usb: gadget: goku: remove unused argument
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89         (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95         .uevent = reg_device_uevent,
96 };
97
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115         return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120         return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125         if (!r)
126                 return;
127         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132         return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147         struct list_head list;
148         struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159         .n_reg_rules = 6,
160         .alpha2 =  "00",
161         .reg_rules = {
162                 /* IEEE 802.11b/g, channels 1..11 */
163                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164                 /* IEEE 802.11b/g, channels 12..13. */
165                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166                         NL80211_RRF_PASSIVE_SCAN |
167                         NL80211_RRF_NO_IBSS),
168                 /* IEEE 802.11 channel 14 - Only JP enables
169                  * this and for 802.11b only */
170                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
171                         NL80211_RRF_PASSIVE_SCAN |
172                         NL80211_RRF_NO_IBSS |
173                         NL80211_RRF_NO_OFDM),
174                 /* IEEE 802.11a, channel 36..48 */
175                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
176                         NL80211_RRF_PASSIVE_SCAN |
177                         NL80211_RRF_NO_IBSS),
178
179                 /* IEEE 802.11a, channel 52..64 - DFS required */
180                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
181                         NL80211_RRF_PASSIVE_SCAN |
182                         NL80211_RRF_NO_IBSS |
183                         NL80211_RRF_DFS),
184
185                 /* IEEE 802.11a, channel 100..144 - DFS required */
186                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
187                         NL80211_RRF_PASSIVE_SCAN |
188                         NL80211_RRF_NO_IBSS |
189                         NL80211_RRF_DFS),
190
191                 /* IEEE 802.11a, channel 149..165 */
192                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
193                         NL80211_RRF_PASSIVE_SCAN |
194                         NL80211_RRF_NO_IBSS),
195
196                 /* IEEE 802.11ad (60gHz), channels 1..3 */
197                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
198         }
199 };
200
201 /* protected by RTNL */
202 static const struct ieee80211_regdomain *cfg80211_world_regdom =
203         &world_regdom;
204
205 static char *ieee80211_regdom = "00";
206 static char user_alpha2[2];
207
208 module_param(ieee80211_regdom, charp, 0444);
209 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
210
211 static void reset_regdomains(bool full_reset,
212                              const struct ieee80211_regdomain *new_regdom)
213 {
214         const struct ieee80211_regdomain *r;
215         struct regulatory_request *lr;
216
217         ASSERT_RTNL();
218
219         r = get_cfg80211_regdom();
220
221         /* avoid freeing static information or freeing something twice */
222         if (r == cfg80211_world_regdom)
223                 r = NULL;
224         if (cfg80211_world_regdom == &world_regdom)
225                 cfg80211_world_regdom = NULL;
226         if (r == &world_regdom)
227                 r = NULL;
228
229         rcu_free_regdom(r);
230         rcu_free_regdom(cfg80211_world_regdom);
231
232         cfg80211_world_regdom = &world_regdom;
233         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
234
235         if (!full_reset)
236                 return;
237
238         lr = get_last_request();
239         if (lr != &core_request_world && lr)
240                 kfree_rcu(lr, rcu_head);
241         rcu_assign_pointer(last_request, &core_request_world);
242 }
243
244 /*
245  * Dynamic world regulatory domain requested by the wireless
246  * core upon initialization
247  */
248 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
249 {
250         struct regulatory_request *lr;
251
252         lr = get_last_request();
253
254         WARN_ON(!lr);
255
256         reset_regdomains(false, rd);
257
258         cfg80211_world_regdom = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         return alpha2[0] == '0' && alpha2[1] == '0';
266 }
267
268 static bool is_alpha2_set(const char *alpha2)
269 {
270         if (!alpha2)
271                 return false;
272         return alpha2[0] && alpha2[1];
273 }
274
275 static bool is_unknown_alpha2(const char *alpha2)
276 {
277         if (!alpha2)
278                 return false;
279         /*
280          * Special case where regulatory domain was built by driver
281          * but a specific alpha2 cannot be determined
282          */
283         return alpha2[0] == '9' && alpha2[1] == '9';
284 }
285
286 static bool is_intersected_alpha2(const char *alpha2)
287 {
288         if (!alpha2)
289                 return false;
290         /*
291          * Special case where regulatory domain is the
292          * result of an intersection between two regulatory domain
293          * structures
294          */
295         return alpha2[0] == '9' && alpha2[1] == '8';
296 }
297
298 static bool is_an_alpha2(const char *alpha2)
299 {
300         if (!alpha2)
301                 return false;
302         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
303 }
304
305 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
306 {
307         if (!alpha2_x || !alpha2_y)
308                 return false;
309         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
310 }
311
312 static bool regdom_changes(const char *alpha2)
313 {
314         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
315
316         if (!r)
317                 return true;
318         return !alpha2_equal(r->alpha2, alpha2);
319 }
320
321 /*
322  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
323  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
324  * has ever been issued.
325  */
326 static bool is_user_regdom_saved(void)
327 {
328         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
329                 return false;
330
331         /* This would indicate a mistake on the design */
332         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
333                  "Unexpected user alpha2: %c%c\n",
334                  user_alpha2[0], user_alpha2[1]))
335                 return false;
336
337         return true;
338 }
339
340 static const struct ieee80211_regdomain *
341 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
342 {
343         struct ieee80211_regdomain *regd;
344         int size_of_regd;
345         unsigned int i;
346
347         size_of_regd =
348                 sizeof(struct ieee80211_regdomain) +
349                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
350
351         regd = kzalloc(size_of_regd, GFP_KERNEL);
352         if (!regd)
353                 return ERR_PTR(-ENOMEM);
354
355         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
356
357         for (i = 0; i < src_regd->n_reg_rules; i++)
358                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
359                        sizeof(struct ieee80211_reg_rule));
360
361         return regd;
362 }
363
364 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
365 struct reg_regdb_search_request {
366         char alpha2[2];
367         struct list_head list;
368 };
369
370 static LIST_HEAD(reg_regdb_search_list);
371 static DEFINE_MUTEX(reg_regdb_search_mutex);
372
373 static void reg_regdb_search(struct work_struct *work)
374 {
375         struct reg_regdb_search_request *request;
376         const struct ieee80211_regdomain *curdom, *regdom = NULL;
377         int i;
378
379         rtnl_lock();
380
381         mutex_lock(&reg_regdb_search_mutex);
382         while (!list_empty(&reg_regdb_search_list)) {
383                 request = list_first_entry(&reg_regdb_search_list,
384                                            struct reg_regdb_search_request,
385                                            list);
386                 list_del(&request->list);
387
388                 for (i = 0; i < reg_regdb_size; i++) {
389                         curdom = reg_regdb[i];
390
391                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
392                                 regdom = reg_copy_regd(curdom);
393                                 break;
394                         }
395                 }
396
397                 kfree(request);
398         }
399         mutex_unlock(&reg_regdb_search_mutex);
400
401         if (!IS_ERR_OR_NULL(regdom))
402                 set_regdom(regdom);
403
404         rtnl_unlock();
405 }
406
407 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
408
409 static void reg_regdb_query(const char *alpha2)
410 {
411         struct reg_regdb_search_request *request;
412
413         if (!alpha2)
414                 return;
415
416         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
417         if (!request)
418                 return;
419
420         memcpy(request->alpha2, alpha2, 2);
421
422         mutex_lock(&reg_regdb_search_mutex);
423         list_add_tail(&request->list, &reg_regdb_search_list);
424         mutex_unlock(&reg_regdb_search_mutex);
425
426         schedule_work(&reg_regdb_work);
427 }
428
429 /* Feel free to add any other sanity checks here */
430 static void reg_regdb_size_check(void)
431 {
432         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
433         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
434 }
435 #else
436 static inline void reg_regdb_size_check(void) {}
437 static inline void reg_regdb_query(const char *alpha2) {}
438 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
439
440 /*
441  * This lets us keep regulatory code which is updated on a regulatory
442  * basis in userspace. Country information is filled in by
443  * reg_device_uevent
444  */
445 static int call_crda(const char *alpha2)
446 {
447         if (!is_world_regdom((char *) alpha2))
448                 pr_info("Calling CRDA for country: %c%c\n",
449                         alpha2[0], alpha2[1]);
450         else
451                 pr_info("Calling CRDA to update world regulatory domain\n");
452
453         /* query internal regulatory database (if it exists) */
454         reg_regdb_query(alpha2);
455
456         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
457 }
458
459 static bool reg_is_valid_request(const char *alpha2)
460 {
461         struct regulatory_request *lr = get_last_request();
462
463         if (!lr || lr->processed)
464                 return false;
465
466         return alpha2_equal(lr->alpha2, alpha2);
467 }
468
469 /* Sanity check on a regulatory rule */
470 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
471 {
472         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
473         u32 freq_diff;
474
475         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
476                 return false;
477
478         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
479                 return false;
480
481         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
482
483         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
484             freq_range->max_bandwidth_khz > freq_diff)
485                 return false;
486
487         return true;
488 }
489
490 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
491 {
492         const struct ieee80211_reg_rule *reg_rule = NULL;
493         unsigned int i;
494
495         if (!rd->n_reg_rules)
496                 return false;
497
498         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
499                 return false;
500
501         for (i = 0; i < rd->n_reg_rules; i++) {
502                 reg_rule = &rd->reg_rules[i];
503                 if (!is_valid_reg_rule(reg_rule))
504                         return false;
505         }
506
507         return true;
508 }
509
510 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
511                             u32 center_freq_khz, u32 bw_khz)
512 {
513         u32 start_freq_khz, end_freq_khz;
514
515         start_freq_khz = center_freq_khz - (bw_khz/2);
516         end_freq_khz = center_freq_khz + (bw_khz/2);
517
518         if (start_freq_khz >= freq_range->start_freq_khz &&
519             end_freq_khz <= freq_range->end_freq_khz)
520                 return true;
521
522         return false;
523 }
524
525 /**
526  * freq_in_rule_band - tells us if a frequency is in a frequency band
527  * @freq_range: frequency rule we want to query
528  * @freq_khz: frequency we are inquiring about
529  *
530  * This lets us know if a specific frequency rule is or is not relevant to
531  * a specific frequency's band. Bands are device specific and artificial
532  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
533  * however it is safe for now to assume that a frequency rule should not be
534  * part of a frequency's band if the start freq or end freq are off by more
535  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
536  * 60 GHz band.
