Merge tag 'net-5.18-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744         const u8 *end = p + buflen;
745         size_t plen;
746         key_ref_t key;
747
748         while (p < end) {
749                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750                  * than 256 bytes in size.
751                  */
752                 if (end - p < 4)
753                         goto dodgy_cert;
754                 if (p[0] != 0x30 &&
755                     p[1] != 0x82)
756                         goto dodgy_cert;
757                 plen = (p[2] << 8) | p[3];
758                 plen += 4;
759                 if (plen > end - p)
760                         goto dodgy_cert;
761
762                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763                                            "asymmetric", NULL, p, plen,
764                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                                             KEY_USR_VIEW | KEY_USR_READ),
766                                            KEY_ALLOC_NOT_IN_QUOTA |
767                                            KEY_ALLOC_BUILT_IN |
768                                            KEY_ALLOC_BYPASS_RESTRICTION);
769                 if (IS_ERR(key)) {
770                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771                                PTR_ERR(key));
772                 } else {
773                         pr_notice("Loaded X.509 cert '%s'\n",
774                                   key_ref_to_ptr(key)->description);
775                         key_ref_put(key);
776                 }
777                 p += plen;
778         }
779
780         return;
781
782 dodgy_cert:
783         pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
786 static int __init load_builtin_regdb_keys(void)
787 {
788         builtin_regdb_keys =
789                 keyring_alloc(".builtin_regdb_keys",
790                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794         if (IS_ERR(builtin_regdb_keys))
795                 return PTR_ERR(builtin_regdb_keys);
796
797         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807         return 0;
808 }
809
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811 {
812         const struct firmware *sig;
813         bool result;
814
815         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
816                 return false;
817
818         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819                                         builtin_regdb_keys,
820                                         VERIFYING_UNSPECIFIED_SIGNATURE,
821                                         NULL, NULL) == 0;
822
823         release_firmware(sig);
824
825         return result;
826 }
827
828 static void free_regdb_keyring(void)
829 {
830         key_put(builtin_regdb_keys);
831 }
832 #else
833 static int load_builtin_regdb_keys(void)
834 {
835         return 0;
836 }
837
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839 {
840         return true;
841 }
842
843 static void free_regdb_keyring(void)
844 {
845 }
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847
848 static bool valid_regdb(const u8 *data, unsigned int size)
849 {
850         const struct fwdb_header *hdr = (void *)data;
851         const struct fwdb_country *country;
852
853         if (size < sizeof(*hdr))
854                 return false;
855
856         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857                 return false;
858
859         if (hdr->version != cpu_to_be32(FWDB_VERSION))
860                 return false;
861
862         if (!regdb_has_valid_signature(data, size))
863                 return false;
864
865         country = &hdr->country[0];
866         while ((u8 *)(country + 1) <= data + size) {
867                 if (!country->coll_ptr)
868                         break;
869                 if (!valid_country(data, size, country))
870                         return false;
871                 country++;
872         }
873
874         return true;
875 }
876
877 static void set_wmm_rule(const struct fwdb_header *db,
878                          const struct fwdb_country *country,
879                          const struct fwdb_rule *rule,
880                          struct ieee80211_reg_rule *rrule)
881 {
882         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883         struct fwdb_wmm_rule *wmm;
884         unsigned int i, wmm_ptr;
885
886         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887         wmm = (void *)((u8 *)db + wmm_ptr);
888
889         if (!valid_wmm(wmm)) {
890                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892                        country->alpha2[0], country->alpha2[1]);
893                 return;
894         }
895
896         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897                 wmm_rule->client[i].cw_min =
898                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
901                 wmm_rule->client[i].cot =
902                         1000 * be16_to_cpu(wmm->client[i].cot);
903                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907         }
908
909         rrule->has_wmm = true;
910 }
911
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913                              const struct fwdb_country *country, int freq,
914                              struct ieee80211_reg_rule *rrule)
915 {
916         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918         int i;
919
920         for (i = 0; i < coll->n_rules; i++) {
921                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924
925                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926                         continue;
927
928                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930                         set_wmm_rule(db, country, rule, rrule);
931                         return 0;
932                 }
933         }
934
935         return -ENODATA;
936 }
937
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939 {
940         const struct fwdb_header *hdr = regdb;
941         const struct fwdb_country *country;
942
943         if (!regdb)
944                 return -ENODATA;
945
946         if (IS_ERR(regdb))
947                 return PTR_ERR(regdb);
948
949         country = &hdr->country[0];
950         while (country->coll_ptr) {
951                 if (alpha2_equal(alpha2, country->alpha2))
952                         return __regdb_query_wmm(regdb, country, freq, rule);
953
954                 country++;
955         }
956
957         return -ENODATA;
958 }
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
960
961 static int regdb_query_country(const struct fwdb_header *db,
962                                const struct fwdb_country *country)
963 {
964         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966         struct ieee80211_regdomain *regdom;
967         unsigned int i;
968
969         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970                          GFP_KERNEL);
971         if (!regdom)
972                 return -ENOMEM;
973
974         regdom->n_reg_rules = coll->n_rules;
975         regdom->alpha2[0] = country->alpha2[0];
976         regdom->alpha2[1] = country->alpha2[1];
977         regdom->dfs_region = coll->dfs_region;
978
979         for (i = 0; i < regdom->n_reg_rules; i++) {
980                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
984
985                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988
989                 rrule->power_rule.max_antenna_gain = 0;
990                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991
992                 rrule->flags = 0;
993                 if (rule->flags & FWDB_FLAG_NO_OFDM)
994                         rrule->flags |= NL80211_RRF_NO_OFDM;
995                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997                 if (rule->flags & FWDB_FLAG_DFS)
998                         rrule->flags |= NL80211_RRF_DFS;
999                 if (rule->flags & FWDB_FLAG_NO_IR)
1000                         rrule->flags |= NL80211_RRF_NO_IR;
1001                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1002                         rrule->flags |= NL80211_RRF_AUTO_BW;
1003
1004                 rrule->dfs_cac_ms = 0;
1005
1006                 /* handle optional data */
1007                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008                         rrule->dfs_cac_ms =
1009                                 1000 * be16_to_cpu(rule->cac_timeout);
1010                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011                         set_wmm_rule(db, country, rule, rrule);
1012         }
1013
1014         return reg_schedule_apply(regdom);
1015 }
1016
1017 static int query_regdb(const char *alpha2)
1018 {
1019         const struct fwdb_header *hdr = regdb;
1020         const struct fwdb_country *country;
1021
1022         ASSERT_RTNL();
1023
1024         if (IS_ERR(regdb))
1025                 return PTR_ERR(regdb);
1026
1027         country = &hdr->country[0];
1028         while (country->coll_ptr) {
1029                 if (alpha2_equal(alpha2, country->alpha2))
1030                         return regdb_query_country(regdb, country);
1031                 country++;
1032         }
1033
1034         return -ENODATA;
1035 }
1036
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1038 {
1039         int set_error = 0;
1040         bool restore = true;
1041         void *db;
1042
1043         if (!fw) {
1044                 pr_info("failed to load regulatory.db\n");
1045                 set_error = -ENODATA;
1046         } else if (!valid_regdb(fw->data, fw->size)) {
1047                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048                 set_error = -EINVAL;
1049         }
1050
1051         rtnl_lock();
1052         if (regdb && !IS_ERR(regdb)) {
1053                 /* negative case - a bug
1054                  * positive case - can happen due to race in case of multiple cb's in
1055                  * queue, due to usage of asynchronous callback
1056                  *
1057                  * Either case, just restore and free new db.
1058                  */
1059         } else if (set_error) {
1060                 regdb = ERR_PTR(set_error);
1061         } else if (fw) {
1062                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063                 if (db) {
1064                         regdb = db;
1065                         restore = context && query_regdb(context);
1066                 } else {
1067                         restore = true;
1068                 }
1069         }
1070
1071         if (restore)
1072                 restore_regulatory_settings(true, false);
1073
1074         rtnl_unlock();
1075
1076         kfree(context);
1077
1078         release_firmware(fw);
1079 }
1080
1081 static int query_regdb_file(const char *alpha2)
1082 {
1083         ASSERT_RTNL();
1084
1085         if (regdb)
1086                 return query_regdb(alpha2);
1087
1088         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089         if (!alpha2)
1090                 return -ENOMEM;
1091
1092         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093                                        &reg_pdev->dev, GFP_KERNEL,
1094                                        (void *)alpha2, regdb_fw_cb);
1095 }
1096
1097 int reg_reload_regdb(void)
1098 {
1099         const struct firmware *fw;
1100         void *db;
1101         int err;
1102         const struct ieee80211_regdomain *current_regdomain;
1103         struct regulatory_request *request;
1104
1105         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1106         if (err)
1107                 return err;
1108
1109         if (!valid_regdb(fw->data, fw->size)) {
1110                 err = -ENODATA;
1111                 goto out;
1112         }
1113
1114         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115         if (!db) {
1116                 err = -ENOMEM;
1117                 goto out;
1118         }
1119
1120         rtnl_lock();
1121         if (!IS_ERR_OR_NULL(regdb))
1122                 kfree(regdb);
1123         regdb = db;
1124
1125         /* reset regulatory domain */
1126         current_regdomain = get_cfg80211_regdom();
1127
1128         request = kzalloc(sizeof(*request), GFP_KERNEL);
1129         if (!request) {
1130                 err = -ENOMEM;
1131                 goto out_unlock;
1132         }
1133
1134         request->wiphy_idx = WIPHY_IDX_INVALID;
1135         request->alpha2[0] = current_regdomain->alpha2[0];
1136         request->alpha2[1] = current_regdomain->alpha2[1];
1137         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139
1140         reg_process_hint(request);
1141
1142 out_unlock:
1143         rtnl_unlock();
1144  out:
1145         release_firmware(fw);
1146         return err;
1147 }
1148
1149 static bool reg_query_database(struct regulatory_request *request)
1150 {
1151         if (query_regdb_file(request->alpha2) == 0)
1152                 return true;
1153
1154         if (call_crda(request->alpha2) == 0)
1155                 return true;
1156
1157         return false;
1158 }
1159
1160 bool reg_is_valid_request(const char *alpha2)
1161 {
1162         struct regulatory_request *lr = get_last_request();
1163
1164         if (!lr || lr->processed)
1165                 return false;
1166
1167         return alpha2_equal(lr->alpha2, alpha2);
1168 }
1169
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171 {
1172         struct regulatory_request *lr = get_last_request();
1173
1174         /*
1175          * Follow the driver's regulatory domain, if present, unless a country
1176          * IE has been processed or a user wants to help complaince further
1177          */
1178         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180             wiphy->regd)
1181                 return get_wiphy_regdom(wiphy);
1182
1183         return get_cfg80211_regdom();
1184 }
1185
1186 static unsigned int
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188                                  const struct ieee80211_reg_rule *rule)
1189 {
1190         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191         const struct ieee80211_freq_range *freq_range_tmp;
1192         const struct ieee80211_reg_rule *tmp;
1193         u32 start_freq, end_freq, idx, no;
1194
1195         for (idx = 0; idx < rd->n_reg_rules; idx++)
1196                 if (rule == &rd->reg_rules[idx])
1197                         break;
1198
1199         if (idx == rd->n_reg_rules)
1200                 return 0;
1201
1202         /* get start_freq */
1203         no = idx;
1204
1205         while (no) {
1206                 tmp = &rd->reg_rules[--no];
1207                 freq_range_tmp = &tmp->freq_range;
1208
1209                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210                         break;
1211
1212                 freq_range = freq_range_tmp;
1213         }
1214
1215         start_freq = freq_range->start_freq_khz;
1216
1217         /* get end_freq */
1218         freq_range = &rule->freq_range;
1219         no = idx;
1220
1221         while (no < rd->n_reg_rules - 1) {
1222                 tmp = &rd->reg_rules[++no];
1223                 freq_range_tmp = &tmp->freq_range;
1224
1225                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226                         break;
1227
1228                 freq_range = freq_range_tmp;
1229         }
1230
1231         end_freq = freq_range->end_freq_khz;
1232
1233         return end_freq - start_freq;
1234 }
1235
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237                                    const struct ieee80211_reg_rule *rule)
1238 {
1239         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240
1241         if (rule->flags & NL80211_RRF_NO_320MHZ)
1242                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1243         if (rule->flags & NL80211_RRF_NO_160MHZ)
1244                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1245         if (rule->flags & NL80211_RRF_NO_80MHZ)
1246                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1247
1248         /*
1249          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1250          * are not allowed.
1251          */
1252         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1253             rule->flags & NL80211_RRF_NO_HT40PLUS)
1254                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1255
1256         return bw;
1257 }
1258
1259 /* Sanity check on a regulatory rule */
1260 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1261 {
1262         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1263         u32 freq_diff;
1264
1265         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1266                 return false;
1267
1268         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1269                 return false;
1270
1271         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1272
1273         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1274             freq_range->max_bandwidth_khz > freq_diff)
1275                 return false;
1276
1277         return true;
1278 }
1279
1280 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1281 {
1282         const struct ieee80211_reg_rule *reg_rule = NULL;
1283         unsigned int i;
1284
1285         if (!rd->n_reg_rules)
1286                 return false;
1287
1288         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1289                 return false;
1290
1291         for (i = 0; i < rd->n_reg_rules; i++) {
1292                 reg_rule = &rd->reg_rules[i];
1293                 if (!is_valid_reg_rule(reg_rule))
1294                         return false;
1295         }
1296
1297         return true;
1298 }
1299
1300 /**
1301  * freq_in_rule_band - tells us if a frequency is in a frequency band
1302  * @freq_range: frequency rule we want to query
1303  * @freq_khz: frequency we are inquiring about
1304  *
1305  * This lets us know if a specific frequency rule is or is not relevant to
1306  * a specific frequency's band. Bands are device specific and artificial
1307  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1308  * however it is safe for now to assume that a frequency rule should not be
1309  * part of a frequency's band if the start freq or end freq are off by more
1310  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1311  * 60 GHz band.
