin_lock(&reg_requests_lock);
2613         if (!list_empty(&reg_requests_list))
2614                 need_more_processing = true;
2615         spin_unlock(&reg_requests_lock);
2616
2617         cancel_crda_timeout();
2618
2619         if (need_more_processing)
2620                 schedule_work(&reg_work);
2621 }
2622
2623 /**
2624  * reg_process_hint_core - process core regulatory requests
2625  * @core_request: a pending core regulatory request
2626  *
2627  * The wireless subsystem can use this function to process
2628  * a regulatory request issued by the regulatory core.
2629  */
2630 static enum reg_request_treatment
2631 reg_process_hint_core(struct regulatory_request *core_request)
2632 {
2633         if (reg_query_database(core_request)) {
2634                 core_request->intersect = false;
2635                 core_request->processed = false;
2636                 reg_update_last_request(core_request);
2637                 return REG_REQ_OK;
2638         }
2639
2640         return REG_REQ_IGNORE;
2641 }
2642
2643 static enum reg_request_treatment
2644 __reg_process_hint_user(struct regulatory_request *user_request)
2645 {
2646         struct regulatory_request *lr = get_last_request();
2647
2648         if (reg_request_cell_base(user_request))
2649                 return reg_ignore_cell_hint(user_request);
2650
2651         if (reg_request_cell_base(lr))
2652                 return REG_REQ_IGNORE;
2653
2654         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2655                 return REG_REQ_INTERSECT;
2656         /*
2657          * If the user knows better the user should set the regdom
2658          * to their country before the IE is picked up
2659          */
2660         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2661             lr->intersect)
2662                 return REG_REQ_IGNORE;
2663         /*
2664          * Process user requests only after previous user/driver/core
2665          * requests have been processed
2666          */
2667         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2668              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2669              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2670             regdom_changes(lr->alpha2))
2671                 return REG_REQ_IGNORE;
2672
2673         if (!regdom_changes(user_request->alpha2))
2674                 return REG_REQ_ALREADY_SET;
2675
2676         return REG_REQ_OK;
2677 }
2678
2679 /**
2680  * reg_process_hint_user - process user regulatory requests
2681  * @user_request: a pending user regulatory request
2682  *
2683  * The wireless subsystem can use this function to process
2684  * a regulatory request initiated by userspace.
2685  */
2686 static enum reg_request_treatment
2687 reg_process_hint_user(struct regulatory_request *user_request)
2688 {
2689         enum reg_request_treatment treatment;
2690
2691         treatment = __reg_process_hint_user(user_request);
2692         if (treatment == REG_REQ_IGNORE ||
2693             treatment == REG_REQ_ALREADY_SET)
2694                 return REG_REQ_IGNORE;
2695
2696         user_request->intersect = treatment == REG_REQ_INTERSECT;
2697         user_request->processed = false;
2698
2699         if (reg_query_database(user_request)) {
2700                 reg_update_last_request(user_request);
2701                 user_alpha2[0] = user_request->alpha2[0];
2702                 user_alpha2[1] = user_request->alpha2[1];
2703                 return REG_REQ_OK;
2704         }
2705
2706         return REG_REQ_IGNORE;
2707 }
2708
2709 static enum reg_request_treatment
2710 __reg_process_hint_driver(struct regulatory_request *driver_request)
2711 {
2712         struct regulatory_request *lr = get_last_request();
2713
2714         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2715                 if (regdom_changes(driver_request->alpha2))
2716                         return REG_REQ_OK;
2717                 return REG_REQ_ALREADY_SET;
2718         }
2719
2720         /*
2721          * This would happen if you unplug and plug your card
2722          * back in or if you add a new device for which the previously
2723          * loaded card also agrees on the regulatory domain.
2724          */
2725         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2726             !regdom_changes(driver_request->alpha2))
2727                 return REG_REQ_ALREADY_SET;
2728
2729         return REG_REQ_INTERSECT;
2730 }
2731
2732 /**
2733  * reg_process_hint_driver - process driver regulatory requests
2734  * @wiphy: the wireless device for the regulatory request
2735  * @driver_request: a pending driver regulatory request
2736  *
2737  * The wireless subsystem can use this function to process
2738  * a regulatory request issued by an 802.11 driver.
2739  *
2740  * Returns one of the different reg request treatment values.
2741  */
2742 static enum reg_request_treatment
2743 reg_process_hint_driver(struct wiphy *wiphy,
2744                         struct regulatory_request *driver_request)
2745 {
2746         const struct ieee80211_regdomain *regd, *tmp;
2747         enum reg_request_treatment treatment;
2748
2749         treatment = __reg_process_hint_driver(driver_request);
2750
2751         switch (treatment) {
2752         case REG_REQ_OK:
2753                 break;
2754         case REG_REQ_IGNORE:
2755                 return REG_REQ_IGNORE;
2756         case REG_REQ_INTERSECT:
2757         case REG_REQ_ALREADY_SET:
2758                 regd = reg_copy_regd(get_cfg80211_regdom());
2759                 if (IS_ERR(regd))
2760                         return REG_REQ_IGNORE;
2761
2762                 tmp = get_wiphy_regdom(wiphy);
2763                 ASSERT_RTNL();
2764                 wiphy_lock(wiphy);
2765                 rcu_assign_pointer(wiphy->regd, regd);
2766                 wiphy_unlock(wiphy);
2767                 rcu_free_regdom(tmp);
2768         }
2769
2770
2771         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2772         driver_request->processed = false;
2773
2774         /*
2775          * Since CRDA will not be called in this case as we already
2776          * have applied the requested regulatory domain before we just
2777          * inform userspace we have processed the request
2778          */
2779         if (treatment == REG_REQ_ALREADY_SET) {
2780                 nl80211_send_reg_change_event(driver_request);
2781                 reg_update_last_request(driver_request);
2782                 reg_set_request_processed();
2783                 return REG_REQ_ALREADY_SET;
2784         }
2785
2786         if (reg_query_database(driver_request)) {
2787                 reg_update_last_request(driver_request);
2788                 return REG_REQ_OK;
2789         }
2790
2791         return REG_REQ_IGNORE;
2792 }
2793
2794 static enum reg_request_treatment
2795 __reg_process_hint_country_ie(struct wiphy *wiphy,
2796                               struct regulatory_request *country_ie_request)
2797 {
2798         struct wiphy *last_wiphy = NULL;
2799         struct regulatory_request *lr = get_last_request();
2800
2801         if (reg_request_cell_base(lr)) {
2802                 /* Trust a Cell base station over the AP's country IE */
2803                 if (regdom_changes(country_ie_request->alpha2))
2804                         return REG_REQ_IGNORE;
2805                 return REG_REQ_ALREADY_SET;
2806         } else {
2807                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2808                         return REG_REQ_IGNORE;
2809         }
2810
2811         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2812                 return -EINVAL;
2813
2814         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2815                 return REG_REQ_OK;
2816
2817         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2818
2819         if (last_wiphy != wiphy) {
2820                 /*
2821                  * Two cards with two APs claiming different
2822                  * Country IE alpha2s. We could
2823                  * intersect them, but that seems unlikely
2824                  * to be correct. Reject second one for now.