537  * This resolution can be lowered and should be considered as we add
538  * regulatory rule support for other "bands".
539  **/
540 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
541                               u32 freq_khz)
542 {
543 #define ONE_GHZ_IN_KHZ  1000000
544         /*
545          * From 802.11ad: directional multi-gigabit (DMG):
546          * Pertaining to operation in a frequency band containing a channel
547          * with the Channel starting frequency above 45 GHz.
548          */
549         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
550                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
551         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
552                 return true;
553         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
554                 return true;
555         return false;
556 #undef ONE_GHZ_IN_KHZ
557 }
558
559 /*
560  * Helper for regdom_intersect(), this does the real
561  * mathematical intersection fun
562  */
563 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
564                                const struct ieee80211_reg_rule *rule2,
565                                struct ieee80211_reg_rule *intersected_rule)
566 {
567         const struct ieee80211_freq_range *freq_range1, *freq_range2;
568         struct ieee80211_freq_range *freq_range;
569         const struct ieee80211_power_rule *power_rule1, *power_rule2;
570         struct ieee80211_power_rule *power_rule;
571         u32 freq_diff;
572
573         freq_range1 = &rule1->freq_range;
574         freq_range2 = &rule2->freq_range;
575         freq_range = &intersected_rule->freq_range;
576
577         power_rule1 = &rule1->power_rule;
578         power_rule2 = &rule2->power_rule;
579         power_rule = &intersected_rule->power_rule;
580
581         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
582                                          freq_range2->start_freq_khz);
583         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
584                                        freq_range2->end_freq_khz);
585         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
586                                             freq_range2->max_bandwidth_khz);
587
588         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
589         if (freq_range->max_bandwidth_khz > freq_diff)
590                 freq_range->max_bandwidth_khz = freq_diff;
591
592         power_rule->max_eirp = min(power_rule1->max_eirp,
593                 power_rule2->max_eirp);
594         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
595                 power_rule2->max_antenna_gain);
596
597         intersected_rule->flags = rule1->flags | rule2->flags;
598
599         if (!is_valid_reg_rule(intersected_rule))
600                 return -EINVAL;
601
602         return 0;
603 }
604
605 /**
606  * regdom_intersect - do the intersection between two regulatory domains
607  * @rd1: first regulatory domain
608  * @rd2: second regulatory domain
609  *
610  * Use this function to get the intersection between two regulatory domains.
611  * Once completed we will mark the alpha2 for the rd as intersected, "98",
612  * as no one single alpha2 can represent this regulatory domain.
613  *
614  * Returns a pointer to the regulatory domain structure which will hold the
615  * resulting intersection of rules between rd1 and rd2. We will
616  * kzalloc() this structure for you.
617  */
618 static struct ieee80211_regdomain *
619 regdom_intersect(const struct ieee80211_regdomain *rd1,
620                  const struct ieee80211_regdomain *rd2)
621 {
622         int r, size_of_regd;
623         unsigned int x, y;
624         unsigned int num_rules = 0, rule_idx = 0;
625         const struct ieee80211_reg_rule *rule1, *rule2;
626         struct ieee80211_reg_rule *intersected_rule;
627         struct ieee80211_regdomain *rd;
628         /* This is just a dummy holder to help us count */
629         struct ieee80211_reg_rule dummy_rule;
630
631         if (!rd1 || !rd2)
632                 return NULL;
633
634         /*
635          * First we get a count of the rules we'll need, then we actually
636          * build them. This is to so we can malloc() and free() a
637          * regdomain once. The reason we use reg_rules_intersect() here
638          * is it will return -EINVAL if the rule computed makes no sense.
639          * All rules that do check out OK are valid.
