2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #define REG_DBG_PRINT(args...)
68 enum reg_request_treatment {
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
81 .country_ie_env = ENVIRON_ANY,
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
111 static int reg_num_devs_support_basehint;
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
115 return rtnl_dereference(cfg80211_regdomain);
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
120 return rtnl_dereference(wiphy->regd);
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
130 static struct regulatory_request *get_last_request(void)
132 return rcu_dereference_rtnl(last_request);
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
147 struct list_head list;
148 struct ieee80211_channel chan;
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_PASSIVE_SCAN |
167 NL80211_RRF_NO_IBSS),
168 /* IEEE 802.11 channel 14 - Only JP enables
169 * this and for 802.11b only */
170 REG_RULE(2484-10, 2484+10, 20, 6, 20,
171 NL80211_RRF_PASSIVE_SCAN |
172 NL80211_RRF_NO_IBSS |
173 NL80211_RRF_NO_OFDM),
174 /* IEEE 802.11a, channel 36..48 */
175 REG_RULE(5180-10, 5240+10, 160, 6, 20,
176 NL80211_RRF_PASSIVE_SCAN |
177 NL80211_RRF_NO_IBSS),
179 /* IEEE 802.11a, channel 52..64 - DFS required */
180 REG_RULE(5260-10, 5320+10, 160, 6, 20,
181 NL80211_RRF_PASSIVE_SCAN |
182 NL80211_RRF_NO_IBSS |
185 /* IEEE 802.11a, channel 100..144 - DFS required */
186 REG_RULE(5500-10, 5720+10, 160, 6, 20,
187 NL80211_RRF_PASSIVE_SCAN |
188 NL80211_RRF_NO_IBSS |
191 /* IEEE 802.11a, channel 149..165 */
192 REG_RULE(5745-10, 5825+10, 80, 6, 20,
193 NL80211_RRF_PASSIVE_SCAN |
194 NL80211_RRF_NO_IBSS),
196 /* IEEE 802.11ad (60gHz), channels 1..3 */
197 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
201 /* protected by RTNL */
202 static const struct ieee80211_regdomain *cfg80211_world_regdom =
205 static char *ieee80211_regdom = "00";
206 static char user_alpha2[2];
208 module_param(ieee80211_regdom, charp, 0444);
209 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211 static void reset_regdomains(bool full_reset,
212 const struct ieee80211_regdomain *new_regdom)
214 const struct ieee80211_regdomain *r;
215 struct regulatory_request *lr;
219 r = get_cfg80211_regdom();
221 /* avoid freeing static information or freeing something twice */
222 if (r == cfg80211_world_regdom)
224 if (cfg80211_world_regdom == &world_regdom)
225 cfg80211_world_regdom = NULL;
226 if (r == &world_regdom)
230 rcu_free_regdom(cfg80211_world_regdom);
232 cfg80211_world_regdom = &world_regdom;
233 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
238 lr = get_last_request();
239 if (lr != &core_request_world && lr)
240 kfree_rcu(lr, rcu_head);
241 rcu_assign_pointer(last_request, &core_request_world);
245 * Dynamic world regulatory domain requested by the wireless
246 * core upon initialization
248 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 struct regulatory_request *lr;
252 lr = get_last_request();
256 reset_regdomains(false, rd);
258 cfg80211_world_regdom = rd;
261 bool is_world_regdom(const char *alpha2)
265 return alpha2[0] == '0' && alpha2[1] == '0';
268 static bool is_alpha2_set(const char *alpha2)
272 return alpha2[0] && alpha2[1];
275 static bool is_unknown_alpha2(const char *alpha2)
280 * Special case where regulatory domain was built by driver
281 * but a specific alpha2 cannot be determined
283 return alpha2[0] == '9' && alpha2[1] == '9';
286 static bool is_intersected_alpha2(const char *alpha2)
291 * Special case where regulatory domain is the
292 * result of an intersection between two regulatory domain
295 return alpha2[0] == '9' && alpha2[1] == '8';
298 static bool is_an_alpha2(const char *alpha2)
302 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
305 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 if (!alpha2_x || !alpha2_y)
309 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
312 static bool regdom_changes(const char *alpha2)
314 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
318 return !alpha2_equal(r->alpha2, alpha2);
322 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
323 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
324 * has ever been issued.