2825                  */
2826                 if (regdom_changes(country_ie_request->alpha2))
2827                         return REG_REQ_IGNORE;
2828                 return REG_REQ_ALREADY_SET;
2829         }
2830
2831         if (regdom_changes(country_ie_request->alpha2))
2832                 return REG_REQ_OK;
2833         return REG_REQ_ALREADY_SET;
2834 }
2835
2836 /**
2837  * reg_process_hint_country_ie - process regulatory requests from country IEs
2838  * @wiphy: the wireless device for the regulatory request
2839  * @country_ie_request: a regulatory request from a country IE
2840  *
2841  * The wireless subsystem can use this function to process
2842  * a regulatory request issued by a country Information Element.
2843  *
2844  * Returns one of the different reg request treatment values.
2845  */
2846 static enum reg_request_treatment
2847 reg_process_hint_country_ie(struct wiphy *wiphy,
2848                             struct regulatory_request *country_ie_request)
2849 {
2850         enum reg_request_treatment treatment;
2851
2852         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2853
2854         switch (treatment) {
2855         case REG_REQ_OK:
2856                 break;
2857         case REG_REQ_IGNORE:
2858                 return REG_REQ_IGNORE;
2859         case REG_REQ_ALREADY_SET:
2860                 reg_free_request(country_ie_request);
2861                 return REG_REQ_ALREADY_SET;
2862         case REG_REQ_INTERSECT:
2863                 /*
2864                  * This doesn't happen yet, not sure we
2865                  * ever want to support it for this case.
2866                  */
2867                 WARN_ONCE(1, "Unexpected intersection for country elements");
2868                 return REG_REQ_IGNORE;
2869         }
2870
2871         country_ie_request->intersect = false;
2872         country_ie_request->processed = false;
2873
2874         if (reg_query_database(country_ie_request)) {
2875                 reg_update_last_request(country_ie_request);
2876                 return REG_REQ_OK;
2877         }
2878
2879         return REG_REQ_IGNORE;
2880 }
2881
2882 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2883 {
2884         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2885         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2886         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2887         bool dfs_domain_same;
2888
2889         rcu_read_lock();
2890
2891         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2892         wiphy1_regd = rcu_dereference(wiphy1->regd);
2893         if (!wiphy1_regd)
2894                 wiphy1_regd = cfg80211_regd;
2895
2896         wiphy2_regd = rcu_dereference(wiphy2->regd);
2897         if (!wiphy2_regd)
2898                 wiphy2_regd = cfg80211_regd;
2899
2900         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2901
2902         rcu_read_unlock();
2903
2904         return dfs_domain_same;
2905 }
2906
2907 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2908                                     struct ieee80211_channel *src_chan)
2909 {
2910         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2911             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2912                 return;
2913
2914         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2915             src_chan->flags & IEEE80211_CHAN_DISABLED)
2916                 return;
2917
2918         if (src_chan->center_freq == dst_chan->center_freq &&
2919             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2920                 dst_chan->dfs_state = src_chan->dfs_state;
2921                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2922         }
2923 }
2924
2925 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2926                                        struct wiphy *src_wiphy)
2927 {
2928         struct ieee80211_supported_band *src_sband, *dst_sband;
2929         struct ieee80211_channel *src_chan, *dst_chan;
2930         int i, j, band;
2931
2932         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2933                 return;
2934
2935         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2936                 dst_sband = dst_wiphy->bands[band];
2937                 src_sband = src_wiphy->bands[band];
2938                 if (!dst_sband || !src_sband)
2939                         continue;
2940
2941                 for (i = 0; i < dst_sband->n_channels; i++) {
2942                         dst_chan = &dst_sband->channels[i];
2943                         for (j = 0; j < src_sband->n_channels; j++) {
2944                                 src_chan = &src_sband->channels[j];
2945                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2946                         }
2947                 }
2948         }
2949 }
2950
2951 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2952 {
2953         struct cfg80211_registered_device *rdev;
2954
2955         ASSERT_RTNL();
2956
2957         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2958                 if (wiphy == &rdev->wiphy)
2959                         continue;
2960                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2961         }
2962 }
2963
2964 /* This processes *all* regulatory hints */
2965 static void reg_process_hint(struct regulatory_request *reg_request)
2966 {
2967         struct wiphy *wiphy = NULL;
2968         enum reg_request_treatment treatment;
2969         enum nl80211_reg_initiator initiator = reg_request->initiator;
2970
2971         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2972                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2973
2974         switch (initiator) {
2975         case NL80211_REGDOM_SET_BY_CORE:
2976                 treatment = reg_process_hint_core(reg_request);
2977                 break;
2978         case NL80211_REGDOM_SET_BY_USER:
2979                 treatment = reg_process_hint_user(reg_request);
2980                 break;
2981         case NL80211_REGDOM_SET_BY_DRIVER:
2982                 if (!wiphy)
2983                         goto out_free;
2984                 treatment = reg_process_hint_driver(wiphy, reg_request);
2985                 break;
2986         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2987                 if (!wiphy)
2988                         goto out_free;
2989                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2990                 break;
2991         default:
2992                 WARN(1, "invalid initiator %d\n", initiator);
2993                 goto out_free;
2994         }
2995
2996         if (treatment == REG_REQ_IGNORE)
2997                 goto out_free;
2998
2999         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3000              "unexpected treatment value %d\n", treatment);
3001
3002         /* This is required so that the orig_* parameters are saved.
3003          * NOTE: treatment must be set for any case that reaches here!
3004          */
3005         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3006             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3007                 wiphy_update_regulatory(wiphy, initiator);
3008                 wiphy_all_share_dfs_chan_state(wiphy);
3009                 reg_check_channels();
3010         }
3011
3012         return;
3013
3014 out_free:
3015         reg_free_request(reg_request);
3016 }
3017
3018 static void notify_self_managed_wiphys(struct regulatory_request *request)
3019 {
3020         struct cfg80211_registered_device *rdev;
3021         struct wiphy *wiphy;
3022
3023         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3024                 wiphy = &rdev->wiphy;
3025                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3026                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3027                         reg_call_notifier(wiphy, request);
3028         }
3029 }
3030
3031 /*
3032  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3033  * Regulatory hints come on a first come first serve basis and we
3034  * must process each one atomically.