640          */
641
642         for (x = 0; x < rd1->n_reg_rules; x++) {
643                 rule1 = &rd1->reg_rules[x];
644                 for (y = 0; y < rd2->n_reg_rules; y++) {
645                         rule2 = &rd2->reg_rules[y];
646                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
647                                 num_rules++;
648                 }
649         }
650
651         if (!num_rules)
652                 return NULL;
653
654         size_of_regd = sizeof(struct ieee80211_regdomain) +
655                        num_rules * sizeof(struct ieee80211_reg_rule);
656
657         rd = kzalloc(size_of_regd, GFP_KERNEL);
658         if (!rd)
659                 return NULL;
660
661         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
662                 rule1 = &rd1->reg_rules[x];
663                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
664                         rule2 = &rd2->reg_rules[y];
665                         /*
666                          * This time around instead of using the stack lets
667                          * write to the target rule directly saving ourselves
668                          * a memcpy()
669                          */
670                         intersected_rule = &rd->reg_rules[rule_idx];
671                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
672                         /*
673                          * No need to memset here the intersected rule here as
674                          * we're not using the stack anymore
675                          */
676                         if (r)
677                                 continue;
678                         rule_idx++;
679                 }
680         }
681
682         if (rule_idx != num_rules) {
683                 kfree(rd);
684                 return NULL;
685         }
686
687         rd->n_reg_rules = num_rules;
688         rd->alpha2[0] = '9';
689         rd->alpha2[1] = '8';
690
691         return rd;
692 }
693
694 /*
695  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
696  * want to just have the channel structure use these
697  */
698 static u32 map_regdom_flags(u32 rd_flags)
699 {
700         u32 channel_flags = 0;
701         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
702                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
703         if (rd_flags & NL80211_RRF_NO_IBSS)
704                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
705         if (rd_flags & NL80211_RRF_DFS)
706                 channel_flags |= IEEE80211_CHAN_RADAR;
707         if (rd_flags & NL80211_RRF_NO_OFDM)
708                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
709         return channel_flags;
710 }
711
712 static const struct ieee80211_reg_rule *
713 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
714                    const struct ieee80211_regdomain *regd)
715 {
716         int i;
717         bool band_rule_found = false;
718         bool bw_fits = false;
719
720         if (!regd)
721                 return ERR_PTR(-EINVAL);
722
723         for (i = 0; i < regd->n_reg_rules; i++) {
724                 const struct ieee80211_reg_rule *rr;
725                 const struct ieee80211_freq_range *fr = NULL;
726
727                 rr = &regd->reg_rules[i];
728                 fr = &rr->freq_range;
729
730                 /*
731                  * We only need to know if one frequency rule was
732                  * was in center_freq's band, that's enough, so lets
733                  * not overwrite it once found
734                  */
735                 if (!band_rule_found)
736                         band_rule_found = freq_in_rule_band(fr, center_freq);
737
738                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
739
740                 if (band_rule_found && bw_fits)
741                         return rr;
742         }
743
744         if (!band_rule_found)
745                 return ERR_PTR(-ERANGE);
746
747         return ERR_PTR(-EINVAL);
748 }
749
750 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
751                                                u32 center_freq)
752 {
753         const struct ieee80211_regdomain *regd;
754         struct regulatory_request *lr = get_last_request();
755
756         /*
757          * Follow the driver's regulatory domain, if present, unless a country
758          * IE has been processed or a user wants to help complaince further
759          */
760         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
761             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
762             wiphy->regd)
763                 regd = get_wiphy_regdom(wiphy);
764         else
765                 regd = get_cfg80211_regdom();
766
767         return freq_reg_info_regd(wiphy, center_freq, regd);
768 }
769 EXPORT_SYMBOL(freq_reg_info);
770
771 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
772 {
773         switch (initiator) {
774         case NL80211_REGDOM_SET_BY_CORE:
775                 return "core";
776         case NL80211_REGDOM_SET_BY_USER:
777                 return "user";
778         case NL80211_REGDOM_SET_BY_DRIVER:
779                 return "driver";
780         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
781                 return "country IE";
782         default:
783                 WARN_ON(1);
784                 return "bug";
785         }
786 }
787 EXPORT_SYMBOL(reg_initiator_name);
788
789 #ifdef CONFIG_CFG80211_REG_DEBUG
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791                                     const struct ieee80211_reg_rule *reg_rule)
792 {
793         const struct ieee80211_power_rule *power_rule;
794         const struct ieee80211_freq_range *freq_range;
795         char max_antenna_gain[32];
796
797         power_rule = &reg_rule->power_rule;
798         freq_range = &reg_rule->freq_range;
799
800         if (!power_rule->max_antenna_gain)
801                 snprintf(max_antenna_gain, 32, "N/A");
802         else
803                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804
805         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806                       chan->center_freq);
807
808         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809                       freq_range->start_freq_khz, freq_range->end_freq_khz,
810                       freq_range->max_bandwidth_khz, max_antenna_gain,
811                       power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815                                     const struct ieee80211_reg_rule *reg_rule)
816 {
817         return;
818 }
819 #endif
820
821 /*
822  * Note that right now we assume the desired channel bandwidth
823  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824  * per channel, the primary and the extension channel).
825  */
826 static void handle_channel(struct wiphy *wiphy,
827                            enum nl80211_reg_initiator initiator,
828                            struct ieee80211_channel *chan)
829 {
830         u32 flags, bw_flags = 0;
831         const struct ieee80211_reg_rule *reg_rule = NULL;
832         const struct ieee80211_power_rule *power_rule = NULL;
833         const struct ieee80211_freq_range *freq_range = NULL;
834         struct wiphy *request_wiphy = NULL;
835         struct regulatory_request *lr = get_last_request();
836
837         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838
839         flags = chan->orig_flags;
840
841         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842         if (IS_ERR(reg_rule)) {
843                 /*
844                  * We will disable all channels that do not match our
845                  * received regulatory rule unless the hint is coming
846                  * from a Country IE and the Country IE had no information
847                  * about a band. The IEEE 802.11 spec allows for an AP
848                  * to send only a subset of the regulatory rules allowed,
849                  * so an AP in the US that only supports 2.4 GHz may only send
850                  * a country IE with information for the 2.4 GHz band
851                  * while 5 GHz is still supported.
852                  */
853                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854                     PTR_ERR(reg_rule) == -ERANGE)
855                         return;
856
857                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858                 chan->flags |= IEEE80211_CHAN_DISABLED;
859                 return;
860         }
861
862         chan_reg_rule_print_dbg(chan, reg_rule);
863
864         power_rule = &reg_rule->power_rule;
865         freq_range = &reg_rule->freq_range;
866
867         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868                 bw_flags = IEEE80211_CHAN_NO_HT40;
869         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
870                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
871         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
872                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
873
874         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
875             request_wiphy && request_wiphy == wiphy &&
876             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
877                 /*
878                  * This guarantees the driver's requested regulatory domain
879                  * will always be used as a base for further regulatory
880                  * settings
881                  */
882                 chan->flags = chan->orig_flags =
883                         map_regdom_flags(reg_rule->flags) | bw_flags;
884                 chan->max_antenna_gain = chan->orig_mag =
885                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
886                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
887                         (int) MBM_TO_DBM(power_rule->max_eirp);
888                 return;
889         }
890
891         chan->dfs_state = NL80211_DFS_USABLE;
892         chan->dfs_state_entered = jiffies;
893
894         chan->beacon_found = false;
895         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896         chan->max_antenna_gain =
897                 min_t(int, chan->orig_mag,
898                       MBI_TO_DBI(power_rule->max_antenna_gain));
899         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
900         if (chan->orig_mpwr) {
901                 /*
902                  * Devices that have their own custom regulatory domain
903                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
904                  * passed country IE power settings.
905                  */
906                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
908                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
909                         chan->max_power = chan->max_reg_power;
910                 else
911                         chan->max_power = min(chan->orig_mpwr,
912                                               chan->max_reg_power);
913         } else
914                 chan->max_power = chan->max_reg_power;
915 }
916
917 static void handle_band(struct wiphy *wiphy,
918                         enum nl80211_reg_initiator initiator,
919                         struct ieee80211_supported_band *sband)
920 {
921         unsigned int i;
922
923         if (!sband)
924                 return;
925
926         for (i = 0; i < sband->n_channels; i++)
927                 handle_channel(wiphy, initiator, &sband->channels[i]);
928 }
929
930 static bool reg_request_cell_base(struct regulatory_request *request)
931 {
932         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
933                 return false;
934         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
935 }
936
937 bool reg_last_request_cell_base(void)
938 {
939         return reg_request_cell_base(get_last_request());
940 }
941
942 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
943 /* Core specific check */
944 static enum reg_request_treatment
945 reg_ignore_cell_hint(struct regulatory_request *pending_request)
946 {
947         struct regulatory_request *lr = get_last_request();
948
949         if (!reg_num_devs_support_basehint)
950                 return REG_REQ_IGNORE;
951
952         if (reg_request_cell_base(lr) &&
953             !regdom_changes(pending_request->alpha2))
954                 return REG_REQ_ALREADY_SET;
955
956         return REG_REQ_OK;
957 }
958
959 /* Device specific check */
960 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
961 {
962         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
963 }
964 #else
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967         return REG_REQ_IGNORE;
968 }
969
970 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
971 {
972         return true;
973 }
974 #endif
975
976 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
977 {