1312  * This resolution can be lowered and should be considered as we add
1313  * regulatory rule support for other "bands".
1314  **/
1315 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1316                               u32 freq_khz)
1317 {
1318 #define ONE_GHZ_IN_KHZ  1000000
1319         /*
1320          * From 802.11ad: directional multi-gigabit (DMG):
1321          * Pertaining to operation in a frequency band containing a channel
1322          * with the Channel starting frequency above 45 GHz.
1323          */
1324         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1325                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1326         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1327                 return true;
1328         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1329                 return true;
1330         return false;
1331 #undef ONE_GHZ_IN_KHZ
1332 }
1333
1334 /*
1335  * Later on we can perhaps use the more restrictive DFS
1336  * region but we don't have information for that yet so
1337  * for now simply disallow conflicts.
1338  */
1339 static enum nl80211_dfs_regions
1340 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1341                          const enum nl80211_dfs_regions dfs_region2)
1342 {
1343         if (dfs_region1 != dfs_region2)
1344                 return NL80211_DFS_UNSET;
1345         return dfs_region1;
1346 }
1347
1348 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1349                                     const struct ieee80211_wmm_ac *wmm_ac2,
1350                                     struct ieee80211_wmm_ac *intersect)
1351 {
1352         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1353         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1354         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1355         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1356 }
1357
1358 /*
1359  * Helper for regdom_intersect(), this does the real
1360  * mathematical intersection fun
1361  */
1362 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1363                                const struct ieee80211_regdomain *rd2,
1364                                const struct ieee80211_reg_rule *rule1,
1365                                const struct ieee80211_reg_rule *rule2,
1366                                struct ieee80211_reg_rule *intersected_rule)
1367 {
1368         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1369         struct ieee80211_freq_range *freq_range;
1370         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1371         struct ieee80211_power_rule *power_rule;
1372         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1373         struct ieee80211_wmm_rule *wmm_rule;
1374         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1375
1376         freq_range1 = &rule1->freq_range;
1377         freq_range2 = &rule2->freq_range;
1378         freq_range = &intersected_rule->freq_range;
1379
1380         power_rule1 = &rule1->power_rule;
1381         power_rule2 = &rule2->power_rule;
1382         power_rule = &intersected_rule->power_rule;
1383
1384         wmm_rule1 = &rule1->wmm_rule;
1385         wmm_rule2 = &rule2->wmm_rule;
1386         wmm_rule = &intersected_rule->wmm_rule;
1387
1388         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1389                                          freq_range2->start_freq_khz);
1390         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1391                                        freq_range2->end_freq_khz);
1392
1393         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1394         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1395
1396         if (rule1->flags & NL80211_RRF_AUTO_BW)
1397                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1398         if (rule2->flags & NL80211_RRF_AUTO_BW)
1399                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1400
1401         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1402
1403         intersected_rule->flags = rule1->flags | rule2->flags;
1404
1405         /*
1406          * In case NL80211_RRF_AUTO_BW requested for both rules
1407          * set AUTO_BW in intersected rule also. Next we will
1408          * calculate BW correctly in handle_channel function.
1409          * In other case remove AUTO_BW flag while we calculate
1410          * maximum bandwidth correctly and auto calculation is
1411          * not required.
1412          */
1413         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1414             (rule2->flags & NL80211_RRF_AUTO_BW))
1415                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1416         else
1417                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1418
1419         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1420         if (freq_range->max_bandwidth_khz > freq_diff)
1421                 freq_range->max_bandwidth_khz = freq_diff;
1422
1423         power_rule->max_eirp = min(power_rule1->max_eirp,
1424                 power_rule2->max_eirp);
1425         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1426                 power_rule2->max_antenna_gain);
1427
1428         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1429                                            rule2->dfs_cac_ms);
1430
1431         if (rule1->has_wmm && rule2->has_wmm) {
1432                 u8 ac;
1433
1434                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1435                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1436                                                 &wmm_rule2->client[ac],
1437                                                 &wmm_rule->client[ac]);
1438                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1439                                                 &wmm_rule2->ap[ac],
1440                                                 &wmm_rule->ap[ac]);
1441                 }
1442
1443                 intersected_rule->has_wmm = true;
1444         } else if (rule1->has_wmm) {
1445                 *wmm_rule = *wmm_rule1;
1446                 intersected_rule->has_wmm = true;
1447         } else if (rule2->has_wmm) {
1448                 *wmm_rule = *wmm_rule2;
1449                 intersected_rule->has_wmm = true;
1450         } else {
1451                 intersected_rule->has_wmm = false;
1452         }
1453
1454         if (!is_valid_reg_rule(intersected_rule))
1455                 return -EINVAL;
1456
1457         return 0;
1458 }
1459
1460 /* check whether old rule contains new rule */
1461 static bool rule_contains(struct ieee80211_reg_rule *r1,
1462                           struct ieee80211_reg_rule *r2)
1463 {
1464         /* for simplicity, currently consider only same flags */
1465         if (r1->flags != r2->flags)
1466                 return false;
1467
1468         /* verify r1 is more restrictive */
1469         if ((r1->power_rule.max_antenna_gain >
1470              r2->power_rule.max_antenna_gain) ||
1471             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1472                 return false;
1473
1474         /* make sure r2's range is contained within r1 */
1475         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1476             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1477                 return false;
1478
1479         /* and finally verify that r1.max_bw >= r2.max_bw */
1480         if (r1->freq_range.max_bandwidth_khz <
1481             r2->freq_range.max_bandwidth_khz)
1482                 return false;
1483
1484         return true;
1485 }
1486
1487 /* add or extend current rules. do nothing if rule is already contained */
1488 static void add_rule(struct ieee80211_reg_rule *rule,
1489                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1490 {
1491         struct ieee80211_reg_rule *tmp_rule;
1492         int i;
1493
1494         for (i = 0; i < *n_rules; i++) {
1495                 tmp_rule = &reg_rules[i];
1496                 /* rule is already contained - do nothing */
1497                 if (rule_contains(tmp_rule, rule))
1498                         return;
1499
1500                 /* extend rule if possible */
1501                 if (rule_contains(rule, tmp_rule)) {
1502                         memcpy(tmp_rule, rule, sizeof(*rule));
1503                         return;
1504                 }
1505         }
1506
1507         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1508         (*n_rules)++;
1509 }
1510
1511 /**
1512  * regdom_intersect - do the intersection between two regulatory domains
1513  * @rd1: first regulatory domain
1514  * @rd2: second regulatory domain
1515  *
1516  * Use this function to get the intersection between two regulatory domains.
1517  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1518  * as no one single alpha2 can represent this regulatory domain.
1519  *
1520  * Returns a pointer to the regulatory domain structure which will hold the
1521  * resulting intersection of rules between rd1 and rd2. We will
1522  * kzalloc() this structure for you.
1523  */
1524 static struct ieee80211_regdomain *
1525 regdom_intersect(const struct ieee80211_regdomain *rd1,
1526                  const struct ieee80211_regdomain *rd2)
1527 {
1528         int r;
1529         unsigned int x, y;
1530         unsigned int num_rules = 0;
1531         const struct ieee80211_reg_rule *rule1, *rule2;
1532         struct ieee80211_reg_rule intersected_rule;
1533         struct ieee80211_regdomain *rd;
1534
1535         if (!rd1 || !rd2)
1536                 return NULL;
1537
1538         /*
1539          * First we get a count of the rules we'll need, then we actually
1540          * build them. This is to so we can malloc() and free() a
1541          * regdomain once. The reason we use reg_rules_intersect() here
1542          * is it will return -EINVAL if the rule computed makes no sense.
1543          * All rules that do check out OK are valid.
1544          */
1545
1546         for (x = 0; x < rd1->n_reg_rules; x++) {
1547                 rule1 = &rd1->reg_rules[x];
1548                 for (y = 0; y < rd2->n_reg_rules; y++) {
1549                         rule2 = &rd2->reg_rules[y];
1550                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1551                                                  &intersected_rule))
1552                                 num_rules++;
1553                 }
1554         }
1555
1556         if (!num_rules)
1557                 return NULL;
1558
1559         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1560         if (!rd)
1561                 return NULL;
1562
1563         for (x = 0; x < rd1->n_reg_rules; x++) {
1564                 rule1 = &rd1->reg_rules[x];
1565                 for (y = 0; y < rd2->n_reg_rules; y++) {
1566                         rule2 = &rd2->reg_rules[y];
1567                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1568                                                 &intersected_rule);
1569                         /*
1570                          * No need to memset here the intersected rule here as
1571                          * we're not using the stack anymore
1572                          */
1573                         if (r)
1574                                 continue;
1575
1576                         add_rule(&intersected_rule, rd->reg_rules,
1577                                  &rd->n_reg_rules);
1578                 }
1579         }
1580
1581         rd->alpha2[0] = '9';
1582         rd->alpha2[1] = '8';
1583         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1584                                                   rd2->dfs_region);
1585
1586         return rd;
1587 }
1588
1589 /*
1590  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1591  * want to just have the channel structure use these
1592  */
1593 static u32 map_regdom_flags(u32 rd_flags)
1594 {
1595         u32 channel_flags = 0;
1596         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1597                 channel_flags |= IEEE80211_CHAN_NO_IR;
1598         if (rd_flags & NL80211_RRF_DFS)
1599                 channel_flags |= IEEE80211_CHAN_RADAR;
1600         if (rd_flags & NL80211_RRF_NO_OFDM)
1601                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1602         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1603                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1604         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1605                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1606         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1607                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1608         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1609                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1610         if (rd_flags & NL80211_RRF_NO_80MHZ)
1611                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1612         if (rd_flags & NL80211_RRF_NO_160MHZ)
1613                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1614         if (rd_flags & NL80211_RRF_NO_HE)
1615                 channel_flags |= IEEE80211_CHAN_NO_HE;
1616         if (rd_flags & NL80211_RRF_NO_320MHZ)
1617                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1618         return channel_flags;
1619 }
1620
1621 static const struct ieee80211_reg_rule *
1622 freq_reg_info_regd(u32 center_freq,
1623                    const struct ieee80211_regdomain *regd, u32 bw)
1624 {
1625         int i;
1626         bool band_rule_found = false;
1627         bool bw_fits = false;
1628
1629         if (!regd)
1630                 return ERR_PTR(-EINVAL);
1631
1632         for (i = 0; i < regd->n_reg_rules; i++) {
1633                 const struct ieee80211_reg_rule *rr;
1634                 const struct ieee80211_freq_range *fr = NULL;
1635
1636                 rr = &regd->reg_rules[i];
1637                 fr = &rr->freq_range;
1638
1639                 /*
1640                  * We only need to know if one frequency rule was
1641                  * in center_freq's band, that's enough, so let's
1642                  * not overwrite it once found
1643                  */
1644                 if (!band_rule_found)
1645                         band_rule_found = freq_in_rule_band(fr, center_freq);
1646
1647                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1648
1649                 if (band_rule_found && bw_fits)
1650                         return rr;
1651         }
1652
1653         if (!band_rule_found)
1654                 return ERR_PTR(-ERANGE);
1655
1656         return ERR_PTR(-EINVAL);
1657 }
1658
1659 static const struct ieee80211_reg_rule *
1660 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1661 {
1662         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1663         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1664         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1665         int i = ARRAY_SIZE(bws) - 1;
1666         u32 bw;
1667
1668         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1669                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1670                 if (!IS_ERR(reg_rule))
1671                         return reg_rule;
1672         }
1673
1674         return reg_rule;
1675 }
1676
1677 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1678                                                u32 center_freq)
1679 {
1680         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1681
1682         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1683 }
1684 EXPORT_SYMBOL(freq_reg_info);
1685
1686 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1687 {
1688         switch (initiator) {
1689         case NL80211_REGDOM_SET_BY_CORE:
1690                 return "core";
1691         case NL80211_REGDOM_SET_BY_USER:
1692                 return "user";
1693         case NL80211_REGDOM_SET_BY_DRIVER:
1694                 return "driver";
1695         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1696                 return "country element";
1697         default:
1698                 WARN_ON(1);
1699                 return "bug";
1700         }
1701 }
1702 EXPORT_SYMBOL(reg_initiator_name);
1703
1704 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1705                                           const struct ieee80211_reg_rule *reg_rule,
1706                                           const struct ieee80211_channel *chan)
1707 {
1708         const struct ieee80211_freq_range *freq_range = NULL;
1709         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1710         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1711
1712         freq_range = &reg_rule->freq_range;
1713
1714         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1715         center_freq_khz = ieee80211_channel_to_khz(chan);
1716         /* Check if auto calculation requested */
1717         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1718                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1719
1720         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1721         if (!cfg80211_does_bw_fit_range(freq_range,
1722                                         center_freq_khz,
1723                                         MHZ_TO_KHZ(10)))
1724                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1725         if (!cfg80211_does_bw_fit_range(freq_range,
1726                                         center_freq_khz,
1727                                         MHZ_TO_KHZ(20)))
1728                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1729
1730         if (is_s1g) {
1731                 /* S1G is strict about non overlapping channels. We can
1732                  * calculate which bandwidth is allowed per channel by finding
1733                  * the largest bandwidth which cleanly divides the freq_range.