3035  */
3036 static void reg_process_pending_hints(void)
3037 {
3038         struct regulatory_request *reg_request, *lr;
3039
3040         lr = get_last_request();
3041
3042         /* When last_request->processed becomes true this will be rescheduled */
3043         if (lr && !lr->processed) {
3044                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3045                 return;
3046         }
3047
3048         spin_lock(&reg_requests_lock);
3049
3050         if (list_empty(&reg_requests_list)) {
3051                 spin_unlock(&reg_requests_lock);
3052                 return;
3053         }
3054
3055         reg_request = list_first_entry(&reg_requests_list,
3056                                        struct regulatory_request,
3057                                        list);
3058         list_del_init(&reg_request->list);
3059
3060         spin_unlock(&reg_requests_lock);
3061
3062         notify_self_managed_wiphys(reg_request);
3063
3064         reg_process_hint(reg_request);
3065
3066         lr = get_last_request();
3067
3068         spin_lock(&reg_requests_lock);
3069         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3070                 schedule_work(&reg_work);
3071         spin_unlock(&reg_requests_lock);
3072 }
3073
3074 /* Processes beacon hints -- this has nothing to do with country IEs */
3075 static void reg_process_pending_beacon_hints(void)
3076 {
3077         struct cfg80211_registered_device *rdev;
3078         struct reg_beacon *pending_beacon, *tmp;
3079
3080         /* This goes through the _pending_ beacon list */
3081         spin_lock_bh(&reg_pending_beacons_lock);
3082
3083         list_for_each_entry_safe(pending_beacon, tmp,
3084                                  &reg_pending_beacons, list) {
3085                 list_del_init(&pending_beacon->list);
3086
3087                 /* Applies the beacon hint to current wiphys */
3088                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3089                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3090
3091                 /* Remembers the beacon hint for new wiphys or reg changes */
3092                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3093         }
3094
3095         spin_unlock_bh(&reg_pending_beacons_lock);
3096 }
3097
3098 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3099 {
3100         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3101         const struct ieee80211_regdomain *tmp;
3102         const struct ieee80211_regdomain *regd;
3103         enum nl80211_band band;
3104         struct regulatory_request request = {};
3105
3106         ASSERT_RTNL();
3107         lockdep_assert_wiphy(wiphy);
3108
3109         spin_lock(&reg_requests_lock);
3110         regd = rdev->requested_regd;
3111         rdev->requested_regd = NULL;
3112         spin_unlock(&reg_requests_lock);
3113
3114         if (!regd)
3115                 return;
3116
3117         tmp = get_wiphy_regdom(wiphy);
3118         rcu_assign_pointer(wiphy->regd, regd);
3119         rcu_free_regdom(tmp);
3120
3121         for (band = 0; band < NUM_NL80211_BANDS; band++)
3122                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3123
3124         reg_process_ht_flags(wiphy);
3125
3126         request.wiphy_idx = get_wiphy_idx(wiphy);
3127         request.alpha2[0] = regd->alpha2[0];
3128         request.alpha2[1] = regd->alpha2[1];
3129         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3130
3131         nl80211_send_wiphy_reg_change_event(&request);
3132 }
3133
3134 static void reg_process_self_managed_hints(void)
3135 {
3136         struct cfg80211_registered_device *rdev;
3137
3138         ASSERT_RTNL();
3139
3140         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3141                 wiphy_lock(&rdev->wiphy);
3142                 reg_process_self_managed_hint(&rdev->wiphy);
3143                 wiphy_unlock(&rdev->wiphy);
3144         }
3145
3146         reg_check_channels();
3147 }
3148
3149 static void reg_todo(struct work_struct *work)
3150 {
3151         rtnl_lock();
3152         reg_process_pending_hints();
3153         reg_process_pending_beacon_hints();
3154         reg_process_self_managed_hints();
3155         rtnl_unlock();
3156 }
3157
3158 static void queue_regulatory_request(struct regulatory_request *request)
3159 {
3160         request->alpha2[0] = toupper(request->alpha2[0]);
3161         request->alpha2[1] = toupper(request->alpha2[1]);
3162
3163         spin_lock(&reg_requests_lock);
3164         list_add_tail(&request->list, &reg_requests_list);
3165         spin_unlock(&reg_requests_lock);
3166
3167         schedule_work(&reg_work);
3168 }
3169
3170 /*
3171  * Core regulatory hint -- happens during cfg80211_init()
3172  * and when we restore regulatory settings.
3173  */
3174 static int regulatory_hint_core(const char *alpha2)
3175 {
3176         struct regulatory_request *request;
3177
3178         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3179         if (!request)
3180                 return -ENOMEM;
3181
3182         request->alpha2[0] = alpha2[0];
3183         request->alpha2[1] = alpha2[1];
3184         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3185         request->wiphy_idx = WIPHY_IDX_INVALID;
3186
3187         queue_regulatory_request(request);
3188
3189         return 0;
3190 }
3191
3192 /* User hints */
3193 int regulatory_hint_user(const char *alpha2,
3194                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3195 {
3196         struct regulatory_request *request;
3197
3198         if (WARN_ON(!alpha2))
3199                 return -EINVAL;
3200
3201         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3202                 return -EINVAL;
3203
3204         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3205         if (!request)
3206                 return -ENOMEM;
3207
3208         request->wiphy_idx = WIPHY_IDX_INVALID;
3209         request->alpha2[0] = alpha2[0];
3210         request->alpha2[1] = alpha2[1];
3211         request->initiator = NL80211_REGDOM_SET_BY_USER;
3212         request->user_reg_hint_type = user_reg_hint_type;
3213
3214         /* Allow calling CRDA again */
3215         reset_crda_timeouts();
3216
3217         queue_regulatory_request(request);
3218
3219         return 0;
3220 }
3221
3222 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3223 {
3224         spin_lock(&reg_indoor_lock);
3225
3226         /* It is possible that more than one user space process is trying to
3227          * configure the indoor setting. To handle such cases, clear the indoor
3228          * setting in case that some process does not think that the device
3229          * is operating in an indoor environment. In addition, if a user space
3230          * process indicates that it is controlling the indoor setting, save its
3231          * portid, i.e., make it the owner.