978         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
979             !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
980                 return true;
981         return false;
982 }
983
984 static bool ignore_reg_update(struct wiphy *wiphy,
985                               enum nl80211_reg_initiator initiator)
986 {
987         struct regulatory_request *lr = get_last_request();
988
989         if (!lr) {
990                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
991                               "since last_request is not set\n",
992                               reg_initiator_name(initiator));
993                 return true;
994         }
995
996         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
997             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
998                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
999                               "since the driver uses its own custom "
1000                               "regulatory domain\n",
1001                               reg_initiator_name(initiator));
1002                 return true;
1003         }
1004
1005         /*
1006          * wiphy->regd will be set once the device has its own
1007          * desired regulatory domain set
1008          */
1009         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1010             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1011             !is_world_regdom(lr->alpha2)) {
1012                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1013                               "since the driver requires its own regulatory "
1014                               "domain to be set first\n",
1015                               reg_initiator_name(initiator));
1016                 return true;
1017         }
1018
1019         if (reg_request_cell_base(lr))
1020                 return reg_dev_ignore_cell_hint(wiphy);
1021
1022         return false;
1023 }
1024
1025 static bool reg_is_world_roaming(struct wiphy *wiphy)
1026 {
1027         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1028         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1029         struct regulatory_request *lr = get_last_request();
1030
1031         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1032                 return true;
1033
1034         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1035             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1036                 return true;
1037
1038         return false;
1039 }
1040
1041 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1042                               struct reg_beacon *reg_beacon)
1043 {
1044         struct ieee80211_supported_band *sband;
1045         struct ieee80211_channel *chan;
1046         bool channel_changed = false;
1047         struct ieee80211_channel chan_before;
1048
1049         sband = wiphy->bands[reg_beacon->chan.band];
1050         chan = &sband->channels[chan_idx];
1051
1052         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1053                 return;
1054
1055         if (chan->beacon_found)
1056                 return;
1057
1058         chan->beacon_found = true;
1059
1060         if (!reg_is_world_roaming(wiphy))
1061                 return;
1062
1063         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1064                 return;
1065
1066         chan_before.center_freq = chan->center_freq;
1067         chan_before.flags = chan->flags;
1068
1069         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1070                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1071                 channel_changed = true;
1072         }
1073
1074         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1075                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1076                 channel_changed = true;
1077         }
1078
1079         if (channel_changed)
1080                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1081 }
1082
1083 /*
1084  * Called when a scan on a wiphy finds a beacon on
1085  * new channel
1086  */
1087 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1088                                     struct reg_beacon *reg_beacon)
1089 {
1090         unsigned int i;
1091         struct ieee80211_supported_band *sband;
1092
1093         if (!wiphy->bands[reg_beacon->chan.band])
1094                 return;
1095
1096         sband = wiphy->bands[reg_beacon->chan.band];
1097
1098         for (i = 0; i < sband->n_channels; i++)
1099                 handle_reg_beacon(wiphy, i, reg_beacon);
1100 }
1101
1102 /*
1103  * Called upon reg changes or a new wiphy is added
1104  */
1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1106 {
1107         unsigned int i;
1108         struct ieee80211_supported_band *sband;
1109         struct reg_beacon *reg_beacon;
1110
1111         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1112                 if (!wiphy->bands[reg_beacon->chan.band])
1113                         continue;
1114                 sband = wiphy->bands[reg_beacon->chan.band];
1115                 for (i = 0; i < sband->n_channels; i++)
1116                         handle_reg_beacon(wiphy, i, reg_beacon);
1117         }
1118 }
1119
1120 /* Reap the advantages of previously found beacons */
1121 static void reg_process_beacons(struct wiphy *wiphy)
1122 {
1123         /*
1124          * Means we are just firing up cfg80211, so no beacons would
1125          * have been processed yet.
1126          */
1127         if (!last_request)
1128                 return;
1129         wiphy_update_beacon_reg(wiphy);
1130 }
1131
1132 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1133 {
1134         if (!chan)
1135                 return false;
1136         if (chan->flags & IEEE80211_CHAN_DISABLED)
1137                 return false;
1138         /* This would happen when regulatory rules disallow HT40 completely */
1139         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1140                 return false;
1141         return true;
1142 }
1143
1144 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1145                                          struct ieee80211_channel *channel)
1146 {
1147         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1148         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1149         unsigned int i;
1150
1151         if (!is_ht40_allowed(channel)) {
1152                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1153                 return;
1154         }
1155
1156         /*
1157          * We need to ensure the extension channels exist to
1158          * be able to use HT40- or HT40+, this finds them (or not)
1159          */
1160         for (i = 0; i < sband->n_channels; i++) {
1161                 struct ieee80211_channel *c = &sband->channels[i];
1162
1163                 if (c->center_freq == (channel->center_freq - 20))
1164                         channel_before = c;
1165                 if (c->center_freq == (channel->center_freq + 20))
1166                         channel_after = c;
1167         }
1168
1169         /*
1170          * Please note that this assumes target bandwidth is 20 MHz,
1171          * if that ever changes we also need to change the below logic
1172          * to include that as well.
1173          */
1174         if (!is_ht40_allowed(channel_before))
1175                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1176         else
1177                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1178
1179         if (!is_ht40_allowed(channel_after))
1180                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1181         else
1182                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1183 }
1184
1185 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1186                                       struct ieee80211_supported_band *sband)
1187 {
1188         unsigned int i;
1189
1190         if (!sband)
1191                 return;
1192
1193         for (i = 0; i < sband->n_channels; i++)
1194                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1195 }
1196
1197 static void reg_process_ht_flags(struct wiphy *wiphy)
1198 {
1199         enum ieee80211_band band;
1200
1201         if (!wiphy)
1202                 return;
1203
1204         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1205                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1206 }
1207
1208 static void wiphy_update_regulatory(struct wiphy *wiphy,
1209                                     enum nl80211_reg_initiator initiator)
1210 {
1211         enum ieee80211_band band;
1212         struct regulatory_request *lr = get_last_request();
1213
1214         if (ignore_reg_update(wiphy, initiator))
1215                 return;
1216
1217         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1218
1219         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1220                 handle_band(wiphy, initiator, wiphy->bands[band]);
1221
1222         reg_process_beacons(wiphy);
1223         reg_process_ht_flags(wiphy);
1224
1225         if (wiphy->reg_notifier)
1226                 wiphy->reg_notifier(wiphy, lr);
1227 }
1228
1229 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1230 {
1231         struct cfg80211_registered_device *rdev;
1232         struct wiphy *wiphy;
1233
1234         ASSERT_RTNL();
1235
1236         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1237                 wiphy = &rdev->wiphy;
1238                 wiphy_update_regulatory(wiphy, initiator);
1239                 /*
1240                  * Regulatory updates set by CORE are ignored for custom
1241                  * regulatory cards. Let us notify the changes to the driver,
1242                  * as some drivers used this to restore its orig_* reg domain.
1243                  */
1244                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1245                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1246                     wiphy->reg_notifier)
1247                         wiphy->reg_notifier(wiphy, get_last_request());
1248         }
1249 }
1250
1251 static void handle_channel_custom(struct wiphy *wiphy,
1252                                   struct ieee80211_channel *chan,
1253                                   const struct ieee80211_regdomain *regd)
1254 {
1255         u32 bw_flags = 0;
1256         const struct ieee80211_reg_rule *reg_rule = NULL;
1257         const struct ieee80211_power_rule *power_rule = NULL;
1258         const struct ieee80211_freq_range *freq_range = NULL;
1259
1260         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1261                                       regd);
1262
1263         if (IS_ERR(reg_rule)) {
1264                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1265                               chan->center_freq);
1266                 chan->flags = IEEE80211_CHAN_DISABLED;
1267                 return;
1268         }
1269
1270         chan_reg_rule_print_dbg(chan, reg_rule);
1271
1272         power_rule = &reg_rule->power_rule;
1273         freq_range = &reg_rule->freq_range;
1274
1275         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1276                 bw_flags = IEEE80211_CHAN_NO_HT40;
1277         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1278                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1279         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1280                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1281
1282         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1283         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1284         chan->max_reg_power = chan->max_power =
1285                 (int) MBM_TO_DBM(power_rule->max_eirp);
1286 }
1287
1288 static void handle_band_custom(struct wiphy *wiphy,
1289                                struct ieee80211_supported_band *sband,
1290                                const struct ieee80211_regdomain *regd)
1291 {
1292         unsigned int i;
1293
1294         if (!sband)
1295                 return;
1296
1297         for (i = 0; i < sband->n_channels; i++)
1298                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1299 }
1300
1301 /* Used by drivers prior to wiphy registration */
1302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1303                                    const struct ieee80211_regdomain *regd)
1304 {
1305         enum ieee80211_band band;
1306         unsigned int bands_set = 0;
1307
1308         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1309                 if (!wiphy->bands[band])
1310                         continue;
1311                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1312                 bands_set++;
1313         }
1314
1315         /*
1316          * no point in calling this if it won't have any effect
1317          * on your device's supported bands.