1734                  */
1735                 int edge_offset;
1736                 int ch_bw = max_bandwidth_khz;
1737
1738                 while (ch_bw) {
1739                         edge_offset = (center_freq_khz - ch_bw / 2) -
1740                                       freq_range->start_freq_khz;
1741                         if (edge_offset % ch_bw == 0) {
1742                                 switch (KHZ_TO_MHZ(ch_bw)) {
1743                                 case 1:
1744                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1745                                         break;
1746                                 case 2:
1747                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1748                                         break;
1749                                 case 4:
1750                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1751                                         break;
1752                                 case 8:
1753                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1754                                         break;
1755                                 case 16:
1756                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1757                                         break;
1758                                 default:
1759                                         /* If we got here, no bandwidths fit on
1760                                          * this frequency, ie. band edge.
1761                                          */
1762                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1763                                         break;
1764                                 }
1765                                 break;
1766                         }
1767                         ch_bw /= 2;
1768                 }
1769         } else {
1770                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1771                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1772                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1773                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1774                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1775                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1776                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1777                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1778                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1779                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1780                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1781                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1782         }
1783         return bw_flags;
1784 }
1785
1786 static void handle_channel_single_rule(struct wiphy *wiphy,
1787                                        enum nl80211_reg_initiator initiator,
1788                                        struct ieee80211_channel *chan,
1789                                        u32 flags,
1790                                        struct regulatory_request *lr,
1791                                        struct wiphy *request_wiphy,
1792                                        const struct ieee80211_reg_rule *reg_rule)
1793 {
1794         u32 bw_flags = 0;
1795         const struct ieee80211_power_rule *power_rule = NULL;
1796         const struct ieee80211_regdomain *regd;
1797
1798         regd = reg_get_regdomain(wiphy);
1799
1800         power_rule = &reg_rule->power_rule;
1801         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1802
1803         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1804             request_wiphy && request_wiphy == wiphy &&
1805             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1806                 /*
1807                  * This guarantees the driver's requested regulatory domain
1808                  * will always be used as a base for further regulatory
1809                  * settings
1810                  */
1811                 chan->flags = chan->orig_flags =
1812                         map_regdom_flags(reg_rule->flags) | bw_flags;
1813                 chan->max_antenna_gain = chan->orig_mag =
1814                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1815                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1816                         (int) MBM_TO_DBM(power_rule->max_eirp);
1817
1818                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1819                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820                         if (reg_rule->dfs_cac_ms)
1821                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1822                 }
1823
1824                 return;
1825         }
1826
1827         chan->dfs_state = NL80211_DFS_USABLE;
1828         chan->dfs_state_entered = jiffies;
1829
1830         chan->beacon_found = false;
1831         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1832         chan->max_antenna_gain =
1833                 min_t(int, chan->orig_mag,
1834                       MBI_TO_DBI(power_rule->max_antenna_gain));
1835         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1836
1837         if (chan->flags & IEEE80211_CHAN_RADAR) {
1838                 if (reg_rule->dfs_cac_ms)
1839                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1840                 else
1841                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1842         }
1843
1844         if (chan->orig_mpwr) {
1845                 /*
1846                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1847                  * will always follow the passed country IE power settings.
1848                  */
1849                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1850                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1851                         chan->max_power = chan->max_reg_power;
1852                 else
1853                         chan->max_power = min(chan->orig_mpwr,
1854                                               chan->max_reg_power);
1855         } else
1856                 chan->max_power = chan->max_reg_power;
1857 }
1858
1859 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1860                                           enum nl80211_reg_initiator initiator,
1861                                           struct ieee80211_channel *chan,
1862                                           u32 flags,
1863                                           struct regulatory_request *lr,
1864                                           struct wiphy *request_wiphy,
1865                                           const struct ieee80211_reg_rule *rrule1,
1866                                           const struct ieee80211_reg_rule *rrule2,
1867                                           struct ieee80211_freq_range *comb_range)
1868 {
1869         u32 bw_flags1 = 0;
1870         u32 bw_flags2 = 0;
1871         const struct ieee80211_power_rule *power_rule1 = NULL;
1872         const struct ieee80211_power_rule *power_rule2 = NULL;
1873         const struct ieee80211_regdomain *regd;
1874
1875         regd = reg_get_regdomain(wiphy);
1876
1877         power_rule1 = &rrule1->power_rule;
1878         power_rule2 = &rrule2->power_rule;
1879         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1880         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1881
1882         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1883             request_wiphy && request_wiphy == wiphy &&
1884             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1885                 /* This guarantees the driver's requested regulatory domain
1886                  * will always be used as a base for further regulatory
1887                  * settings
1888                  */
1889                 chan->flags =
1890                         map_regdom_flags(rrule1->flags) |
1891                         map_regdom_flags(rrule2->flags) |
1892                         bw_flags1 |
1893                         bw_flags2;
1894                 chan->orig_flags = chan->flags;
1895                 chan->max_antenna_gain =
1896                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1897                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1898                 chan->orig_mag = chan->max_antenna_gain;
1899                 chan->max_reg_power =
1900                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1901                               MBM_TO_DBM(power_rule2->max_eirp));
1902                 chan->max_power = chan->max_reg_power;
1903                 chan->orig_mpwr = chan->max_reg_power;
1904
1905                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1906                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1907                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1908                                 chan->dfs_cac_ms = max_t(unsigned int,
1909                                                          rrule1->dfs_cac_ms,
1910                                                          rrule2->dfs_cac_ms);
1911                 }
1912
1913                 return;
1914         }
1915
1916         chan->dfs_state = NL80211_DFS_USABLE;
1917         chan->dfs_state_entered = jiffies;
1918
1919         chan->beacon_found = false;
1920         chan->flags = flags | bw_flags1 | bw_flags2 |
1921                       map_regdom_flags(rrule1->flags) |
1922                       map_regdom_flags(rrule2->flags);
1923
1924         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1925          * (otherwise no adj. rule case), recheck therefore
1926          */
1927         if (cfg80211_does_bw_fit_range(comb_range,
1928                                        ieee80211_channel_to_khz(chan),
1929                                        MHZ_TO_KHZ(10)))
1930                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1931         if (cfg80211_does_bw_fit_range(comb_range,
1932                                        ieee80211_channel_to_khz(chan),
1933                                        MHZ_TO_KHZ(20)))
1934                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1935
1936         chan->max_antenna_gain =
1937                 min_t(int, chan->orig_mag,
1938                       min_t(int,
1939                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1940                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1941         chan->max_reg_power = min_t(int,
1942                                     MBM_TO_DBM(power_rule1->max_eirp),
1943                                     MBM_TO_DBM(power_rule2->max_eirp));
1944
1945         if (chan->flags & IEEE80211_CHAN_RADAR) {
1946                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1947                         chan->dfs_cac_ms = max_t(unsigned int,
1948                                                  rrule1->dfs_cac_ms,
1949                                                  rrule2->dfs_cac_ms);
1950                 else
1951                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1952         }
1953
1954         if (chan->orig_mpwr) {
1955                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1956                  * will always follow the passed country IE power settings.
1957                  */
1958                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1959                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1960                         chan->max_power = chan->max_reg_power;
1961                 else
1962                         chan->max_power = min(chan->orig_mpwr,
1963                                               chan->max_reg_power);
1964         } else {
1965                 chan->max_power = chan->max_reg_power;
1966         }
1967 }
1968
1969 /* Note that right now we assume the desired channel bandwidth
1970  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1971  * per channel, the primary and the extension channel).
1972  */
1973 static void handle_channel(struct wiphy *wiphy,
1974                            enum nl80211_reg_initiator initiator,
1975                            struct ieee80211_channel *chan)
1976 {
1977         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1978         struct regulatory_request *lr = get_last_request();
1979         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980         const struct ieee80211_reg_rule *rrule = NULL;
1981         const struct ieee80211_reg_rule *rrule1 = NULL;
1982         const struct ieee80211_reg_rule *rrule2 = NULL;
1983
1984         u32 flags = chan->orig_flags;
1985
1986         rrule = freq_reg_info(wiphy, orig_chan_freq);
1987         if (IS_ERR(rrule)) {
1988                 /* check for adjacent match, therefore get rules for
1989                  * chan - 20 MHz and chan + 20 MHz and test
1990                  * if reg rules are adjacent
1991                  */
1992                 rrule1 = freq_reg_info(wiphy,
1993                                        orig_chan_freq - MHZ_TO_KHZ(20));
1994                 rrule2 = freq_reg_info(wiphy,
1995                                        orig_chan_freq + MHZ_TO_KHZ(20));
1996                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1997                         struct ieee80211_freq_range comb_range;
1998
1999                         if (rrule1->freq_range.end_freq_khz !=
2000                             rrule2->freq_range.start_freq_khz)
2001                                 goto disable_chan;
2002
2003                         comb_range.start_freq_khz =
2004                                 rrule1->freq_range.start_freq_khz;
2005                         comb_range.end_freq_khz =
2006                                 rrule2->freq_range.end_freq_khz;
2007                         comb_range.max_bandwidth_khz =
2008                                 min_t(u32,
2009                                       rrule1->freq_range.max_bandwidth_khz,
2010                                       rrule2->freq_range.max_bandwidth_khz);
2011
2012                         if (!cfg80211_does_bw_fit_range(&comb_range,
2013                                                         orig_chan_freq,
2014                                                         MHZ_TO_KHZ(20)))
2015                                 goto disable_chan;
2016
2017                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2018                                                       flags, lr, request_wiphy,
2019                                                       rrule1, rrule2,
2020                                                       &comb_range);
2021                         return;
2022                 }
2023
2024 disable_chan:
2025                 /* We will disable all channels that do not match our
2026                  * received regulatory rule unless the hint is coming
2027                  * from a Country IE and the Country IE had no information
2028                  * about a band. The IEEE 802.11 spec allows for an AP
2029                  * to send only a subset of the regulatory rules allowed,
2030                  * so an AP in the US that only supports 2.4 GHz may only send
2031                  * a country IE with information for the 2.4 GHz band
2032                  * while 5 GHz is still supported.
2033                  */
2034                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2035                     PTR_ERR(rrule) == -ERANGE)
2036                         return;
2037
2038                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2039                     request_wiphy && request_wiphy == wiphy &&
2040                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2041                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2042                                  chan->center_freq, chan->freq_offset);
2043                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2044                         chan->flags = chan->orig_flags;
2045                 } else {
2046                         pr_debug("Disabling freq %d.%03d MHz\n",
2047                                  chan->center_freq, chan->freq_offset);
2048                         chan->flags |= IEEE80211_CHAN_DISABLED;
2049                 }
2050                 return;
2051         }
2052
2053         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2054                                    request_wiphy, rrule);
2055 }
2056
2057 static void handle_band(struct wiphy *wiphy,
2058                         enum nl80211_reg_initiator initiator,
2059                         struct ieee80211_supported_band *sband)
2060 {
2061         unsigned int i;
2062
2063         if (!sband)
2064                 return;
2065
2066         for (i = 0; i < sband->n_channels; i++)
2067                 handle_channel(wiphy, initiator, &sband->channels[i]);
2068 }
2069
2070 static bool reg_request_cell_base(struct regulatory_request *request)
2071 {
2072         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2073                 return false;
2074         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2075 }
2076
2077 bool reg_last_request_cell_base(void)
2078 {
2079         return reg_request_cell_base(get_last_request());
2080 }
2081
2082 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2083 /* Core specific check */
2084 static enum reg_request_treatment
2085 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2086 {
2087         struct regulatory_request *lr = get_last_request();
2088
2089         if (!reg_num_devs_support_basehint)
2090                 return REG_REQ_IGNORE;
2091
2092         if (reg_request_cell_base(lr) &&
2093             !regdom_changes(pending_request->alpha2))
2094                 return REG_REQ_ALREADY_SET;
2095
2096         return REG_REQ_OK;
2097 }
2098
2099 /* Device specific check */
2100 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2101 {
2102         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2103 }
2104 #else
2105 static enum reg_request_treatment
2106 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2107 {
2108         return REG_REQ_IGNORE;
2109 }
2110
2111 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2112 {
2113         return true;
2114 }
2115 #endif
2116
2117 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2118 {
2119         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2120             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2121                 return true;
2122         return false;
2123 }
2124
2125 static bool ignore_reg_update(struct wiphy *wiphy,
2126                               enum nl80211_reg_initiator initiator)
2127 {
2128         struct regulatory_request *lr = get_last_request();
2129
2130         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2131                 return true;
2132
2133         if (!lr) {
2134                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2135                          reg_initiator_name(initiator));
2136                 return true;
2137         }
2138
2139         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2140             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2141                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2142                          reg_initiator_name(initiator));
2143                 return true;
2144         }
2145
2146         /*
2147          * wiphy->regd will be set once the device has its own
2148          * desired regulatory domain set
2149          */
2150         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2151             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2152             !is_world_regdom(lr->alpha2)) {
2153                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2154                          reg_initiator_name(initiator));
2155                 return true;
2156         }
2157
2158         if (reg_request_cell_base(lr))
2159                 return reg_dev_ignore_cell_hint(wiphy);
2160
2161         return false;
2162 }
2163
2164 static bool reg_is_world_roaming(struct wiphy *wiphy)
2165 {
2166         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2167         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2168         struct regulatory_request *lr = get_last_request();
2169
2170         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2171                 return true;
2172
2173         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2174             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2175                 return true;
2176
2177         return false;
2178 }
2179
2180 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2181                               struct reg_beacon *reg_beacon)
2182 {
2183         struct ieee80211_supported_band *sband;
2184         struct ieee80211_channel *chan;
2185         bool channel_changed = false;
2186         struct ieee80211_channel chan_before;
2187
2188         sband = wiphy->bands[reg_beacon->chan.band];
2189         chan = &sband->channels[chan_idx];
2190
2191         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2192                 return;
2193
2194         if (chan->beacon_found)
2195                 return;
2196
2197         chan->beacon_found = true;
2198
2199         if (!reg_is_world_roaming(wiphy))
2200                 return;
2201
2202         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203                 return;
2204
2205         chan_before = *chan;
2206
2207         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209                 channel_changed = true;
2210         }
2211
2212         if (channel_changed)
2213                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2214 }
2215
2216 /*
2217  * Called when a scan on a wiphy finds a beacon on
2218  * new channel
2219  */
2220 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2221                                     struct reg_beacon *reg_beacon)
2222 {
2223         unsigned int i;
2224         struct ieee80211_supported_band *sband;
2225
2226         if (!wiphy->bands[reg_beacon->chan.band])
2227                 return;
2228
2229         sband = wiphy->bands[reg_beacon->chan.band];
2230
2231         for (i = 0; i < sband->n_channels; i++)
2232                 handle_reg_beacon(wiphy, i, reg_beacon);
2233 }
2234
2235 /*
2236  * Called upon reg changes or a new wiphy is added
2237  */
2238 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2239 {
2240         unsigned int i;
2241         struct ieee80211_supported_band *sband;
2242         struct reg_beacon *reg_beacon;
2243
2244         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2245                 if (!wiphy->bands[reg_beacon->chan.band])
2246                         continue;
2247                 sband = wiphy->bands[reg_beacon->chan.band];
2248                 for (i = 0; i < sband->n_channels; i++)
2249                         handle_reg_beacon(wiphy, i, reg_beacon);
2250         }
2251 }
2252
2253 /* Reap the advantages of previously found beacons */
2254 static void reg_process_beacons(struct wiphy *wiphy)
2255 {
2256         /*
2257          * Means we are just firing up cfg80211, so no beacons would
2258          * have been processed yet.