3232          */
3233         reg_is_indoor = is_indoor;
3234         if (reg_is_indoor) {
3235                 if (!reg_is_indoor_portid)
3236                         reg_is_indoor_portid = portid;
3237         } else {
3238                 reg_is_indoor_portid = 0;
3239         }
3240
3241         spin_unlock(&reg_indoor_lock);
3242
3243         if (!is_indoor)
3244                 reg_check_channels();
3245
3246         return 0;
3247 }
3248
3249 void regulatory_netlink_notify(u32 portid)
3250 {
3251         spin_lock(&reg_indoor_lock);
3252
3253         if (reg_is_indoor_portid != portid) {
3254                 spin_unlock(&reg_indoor_lock);
3255                 return;
3256         }
3257
3258         reg_is_indoor = false;
3259         reg_is_indoor_portid = 0;
3260
3261         spin_unlock(&reg_indoor_lock);
3262
3263         reg_check_channels();
3264 }
3265
3266 /* Driver hints */
3267 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3268 {
3269         struct regulatory_request *request;
3270
3271         if (WARN_ON(!alpha2 || !wiphy))
3272                 return -EINVAL;
3273
3274         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3275
3276         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3277         if (!request)
3278                 return -ENOMEM;
3279
3280         request->wiphy_idx = get_wiphy_idx(wiphy);
3281
3282         request->alpha2[0] = alpha2[0];
3283         request->alpha2[1] = alpha2[1];
3284         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3285
3286         /* Allow calling CRDA again */
3287         reset_crda_timeouts();
3288
3289         queue_regulatory_request(request);
3290
3291         return 0;
3292 }
3293 EXPORT_SYMBOL(regulatory_hint);
3294
3295 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3296                                 const u8 *country_ie, u8 country_ie_len)
3297 {
3298         char alpha2[2];
3299         enum environment_cap env = ENVIRON_ANY;
3300         struct regulatory_request *request = NULL, *lr;
3301
3302         /* IE len must be evenly divisible by 2 */
3303         if (country_ie_len & 0x01)
3304                 return;
3305
3306         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3307                 return;
3308
3309         request = kzalloc(sizeof(*request), GFP_KERNEL);
3310         if (!request)
3311                 return;
3312
3313         alpha2[0] = country_ie[0];
3314         alpha2[1] = country_ie[1];
3315
3316         if (country_ie[2] == 'I')
3317                 env = ENVIRON_INDOOR;
3318         else if (country_ie[2] == 'O')
3319                 env = ENVIRON_OUTDOOR;
3320
3321         rcu_read_lock();
3322         lr = get_last_request();
3323
3324         if (unlikely(!lr))
3325                 goto out;
3326
3327         /*
3328          * We will run this only upon a successful connection on cfg80211.
3329          * We leave conflict resolution to the workqueue, where can hold
3330          * the RTNL.
3331          */
3332         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3333             lr->wiphy_idx != WIPHY_IDX_INVALID)
3334                 goto out;
3335
3336         request->wiphy_idx = get_wiphy_idx(wiphy);
3337         request->alpha2[0] = alpha2[0];
3338         request->alpha2[1] = alpha2[1];
3339         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3340         request->country_ie_env = env;
3341
3342         /* Allow calling CRDA again */
3343         reset_crda_timeouts();
3344
3345         queue_regulatory_request(request);
3346         request = NULL;
3347 out:
3348         kfree(request);
3349         rcu_read_unlock();
3350 }
3351
3352 static void restore_alpha2(char *alpha2, bool reset_user)
3353 {
3354         /* indicates there is no alpha2 to consider for restoration */
3355         alpha2[0] = '9';
3356         alpha2[1] = '7';
3357
3358         /* The user setting has precedence over the module parameter */
3359         if (is_user_regdom_saved()) {
3360                 /* Unless we're asked to ignore it and reset it */
3361                 if (reset_user) {
3362                         pr_debug("Restoring regulatory settings including user preference\n");
3363                         user_alpha2[0] = '9';
3364                         user_alpha2[1] = '7';
3365
3366                         /*
3367                          * If we're ignoring user settings, we still need to
3368                          * check the module parameter to ensure we put things
3369                          * back as they were for a full restore.
3370                          */
3371                         if (!is_world_regdom(ieee80211_regdom)) {
3372                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3373                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3374                                 alpha2[0] = ieee80211_regdom[0];
3375                                 alpha2[1] = ieee80211_regdom[1];
3376                         }
3377                 } else {
3378                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3379                                  user_alpha2[0], user_alpha2[1]);
3380                         alpha2[0] = user_alpha2[0];
3381                         alpha2[1] = user_alpha2[1];
3382                 }
3383         } else if (!is_world_regdom(ieee80211_regdom)) {
3384                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3385                          ieee80211_regdom[0], ieee80211_regdom[1]);
3386                 alpha2[0] = ieee80211_regdom[0];
3387                 alpha2[1] = ieee80211_regdom[1];
3388         } else
3389                 pr_debug("Restoring regulatory settings\n");
3390 }
3391
3392 static void restore_custom_reg_settings(struct wiphy *wiphy)
3393 {
3394         struct ieee80211_supported_band *sband;
3395         enum nl80211_band band;
3396         struct ieee80211_channel *chan;
3397         int i;
3398
3399         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3400                 sband = wiphy->bands[band];
3401                 if (!sband)
3402                         continue;
3403                 for (i = 0; i < sband->n_channels; i++) {
3404                         chan = &sband->channels[i];
3405                         chan->flags = chan->orig_flags;
3406                         chan->max_antenna_gain = chan->orig_mag;
3407                         chan->max_power = chan->orig_mpwr;
3408                         chan->beacon_found = false;
3409                 }
3410         }
3411 }
3412
3413 /*
3414  * Restoring regulatory settings involves ignoring any
3415  * possibly stale country IE information and user regulatory
3416  * settings if so desired, this includes any beacon hints
3417  * learned as we could have traveled outside to another country
3418  * after disconnection. To restore regulatory settings we do
3419  * exactly what we did at bootup:
3420  *
3421  *   - send a core regulatory hint
3422  *   - send a user regulatory hint if applicable
3423  *
3424  * Device drivers that send a regulatory hint for a specific country
3425  * keep their own regulatory domain on wiphy->regd so that does
3426  * not need to be remembered.
3427  */
3428 static void restore_regulatory_settings(bool reset_user, bool cached)
3429 {
3430         char alpha2[2];
3431         char world_alpha2[2];
3432         struct reg_beacon *reg_beacon, *btmp;
3433         LIST_HEAD(tmp_reg_req_list);
3434         struct cfg80211_registered_device *rdev;
3435
3436         ASSERT_RTNL();
3437
3438         /*
3439          * Clear the indoor setting in case that it is not controlled by user
3440          * space, as otherwise there is no guarantee that the device is still
3441          * operating in an indoor environment.