1318          */
1319         WARN_ON(!bands_set);
1320 }
1321 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1322
1323 /* This has the logic which determines when a new request
1324  * should be ignored. */
1325 static enum reg_request_treatment
1326 get_reg_request_treatment(struct wiphy *wiphy,
1327                           struct regulatory_request *pending_request)
1328 {
1329         struct wiphy *last_wiphy = NULL;
1330         struct regulatory_request *lr = get_last_request();
1331
1332         /* All initial requests are respected */
1333         if (!lr)
1334                 return REG_REQ_OK;
1335
1336         switch (pending_request->initiator) {
1337         case NL80211_REGDOM_SET_BY_CORE:
1338                 return REG_REQ_OK;
1339         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1340                 if (reg_request_cell_base(lr)) {
1341                         /* Trust a Cell base station over the AP's country IE */
1342                         if (regdom_changes(pending_request->alpha2))
1343                                 return REG_REQ_IGNORE;
1344                         return REG_REQ_ALREADY_SET;
1345                 }
1346
1347                 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1348
1349                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1350                         return -EINVAL;
1351                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1352                         if (last_wiphy != wiphy) {
1353                                 /*
1354                                  * Two cards with two APs claiming different
1355                                  * Country IE alpha2s. We could
1356                                  * intersect them, but that seems unlikely
1357                                  * to be correct. Reject second one for now.
1358                                  */
1359                                 if (regdom_changes(pending_request->alpha2))
1360                                         return REG_REQ_IGNORE;
1361                                 return REG_REQ_ALREADY_SET;
1362                         }
1363                         /*
1364                          * Two consecutive Country IE hints on the same wiphy.
1365                          * This should be picked up early by the driver/stack
1366                          */
1367                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1368                                 return REG_REQ_OK;
1369                         return REG_REQ_ALREADY_SET;
1370                 }
1371                 return REG_REQ_OK;
1372         case NL80211_REGDOM_SET_BY_DRIVER:
1373                 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1374                         if (regdom_changes(pending_request->alpha2))
1375                                 return REG_REQ_OK;
1376                         return REG_REQ_ALREADY_SET;
1377                 }
1378
1379                 /*
1380                  * This would happen if you unplug and plug your card
1381                  * back in or if you add a new device for which the previously
1382                  * loaded card also agrees on the regulatory domain.
1383                  */
1384                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1385                     !regdom_changes(pending_request->alpha2))
1386                         return REG_REQ_ALREADY_SET;
1387
1388                 return REG_REQ_INTERSECT;
1389         case NL80211_REGDOM_SET_BY_USER:
1390                 if (reg_request_cell_base(pending_request))
1391                         return reg_ignore_cell_hint(pending_request);
1392
1393                 if (reg_request_cell_base(lr))
1394                         return REG_REQ_IGNORE;
1395
1396                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1397                         return REG_REQ_INTERSECT;
1398                 /*
1399                  * If the user knows better the user should set the regdom
1400                  * to their country before the IE is picked up
1401                  */
1402                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1403                     lr->intersect)
1404                         return REG_REQ_IGNORE;
1405                 /*
1406                  * Process user requests only after previous user/driver/core
1407                  * requests have been processed
1408                  */
1409                 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1410                      lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1411                      lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1412                     regdom_changes(lr->alpha2))
1413                         return REG_REQ_IGNORE;
1414
1415                 if (!regdom_changes(pending_request->alpha2))
1416                         return REG_REQ_ALREADY_SET;
1417
1418                 return REG_REQ_OK;
1419         }
1420
1421         return REG_REQ_IGNORE;
1422 }
1423
1424 static void reg_set_request_processed(void)
1425 {
1426         bool need_more_processing = false;
1427         struct regulatory_request *lr = get_last_request();
1428
1429         lr->processed = true;
1430
1431         spin_lock(&reg_requests_lock);
1432         if (!list_empty(&reg_requests_list))
1433                 need_more_processing = true;
1434         spin_unlock(&reg_requests_lock);
1435
1436         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1437                 cancel_delayed_work(&reg_timeout);
1438
1439         if (need_more_processing)
1440                 schedule_work(&reg_work);
1441 }
1442
1443 /**
1444  * __regulatory_hint - hint to the wireless core a regulatory domain
1445  * @wiphy: if the hint comes from country information from an AP, this
1446  *      is required to be set to the wiphy that received the information
1447  * @pending_request: the regulatory request currently being processed
1448  *
1449  * The Wireless subsystem can use this function to hint to the wireless core
1450  * what it believes should be the current regulatory domain.
1451  *
1452  * Returns one of the different reg request treatment values.
1453  */
1454 static enum reg_request_treatment
1455 __regulatory_hint(struct wiphy *wiphy,
1456                   struct regulatory_request *pending_request)
1457 {
1458         const struct ieee80211_regdomain *regd;
1459         bool intersect = false;
1460         enum reg_request_treatment treatment;
1461         struct regulatory_request *lr;
1462
1463         treatment = get_reg_request_treatment(wiphy, pending_request);
1464
1465         switch (treatment) {
1466         case REG_REQ_INTERSECT:
1467                 if (pending_request->initiator ==
1468                     NL80211_REGDOM_SET_BY_DRIVER) {
1469                         regd = reg_copy_regd(get_cfg80211_regdom());
1470                         if (IS_ERR(regd)) {
1471                                 kfree(pending_request);
1472                                 return PTR_ERR(regd);
1473                         }
1474                         rcu_assign_pointer(wiphy->regd, regd);
1475                 }
1476                 intersect = true;
1477                 break;
1478         case REG_REQ_OK:
1479                 break;
1480         default:
1481                 /*
1482                  * If the regulatory domain being requested by the
1483                  * driver has already been set just copy it to the
1484                  * wiphy
1485                  */
1486                 if (treatment == REG_REQ_ALREADY_SET &&
1487                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1488                         regd = reg_copy_regd(get_cfg80211_regdom());
1489                         if (IS_ERR(regd)) {
1490                                 kfree(pending_request);
1491                                 return REG_REQ_IGNORE;
1492                         }
1493                         treatment = REG_REQ_ALREADY_SET;
1494                         rcu_assign_pointer(wiphy->regd, regd);
1495                         goto new_request;
1496                 }
1497                 kfree(pending_request);
1498                 return treatment;
1499         }
1500
1501 new_request:
1502         lr = get_last_request();
1503         if (lr != &core_request_world && lr)
1504                 kfree_rcu(lr, rcu_head);
1505
1506         pending_request->intersect = intersect;
1507         pending_request->processed = false;
1508         rcu_assign_pointer(last_request, pending_request);
1509         lr = pending_request;
1510
1511         pending_request = NULL;
1512
1513         if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1514                 user_alpha2[0] = lr->alpha2[0];
1515                 user_alpha2[1] = lr->alpha2[1];
1516         }
1517
1518         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1519         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1520                 /*
1521                  * Since CRDA will not be called in this case as we already
1522                  * have applied the requested regulatory domain before we just
1523                  * inform userspace we have processed the request
1524                  */
1525                 if (treatment == REG_REQ_ALREADY_SET) {
1526                         nl80211_send_reg_change_event(lr);
1527                         reg_set_request_processed();
1528                 }
1529                 return treatment;
1530         }
1531
1532         if (call_crda(lr->alpha2))
1533                 return REG_REQ_IGNORE;
1534         return REG_REQ_OK;
1535 }
1536
1537 /* This processes *all* regulatory hints */
1538 static void reg_process_hint(struct regulatory_request *reg_request,
1539                              enum nl80211_reg_initiator reg_initiator)
1540 {
1541         struct wiphy *wiphy = NULL;
1542
1543         if (WARN_ON(!reg_request->alpha2))
1544                 return;
1545
1546         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1547                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1548
1549         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1550                 kfree(reg_request);
1551                 return;
1552         }
1553
1554         switch (__regulatory_hint(wiphy, reg_request)) {
1555         case REG_REQ_ALREADY_SET:
1556                 /* This is required so that the orig_* parameters are saved */
1557                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1558                         wiphy_update_regulatory(wiphy, reg_initiator);
1559                 break;
1560         default:
1561                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1562                         schedule_delayed_work(&reg_timeout,
1563                                               msecs_to_jiffies(3142));
1564                 break;
1565         }
1566 }
1567
1568 /*
1569  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1570  * Regulatory hints come on a first come first serve basis and we
1571  * must process each one atomically.