2259          */
2260         if (!last_request)
2261                 return;
2262         wiphy_update_beacon_reg(wiphy);
2263 }
2264
2265 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2266 {
2267         if (!chan)
2268                 return false;
2269         if (chan->flags & IEEE80211_CHAN_DISABLED)
2270                 return false;
2271         /* This would happen when regulatory rules disallow HT40 completely */
2272         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2273                 return false;
2274         return true;
2275 }
2276
2277 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2278                                          struct ieee80211_channel *channel)
2279 {
2280         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2281         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2282         const struct ieee80211_regdomain *regd;
2283         unsigned int i;
2284         u32 flags;
2285
2286         if (!is_ht40_allowed(channel)) {
2287                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2288                 return;
2289         }
2290
2291         /*
2292          * We need to ensure the extension channels exist to
2293          * be able to use HT40- or HT40+, this finds them (or not)
2294          */
2295         for (i = 0; i < sband->n_channels; i++) {
2296                 struct ieee80211_channel *c = &sband->channels[i];
2297
2298                 if (c->center_freq == (channel->center_freq - 20))
2299                         channel_before = c;
2300                 if (c->center_freq == (channel->center_freq + 20))
2301                         channel_after = c;
2302         }
2303
2304         flags = 0;
2305         regd = get_wiphy_regdom(wiphy);
2306         if (regd) {
2307                 const struct ieee80211_reg_rule *reg_rule =
2308                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2309                                            regd, MHZ_TO_KHZ(20));
2310
2311                 if (!IS_ERR(reg_rule))
2312                         flags = reg_rule->flags;
2313         }
2314
2315         /*
2316          * Please note that this assumes target bandwidth is 20 MHz,
2317          * if that ever changes we also need to change the below logic
2318          * to include that as well.
2319          */
2320         if (!is_ht40_allowed(channel_before) ||
2321             flags & NL80211_RRF_NO_HT40MINUS)
2322                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2323         else
2324                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2325
2326         if (!is_ht40_allowed(channel_after) ||
2327             flags & NL80211_RRF_NO_HT40PLUS)
2328                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2329         else
2330                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2331 }
2332
2333 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2334                                       struct ieee80211_supported_band *sband)
2335 {
2336         unsigned int i;
2337
2338         if (!sband)
2339                 return;
2340
2341         for (i = 0; i < sband->n_channels; i++)
2342                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2343 }
2344
2345 static void reg_process_ht_flags(struct wiphy *wiphy)
2346 {
2347         enum nl80211_band band;
2348
2349         if (!wiphy)
2350                 return;
2351
2352         for (band = 0; band < NUM_NL80211_BANDS; band++)
2353                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2354 }
2355
2356 static void reg_call_notifier(struct wiphy *wiphy,
2357                               struct regulatory_request *request)
2358 {
2359         if (wiphy->reg_notifier)
2360                 wiphy->reg_notifier(wiphy, request);
2361 }
2362
2363 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2364 {
2365         struct cfg80211_chan_def chandef = {};
2366         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2367         enum nl80211_iftype iftype;
2368         bool ret;
2369
2370         wdev_lock(wdev);
2371         iftype = wdev->iftype;
2372
2373         /* make sure the interface is active */
2374         if (!wdev->netdev || !netif_running(wdev->netdev))
2375                 goto wdev_inactive_unlock;
2376
2377         switch (iftype) {
2378         case NL80211_IFTYPE_AP:
2379         case NL80211_IFTYPE_P2P_GO:
2380         case NL80211_IFTYPE_MESH_POINT:
2381                 if (!wdev->beacon_interval)
2382                         goto wdev_inactive_unlock;
2383                 chandef = wdev->chandef;
2384                 break;
2385         case NL80211_IFTYPE_ADHOC:
2386                 if (!wdev->ssid_len)
2387                         goto wdev_inactive_unlock;
2388                 chandef = wdev->chandef;
2389                 break;
2390         case NL80211_IFTYPE_STATION:
2391         case NL80211_IFTYPE_P2P_CLIENT:
2392                 if (!wdev->current_bss ||
2393                     !wdev->current_bss->pub.channel)
2394                         goto wdev_inactive_unlock;
2395
2396                 if (!rdev->ops->get_channel ||
2397                     rdev_get_channel(rdev, wdev, &chandef))
2398                         cfg80211_chandef_create(&chandef,
2399                                                 wdev->current_bss->pub.channel,
2400                                                 NL80211_CHAN_NO_HT);
2401                 break;
2402         case NL80211_IFTYPE_MONITOR:
2403         case NL80211_IFTYPE_AP_VLAN:
2404         case NL80211_IFTYPE_P2P_DEVICE:
2405                 /* no enforcement required */
2406                 break;
2407         default:
2408                 /* others not implemented for now */
2409                 WARN_ON(1);
2410                 break;
2411         }
2412
2413         wdev_unlock(wdev);
2414
2415         switch (iftype) {
2416         case NL80211_IFTYPE_AP:
2417         case NL80211_IFTYPE_P2P_GO:
2418         case NL80211_IFTYPE_ADHOC:
2419         case NL80211_IFTYPE_MESH_POINT:
2420                 wiphy_lock(wiphy);
2421                 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2422                 wiphy_unlock(wiphy);
2423
2424                 return ret;
2425         case NL80211_IFTYPE_STATION:
2426         case NL80211_IFTYPE_P2P_CLIENT:
2427                 return cfg80211_chandef_usable(wiphy, &chandef,
2428                                                IEEE80211_CHAN_DISABLED);
2429         default:
2430                 break;
2431         }
2432
2433         return true;
2434
2435 wdev_inactive_unlock:
2436         wdev_unlock(wdev);
2437         return true;
2438 }
2439
2440 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2441 {
2442         struct wireless_dev *wdev;
2443         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2444
2445         ASSERT_RTNL();
2446
2447         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2448                 if (!reg_wdev_chan_valid(wiphy, wdev))
2449                         cfg80211_leave(rdev, wdev);
2450 }
2451
2452 static void reg_check_chans_work(struct work_struct *work)
2453 {
2454         struct cfg80211_registered_device *rdev;
2455
2456         pr_debug("Verifying active interfaces after reg change\n");
2457         rtnl_lock();
2458
2459         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2460                 if (!(rdev->wiphy.regulatory_flags &
2461                       REGULATORY_IGNORE_STALE_KICKOFF))
2462                         reg_leave_invalid_chans(&rdev->wiphy);
2463
2464         rtnl_unlock();
2465 }
2466
2467 static void reg_check_channels(void)
2468 {
2469         /*
2470          * Give usermode a chance to do something nicer (move to another
2471          * channel, orderly disconnection), before forcing a disconnection.
2472          */
2473         mod_delayed_work(system_power_efficient_wq,
2474                          &reg_check_chans,
2475                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2476 }
2477
2478 static void wiphy_update_regulatory(struct wiphy *wiphy,
2479                                     enum nl80211_reg_initiator initiator)
2480 {
2481         enum nl80211_band band;
2482         struct regulatory_request *lr = get_last_request();
2483
2484         if (ignore_reg_update(wiphy, initiator)) {
2485                 /*
2486                  * Regulatory updates set by CORE are ignored for custom
2487                  * regulatory cards. Let us notify the changes to the driver,
2488                  * as some drivers used this to restore its orig_* reg domain.
2489                  */
2490                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2491                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2492                     !(wiphy->regulatory_flags &
2493                       REGULATORY_WIPHY_SELF_MANAGED))
2494                         reg_call_notifier(wiphy, lr);
2495                 return;
2496         }
2497
2498         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2499
2500         for (band = 0; band < NUM_NL80211_BANDS; band++)
2501                 handle_band(wiphy, initiator, wiphy->bands[band]);
2502
2503         reg_process_beacons(wiphy);
2504         reg_process_ht_flags(wiphy);
2505         reg_call_notifier(wiphy, lr);
2506 }
2507
2508 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2509 {
2510         struct cfg80211_registered_device *rdev;
2511         struct wiphy *wiphy;
2512
2513         ASSERT_RTNL();
2514
2515         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2516                 wiphy = &rdev->wiphy;
2517                 wiphy_update_regulatory(wiphy, initiator);
2518         }
2519
2520         reg_check_channels();
2521 }
2522
2523 static void handle_channel_custom(struct wiphy *wiphy,
2524                                   struct ieee80211_channel *chan,
2525                                   const struct ieee80211_regdomain *regd,
2526                                   u32 min_bw)
2527 {
2528         u32 bw_flags = 0;
2529         const struct ieee80211_reg_rule *reg_rule = NULL;
2530         const struct ieee80211_power_rule *power_rule = NULL;
2531         u32 bw, center_freq_khz;
2532
2533         center_freq_khz = ieee80211_channel_to_khz(chan);
2534         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2535                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2536                 if (!IS_ERR(reg_rule))
2537                         break;
2538         }
2539
2540         if (IS_ERR_OR_NULL(reg_rule)) {
2541                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2542                          chan->center_freq, chan->freq_offset);
2543                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2544                         chan->flags |= IEEE80211_CHAN_DISABLED;
2545                 } else {
2546                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2547                         chan->flags = chan->orig_flags;
2548                 }
2549                 return;
2550         }
2551
2552         power_rule = &reg_rule->power_rule;
2553         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2554
2555         chan->dfs_state_entered = jiffies;
2556         chan->dfs_state = NL80211_DFS_USABLE;
2557
2558         chan->beacon_found = false;
2559
2560         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2561                 chan->flags = chan->orig_flags | bw_flags |
2562                               map_regdom_flags(reg_rule->flags);
2563         else
2564                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2565
2566         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2567         chan->max_reg_power = chan->max_power =
2568                 (int) MBM_TO_DBM(power_rule->max_eirp);
2569
2570         if (chan->flags & IEEE80211_CHAN_RADAR) {
2571                 if (reg_rule->dfs_cac_ms)
2572                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2573                 else
2574                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2575         }
2576
2577         chan->max_power = chan->max_reg_power;
2578 }
2579
2580 static void handle_band_custom(struct wiphy *wiphy,
2581                                struct ieee80211_supported_band *sband,
2582                                const struct ieee80211_regdomain *regd)
2583 {
2584         unsigned int i;
2585
2586         if (!sband)
2587                 return;
2588
2589         /*
2590          * We currently assume that you always want at least 20 MHz,
2591          * otherwise channel 12 might get enabled if this rule is
2592          * compatible to US, which permits 2402 - 2472 MHz.