3442          */
3443         spin_lock(&reg_indoor_lock);
3444         if (reg_is_indoor && !reg_is_indoor_portid) {
3445                 reg_is_indoor = false;
3446                 reg_check_channels();
3447         }
3448         spin_unlock(&reg_indoor_lock);
3449
3450         reset_regdomains(true, &world_regdom);
3451         restore_alpha2(alpha2, reset_user);
3452
3453         /*
3454          * If there's any pending requests we simply
3455          * stash them to a temporary pending queue and
3456          * add then after we've restored regulatory
3457          * settings.
3458          */
3459         spin_lock(&reg_requests_lock);
3460         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3461         spin_unlock(&reg_requests_lock);
3462
3463         /* Clear beacon hints */
3464         spin_lock_bh(&reg_pending_beacons_lock);
3465         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3466                 list_del(&reg_beacon->list);
3467                 kfree(reg_beacon);
3468         }
3469         spin_unlock_bh(&reg_pending_beacons_lock);
3470
3471         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3472                 list_del(&reg_beacon->list);
3473                 kfree(reg_beacon);
3474         }
3475
3476         /* First restore to the basic regulatory settings */
3477         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3478         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3479
3480         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3481                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3482                         continue;
3483                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3484                         restore_custom_reg_settings(&rdev->wiphy);
3485         }
3486
3487         if (cached && (!is_an_alpha2(alpha2) ||
3488                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3489                 reset_regdomains(false, cfg80211_world_regdom);
3490                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3491                 print_regdomain(get_cfg80211_regdom());
3492                 nl80211_send_reg_change_event(&core_request_world);
3493                 reg_set_request_processed();
3494
3495                 if (is_an_alpha2(alpha2) &&
3496                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3497                         struct regulatory_request *ureq;
3498
3499                         spin_lock(&reg_requests_lock);
3500                         ureq = list_last_entry(&reg_requests_list,
3501                                                struct regulatory_request,
3502                                                list);
3503                         list_del(&ureq->list);
3504                         spin_unlock(&reg_requests_lock);
3505
3506                         notify_self_managed_wiphys(ureq);
3507                         reg_update_last_request(ureq);
3508                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3509                                    REGD_SOURCE_CACHED);
3510                 }
3511         } else {
3512                 regulatory_hint_core(world_alpha2);
3513
3514                 /*
3515                  * This restores the ieee80211_regdom module parameter
3516                  * preference or the last user requested regulatory
3517                  * settings, user regulatory settings takes precedence.
3518                  */
3519                 if (is_an_alpha2(alpha2))
3520                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3521         }
3522
3523         spin_lock(&reg_requests_lock);
3524         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3525         spin_unlock(&reg_requests_lock);
3526
3527         pr_debug("Kicking the queue\n");
3528
3529         schedule_work(&reg_work);
3530 }
3531
3532 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3533 {
3534         struct cfg80211_registered_device *rdev;
3535         struct wireless_dev *wdev;
3536
3537         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3538                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3539                         wdev_lock(wdev);
3540                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3541                                 wdev_unlock(wdev);
3542                                 return false;
3543                         }
3544                         wdev_unlock(wdev);
3545                 }
3546         }
3547
3548         return true;
3549 }
3550
3551 void regulatory_hint_disconnect(void)
3552 {
3553         /* Restore of regulatory settings is not required when wiphy(s)
3554          * ignore IE from connected access point but clearance of beacon hints
3555          * is required when wiphy(s) supports beacon hints.
3556          */
3557         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3558                 struct reg_beacon *reg_beacon, *btmp;
3559
3560                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3561                         return;
3562
3563                 spin_lock_bh(&reg_pending_beacons_lock);
3564                 list_for_each_entry_safe(reg_beacon, btmp,
3565                                          &reg_pending_beacons, list) {
3566                         list_del(&reg_beacon->list);
3567                         kfree(reg_beacon);
3568                 }
3569                 spin_unlock_bh(&reg_pending_beacons_lock);
3570
3571                 list_for_each_entry_safe(reg_beacon, btmp,
3572                                          &reg_beacon_list, list) {
3573                         list_del(&reg_beacon->list);
3574                         kfree(reg_beacon);
3575                 }
3576
3577                 return;
3578         }
3579
3580         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3581         restore_regulatory_settings(false, true);
3582 }
3583
3584 static bool freq_is_chan_12_13_14(u32 freq)
3585 {
3586         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3587             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3588             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3589                 return true;
3590         return false;
3591 }
3592
3593 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3594 {
3595         struct reg_beacon *pending_beacon;
3596
3597         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3598                 if (ieee80211_channel_equal(beacon_chan,
3599                                             &pending_beacon->chan))
3600                         return true;
3601         return false;
3602 }
3603
3604 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3605                                  struct ieee80211_channel *beacon_chan,
3606                                  gfp_t gfp)
3607 {
3608         struct reg_beacon *reg_beacon;
3609         bool processing;
3610
3611         if (beacon_chan->beacon_found ||
3612             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3613             (beacon_chan->band == NL80211_BAND_2GHZ &&
3614              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3615                 return 0;
3616
3617         spin_lock_bh(&reg_pending_beacons_lock);
3618         processing = pending_reg_beacon(beacon_chan);
3619         spin_unlock_bh(&reg_pending_beacons_lock);
3620
3621         if (processing)
3622                 return 0;
3623
3624         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3625         if (!reg_beacon)
3626                 return -ENOMEM;
3627
3628         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3629                  beacon_chan->center_freq, beacon_chan->freq_offset,
3630                  ieee80211_freq_khz_to_channel(
3631                          ieee80211_channel_to_khz(beacon_chan)),
3632                  wiphy_name(wiphy));
3633
3634         memcpy(&reg_beacon->chan, beacon_chan,
3635                sizeof(struct ieee80211_channel));
3636
3637         /*
3638          * Since we can be called from BH or and non-BH context
3639          * we must use spin_lock_bh()
3640          */
3641         spin_lock_bh(&reg_pending_beacons_lock);
3642         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3643         spin_unlock_bh(&reg_pending_beacons_lock);
3644
3645         schedule_work(&reg_work);
3646
3647         return 0;
3648 }
3649
3650 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3651 {
3652         unsigned int i;
3653         const struct ieee80211_reg_rule *reg_rule = NULL;
3654         const struct ieee80211_freq_range *freq_range = NULL;
3655         const struct ieee80211_power_rule *power_rule = NULL;
3656         char bw[32], cac_time[32];
3657
3658         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3659
3660         for (i = 0; i < rd->n_reg_rules; i++) {
3661                 reg_rule = &rd->reg_rules[i];
3662                 freq_range = &reg_rule->freq_range;
3663                 power_rule = &reg_rule->power_rule;
3664