1572  */
1573 static void reg_process_pending_hints(void)
1574 {
1575         struct regulatory_request *reg_request, *lr;
1576
1577         lr = get_last_request();
1578
1579         /* When last_request->processed becomes true this will be rescheduled */
1580         if (lr && !lr->processed) {
1581                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1582                 return;
1583         }
1584
1585         spin_lock(&reg_requests_lock);
1586
1587         if (list_empty(&reg_requests_list)) {
1588                 spin_unlock(&reg_requests_lock);
1589                 return;
1590         }
1591
1592         reg_request = list_first_entry(&reg_requests_list,
1593                                        struct regulatory_request,
1594                                        list);
1595         list_del_init(&reg_request->list);
1596
1597         spin_unlock(&reg_requests_lock);
1598
1599         reg_process_hint(reg_request, reg_request->initiator);
1600 }
1601
1602 /* Processes beacon hints -- this has nothing to do with country IEs */
1603 static void reg_process_pending_beacon_hints(void)
1604 {
1605         struct cfg80211_registered_device *rdev;
1606         struct reg_beacon *pending_beacon, *tmp;
1607
1608         /* This goes through the _pending_ beacon list */
1609         spin_lock_bh(&reg_pending_beacons_lock);
1610
1611         list_for_each_entry_safe(pending_beacon, tmp,
1612                                  &reg_pending_beacons, list) {
1613                 list_del_init(&pending_beacon->list);
1614
1615                 /* Applies the beacon hint to current wiphys */
1616                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1617                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1618
1619                 /* Remembers the beacon hint for new wiphys or reg changes */
1620                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1621         }
1622
1623         spin_unlock_bh(&reg_pending_beacons_lock);
1624 }
1625
1626 static void reg_todo(struct work_struct *work)
1627 {
1628         rtnl_lock();
1629         reg_process_pending_hints();
1630         reg_process_pending_beacon_hints();
1631         rtnl_unlock();
1632 }
1633
1634 static void queue_regulatory_request(struct regulatory_request *request)
1635 {
1636         request->alpha2[0] = toupper(request->alpha2[0]);
1637         request->alpha2[1] = toupper(request->alpha2[1]);
1638
1639         spin_lock(&reg_requests_lock);
1640         list_add_tail(&request->list, &reg_requests_list);
1641         spin_unlock(&reg_requests_lock);
1642
1643         schedule_work(&reg_work);
1644 }
1645
1646 /*
1647  * Core regulatory hint -- happens during cfg80211_init()
1648  * and when we restore regulatory settings.
1649  */
1650 static int regulatory_hint_core(const char *alpha2)
1651 {
1652         struct regulatory_request *request;
1653
1654         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1655         if (!request)
1656                 return -ENOMEM;
1657
1658         request->alpha2[0] = alpha2[0];
1659         request->alpha2[1] = alpha2[1];
1660         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1661
1662         queue_regulatory_request(request);
1663
1664         return 0;
1665 }
1666
1667 /* User hints */
1668 int regulatory_hint_user(const char *alpha2,
1669                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1670 {
1671         struct regulatory_request *request;
1672
1673         if (WARN_ON(!alpha2))
1674                 return -EINVAL;
1675
1676         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677         if (!request)
1678                 return -ENOMEM;
1679
1680         request->wiphy_idx = WIPHY_IDX_INVALID;
1681         request->alpha2[0] = alpha2[0];
1682         request->alpha2[1] = alpha2[1];
1683         request->initiator = NL80211_REGDOM_SET_BY_USER;
1684         request->user_reg_hint_type = user_reg_hint_type;
1685
1686         queue_regulatory_request(request);
1687
1688         return 0;
1689 }
1690
1691 /* Driver hints */
1692 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1693 {
1694         struct regulatory_request *request;
1695
1696         if (WARN_ON(!alpha2 || !wiphy))
1697                 return -EINVAL;
1698
1699         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1700         if (!request)
1701                 return -ENOMEM;
1702
1703         request->wiphy_idx = get_wiphy_idx(wiphy);
1704
1705         request->alpha2[0] = alpha2[0];
1706         request->alpha2[1] = alpha2[1];
1707         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1708
1709         queue_regulatory_request(request);
1710
1711         return 0;
1712 }
1713 EXPORT_SYMBOL(regulatory_hint);
1714
1715 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1716                                 const u8 *country_ie, u8 country_ie_len)
1717 {
1718         char alpha2[2];
1719         enum environment_cap env = ENVIRON_ANY;
1720         struct regulatory_request *request = NULL, *lr;
1721
1722         /* IE len must be evenly divisible by 2 */
1723         if (country_ie_len & 0x01)
1724                 return;
1725
1726         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1727                 return;
1728
1729         request = kzalloc(sizeof(*request), GFP_KERNEL);
1730         if (!request)
1731                 return;
1732
1733         alpha2[0] = country_ie[0];
1734         alpha2[1] = country_ie[1];
1735
1736         if (country_ie[2] == 'I')
1737                 env = ENVIRON_INDOOR;
1738         else if (country_ie[2] == 'O')
1739                 env = ENVIRON_OUTDOOR;
1740
1741         rcu_read_lock();
1742         lr = get_last_request();
1743
1744         if (unlikely(!lr))
1745                 goto out;
1746
1747         /*
1748          * We will run this only upon a successful connection on cfg80211.
1749          * We leave conflict resolution to the workqueue, where can hold
1750          * the RTNL.
1751          */
1752         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1753             lr->wiphy_idx != WIPHY_IDX_INVALID)
1754                 goto out;
1755
1756         request->wiphy_idx = get_wiphy_idx(wiphy);
1757         request->alpha2[0] = alpha2[0];
1758         request->alpha2[1] = alpha2[1];
1759         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1760         request->country_ie_env = env;
1761
1762         queue_regulatory_request(request);
1763         request = NULL;
1764 out:
1765         kfree(request);
1766         rcu_read_unlock();
1767 }
1768
1769 static void restore_alpha2(char *alpha2, bool reset_user)
1770 {
1771         /* indicates there is no alpha2 to consider for restoration */
1772         alpha2[0] = '9';
1773         alpha2[1] = '7';
1774
1775         /* The user setting has precedence over the module parameter */
1776         if (is_user_regdom_saved()) {
1777                 /* Unless we're asked to ignore it and reset it */
1778                 if (reset_user) {
1779                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1780                         user_alpha2[0] = '9';
1781                         user_alpha2[1] = '7';
1782
1783                         /*
1784                          * If we're ignoring user settings, we still need to
1785                          * check the module parameter to ensure we put things
1786                          * back as they were for a full restore.
1787                          */
1788                         if (!is_world_regdom(ieee80211_regdom)) {
1789                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1790                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1791                                 alpha2[0] = ieee80211_regdom[0];
1792                                 alpha2[1] = ieee80211_regdom[1];
1793                         }
1794                 } else {
1795                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1796                                       user_alpha2[0], user_alpha2[1]);
1797                         alpha2[0] = user_alpha2[0];
1798                         alpha2[1] = user_alpha2[1];
1799                 }
1800         } else if (!is_world_regdom(ieee80211_regdom)) {
1801                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1802                               ieee80211_regdom[0], ieee80211_regdom[1]);
1803                 alpha2[0] = ieee80211_regdom[0];
1804                 alpha2[1] = ieee80211_regdom[1];
1805         } else
1806                 REG_DBG_PRINT("Restoring regulatory settings\n");
1807 }
1808
1809 static void restore_custom_reg_settings(struct wiphy *wiphy)
1810 {
1811         struct ieee80211_supported_band *sband;
1812         enum ieee80211_band band;
1813         struct ieee80211_channel *chan;
1814         int i;
1815
1816         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1817                 sband = wiphy->bands[band];
1818                 if (!sband)
1819                         continue;
1820                 for (i = 0; i < sband->n_channels; i++) {
1821                         chan = &sband->channels[i];
1822                         chan->flags = chan->orig_flags;
1823                         chan->max_antenna_gain = chan->orig_mag;
1824                         chan->max_power = chan->orig_mpwr;
1825                         chan->beacon_found = false;
1826                 }
1827         }
1828 }
1829
1830 /*
1831  * Restoring regulatory settings involves ingoring any
1832  * possibly stale country IE information and user regulatory
1833  * settings if so desired, this includes any beacon hints
1834  * learned as we could have traveled outside to another country
1835  * after disconnection. To restore regulatory settings we do
1836  * exactly what we did at bootup:
1837  *
1838  *   - send a core regulatory hint
1839  *   - send a user regulatory hint if applicable
1840  *
1841  * Device drivers that send a regulatory hint for a specific country
1842  * keep their own regulatory domain on wiphy->regd so that does does
1843  * not need to be remembered.