2593          */
2594         for (i = 0; i < sband->n_channels; i++)
2595                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2596                                       MHZ_TO_KHZ(20));
2597 }
2598
2599 /* Used by drivers prior to wiphy registration */
2600 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2601                                    const struct ieee80211_regdomain *regd)
2602 {
2603         const struct ieee80211_regdomain *new_regd, *tmp;
2604         enum nl80211_band band;
2605         unsigned int bands_set = 0;
2606
2607         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2608              "wiphy should have REGULATORY_CUSTOM_REG\n");
2609         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2610
2611         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2612                 if (!wiphy->bands[band])
2613                         continue;
2614                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2615                 bands_set++;
2616         }
2617
2618         /*
2619          * no point in calling this if it won't have any effect
2620          * on your device's supported bands.
2621          */
2622         WARN_ON(!bands_set);
2623         new_regd = reg_copy_regd(regd);
2624         if (IS_ERR(new_regd))
2625                 return;
2626
2627         rtnl_lock();
2628         wiphy_lock(wiphy);
2629
2630         tmp = get_wiphy_regdom(wiphy);
2631         rcu_assign_pointer(wiphy->regd, new_regd);
2632         rcu_free_regdom(tmp);
2633
2634         wiphy_unlock(wiphy);
2635         rtnl_unlock();
2636 }
2637 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2638
2639 static void reg_set_request_processed(void)
2640 {
2641         bool need_more_processing = false;
2642         struct regulatory_request *lr = get_last_request();
2643
2644         lr->processed = true;
2645
2646         spin_lock(&reg_requests_lock);
2647         if (!list_empty(&reg_requests_list))
2648                 need_more_processing = true;
2649         spin_unlock(&reg_requests_lock);
2650
2651         cancel_crda_timeout();
2652
2653         if (need_more_processing)
2654                 schedule_work(&reg_work);
2655 }
2656
2657 /**
2658  * reg_process_hint_core - process core regulatory requests
2659  * @core_request: a pending core regulatory request
2660  *
2661  * The wireless subsystem can use this function to process
2662  * a regulatory request issued by the regulatory core.
2663  */
2664 static enum reg_request_treatment
2665 reg_process_hint_core(struct regulatory_request *core_request)
2666 {
2667         if (reg_query_database(core_request)) {
2668                 core_request->intersect = false;
2669                 core_request->processed = false;
2670                 reg_update_last_request(core_request);
2671                 return REG_REQ_OK;
2672         }
2673
2674         return REG_REQ_IGNORE;
2675 }
2676
2677 static enum reg_request_treatment
2678 __reg_process_hint_user(struct regulatory_request *user_request)
2679 {
2680         struct regulatory_request *lr = get_last_request();
2681
2682         if (reg_request_cell_base(user_request))
2683                 return reg_ignore_cell_hint(user_request);
2684
2685         if (reg_request_cell_base(lr))
2686                 return REG_REQ_IGNORE;
2687
2688         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2689                 return REG_REQ_INTERSECT;
2690         /*
2691          * If the user knows better the user should set the regdom
2692          * to their country before the IE is picked up
2693          */
2694         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2695             lr->intersect)
2696                 return REG_REQ_IGNORE;
2697         /*
2698          * Process user requests only after previous user/driver/core
2699          * requests have been processed
2700          */
2701         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2702              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2703              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2704             regdom_changes(lr->alpha2))
2705                 return REG_REQ_IGNORE;
2706
2707         if (!regdom_changes(user_request->alpha2))
2708                 return REG_REQ_ALREADY_SET;
2709
2710         return REG_REQ_OK;
2711 }
2712
2713 /**
2714  * reg_process_hint_user - process user regulatory requests
2715  * @user_request: a pending user regulatory request
2716  *
2717  * The wireless subsystem can use this function to process
2718  * a regulatory request initiated by userspace.
2719  */
2720 static enum reg_request_treatment
2721 reg_process_hint_user(struct regulatory_request *user_request)
2722 {
2723         enum reg_request_treatment treatment;
2724
2725         treatment = __reg_process_hint_user(user_request);
2726         if (treatment == REG_REQ_IGNORE ||
2727             treatment == REG_REQ_ALREADY_SET)
2728                 return REG_REQ_IGNORE;
2729
2730         user_request->intersect = treatment == REG_REQ_INTERSECT;
2731         user_request->processed = false;
2732
2733         if (reg_query_database(user_request)) {
2734                 reg_update_last_request(user_request);
2735                 user_alpha2[0] = user_request->alpha2[0];
2736                 user_alpha2[1] = user_request->alpha2[1];
2737                 return REG_REQ_OK;
2738         }
2739
2740         return REG_REQ_IGNORE;
2741 }
2742
2743 static enum reg_request_treatment
2744 __reg_process_hint_driver(struct regulatory_request *driver_request)
2745 {
2746         struct regulatory_request *lr = get_last_request();
2747
2748         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2749                 if (regdom_changes(driver_request->alpha2))
2750                         return REG_REQ_OK;
2751                 return REG_REQ_ALREADY_SET;
2752         }
2753
2754         /*
2755          * This would happen if you unplug and plug your card
2756          * back in or if you add a new device for which the previously
2757          * loaded card also agrees on the regulatory domain.
2758          */
2759         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2760             !regdom_changes(driver_request->alpha2))
2761                 return REG_REQ_ALREADY_SET;
2762
2763         return REG_REQ_INTERSECT;
2764 }
2765
2766 /**
2767  * reg_process_hint_driver - process driver regulatory requests
2768  * @wiphy: the wireless device for the regulatory request
2769  * @driver_request: a pending driver regulatory request
2770  *
2771  * The wireless subsystem can use this function to process
2772  * a regulatory request issued by an 802.11 driver.
2773  *
2774  * Returns one of the different reg request treatment values.
2775  */
2776 static enum reg_request_treatment
2777 reg_process_hint_driver(struct wiphy *wiphy,
2778                         struct regulatory_request *driver_request)
2779 {
2780         const struct ieee80211_regdomain *regd, *tmp;
2781         enum reg_request_treatment treatment;
2782
2783         treatment = __reg_process_hint_driver(driver_request);
2784
2785         switch (treatment) {
2786         case REG_REQ_OK:
2787                 break;
2788         case REG_REQ_IGNORE:
2789                 return REG_REQ_IGNORE;
2790         case REG_REQ_INTERSECT:
2791         case REG_REQ_ALREADY_SET:
2792                 regd = reg_copy_regd(get_cfg80211_regdom());
2793                 if (IS_ERR(regd))
2794                         return REG_REQ_IGNORE;
2795
2796                 tmp = get_wiphy_regdom(wiphy);
2797                 ASSERT_RTNL();
2798                 wiphy_lock(wiphy);
2799                 rcu_assign_pointer(wiphy->regd, regd);
2800                 wiphy_unlock(wiphy);
2801                 rcu_free_regdom(tmp);
2802         }
2803
2804
2805         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2806         driver_request->processed = false;
2807
2808         /*
2809          * Since CRDA will not be called in this case as we already
2810          * have applied the requested regulatory domain before we just
2811          * inform userspace we have processed the request
2812          */
2813         if (treatment == REG_REQ_ALREADY_SET) {
2814                 nl80211_send_reg_change_event(driver_request);
2815                 reg_update_last_request(driver_request);
2816                 reg_set_request_processed();
2817                 return REG_REQ_ALREADY_SET;
2818         }
2819
2820         if (reg_query_database(driver_request)) {
2821                 reg_update_last_request(driver_request);
2822                 return REG_REQ_OK;
2823         }
2824
2825         return REG_REQ_IGNORE;
2826 }
2827
2828 static enum reg_request_treatment
2829 __reg_process_hint_country_ie(struct wiphy *wiphy,
2830                               struct regulatory_request *country_ie_request)
2831 {
2832         struct wiphy *last_wiphy = NULL;
2833         struct regulatory_request *lr = get_last_request();
2834
2835         if (reg_request_cell_base(lr)) {
2836                 /* Trust a Cell base station over the AP's country IE */
2837                 if (regdom_changes(country_ie_request->alpha2))
2838                         return REG_REQ_IGNORE;
2839                 return REG_REQ_ALREADY_SET;
2840         } else {
2841                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2842                         return REG_REQ_IGNORE;
2843         }
2844
2845         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2846                 return -EINVAL;
2847
2848         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2849                 return REG_REQ_OK;
2850
2851         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2852
2853         if (last_wiphy != wiphy) {
2854                 /*
2855                  * Two cards with two APs claiming different
2856                  * Country IE alpha2s. We could
2857                  * intersect them, but that seems unlikely
2858                  * to be correct. Reject second one for now.
2859                  */
2860                 if (regdom_changes(country_ie_request->alpha2))
2861                         return REG_REQ_IGNORE;
2862                 return REG_REQ_ALREADY_SET;
2863         }
2864
2865         if (regdom_changes(country_ie_request->alpha2))
2866                 return REG_REQ_OK;
2867         return REG_REQ_ALREADY_SET;
2868 }
2869
2870 /**
2871  * reg_process_hint_country_ie - process regulatory requests from country IEs
2872  * @wiphy: the wireless device for the regulatory request
2873  * @country_ie_request: a regulatory request from a country IE
2874  *
2875  * The wireless subsystem can use this function to process
2876  * a regulatory request issued by a country Information Element.
2877  *
2878  * Returns one of the different reg request treatment values.
2879  */
2880 static enum reg_request_treatment
2881 reg_process_hint_country_ie(struct wiphy *wiphy,
2882                             struct regulatory_request *country_ie_request)
2883 {
2884         enum reg_request_treatment treatment;
2885
2886         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2887
2888         switch (treatment) {
2889         case REG_REQ_OK:
2890                 break;
2891         case REG_REQ_IGNORE:
2892                 return REG_REQ_IGNORE;
2893         case REG_REQ_ALREADY_SET:
2894                 reg_free_request(country_ie_request);
2895                 return REG_REQ_ALREADY_SET;
2896         case REG_REQ_INTERSECT:
2897                 /*
2898                  * This doesn't happen yet, not sure we
2899                  * ever want to support it for this case.
2900                  */
2901                 WARN_ONCE(1, "Unexpected intersection for country elements");
2902                 return REG_REQ_IGNORE;
2903         }
2904
2905         country_ie_request->intersect = false;
2906         country_ie_request->processed = false;
2907
2908         if (reg_query_database(country_ie_request)) {
2909                 reg_update_last_request(country_ie_request);
2910                 return REG_REQ_OK;
2911         }
2912
2913         return REG_REQ_IGNORE;
2914 }
2915
2916 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2917 {
2918         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2919         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2920         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2921         bool dfs_domain_same;
2922
2923         rcu_read_lock();
2924
2925         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2926         wiphy1_regd = rcu_dereference(wiphy1->regd);
2927         if (!wiphy1_regd)
2928                 wiphy1_regd = cfg80211_regd;
2929
2930         wiphy2_regd = rcu_dereference(wiphy2->regd);
2931         if (!wiphy2_regd)
2932                 wiphy2_regd = cfg80211_regd;
2933
2934         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2935
2936         rcu_read_unlock();
2937
2938         return dfs_domain_same;
2939 }
2940
2941 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2942                                     struct ieee80211_channel *src_chan)
2943 {
2944         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2945             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2946                 return;
2947
2948         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2949             src_chan->flags & IEEE80211_CHAN_DISABLED)
2950                 return;
2951
2952         if (src_chan->center_freq == dst_chan->center_freq &&
2953             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2954                 dst_chan->dfs_state = src_chan->dfs_state;
2955                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2956         }
2957 }
2958
2959 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2960                                        struct wiphy *src_wiphy)
2961 {
2962         struct ieee80211_supported_band *src_sband, *dst_sband;
2963         struct ieee80211_channel *src_chan, *dst_chan;
2964         int i, j, band;
2965
2966         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2967                 return;
2968
2969         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2970                 dst_sband = dst_wiphy->bands[band];
2971                 src_sband = src_wiphy->bands[band];
2972                 if (!dst_sband || !src_sband)
2973                         continue;
2974
2975                 for (i = 0; i < dst_sband->n_channels; i++) {
2976                         dst_chan = &dst_sband->channels[i];
2977                         for (j = 0; j < src_sband->n_channels; j++) {
2978                                 src_chan = &src_sband->channels[j];
2979                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2980                         }
2981                 }
2982         }
2983 }
2984
2985 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2986 {
2987         struct cfg80211_registered_device *rdev;
2988
2989         ASSERT_RTNL();
2990
2991         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2992                 if (wiphy == &rdev->wiphy)
2993                         continue;
2994                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2995         }
2996 }
2997
2998 /* This processes *all* regulatory hints */
2999 static void reg_process_hint(struct regulatory_request *reg_request)
3000 {
3001         struct wiphy *wiphy = NULL;
3002         enum reg_request_treatment treatment;
3003         enum nl80211_reg_initiator initiator = reg_request->initiator;
3004
3005         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3006                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3007
3008         switch (initiator) {
3009         case NL80211_REGDOM_SET_BY_CORE:
3010                 treatment = reg_process_hint_core(reg_request);
3011                 break;
3012         case NL80211_REGDOM_SET_BY_USER:
3013                 treatment = reg_process_hint_user(reg_request);
3014                 break;
3015         case NL80211_REGDOM_SET_BY_DRIVER:
3016                 if (!wiphy)
3017                         goto out_free;
3018                 treatment = reg_process_hint_driver(wiphy, reg_request);
3019                 break;
3020         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3021                 if (!wiphy)
3022                         goto out_free;
3023                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3024                 break;
3025         default:
3026                 WARN(1, "invalid initiator %d\n", initiator);
3027                 goto out_free;
3028         }
3029
3030         if (treatment == REG_REQ_IGNORE)
3031                 goto out_free;
3032
3033         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3034              "unexpected treatment value %d\n", treatment);
3035
3036         /* This is required so that the orig_* parameters are saved.