3665                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3666                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3667                                  freq_range->max_bandwidth_khz,
3668                                  reg_get_max_bandwidth(rd, reg_rule));
3669                 else
3670                         snprintf(bw, sizeof(bw), "%d KHz",
3671                                  freq_range->max_bandwidth_khz);
3672
3673                 if (reg_rule->flags & NL80211_RRF_DFS)
3674                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3675                                   reg_rule->dfs_cac_ms/1000);
3676                 else
3677                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3678
3679
3680                 /*
3681                  * There may not be documentation for max antenna gain
3682                  * in certain regions
3683                  */
3684                 if (power_rule->max_antenna_gain)
3685                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3686                                 freq_range->start_freq_khz,
3687                                 freq_range->end_freq_khz,
3688                                 bw,
3689                                 power_rule->max_antenna_gain,
3690                                 power_rule->max_eirp,
3691                                 cac_time);
3692                 else
3693                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3694                                 freq_range->start_freq_khz,
3695                                 freq_range->end_freq_khz,
3696                                 bw,
3697                                 power_rule->max_eirp,
3698                                 cac_time);
3699         }
3700 }
3701
3702 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3703 {
3704         switch (dfs_region) {
3705         case NL80211_DFS_UNSET:
3706         case NL80211_DFS_FCC:
3707         case NL80211_DFS_ETSI:
3708         case NL80211_DFS_JP:
3709                 return true;
3710         default:
3711                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3712                 return false;
3713         }
3714 }
3715
3716 static void print_regdomain(const struct ieee80211_regdomain *rd)
3717 {
3718         struct regulatory_request *lr = get_last_request();
3719
3720         if (is_intersected_alpha2(rd->alpha2)) {
3721                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3722                         struct cfg80211_registered_device *rdev;
3723                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3724                         if (rdev) {
3725                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3726                                         rdev->country_ie_alpha2[0],
3727                                         rdev->country_ie_alpha2[1]);
3728                         } else
3729                                 pr_debug("Current regulatory domain intersected:\n");
3730                 } else
3731                         pr_debug("Current regulatory domain intersected:\n");
3732         } else if (is_world_regdom(rd->alpha2)) {
3733                 pr_debug("World regulatory domain updated:\n");
3734         } else {
3735                 if (is_unknown_alpha2(rd->alpha2))
3736                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3737                 else {
3738                         if (reg_request_cell_base(lr))
3739                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3740                                         rd->alpha2[0], rd->alpha2[1]);
3741                         else
3742                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3743                                         rd->alpha2[0], rd->alpha2[1]);
3744                 }
3745         }
3746
3747         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3748         print_rd_rules(rd);
3749 }
3750
3751 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3752 {
3753         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3754         print_rd_rules(rd);
3755 }
3756
3757 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3758 {
3759         if (!is_world_regdom(rd->alpha2))
3760                 return -EINVAL;
3761         update_world_regdomain(rd);
3762         return 0;
3763 }
3764
3765 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3766                            struct regulatory_request *user_request)
3767 {
3768         const struct ieee80211_regdomain *intersected_rd = NULL;
3769
3770         if (!regdom_changes(rd->alpha2))
3771                 return -EALREADY;
3772
3773         if (!is_valid_rd(rd)) {
3774                 pr_err("Invalid regulatory domain detected: %c%c\n",
3775                        rd->alpha2[0], rd->alpha2[1]);
3776                 print_regdomain_info(rd);
3777                 return -EINVAL;
3778         }
3779
3780         if (!user_request->intersect) {
3781                 reset_regdomains(false, rd);
3782                 return 0;
3783         }
3784
3785         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3786         if (!intersected_rd)
3787                 return -EINVAL;
3788
3789         kfree(rd);
3790         rd = NULL;
3791         reset_regdomains(false, intersected_rd);
3792
3793         return 0;
3794 }
3795
3796 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3797                              struct regulatory_request *driver_request)
3798 {
3799         const struct ieee80211_regdomain *regd;
3800         const struct ieee80211_regdomain *intersected_rd = NULL;
3801         const struct ieee80211_regdomain *tmp;
3802         struct wiphy *request_wiphy;
3803
3804         if (is_world_regdom(rd->alpha2))
3805                 return -EINVAL;
3806
3807         if (!regdom_changes(rd->alpha2))
3808                 return -EALREADY;
3809
3810         if (!is_valid_rd(rd)) {
3811                 pr_err("Invalid regulatory domain detected: %c%c\n",
3812                        rd->alpha2[0], rd->alpha2[1]);
3813                 print_regdomain_info(rd);
3814                 return -EINVAL;
3815         }
3816
3817         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3818         if (!request_wiphy)
3819                 return -ENODEV;
3820
3821         if (!driver_request->intersect) {
3822                 ASSERT_RTNL();
3823                 wiphy_lock(request_wiphy);
3824                 if (request_wiphy->regd) {
3825                         wiphy_unlock(request_wiphy);
3826                         return -EALREADY;
3827                 }
3828
3829                 regd = reg_copy_regd(rd);
3830                 if (IS_ERR(regd)) {
3831                         wiphy_unlock(request_wiphy);
3832                         return PTR_ERR(regd);
3833                 }
3834
3835                 rcu_assign_pointer(request_wiphy->regd, regd);
3836                 wiphy_unlock(request_wiphy);
3837                 reset_regdomains(false, rd);
3838                 return 0;
3839         }
3840
3841         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3842         if (!intersected_rd)
3843                 return -EINVAL;
3844
3845         /*
3846          * We can trash what CRDA provided now.
3847          * However if a driver requested this specific regulatory
3848          * domain we keep it for its private use
3849          */
3850         tmp = get_wiphy_regdom(request_wiphy);
3851         rcu_assign_pointer(request_wiphy->regd, rd);
3852         rcu_free_regdom(tmp);
3853
3854         rd = NULL;
3855
3856         reset_regdomains(false, intersected_rd);
3857
3858         return 0;
3859 }
3860
3861 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3862                                  struct regulatory_request *country_ie_request)
3863 {
3864         struct wiphy *request_wiphy;
3865
3866         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3867             !is_unknown_alpha2(rd->alpha2))
3868                 return -EINVAL;
3869
3870         /*
3871          * Lets only bother proceeding on the same alpha2 if the current
3872          * rd is non static (it means CRDA was present and was used last)
3873          * and the pending request came in from a country IE
3874          */
3875
3876         if (!is_valid_rd(rd)) {
3877                 pr_err("Invalid regulatory domain detected: %c%c\n",
3878                        rd->alpha2[0], rd->alpha2[1]);
3879                 print_regdomain_info(rd);
3880                 return -EINVAL;
3881         }
3882
3883         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3884         if (!request_wiphy)
3885                 return -ENODEV;
3886
3887         if (country_ie_request->intersect)
3888                 return -EINVAL;
3889
3890         reset_regdomains(false, rd);
3891         return 0;
3892 }
3893
3894 /*
3895  * Use this call to set the current regulatory domain. Conflicts with
3896  * multiple drivers can be ironed out later. Caller must've already
3897  * kmalloc'd the rd structure.