1844  */
1845 static void restore_regulatory_settings(bool reset_user)
1846 {
1847         char alpha2[2];
1848         char world_alpha2[2];
1849         struct reg_beacon *reg_beacon, *btmp;
1850         struct regulatory_request *reg_request, *tmp;
1851         LIST_HEAD(tmp_reg_req_list);
1852         struct cfg80211_registered_device *rdev;
1853
1854         ASSERT_RTNL();
1855
1856         reset_regdomains(true, &world_regdom);
1857         restore_alpha2(alpha2, reset_user);
1858
1859         /*
1860          * If there's any pending requests we simply
1861          * stash them to a temporary pending queue and
1862          * add then after we've restored regulatory
1863          * settings.
1864          */
1865         spin_lock(&reg_requests_lock);
1866         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1867                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1868                         continue;
1869                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1870         }
1871         spin_unlock(&reg_requests_lock);
1872
1873         /* Clear beacon hints */
1874         spin_lock_bh(&reg_pending_beacons_lock);
1875         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1876                 list_del(&reg_beacon->list);
1877                 kfree(reg_beacon);
1878         }
1879         spin_unlock_bh(&reg_pending_beacons_lock);
1880
1881         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1882                 list_del(&reg_beacon->list);
1883                 kfree(reg_beacon);
1884         }
1885
1886         /* First restore to the basic regulatory settings */
1887         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1888         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1889
1890         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892                         restore_custom_reg_settings(&rdev->wiphy);
1893         }
1894
1895         regulatory_hint_core(world_alpha2);
1896
1897         /*
1898          * This restores the ieee80211_regdom module parameter
1899          * preference or the last user requested regulatory
1900          * settings, user regulatory settings takes precedence.
1901          */
1902         if (is_an_alpha2(alpha2))
1903                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1904
1905         spin_lock(&reg_requests_lock);
1906         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1907         spin_unlock(&reg_requests_lock);
1908
1909         REG_DBG_PRINT("Kicking the queue\n");
1910
1911         schedule_work(&reg_work);
1912 }
1913
1914 void regulatory_hint_disconnect(void)
1915 {
1916         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1917         restore_regulatory_settings(false);
1918 }
1919
1920 static bool freq_is_chan_12_13_14(u16 freq)
1921 {
1922         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1923             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1924             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1925                 return true;
1926         return false;
1927 }
1928
1929 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1930 {
1931         struct reg_beacon *pending_beacon;
1932
1933         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1934                 if (beacon_chan->center_freq ==
1935                     pending_beacon->chan.center_freq)
1936                         return true;
1937         return false;
1938 }
1939
1940 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1941                                  struct ieee80211_channel *beacon_chan,
1942                                  gfp_t gfp)
1943 {
1944         struct reg_beacon *reg_beacon;
1945         bool processing;
1946
1947         if (beacon_chan->beacon_found ||
1948             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1949             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1950              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1951                 return 0;
1952
1953         spin_lock_bh(&reg_pending_beacons_lock);
1954         processing = pending_reg_beacon(beacon_chan);
1955         spin_unlock_bh(&reg_pending_beacons_lock);
1956
1957         if (processing)
1958                 return 0;
1959
1960         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1961         if (!reg_beacon)
1962                 return -ENOMEM;
1963
1964         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1965                       beacon_chan->center_freq,
1966                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1967                       wiphy_name(wiphy));
1968
1969         memcpy(&reg_beacon->chan, beacon_chan,
1970                sizeof(struct ieee80211_channel));
1971
1972         /*
1973          * Since we can be called from BH or and non-BH context
1974          * we must use spin_lock_bh()
1975          */
1976         spin_lock_bh(&reg_pending_beacons_lock);
1977         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1978         spin_unlock_bh(&reg_pending_beacons_lock);
1979
1980         schedule_work(&reg_work);
1981
1982         return 0;
1983 }
1984
1985 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1986 {
1987         unsigned int i;
1988         const struct ieee80211_reg_rule *reg_rule = NULL;
1989         const struct ieee80211_freq_range *freq_range = NULL;
1990         const struct ieee80211_power_rule *power_rule = NULL;
1991
1992         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1993
1994         for (i = 0; i < rd->n_reg_rules; i++) {
1995                 reg_rule = &rd->reg_rules[i];
1996                 freq_range = &reg_rule->freq_range;
1997                 power_rule = &reg_rule->power_rule;
1998
1999                 /*
2000                  * There may not be documentation for max antenna gain
2001                  * in certain regions
2002                  */
2003                 if (power_rule->max_antenna_gain)
2004                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2005                                 freq_range->start_freq_khz,
2006                                 freq_range->end_freq_khz,
2007                                 freq_range->max_bandwidth_khz,
2008                                 power_rule->max_antenna_gain,
2009                                 power_rule->max_eirp);
2010                 else
2011                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2012                                 freq_range->start_freq_khz,
2013                                 freq_range->end_freq_khz,
2014                                 freq_range->max_bandwidth_khz,
2015                                 power_rule->max_eirp);
2016         }
2017 }
2018
2019 bool reg_supported_dfs_region(u8 dfs_region)
2020 {
2021         switch (dfs_region) {
2022         case NL80211_DFS_UNSET:
2023         case NL80211_DFS_FCC:
2024         case NL80211_DFS_ETSI:
2025         case NL80211_DFS_JP:
2026                 return true;
2027         default:
2028                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2029                               dfs_region);
2030                 return false;
2031         }
2032 }
2033
2034 static void print_dfs_region(u8 dfs_region)
2035 {
2036         if (!dfs_region)
2037                 return;
2038
2039         switch (dfs_region) {
2040         case NL80211_DFS_FCC:
2041                 pr_info(" DFS Master region FCC");
2042                 break;
2043         case NL80211_DFS_ETSI:
2044                 pr_info(" DFS Master region ETSI");
2045                 break;
2046         case NL80211_DFS_JP:
2047                 pr_info(" DFS Master region JP");
2048                 break;
2049         default:
2050                 pr_info(" DFS Master region Unknown");
2051                 break;
2052         }
2053 }
2054
2055 static void print_regdomain(const struct ieee80211_regdomain *rd)
2056 {
2057         struct regulatory_request *lr = get_last_request();
2058
2059         if (is_intersected_alpha2(rd->alpha2)) {
2060                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061                         struct cfg80211_registered_device *rdev;
2062                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2063                         if (rdev) {
2064                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2065                                         rdev->country_ie_alpha2[0],
2066                                         rdev->country_ie_alpha2[1]);
2067                         } else
2068                                 pr_info("Current regulatory domain intersected:\n");
2069                 } else
2070                         pr_info("Current regulatory domain intersected:\n");
2071         } else if (is_world_regdom(rd->alpha2)) {
2072                 pr_info("World regulatory domain updated:\n");
2073         } else {
2074                 if (is_unknown_alpha2(rd->alpha2))
2075                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2076                 else {
2077                         if (reg_request_cell_base(lr))
2078                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2079                                         rd->alpha2[0], rd->alpha2[1]);
2080                         else
2081                                 pr_info("Regulatory domain changed to country: %c%c\n",
2082                                         rd->alpha2[0], rd->alpha2[1]);
2083                 }
2084         }
2085
2086         print_dfs_region(rd->dfs_region);
2087         print_rd_rules(rd);
2088 }
2089
2090 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2091 {
2092         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2093         print_rd_rules(rd);
2094 }
2095
2096 /* Takes ownership of rd only if it doesn't fail */
2097 static int __set_regdom(const struct ieee80211_regdomain *rd)
2098 {
2099         const struct ieee80211_regdomain *regd;
2100         const struct ieee80211_regdomain *intersected_rd = NULL;
2101         struct wiphy *request_wiphy;
2102         struct regulatory_request *lr = get_last_request();
2103
2104         /* Some basic sanity checks first */
2105
2106         if (!reg_is_valid_request(rd->alpha2))
2107                 return -EINVAL;
2108
2109         if (is_world_regdom(rd->alpha2)) {
2110                 update_world_regdomain(rd);
2111                 return 0;
2112         }
2113
2114         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2115             !is_unknown_alpha2(rd->alpha2))
2116                 return -EINVAL;
2117
2118         /*
2119          * Lets only bother proceeding on the same alpha2 if the current
2120          * rd is non static (it means CRDA was present and was used last)
2121          * and the pending request came in from a country IE
2122          */
2123         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2124                 /*
2125                  * If someone else asked us to change the rd lets only bother
2126                  * checking if the alpha2 changes if CRDA was already called
2127                  */
2128                 if (!regdom_changes(rd->alpha2))
2129                         return -EALREADY;
2130         }
2131
2132         /*
2133          * Now lets set the regulatory domain, update all driver channels
2134          * and finally inform them of what we have done, in case they want
2135          * to review or adjust their own settings based on their own
2136          * internal EEPROM data
2137          */
2138
2139         if (!is_valid_rd(rd)) {
2140                 pr_err("Invalid regulatory domain detected:\n");
2141                 print_regdomain_info(rd);
2142                 return -EINVAL;
2143         }
2144
2145         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2146         if (!request_wiphy &&
2147             (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2148              lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2149                 schedule_delayed_work(&reg_timeout, 0);
2150                 return -ENODEV;
2151         }
2152
2153         if (!lr->intersect) {
2154                 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2155                         reset_regdomains(false, rd);
2156                         return 0;
2157                 }
2158
2159                 /*
2160                  * For a driver hint, lets copy the regulatory domain the
2161                  * driver wanted to the wiphy to deal with conflicts
2162                  */
2163
2164                 /*
2165                  * Userspace could have sent two replies with only
2166                  * one kernel request.