3037          * NOTE: treatment must be set for any case that reaches here!
3038          */
3039         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3040             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3041                 wiphy_update_regulatory(wiphy, initiator);
3042                 wiphy_all_share_dfs_chan_state(wiphy);
3043                 reg_check_channels();
3044         }
3045
3046         return;
3047
3048 out_free:
3049         reg_free_request(reg_request);
3050 }
3051
3052 static void notify_self_managed_wiphys(struct regulatory_request *request)
3053 {
3054         struct cfg80211_registered_device *rdev;
3055         struct wiphy *wiphy;
3056
3057         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3058                 wiphy = &rdev->wiphy;
3059                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3060                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3061                         reg_call_notifier(wiphy, request);
3062         }
3063 }
3064
3065 /*
3066  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3067  * Regulatory hints come on a first come first serve basis and we
3068  * must process each one atomically.
3069  */
3070 static void reg_process_pending_hints(void)
3071 {
3072         struct regulatory_request *reg_request, *lr;
3073
3074         lr = get_last_request();
3075
3076         /* When last_request->processed becomes true this will be rescheduled */
3077         if (lr && !lr->processed) {
3078                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3079                 return;
3080         }
3081
3082         spin_lock(&reg_requests_lock);
3083
3084         if (list_empty(&reg_requests_list)) {
3085                 spin_unlock(&reg_requests_lock);
3086                 return;
3087         }
3088
3089         reg_request = list_first_entry(&reg_requests_list,
3090                                        struct regulatory_request,
3091                                        list);
3092         list_del_init(&reg_request->list);
3093
3094         spin_unlock(&reg_requests_lock);
3095
3096         notify_self_managed_wiphys(reg_request);
3097
3098         reg_process_hint(reg_request);
3099
3100         lr = get_last_request();
3101
3102         spin_lock(&reg_requests_lock);
3103         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3104                 schedule_work(&reg_work);
3105         spin_unlock(&reg_requests_lock);
3106 }
3107
3108 /* Processes beacon hints -- this has nothing to do with country IEs */
3109 static void reg_process_pending_beacon_hints(void)
3110 {
3111         struct cfg80211_registered_device *rdev;
3112         struct reg_beacon *pending_beacon, *tmp;
3113
3114         /* This goes through the _pending_ beacon list */
3115         spin_lock_bh(&reg_pending_beacons_lock);
3116
3117         list_for_each_entry_safe(pending_beacon, tmp,
3118                                  &reg_pending_beacons, list) {
3119                 list_del_init(&pending_beacon->list);
3120
3121                 /* Applies the beacon hint to current wiphys */
3122                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3123                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3124
3125                 /* Remembers the beacon hint for new wiphys or reg changes */
3126                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3127         }
3128
3129         spin_unlock_bh(&reg_pending_beacons_lock);
3130 }
3131
3132 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3133 {
3134         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3135         const struct ieee80211_regdomain *tmp;
3136         const struct ieee80211_regdomain *regd;
3137         enum nl80211_band band;
3138         struct regulatory_request request = {};
3139
3140         ASSERT_RTNL();
3141         lockdep_assert_wiphy(wiphy);
3142
3143         spin_lock(&reg_requests_lock);
3144         regd = rdev->requested_regd;
3145         rdev->requested_regd = NULL;
3146         spin_unlock(&reg_requests_lock);
3147
3148         if (!regd)
3149                 return;
3150
3151         tmp = get_wiphy_regdom(wiphy);
3152         rcu_assign_pointer(wiphy->regd, regd);
3153         rcu_free_regdom(tmp);
3154
3155         for (band = 0; band < NUM_NL80211_BANDS; band++)
3156                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3157
3158         reg_process_ht_flags(wiphy);
3159
3160         request.wiphy_idx = get_wiphy_idx(wiphy);
3161         request.alpha2[0] = regd->alpha2[0];
3162         request.alpha2[1] = regd->alpha2[1];
3163         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3164
3165         nl80211_send_wiphy_reg_change_event(&request);
3166 }
3167
3168 static void reg_process_self_managed_hints(void)
3169 {
3170         struct cfg80211_registered_device *rdev;
3171
3172         ASSERT_RTNL();
3173
3174         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3175                 wiphy_lock(&rdev->wiphy);
3176                 reg_process_self_managed_hint(&rdev->wiphy);
3177                 wiphy_unlock(&rdev->wiphy);
3178         }
3179
3180         reg_check_channels();
3181 }
3182
3183 static void reg_todo(struct work_struct *work)
3184 {
3185         rtnl_lock();
3186         reg_process_pending_hints();
3187         reg_process_pending_beacon_hints();
3188         reg_process_self_managed_hints();
3189         rtnl_unlock();
3190 }
3191
3192 static void queue_regulatory_request(struct regulatory_request *request)
3193 {
3194         request->alpha2[0] = toupper(request->alpha2[0]);
3195         request->alpha2[1] = toupper(request->alpha2[1]);
3196
3197         spin_lock(&reg_requests_lock);
3198         list_add_tail(&request->list, &reg_requests_list);
3199         spin_unlock(&reg_requests_lock);
3200
3201         schedule_work(&reg_work);
3202 }
3203
3204 /*
3205  * Core regulatory hint -- happens during cfg80211_init()
3206  * and when we restore regulatory settings.
3207  */
3208 static int regulatory_hint_core(const char *alpha2)
3209 {
3210         struct regulatory_request *request;
3211
3212         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3213         if (!request)
3214                 return -ENOMEM;
3215
3216         request->alpha2[0] = alpha2[0];
3217         request->alpha2[1] = alpha2[1];
3218         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3219         request->wiphy_idx = WIPHY_IDX_INVALID;
3220
3221         queue_regulatory_request(request);
3222
3223         return 0;
3224 }
3225
3226 /* User hints */
3227 int regulatory_hint_user(const char *alpha2,
3228                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3229 {
3230         struct regulatory_request *request;
3231
3232         if (WARN_ON(!alpha2))
3233                 return -EINVAL;
3234
3235         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3236                 return -EINVAL;
3237
3238         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239         if (!request)
3240                 return -ENOMEM;
3241
3242         request->wiphy_idx = WIPHY_IDX_INVALID;
3243         request->alpha2[0] = alpha2[0];
3244         request->alpha2[1] = alpha2[1];
3245         request->initiator = NL80211_REGDOM_SET_BY_USER;
3246         request->user_reg_hint_type = user_reg_hint_type;
3247
3248         /* Allow calling CRDA again */
3249         reset_crda_timeouts();
3250
3251         queue_regulatory_request(request);
3252
3253         return 0;
3254 }
3255
3256 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3257 {
3258         spin_lock(&reg_indoor_lock);
3259
3260         /* It is possible that more than one user space process is trying to
3261          * configure the indoor setting. To handle such cases, clear the indoor
3262          * setting in case that some process does not think that the device
3263          * is operating in an indoor environment. In addition, if a user space
3264          * process indicates that it is controlling the indoor setting, save its
3265          * portid, i.e., make it the owner.
3266          */
3267         reg_is_indoor = is_indoor;
3268         if (reg_is_indoor) {
3269                 if (!reg_is_indoor_portid)
3270                         reg_is_indoor_portid = portid;
3271         } else {
3272                 reg_is_indoor_portid = 0;
3273         }
3274
3275         spin_unlock(&reg_indoor_lock);
3276
3277         if (!is_indoor)
3278                 reg_check_channels();
3279
3280         return 0;
3281 }
3282
3283 void regulatory_netlink_notify(u32 portid)
3284 {
3285         spin_lock(&reg_indoor_lock);
3286
3287         if (reg_is_indoor_portid != portid) {
3288                 spin_unlock(&reg_indoor_lock);
3289                 return;
3290         }
3291
3292         reg_is_indoor = false;
3293         reg_is_indoor_portid = 0;
3294
3295         spin_unlock(&reg_indoor_lock);
3296
3297         reg_check_channels();
3298 }
3299
3300 /* Driver hints */
3301 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3302 {
3303         struct regulatory_request *request;
3304
3305         if (WARN_ON(!alpha2 || !wiphy))
3306                 return -EINVAL;
3307
3308         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3309
3310         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3311         if (!request)
3312                 return -ENOMEM;
3313
3314         request->wiphy_idx = get_wiphy_idx(wiphy);
3315
3316         request->alpha2[0] = alpha2[0];
3317         request->alpha2[1] = alpha2[1];
3318         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3319
3320         /* Allow calling CRDA again */
3321         reset_crda_timeouts();
3322
3323         queue_regulatory_request(request);
3324
3325         return 0;
3326 }
3327 EXPORT_SYMBOL(regulatory_hint);
3328
3329 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3330                                 const u8 *country_ie, u8 country_ie_len)
3331 {
3332         char alpha2[2];
3333         enum environment_cap env = ENVIRON_ANY;
3334         struct regulatory_request *request = NULL, *lr;
3335
3336         /* IE len must be evenly divisible by 2 */
3337         if (country_ie_len & 0x01)
3338                 return;
3339
3340         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3341                 return;
3342
3343         request = kzalloc(sizeof(*request), GFP_KERNEL);
3344         if (!request)
3345                 return;
3346
3347         alpha2[0] = country_ie[0];
3348         alpha2[1] = country_ie[1];
3349
3350         if (country_ie[2] == 'I')
3351                 env = ENVIRON_INDOOR;
3352         else if (country_ie[2] == 'O')
3353                 env = ENVIRON_OUTDOOR;
3354
3355         rcu_read_lock();
3356         lr = get_last_request();
3357
3358         if (unlikely(!lr))
3359                 goto out;
3360
3361         /*
3362          * We will run this only upon a successful connection on cfg80211.
3363          * We leave conflict resolution to the workqueue, where can hold
3364          * the RTNL.
3365          */
3366         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3367             lr->wiphy_idx != WIPHY_IDX_INVALID)
3368                 goto out;
3369
3370         request->wiphy_idx = get_wiphy_idx(wiphy);
3371         request->alpha2[0] = alpha2[0];
3372         request->alpha2[1] = alpha2[1];
3373         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3374         request->country_ie_env = env;
3375
3376         /* Allow calling CRDA again */
3377         reset_crda_timeouts();
3378
3379         queue_regulatory_request(request);
3380         request = NULL;
3381 out:
3382         kfree(request);
3383         rcu_read_unlock();
3384 }
3385
3386 static void restore_alpha2(char *alpha2, bool reset_user)
3387 {
3388         /* indicates there is no alpha2 to consider for restoration */
3389         alpha2[0] = '9';
3390         alpha2[1] = '7';
3391
3392         /* The user setting has precedence over the module parameter */
3393         if (is_user_regdom_saved()) {
3394                 /* Unless we're asked to ignore it and reset it */
3395                 if (reset_user) {
3396                         pr_debug("Restoring regulatory settings including user preference\n");
3397                         user_alpha2[0] = '9';
3398                         user_alpha2[1] = '7';
3399
3400                         /*
3401                          * If we're ignoring user settings, we still need to
3402                          * check the module parameter to ensure we put things
3403                          * back as they were for a full restore.
3404                          */
3405                         if (!is_world_regdom(ieee80211_regdom)) {
3406                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3407                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3408                                 alpha2[0] = ieee80211_regdom[0];
3409                                 alpha2[1] = ieee80211_regdom[1];
3410                         }
3411                 } else {
3412                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3413                                  user_alpha2[0], user_alpha2[1]);
3414                         alpha2[0] = user_alpha2[0];
3415                         alpha2[1] = user_alpha2[1];
3416                 }
3417         } else if (!is_world_regdom(ieee80211_regdom)) {
3418                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3419                          ieee80211_regdom[0], ieee80211_regdom[1]);
3420                 alpha2[0] = ieee80211_regdom[0];
3421                 alpha2[1] = ieee80211_regdom[1];
3422         } else
3423                 pr_debug("Restoring regulatory settings\n");
3424 }
3425
3426 static void restore_custom_reg_settings(struct wiphy *wiphy)
3427 {
3428         struct ieee80211_supported_band *sband;
3429         enum nl80211_band band;
3430         struct ieee80211_channel *chan;
3431         int i;
3432
3433         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3434                 sband = wiphy->bands[band];
3435                 if (!sband)
3436                         continue;
3437                 for (i = 0; i < sband->n_channels; i++) {
3438                         chan = &sband->channels[i];
3439                         chan->flags = chan->orig_flags;
3440                         chan->max_antenna_gain = chan->orig_mag;
3441                         chan->max_power = chan->orig_mpwr;
3442                         chan->beacon_found = false;
3443                 }
3444         }
3445 }
3446
3447 /*
3448  * Restoring regulatory settings involves ignoring any
3449  * possibly stale country IE information and user regulatory
3450  * settings if so desired, this includes any beacon hints
3451  * learned as we could have traveled outside to another country
3452  * after disconnection. To restore regulatory settings we do
3453  * exactly what we did at bootup:
3454  *
3455  *   - send a core regulatory hint
3456  *   - send a user regulatory hint if applicable
3457  *
3458  * Device drivers that send a regulatory hint for a specific country
3459  * keep their own regulatory domain on wiphy->regd so that does
3460  * not need to be remembered.