3898  */
3899 int set_regdom(const struct ieee80211_regdomain *rd,
3900                enum ieee80211_regd_source regd_src)
3901 {
3902         struct regulatory_request *lr;
3903         bool user_reset = false;
3904         int r;
3905
3906         if (IS_ERR_OR_NULL(rd))
3907                 return -ENODATA;
3908
3909         if (!reg_is_valid_request(rd->alpha2)) {
3910                 kfree(rd);
3911                 return -EINVAL;
3912         }
3913
3914         if (regd_src == REGD_SOURCE_CRDA)
3915                 reset_crda_timeouts();
3916
3917         lr = get_last_request();
3918
3919         /* Note that this doesn't update the wiphys, this is done below */
3920         switch (lr->initiator) {
3921         case NL80211_REGDOM_SET_BY_CORE:
3922                 r = reg_set_rd_core(rd);
3923                 break;
3924         case NL80211_REGDOM_SET_BY_USER:
3925                 cfg80211_save_user_regdom(rd);
3926                 r = reg_set_rd_user(rd, lr);
3927                 user_reset = true;
3928                 break;
3929         case NL80211_REGDOM_SET_BY_DRIVER:
3930                 r = reg_set_rd_driver(rd, lr);
3931                 break;
3932         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3933                 r = reg_set_rd_country_ie(rd, lr);
3934                 break;
3935         default:
3936                 WARN(1, "invalid initiator %d\n", lr->initiator);
3937                 kfree(rd);
3938                 return -EINVAL;
3939         }
3940
3941         if (r) {
3942                 switch (r) {
3943                 case -EALREADY:
3944                         reg_set_request_processed();
3945                         break;
3946                 default:
3947                         /* Back to world regulatory in case of errors */
3948                         restore_regulatory_settings(user_reset, false);
3949                 }
3950
3951                 kfree(rd);
3952                 return r;
3953         }
3954
3955         /* This would make this whole thing pointless */
3956         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3957                 return -EINVAL;
3958
3959         /* update all wiphys now with the new established regulatory domain */
3960         update_all_wiphy_regulatory(lr->initiator);
3961
3962         print_regdomain(get_cfg80211_regdom());
3963
3964         nl80211_send_reg_change_event(lr);
3965
3966         reg_set_request_processed();
3967
3968         return 0;
3969 }
3970
3971 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3972                                        struct ieee80211_regdomain *rd)
3973 {
3974         const struct ieee80211_regdomain *regd;
3975         const struct ieee80211_regdomain *prev_regd;
3976         struct cfg80211_registered_device *rdev;
3977
3978         if (WARN_ON(!wiphy || !rd))
3979                 return -EINVAL;
3980
3981         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3982                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3983                 return -EPERM;
3984
3985         if (WARN(!is_valid_rd(rd),
3986                  "Invalid regulatory domain detected: %c%c\n",
3987                  rd->alpha2[0], rd->alpha2[1])) {
3988                 print_regdomain_info(rd);
3989                 return -EINVAL;
3990         }
3991
3992         regd = reg_copy_regd(rd);
3993         if (IS_ERR(regd))
3994                 return PTR_ERR(regd);
3995
3996         rdev = wiphy_to_rdev(wiphy);
3997
3998         spin_lock(&reg_requests_lock);
3999         prev_regd = rdev->requested_regd;
4000         rdev->requested_regd = regd;
4001         spin_unlock(&reg_requests_lock);
4002
4003         kfree(prev_regd);
4004         return 0;
4005 }
4006
4007 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4008                               struct ieee80211_regdomain *rd)
4009 {
4010         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4011
4012         if (ret)
4013                 return ret;
4014
4015         schedule_work(&reg_work);
4016         return 0;
4017 }
4018 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4019
4020 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4021                                    struct ieee80211_regdomain *rd)
4022 {
4023         int ret;
4024
4025         ASSERT_RTNL();
4026
4027         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4028         if (ret)
4029                 return ret;
4030
4031         /* process the request immediately */
4032         reg_process_self_managed_hint(wiphy);
4033         reg_check_channels();
4034         return 0;
4035 }
4036 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4037
4038 void wiphy_regulatory_register(struct wiphy *wiphy)
4039 {
4040         struct regulatory_request *lr = get_last_request();
4041
4042         /* self-managed devices ignore beacon hints and country IE */
4043         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4044                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4045                                            REGULATORY_COUNTRY_IE_IGNORE;
4046
4047                 /*
4048                  * The last request may have been received before this
4049                  * registration call. Call the driver notifier if
4050                  * initiator is USER.