2167                  */
2168                 if (request_wiphy->regd)
2169                         return -EALREADY;
2170
2171                 regd = reg_copy_regd(rd);
2172                 if (IS_ERR(regd))
2173                         return PTR_ERR(regd);
2174
2175                 rcu_assign_pointer(request_wiphy->regd, regd);
2176                 reset_regdomains(false, rd);
2177                 return 0;
2178         }
2179
2180         /* Intersection requires a bit more work */
2181
2182         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2183                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2184                 if (!intersected_rd)
2185                         return -EINVAL;
2186
2187                 /*
2188                  * We can trash what CRDA provided now.
2189                  * However if a driver requested this specific regulatory
2190                  * domain we keep it for its private use
2191                  */
2192                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2193                         const struct ieee80211_regdomain *tmp;
2194
2195                         tmp = get_wiphy_regdom(request_wiphy);
2196                         rcu_assign_pointer(request_wiphy->regd, rd);
2197                         rcu_free_regdom(tmp);
2198                 } else {
2199                         kfree(rd);
2200                 }
2201
2202                 rd = NULL;
2203
2204                 reset_regdomains(false, intersected_rd);
2205
2206                 return 0;
2207         }
2208
2209         return -EINVAL;
2210 }
2211
2212
2213 /*
2214  * Use this call to set the current regulatory domain. Conflicts with
2215  * multiple drivers can be ironed out later. Caller must've already
2216  * kmalloc'd the rd structure.
2217  */
2218 int set_regdom(const struct ieee80211_regdomain *rd)
2219 {
2220         struct regulatory_request *lr;
2221         int r;
2222
2223         lr = get_last_request();
2224
2225         /* Note that this doesn't update the wiphys, this is done below */
2226         r = __set_regdom(rd);
2227         if (r) {
2228                 if (r == -EALREADY)
2229                         reg_set_request_processed();
2230
2231                 kfree(rd);
2232                 return r;
2233         }
2234
2235         /* This would make this whole thing pointless */
2236         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2237                 return -EINVAL;
2238
2239         /* update all wiphys now with the new established regulatory domain */
2240         update_all_wiphy_regulatory(lr->initiator);
2241
2242         print_regdomain(get_cfg80211_regdom());
2243
2244         nl80211_send_reg_change_event(lr);
2245
2246         reg_set_request_processed();
2247
2248         return 0;
2249 }
2250
2251 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2252 {
2253         struct regulatory_request *lr;
2254         u8 alpha2[2];
2255         bool add = false;
2256
2257         rcu_read_lock();
2258         lr = get_last_request();
2259         if (lr && !lr->processed) {
2260                 memcpy(alpha2, lr->alpha2, 2);
2261                 add = true;
2262         }
2263         rcu_read_unlock();
2264
2265         if (add)
2266                 return add_uevent_var(env, "COUNTRY=%c%c",
2267                                       alpha2[0], alpha2[1]);
2268         return 0;
2269 }
2270
2271 void wiphy_regulatory_register(struct wiphy *wiphy)
2272 {
2273         struct regulatory_request *lr;
2274
2275         if (!reg_dev_ignore_cell_hint(wiphy))
2276                 reg_num_devs_support_basehint++;
2277
2278         lr = get_last_request();
2279         wiphy_update_regulatory(wiphy, lr->initiator);
2280 }
2281
2282 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2283 {
2284         struct wiphy *request_wiphy = NULL;
2285         struct regulatory_request *lr;
2286
2287         lr = get_last_request();
2288
2289         if (!reg_dev_ignore_cell_hint(wiphy))
2290                 reg_num_devs_support_basehint--;
2291
2292         rcu_free_regdom(get_wiphy_regdom(wiphy));
2293         rcu_assign_pointer(wiphy->regd, NULL);
2294
2295         if (lr)
2296                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2297
2298         if (!request_wiphy || request_wiphy != wiphy)
2299                 return;
2300
2301         lr->wiphy_idx = WIPHY_IDX_INVALID;
2302         lr->country_ie_env = ENVIRON_ANY;
2303 }
2304
2305 static void reg_timeout_work(struct work_struct *work)
2306 {
2307         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2308         rtnl_lock();
2309         restore_regulatory_settings(true);
2310         rtnl_unlock();
2311 }
2312
2313 int __init regulatory_init(void)
2314 {
2315         int err = 0;
2316
2317         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2318         if (IS_ERR(reg_pdev))
2319                 return PTR_ERR(reg_pdev);
2320
2321         reg_pdev->dev.type = &reg_device_type;
2322
2323         spin_lock_init(&reg_requests_lock);
2324         spin_lock_init(&reg_pending_beacons_lock);
2325
2326         reg_regdb_size_check();
2327
2328         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2329
2330         user_alpha2[0] = '9';
2331         user_alpha2[1] = '7';
2332
2333         /* We always try to get an update for the static regdomain */
2334         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2335         if (err) {
2336                 if (err == -ENOMEM)
2337                         return err;
2338                 /*
2339                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2340                  * memory which is handled and propagated appropriately above
2341                  * but it can also fail during a netlink_broadcast() or during
2342                  * early boot for call_usermodehelper(). For now treat these
2343                  * errors as non-fatal.
2344                  */
2345                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2346         }
2347
2348         /*
2349          * Finally, if the user set the module parameter treat it
2350          * as a user hint.
2351          */
2352         if (!is_world_regdom(ieee80211_regdom))
2353                 regulatory_hint_user(ieee80211_regdom,
2354                                      NL80211_USER_REG_HINT_USER);
2355
2356         return 0;
2357 }
2358
2359 void regulatory_exit(void)
2360 {
2361         struct regulatory_request *reg_request, *tmp;
2362         struct reg_beacon *reg_beacon, *btmp;
2363
2364         cancel_work_sync(&reg_work);
2365         cancel_delayed_work_sync(&reg_timeout);
2366
2367         /* Lock to suppress warnings */
2368         rtnl_lock();
2369         reset_regdomains(true, NULL);
2370         rtnl_unlock();
2371
2372         dev_set_uevent_suppress(&reg_pdev->dev, true);
2373
2374         platform_device_unregister(reg_pdev);
2375
2376         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2377                 list_del(&reg_beacon->list);
2378                 kfree(reg_beacon);
2379         }
2380
2381         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2382                 list_del(&reg_beacon->list);
2383                 kfree(reg_beacon);
2384         }
2385
2386         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2387                 list_del(&reg_request->list);
2388                 kfree(reg_request);
2389         }
2390 }