3461  */
3462 static void restore_regulatory_settings(bool reset_user, bool cached)
3463 {
3464         char alpha2[2];
3465         char world_alpha2[2];
3466         struct reg_beacon *reg_beacon, *btmp;
3467         LIST_HEAD(tmp_reg_req_list);
3468         struct cfg80211_registered_device *rdev;
3469
3470         ASSERT_RTNL();
3471
3472         /*
3473          * Clear the indoor setting in case that it is not controlled by user
3474          * space, as otherwise there is no guarantee that the device is still
3475          * operating in an indoor environment.
3476          */
3477         spin_lock(&reg_indoor_lock);
3478         if (reg_is_indoor && !reg_is_indoor_portid) {
3479                 reg_is_indoor = false;
3480                 reg_check_channels();
3481         }
3482         spin_unlock(&reg_indoor_lock);
3483
3484         reset_regdomains(true, &world_regdom);
3485         restore_alpha2(alpha2, reset_user);
3486
3487         /*
3488          * If there's any pending requests we simply
3489          * stash them to a temporary pending queue and
3490          * add then after we've restored regulatory
3491          * settings.
3492          */
3493         spin_lock(&reg_requests_lock);
3494         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3495         spin_unlock(&reg_requests_lock);
3496
3497         /* Clear beacon hints */
3498         spin_lock_bh(&reg_pending_beacons_lock);
3499         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3500                 list_del(&reg_beacon->list);
3501                 kfree(reg_beacon);
3502         }
3503         spin_unlock_bh(&reg_pending_beacons_lock);
3504
3505         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3506                 list_del(&reg_beacon->list);
3507                 kfree(reg_beacon);
3508         }
3509
3510         /* First restore to the basic regulatory settings */
3511         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3512         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3513
3514         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3515                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3516                         continue;
3517                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3518                         restore_custom_reg_settings(&rdev->wiphy);
3519         }
3520
3521         if (cached && (!is_an_alpha2(alpha2) ||
3522                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3523                 reset_regdomains(false, cfg80211_world_regdom);
3524                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3525                 print_regdomain(get_cfg80211_regdom());
3526                 nl80211_send_reg_change_event(&core_request_world);
3527                 reg_set_request_processed();
3528
3529                 if (is_an_alpha2(alpha2) &&
3530                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3531                         struct regulatory_request *ureq;
3532
3533                         spin_lock(&reg_requests_lock);
3534                         ureq = list_last_entry(&reg_requests_list,
3535                                                struct regulatory_request,
3536                                                list);
3537                         list_del(&ureq->list);
3538                         spin_unlock(&reg_requests_lock);
3539
3540                         notify_self_managed_wiphys(ureq);
3541                         reg_update_last_request(ureq);
3542                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3543                                    REGD_SOURCE_CACHED);
3544                 }
3545         } else {
3546                 regulatory_hint_core(world_alpha2);
3547
3548                 /*
3549                  * This restores the ieee80211_regdom module parameter
3550                  * preference or the last user requested regulatory
3551                  * settings, user regulatory settings takes precedence.
3552                  */
3553                 if (is_an_alpha2(alpha2))
3554                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3555         }
3556
3557         spin_lock(&reg_requests_lock);
3558         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3559         spin_unlock(&reg_requests_lock);
3560
3561         pr_debug("Kicking the queue\n");
3562
3563         schedule_work(&reg_work);
3564 }
3565
3566 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3567 {
3568         struct cfg80211_registered_device *rdev;
3569         struct wireless_dev *wdev;
3570
3571         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3572                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3573                         wdev_lock(wdev);
3574                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3575                                 wdev_unlock(wdev);
3576                                 return false;
3577                         }
3578                         wdev_unlock(wdev);
3579                 }
3580         }
3581
3582         return true;
3583 }
3584
3585 void regulatory_hint_disconnect(void)
3586 {
3587         /* Restore of regulatory settings is not required when wiphy(s)
3588          * ignore IE from connected access point but clearance of beacon hints
3589          * is required when wiphy(s) supports beacon hints.
3590          */
3591         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3592                 struct reg_beacon *reg_beacon, *btmp;
3593
3594                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3595                         return;
3596
3597                 spin_lock_bh(&reg_pending_beacons_lock);
3598                 list_for_each_entry_safe(reg_beacon, btmp,
3599                                          &reg_pending_beacons, list) {
3600                         list_del(&reg_beacon->list);
3601                         kfree(reg_beacon);
3602                 }
3603                 spin_unlock_bh(&reg_pending_beacons_lock);
3604
3605                 list_for_each_entry_safe(reg_beacon, btmp,
3606                                          &reg_beacon_list, list) {
3607                         list_del(&reg_beacon->list);
3608                         kfree(reg_beacon);
3609                 }
3610
3611                 return;
3612         }
3613
3614         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3615         restore_regulatory_settings(false, true);
3616 }
3617
3618 static bool freq_is_chan_12_13_14(u32 freq)
3619 {
3620         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3621             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3622             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3623                 return true;
3624         return false;
3625 }
3626
3627 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3628 {
3629         struct reg_beacon *pending_beacon;
3630
3631         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3632                 if (ieee80211_channel_equal(beacon_chan,
3633                                             &pending_beacon->chan))
3634                         return true;
3635         return false;
3636 }
3637
3638 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3639                                  struct ieee80211_channel *beacon_chan,
3640                                  gfp_t gfp)
3641 {
3642         struct reg_beacon *reg_beacon;
3643         bool processing;
3644
3645         if (beacon_chan->beacon_found ||
3646             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3647             (beacon_chan->band == NL80211_BAND_2GHZ &&
3648              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3649                 return 0;
3650
3651         spin_lock_bh(&reg_pending_beacons_lock);
3652         processing = pending_reg_beacon(beacon_chan);
3653         spin_unlock_bh(&reg_pending_beacons_lock);
3654
3655         if (processing)
3656                 return 0;
3657
3658         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3659         if (!reg_beacon)
3660                 return -ENOMEM;
3661
3662         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3663                  beacon_chan->center_freq, beacon_chan->freq_offset,
3664                  ieee80211_freq_khz_to_channel(
3665                          ieee80211_channel_to_khz(beacon_chan)),
3666                  wiphy_name(wiphy));
3667
3668         memcpy(&reg_beacon->chan, beacon_chan,
3669                sizeof(struct ieee80211_channel));
3670
3671         /*
3672          * Since we can be called from BH or and non-BH context
3673          * we must use spin_lock_bh()
3674          */
3675         spin_lock_bh(&reg_pending_beacons_lock);
3676         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3677         spin_unlock_bh(&reg_pending_beacons_lock);
3678
3679         schedule_work(&reg_work);
3680
3681         return 0;
3682 }
3683
3684 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3685 {
3686         unsigned int i;
3687         const struct ieee80211_reg_rule *reg_rule = NULL;
3688         const struct ieee80211_freq_range *freq_range = NULL;
3689         const struct ieee80211_power_rule *power_rule = NULL;
3690         char bw[32], cac_time[32];
3691
3692         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3693
3694         for (i = 0; i < rd->n_reg_rules; i++) {
3695                 reg_rule = &rd->reg_rules[i];
3696                 freq_range = &reg_rule->freq_range;
3697                 power_rule = &reg_rule->power_rule;
3698
3699                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3700                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3701                                  freq_range->max_bandwidth_khz,
3702                                  reg_get_max_bandwidth(rd, reg_rule));
3703                 else
3704                         snprintf(bw, sizeof(bw), "%d KHz",
3705                                  freq_range->max_bandwidth_khz);
3706
3707                 if (reg_rule->flags & NL80211_RRF_DFS)
3708                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3709                                   reg_rule->dfs_cac_ms/1000);
3710                 else
3711                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3712
3713
3714                 /*
3715                  * There may not be documentation for max antenna gain
3716                  * in certain regions
3717                  */
3718                 if (power_rule->max_antenna_gain)
3719                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3720                                 freq_range->start_freq_khz,
3721                                 freq_range->end_freq_khz,
3722                                 bw,
3723                                 power_rule->max_antenna_gain,
3724                                 power_rule->max_eirp,
3725                                 cac_time);
3726                 else
3727                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3728                                 freq_range->start_freq_khz,
3729                                 freq_range->end_freq_khz,
3730                                 bw,
3731                                 power_rule->max_eirp,
3732                                 cac_time);
3733         }
3734 }
3735
3736 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3737 {
3738         switch (dfs_region) {
3739         case NL80211_DFS_UNSET:
3740         case NL80211_DFS_FCC:
3741         case NL80211_DFS_ETSI:
3742         case NL80211_DFS_JP:
3743                 return true;
3744         default:
3745                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3746                 return false;
3747         }
3748 }
3749
3750 static void print_regdomain(const struct ieee80211_regdomain *rd)
3751 {
3752         struct regulatory_request *lr = get_last_request();
3753
3754         if (is_intersected_alpha2(rd->alpha2)) {
3755                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3756                         struct cfg80211_registered_device *rdev;
3757                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3758                         if (rdev) {
3759                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3760                                         rdev->country_ie_alpha2[0],
3761                                         rdev->country_ie_alpha2[1]);
3762                         } else
3763                                 pr_debug("Current regulatory domain intersected:\n");
3764                 } else
3765                         pr_debug("Current regulatory domain intersected:\n");
3766         } else if (is_world_regdom(rd->alpha2)) {
3767                 pr_debug("World regulatory domain updated:\n");
3768         } else {
3769                 if (is_unknown_alpha2(rd->alpha2))
3770                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3771                 else {
3772                         if (reg_request_cell_base(lr))
3773                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3774                                         rd->alpha2[0], rd->alpha2[1]);
3775                         else
3776                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3777                                         rd->alpha2[0], rd->alpha2[1]);
3778                 }
3779         }
3780
3781         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3782         print_rd_rules(rd);
3783 }
3784
3785 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3786 {
3787         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3788         print_rd_rules(rd);
3789 }
3790
3791 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3792 {
3793         if (!is_world_regdom(rd->alpha2))
3794                 return -EINVAL;
3795         update_world_regdomain(rd);
3796         return 0;
3797 }
3798
3799 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3800                            struct regulatory_request *user_request)
3801 {
3802         const struct ieee80211_regdomain *intersected_rd = NULL;
3803
3804         if (!regdom_changes(rd->alpha2))
3805                 return -EALREADY;
3806
3807         if (!is_valid_rd(rd)) {
3808                 pr_err("Invalid regulatory domain detected: %c%c\n",
3809                        rd->alpha2[0], rd->alpha2[1]);
3810                 print_regdomain_info(rd);
3811                 return -EINVAL;
3812         }
3813
3814         if (!user_request->intersect) {
3815                 reset_regdomains(false, rd);
3816                 return 0;
3817         }
3818
3819         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3820         if (!intersected_rd)
3821                 return -EINVAL;
3822
3823         kfree(rd);
3824         rd = NULL;
3825         reset_regdomains(false, intersected_rd);
3826
3827         return 0;
3828 }
3829
3830 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3831                              struct regulatory_request *driver_request)
3832 {
3833         const struct ieee80211_regdomain *regd;
3834         const struct ieee80211_regdomain *intersected_rd = NULL;
3835         const struct ieee80211_regdomain *tmp;
3836         struct wiphy *request_wiphy;
3837
3838         if (is_world_regdom(rd->alpha2))
3839                 return -EINVAL;
3840
3841         if (!regdom_changes(rd->alpha2))
3842                 return -EALREADY;
3843
3844         if (!is_valid_rd(rd)) {
3845                 pr_err("Invalid regulatory domain detected: %c%c\n",
3846                        rd->alpha2[0], rd->alpha2[1]);
3847                 print_regdomain_info(rd);
3848                 return -EINVAL;
3849         }
3850
3851         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3852         if (!request_wiphy)
3853                 return -ENODEV;
3854
3855         if (!driver_request->intersect) {
3856                 ASSERT_RTNL();
3857                 wiphy_lock(request_wiphy);
3858                 if (request_wiphy->regd) {
3859                         wiphy_unlock(request_wiphy);
3860                         return -EALREADY;
3861                 }
3862
3863                 regd = reg_copy_regd(rd);
3864                 if (IS_ERR(regd)) {
3865                         wiphy_unlock(request_wiphy);
3866                         return PTR_ERR(regd);
3867                 }
3868
3869                 rcu_assign_pointer(request_wiphy->regd, regd);
3870                 wiphy_unlock(request_wiphy);
3871                 reset_regdomains(false, rd);
3872                 return 0;
3873         }
3874
3875         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3876         if (!intersected_rd)
3877                 return -EINVAL;
3878
3879         /*
3880          * We can trash what CRDA provided now.