4051                  */
4052                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4053                         reg_call_notifier(wiphy, lr);
4054         }
4055
4056         if (!reg_dev_ignore_cell_hint(wiphy))
4057                 reg_num_devs_support_basehint++;
4058
4059         wiphy_update_regulatory(wiphy, lr->initiator);
4060         wiphy_all_share_dfs_chan_state(wiphy);
4061         reg_process_self_managed_hints();
4062 }
4063
4064 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4065 {
4066         struct wiphy *request_wiphy = NULL;
4067         struct regulatory_request *lr;
4068
4069         lr = get_last_request();
4070
4071         if (!reg_dev_ignore_cell_hint(wiphy))
4072                 reg_num_devs_support_basehint--;
4073
4074         rcu_free_regdom(get_wiphy_regdom(wiphy));
4075         RCU_INIT_POINTER(wiphy->regd, NULL);
4076
4077         if (lr)
4078                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4079
4080         if (!request_wiphy || request_wiphy != wiphy)
4081                 return;
4082
4083         lr->wiphy_idx = WIPHY_IDX_INVALID;
4084         lr->country_ie_env = ENVIRON_ANY;
4085 }
4086
4087 /*
4088  * See FCC notices for UNII band definitions
4089  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4090  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4091  */
4092 int cfg80211_get_unii(int freq)
4093 {
4094         /* UNII-1 */
4095         if (freq >= 5150 && freq <= 5250)
4096                 return 0;
4097
4098         /* UNII-2A */
4099         if (freq > 5250 && freq <= 5350)
4100                 return 1;
4101
4102         /* UNII-2B */
4103         if (freq > 5350 && freq <= 5470)
4104                 return 2;
4105
4106         /* UNII-2C */
4107         if (freq > 5470 && freq <= 5725)
4108                 return 3;
4109
4110         /* UNII-3 */
4111         if (freq > 5725 && freq <= 5825)
4112                 return 4;
4113
4114         /* UNII-5 */
4115         if (freq > 5925 && freq <= 6425)
4116                 return 5;
4117
4118         /* UNII-6 */
4119         if (freq > 6425 && freq <= 6525)
4120                 return 6;
4121
4122         /* UNII-7 */
4123         if (freq > 6525 && freq <= 6875)
4124                 return 7;
4125
4126         /* UNII-8 */
4127         if (freq > 6875 && freq <= 7125)
4128                 return 8;
4129
4130         return -EINVAL;
4131 }
4132
4133 bool regulatory_indoor_allowed(void)
4134 {
4135         return reg_is_indoor;
4136 }
4137
4138 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4139 {
4140         const struct ieee80211_regdomain *regd = NULL;
4141         const struct ieee80211_regdomain *wiphy_regd = NULL;
4142         bool pre_cac_allowed = false;
4143
4144         rcu_read_lock();
4145
4146         regd = rcu_dereference(cfg80211_regdomain);
4147         wiphy_regd = rcu_dereference(wiphy->regd);
4148         if (!wiphy_regd) {
4149                 if (regd->dfs_region == NL80211_DFS_ETSI)
4150                         pre_cac_allowed = true;
4151
4152                 rcu_read_unlock();
4153
4154                 return pre_cac_allowed;
4155         }
4156
4157         if (regd->dfs_region == wiphy_regd->dfs_region &&
4158             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4159                 pre_cac_allowed = true;
4160
4161         rcu_read_unlock();
4162
4163         return pre_cac_allowed;
4164 }
4165 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4166
4167 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4168 {
4169         struct wireless_dev *wdev;
4170         /* If we finished CAC or received radar, we should end any
4171          * CAC running on the same channels.
4172          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4173          * either all channels are available - those the CAC_FINISHED
4174          * event has effected another wdev state, or there is a channel
4175          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4176          * event has effected another wdev state.
4177          * In both cases we should end the CAC on the wdev.
4178          */
4179         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4180                 if (wdev->cac_started &&
4181                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4182                         rdev_end_cac(rdev, wdev->netdev);
4183         }
4184 }
4185
4186 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4187                                     struct cfg80211_chan_def *chandef,
4188                                     enum nl80211_dfs_state dfs_state,
4189                                     enum nl80211_radar_event event)
4190 {
4191         struct cfg80211_registered_device *rdev;
4192
4193         ASSERT_RTNL();
4194
4195         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4196                 return;
4197
4198         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4199                 if (wiphy == &rdev->wiphy)
4200                         continue;
4201
4202                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4203                         continue;
4204
4205                 if (!ieee80211_get_channel(&rdev->wiphy,
4206                                            chandef->chan->center_freq))
4207                         continue;
4208
4209                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4210
4211                 if (event == NL80211_RADAR_DETECTED ||
4212                     event == NL80211_RADAR_CAC_FINISHED) {
4213                         cfg80211_sched_dfs_chan_update(rdev);
4214                         cfg80211_check_and_end_cac(rdev);
4215                 }
4216
4217                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4218         }
4219 }
4220
4221 static int __init regulatory_init_db(void)
4222 {
4223         int err;
4224
4225         /*
4226          * It's possible that - due to other bugs/issues - cfg80211
4227          * never called regulatory_init() below, or that it failed;
4228          * in that case, don't try to do any further work here as
4229          * it's doomed to lead to crashes.
4230          */
4231         if (IS_ERR_OR_NULL(reg_pdev))
4232                 return -EINVAL;
4233
4234         err = load_builtin_regdb_keys();
4235         if (err)
4236                 return err;
4237
4238         /* We always try to get an update for the static regdomain */
4239         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4240         if (err) {
4241                 if (err == -ENOMEM) {
4242                         platform_device_unregister(reg_pdev);
4243                         return err;
4244                 }
4245                 /*
4246                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4247                  * memory which is handled and propagated appropriately above
4248                  * but it can also fail during a netlink_broadcast() or during
4249                  * early boot for call_usermodehelper(). For now treat these
4250                  * errors as non-fatal.
4251                  */
4252                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4253         }
4254
4255         /*
4256          * Finally, if the user set the module parameter treat it
4257          * as a user hint.
4258          */
4259         if (!is_world_regdom(ieee80211_regdom))
4260                 regulatory_hint_user(ieee80211_regdom,
4261                                      NL80211_USER_REG_HINT_USER);
4262
4263         return 0;
4264 }
4265 #ifndef MODULE
4266 late_initcall(regulatory_init_db);
4267 #endif
4268
4269 int __init regulatory_init(void)
4270 {
4271         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4272         if (IS_ERR(reg_pdev))
4273                 return PTR_ERR(reg_pdev);
4274
4275         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4276
4277         user_alpha2[0] = '9';
4278         user_alpha2[1] = '7';
4279
4280 #ifdef MODULE
4281         return regulatory_init_db();
4282 #else
4283         return 0;
4284 #endif
4285 }
4286
4287 void regulatory_exit(void)
4288 {
4289         struct regulatory_request *reg_request, *tmp;
4290         struct reg_beacon *reg_beacon, *btmp;
4291
4292         cancel_work_sync(&reg_work);
4293         cancel_crda_timeout_sync();
4294         cancel_delayed_work_sync(&reg_check_chans);
4295
4296         /* Lock to suppress warnings */
4297         rtnl_lock();
4298         reset_regdomains(true, NULL);
4299         rtnl_unlock();
4300
4301         dev_set_uevent_suppress(&reg_pdev->dev, true);
4302
4303         platform_device_unregister(reg_pdev);
4304
4305         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4306                 list_del(&reg_beacon->list);
4307                 kfree(reg_beacon);
4308         }
4309
4310         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4311                 list_del(&reg_beacon->list);
4312                 kfree(reg_beacon);
4313         }
4314
4315         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4316                 list_del(&reg_request->list);
4317                 kfree(reg_request);
4318         }
4319
4320         if (!IS_ERR_OR_NULL(regdb))
4321                 kfree(regdb);
4322         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4323                 kfree(cfg80211_user_regdom);
4324
4325         free_regdb_keyring();
4326 }