3881          * However if a driver requested this specific regulatory
3882          * domain we keep it for its private use
3883          */
3884         tmp = get_wiphy_regdom(request_wiphy);
3885         rcu_assign_pointer(request_wiphy->regd, rd);
3886         rcu_free_regdom(tmp);
3887
3888         rd = NULL;
3889
3890         reset_regdomains(false, intersected_rd);
3891
3892         return 0;
3893 }
3894
3895 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3896                                  struct regulatory_request *country_ie_request)
3897 {
3898         struct wiphy *request_wiphy;
3899
3900         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3901             !is_unknown_alpha2(rd->alpha2))
3902                 return -EINVAL;
3903
3904         /*
3905          * Lets only bother proceeding on the same alpha2 if the current
3906          * rd is non static (it means CRDA was present and was used last)
3907          * and the pending request came in from a country IE
3908          */
3909
3910         if (!is_valid_rd(rd)) {
3911                 pr_err("Invalid regulatory domain detected: %c%c\n",
3912                        rd->alpha2[0], rd->alpha2[1]);
3913                 print_regdomain_info(rd);
3914                 return -EINVAL;
3915         }
3916
3917         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3918         if (!request_wiphy)
3919                 return -ENODEV;
3920
3921         if (country_ie_request->intersect)
3922                 return -EINVAL;
3923
3924         reset_regdomains(false, rd);
3925         return 0;
3926 }
3927
3928 /*
3929  * Use this call to set the current regulatory domain. Conflicts with
3930  * multiple drivers can be ironed out later. Caller must've already
3931  * kmalloc'd the rd structure.
3932  */
3933 int set_regdom(const struct ieee80211_regdomain *rd,
3934                enum ieee80211_regd_source regd_src)
3935 {
3936         struct regulatory_request *lr;
3937         bool user_reset = false;
3938         int r;
3939
3940         if (IS_ERR_OR_NULL(rd))
3941                 return -ENODATA;
3942
3943         if (!reg_is_valid_request(rd->alpha2)) {
3944                 kfree(rd);
3945                 return -EINVAL;
3946         }
3947
3948         if (regd_src == REGD_SOURCE_CRDA)
3949                 reset_crda_timeouts();
3950
3951         lr = get_last_request();
3952
3953         /* Note that this doesn't update the wiphys, this is done below */
3954         switch (lr->initiator) {
3955         case NL80211_REGDOM_SET_BY_CORE:
3956                 r = reg_set_rd_core(rd);
3957                 break;
3958         case NL80211_REGDOM_SET_BY_USER:
3959                 cfg80211_save_user_regdom(rd);
3960                 r = reg_set_rd_user(rd, lr);
3961                 user_reset = true;
3962                 break;
3963         case NL80211_REGDOM_SET_BY_DRIVER:
3964                 r = reg_set_rd_driver(rd, lr);
3965                 break;
3966         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3967                 r = reg_set_rd_country_ie(rd, lr);
3968                 break;
3969         default:
3970                 WARN(1, "invalid initiator %d\n", lr->initiator);
3971                 kfree(rd);
3972                 return -EINVAL;
3973         }
3974
3975         if (r) {
3976                 switch (r) {
3977                 case -EALREADY:
3978                         reg_set_request_processed();
3979                         break;
3980                 default:
3981                         /* Back to world regulatory in case of errors */
3982                         restore_regulatory_settings(user_reset, false);
3983                 }
3984
3985                 kfree(rd);
3986                 return r;
3987         }
3988
3989         /* This would make this whole thing pointless */
3990         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3991                 return -EINVAL;
3992
3993         /* update all wiphys now with the new established regulatory domain */
3994         update_all_wiphy_regulatory(lr->initiator);
3995
3996         print_regdomain(get_cfg80211_regdom());
3997
3998         nl80211_send_reg_change_event(lr);
3999
4000         reg_set_request_processed();
4001
4002         return 0;
4003 }
4004
4005 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4006                                        struct ieee80211_regdomain *rd)
4007 {
4008         const struct ieee80211_regdomain *regd;
4009         const struct ieee80211_regdomain *prev_regd;
4010         struct cfg80211_registered_device *rdev;
4011
4012         if (WARN_ON(!wiphy || !rd))
4013                 return -EINVAL;
4014
4015         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4016                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4017                 return -EPERM;
4018
4019         if (WARN(!is_valid_rd(rd),
4020                  "Invalid regulatory domain detected: %c%c\n",
4021                  rd->alpha2[0], rd->alpha2[1])) {
4022                 print_regdomain_info(rd);
4023                 return -EINVAL;
4024         }
4025
4026         regd = reg_copy_regd(rd);
4027         if (IS_ERR(regd))
4028                 return PTR_ERR(regd);
4029
4030         rdev = wiphy_to_rdev(wiphy);
4031
4032         spin_lock(&reg_requests_lock);
4033         prev_regd = rdev->requested_regd;
4034         rdev->requested_regd = regd;
4035         spin_unlock(&reg_requests_lock);
4036
4037         kfree(prev_regd);
4038         return 0;
4039 }
4040
4041 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042                               struct ieee80211_regdomain *rd)
4043 {
4044         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4045
4046         if (ret)
4047                 return ret;
4048
4049         schedule_work(&reg_work);
4050         return 0;
4051 }
4052 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4053
4054 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4055                                    struct ieee80211_regdomain *rd)
4056 {
4057         int ret;
4058
4059         ASSERT_RTNL();
4060
4061         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4062         if (ret)
4063                 return ret;
4064
4065         /* process the request immediately */
4066         reg_process_self_managed_hint(wiphy);
4067         reg_check_channels();
4068         return 0;
4069 }
4070 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4071
4072 void wiphy_regulatory_register(struct wiphy *wiphy)
4073 {
4074         struct regulatory_request *lr = get_last_request();
4075
4076         /* self-managed devices ignore beacon hints and country IE */
4077         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4078                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4079                                            REGULATORY_COUNTRY_IE_IGNORE;
4080
4081                 /*
4082                  * The last request may have been received before this
4083                  * registration call. Call the driver notifier if
4084                  * initiator is USER.
4085                  */
4086                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4087                         reg_call_notifier(wiphy, lr);
4088         }
4089
4090         if (!reg_dev_ignore_cell_hint(wiphy))
4091                 reg_num_devs_support_basehint++;
4092
4093         wiphy_update_regulatory(wiphy, lr->initiator);
4094         wiphy_all_share_dfs_chan_state(wiphy);
4095         reg_process_self_managed_hints();
4096 }
4097
4098 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4099 {
4100         struct wiphy *request_wiphy = NULL;
4101         struct regulatory_request *lr;
4102
4103         lr = get_last_request();
4104
4105         if (!reg_dev_ignore_cell_hint(wiphy))
4106                 reg_num_devs_support_basehint--;
4107
4108         rcu_free_regdom(get_wiphy_regdom(wiphy));
4109         RCU_INIT_POINTER(wiphy->regd, NULL);
4110
4111         if (lr)
4112                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4113
4114         if (!request_wiphy || request_wiphy != wiphy)
4115                 return;
4116
4117         lr->wiphy_idx = WIPHY_IDX_INVALID;
4118         lr->country_ie_env = ENVIRON_ANY;
4119 }
4120
4121 /*
4122  * See FCC notices for UNII band definitions
4123  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4124  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4125  */
4126 int cfg80211_get_unii(int freq)
4127 {
4128         /* UNII-1 */
4129         if (freq >= 5150 && freq <= 5250)
4130                 return 0;
4131
4132         /* UNII-2A */
4133         if (freq > 5250 && freq <= 5350)
4134                 return 1;
4135
4136         /* UNII-2B */
4137         if (freq > 5350 && freq <= 5470)
4138                 return 2;
4139
4140         /* UNII-2C */
4141         if (freq > 5470 && freq <= 5725)
4142                 return 3;
4143
4144         /* UNII-3 */
4145         if (freq > 5725 && freq <= 5825)
4146                 return 4;
4147
4148         /* UNII-5 */
4149         if (freq > 5925 && freq <= 6425)
4150                 return 5;
4151
4152         /* UNII-6 */
4153         if (freq > 6425 && freq <= 6525)
4154                 return 6;
4155
4156         /* UNII-7 */
4157         if (freq > 6525 && freq <= 6875)
4158                 return 7;
4159
4160         /* UNII-8 */
4161         if (freq > 6875 && freq <= 7125)
4162                 return 8;
4163
4164         return -EINVAL;
4165 }
4166
4167 bool regulatory_indoor_allowed(void)
4168 {
4169         return reg_is_indoor;
4170 }
4171
4172 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4173 {
4174         const struct ieee80211_regdomain *regd = NULL;
4175         const struct ieee80211_regdomain *wiphy_regd = NULL;
4176         bool pre_cac_allowed = false;
4177
4178         rcu_read_lock();
4179
4180         regd = rcu_dereference(cfg80211_regdomain);
4181         wiphy_regd = rcu_dereference(wiphy->regd);
4182         if (!wiphy_regd) {
4183                 if (regd->dfs_region == NL80211_DFS_ETSI)
4184                         pre_cac_allowed = true;
4185
4186                 rcu_read_unlock();
4187
4188                 return pre_cac_allowed;
4189         }
4190
4191         if (regd->dfs_region == wiphy_regd->dfs_region &&
4192             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4193                 pre_cac_allowed = true;
4194
4195         rcu_read_unlock();
4196
4197         return pre_cac_allowed;
4198 }
4199 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4200
4201 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4202 {
4203         struct wireless_dev *wdev;
4204         /* If we finished CAC or received radar, we should end any
4205          * CAC running on the same channels.
4206          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4207          * either all channels are available - those the CAC_FINISHED
4208          * event has effected another wdev state, or there is a channel
4209          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4210          * event has effected another wdev state.
4211          * In both cases we should end the CAC on the wdev.
4212          */
4213         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4214                 if (wdev->cac_started &&
4215                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4216                         rdev_end_cac(rdev, wdev->netdev);
4217         }
4218 }
4219
4220 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4221                                     struct cfg80211_chan_def *chandef,
4222                                     enum nl80211_dfs_state dfs_state,
4223                                     enum nl80211_radar_event event)
4224 {
4225         struct cfg80211_registered_device *rdev;
4226
4227         ASSERT_RTNL();
4228
4229         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4230                 return;
4231
4232         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4233                 if (wiphy == &rdev->wiphy)
4234                         continue;
4235
4236                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4237                         continue;
4238
4239                 if (!ieee80211_get_channel(&rdev->wiphy,
4240                                            chandef->chan->center_freq))
4241                         continue;
4242
4243                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4244
4245                 if (event == NL80211_RADAR_DETECTED ||
4246                     event == NL80211_RADAR_CAC_FINISHED) {
4247                         cfg80211_sched_dfs_chan_update(rdev);
4248                         cfg80211_check_and_end_cac(rdev);
4249                 }
4250
4251                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4252         }
4253 }
4254
4255 static int __init regulatory_init_db(void)
4256 {
4257         int err;
4258
4259         /*
4260          * It's possible that - due to other bugs/issues - cfg80211
4261          * never called regulatory_init() below, or that it failed;
4262          * in that case, don't try to do any further work here as
4263          * it's doomed to lead to crashes.
4264          */
4265         if (IS_ERR_OR_NULL(reg_pdev))
4266                 return -EINVAL;
4267
4268         err = load_builtin_regdb_keys();
4269         if (err)
4270                 return err;
4271
4272         /* We always try to get an update for the static regdomain */
4273         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4274         if (err) {
4275                 if (err == -ENOMEM) {
4276                         platform_device_unregister(reg_pdev);
4277                         return err;
4278                 }
4279                 /*
4280                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4281                  * memory which is handled and propagated appropriately above
4282                  * but it can also fail during a netlink_broadcast() or during
4283                  * early boot for call_usermodehelper(). For now treat these
4284                  * errors as non-fatal.
4285                  */
4286                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4287         }
4288
4289         /*
4290          * Finally, if the user set the module parameter treat it
4291          * as a user hint.
4292          */
4293         if (!is_world_regdom(ieee80211_regdom))
4294                 regulatory_hint_user(ieee80211_regdom,
4295                                      NL80211_USER_REG_HINT_USER);
4296
4297         return 0;
4298 }
4299 #ifndef MODULE
4300 late_initcall(regulatory_init_db);
4301 #endif
4302
4303 int __init regulatory_init(void)
4304 {
4305         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4306         if (IS_ERR(reg_pdev))
4307                 return PTR_ERR(reg_pdev);
4308
4309         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4310
4311         user_alpha2[0] = '9';
4312         user_alpha2[1] = '7';
4313
4314 #ifdef MODULE
4315         return regulatory_init_db();
4316 #else
4317         return 0;
4318 #endif
4319 }
4320
4321 void regulatory_exit(void)
4322 {
4323         struct regulatory_request *reg_request, *tmp;
4324         struct reg_beacon *reg_beacon, *btmp;
4325
4326         cancel_work_sync(&reg_work);
4327         cancel_crda_timeout_sync();
4328         cancel_delayed_work_sync(&reg_check_chans);
4329
4330         /* Lock to suppress warnings */
4331         rtnl_lock();
4332         reset_regdomains(true, NULL);
4333         rtnl_unlock();
4334
4335         dev_set_uevent_suppress(&reg_pdev->dev, true);
4336
4337         platform_device_unregister(reg_pdev);
4338
4339         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4340                 list_del(&reg_beacon->list);
4341                 kfree(reg_beacon);
4342         }
4343
4344         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4345                 list_del(&reg_beacon->list);
4346                 kfree(reg_beacon);
4347         }
4348
4349         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4350                 list_del(&reg_request->list);
4351                 kfree(reg_request);
4352         }
4353
4354         if (!IS_ERR_OR_NULL(regdb))
4355                 kfree(regdb);
4356         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4357                 kfree(cfg80211_user_regdom);
4358
4359         free_regdb_keyring();
4360 }