326 static bool is_user_regdom_saved(void)
328 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
331 /* This would indicate a mistake on the design */
332 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
333 "Unexpected user alpha2: %c%c\n",
334 user_alpha2[0], user_alpha2[1]))
340 static const struct ieee80211_regdomain *
341 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 struct ieee80211_regdomain *regd;
348 sizeof(struct ieee80211_regdomain) +
349 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351 regd = kzalloc(size_of_regd, GFP_KERNEL);
353 return ERR_PTR(-ENOMEM);
355 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357 for (i = 0; i < src_regd->n_reg_rules; i++)
358 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
359 sizeof(struct ieee80211_reg_rule));
364 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
365 struct reg_regdb_search_request {
367 struct list_head list;
370 static LIST_HEAD(reg_regdb_search_list);
371 static DEFINE_MUTEX(reg_regdb_search_mutex);
373 static void reg_regdb_search(struct work_struct *work)
375 struct reg_regdb_search_request *request;
376 const struct ieee80211_regdomain *curdom, *regdom = NULL;
381 mutex_lock(®_regdb_search_mutex);
382 while (!list_empty(®_regdb_search_list)) {
383 request = list_first_entry(®_regdb_search_list,
384 struct reg_regdb_search_request,
386 list_del(&request->list);
388 for (i = 0; i < reg_regdb_size; i++) {
389 curdom = reg_regdb[i];
391 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
392 regdom = reg_copy_regd(curdom);
399 mutex_unlock(®_regdb_search_mutex);
401 if (!IS_ERR_OR_NULL(regdom))
407 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409 static void reg_regdb_query(const char *alpha2)
411 struct reg_regdb_search_request *request;
416 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
420 memcpy(request->alpha2, alpha2, 2);
422 mutex_lock(®_regdb_search_mutex);
423 list_add_tail(&request->list, ®_regdb_search_list);
424 mutex_unlock(®_regdb_search_mutex);
426 schedule_work(®_regdb_work);
429 /* Feel free to add any other sanity checks here */
430 static void reg_regdb_size_check(void)
432 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
433 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
436 static inline void reg_regdb_size_check(void) {}
437 static inline void reg_regdb_query(const char *alpha2) {}
438 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
441 * This lets us keep regulatory code which is updated on a regulatory
442 * basis in userspace. Country information is filled in by
445 static int call_crda(const char *alpha2)
447 if (!is_world_regdom((char *) alpha2))
448 pr_info("Calling CRDA for country: %c%c\n",
449 alpha2[0], alpha2[1]);
451 pr_info("Calling CRDA to update world regulatory domain\n");
453 /* query internal regulatory database (if it exists) */
454 reg_regdb_query(alpha2);
456 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE);
459 static bool reg_is_valid_request(const char *alpha2)
461 struct regulatory_request *lr = get_last_request();
463 if (!lr || lr->processed)
466 return alpha2_equal(lr->alpha2, alpha2);
469 /* Sanity check on a regulatory rule */
470 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
475 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
478 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
481 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
484 freq_range->max_bandwidth_khz > freq_diff)
490 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 const struct ieee80211_reg_rule *reg_rule = NULL;
495 if (!rd->n_reg_rules)
498 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
501 for (i = 0; i < rd->n_reg_rules; i++) {
502 reg_rule = &rd->reg_rules[i];
503 if (!is_valid_reg_rule(reg_rule))
510 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
511 u32 center_freq_khz, u32 bw_khz)
513 u32 start_freq_khz, end_freq_khz;
515 start_freq_khz = center_freq_khz - (bw_khz/2);
516 end_freq_khz = center_freq_khz + (bw_khz/2);
518 if (start_freq_khz >= freq_range->start_freq_khz &&
519 end_freq_khz <= freq_range->end_freq_khz)
526 * freq_in_rule_band - tells us if a frequency is in a frequency band
527 * @freq_range: frequency rule we want to query
528 * @freq_khz: frequency we are inquiring about
530 * This lets us know if a specific frequency rule is or is not relevant to
531 * a specific frequency's band. Bands are device specific and artificial
532 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
533 * however it is safe for now to assume that a frequency rule should not be
534 * part of a frequency's band if the start freq or end freq are off by more
535 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537 * This resolution can be lowered and should be considered as we add
538 * regulatory rule support for other "bands".
540 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
543 #define ONE_GHZ_IN_KHZ 1000000
545 * From 802.11ad: directional multi-gigabit (DMG):
546 * Pertaining to operation in a frequency band containing a channel
547 * with the Channel starting frequency above 45 GHz.
549 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
550 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
551 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
556 #undef ONE_GHZ_IN_KHZ
560 * Helper for regdom_intersect(), this does the real
561 * mathematical intersection fun
563 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
564 const struct ieee80211_reg_rule *rule2,
565 struct ieee80211_reg_rule *intersected_rule)
567 const struct ieee80211_freq_range *freq_range1, *freq_range2;
568 struct ieee80211_freq_range *freq_range;
569 const struct ieee80211_power_rule *power_rule1, *power_rule2;
570 struct ieee80211_power_rule *power_rule;
573 freq_range1 = &rule1->freq_range;
574 freq_range2 = &rule2->freq_range;
575 freq_range = &intersected_rule->freq_range;
577 power_rule1 = &rule1->power_rule;
578 power_rule2 = &rule2->power_rule;
579 power_rule = &intersected_rule->power_rule;
581 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
582 freq_range2->start_freq_khz);
583 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
584 freq_range2->end_freq_khz);
585 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
586 freq_range2->max_bandwidth_khz);
588 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
589 if (freq_range->max_bandwidth_khz > freq_diff)
590 freq_range->max_bandwidth_khz = freq_diff;
592 power_rule->max_eirp = min(power_rule1->max_eirp,
593 power_rule2->max_eirp);
594 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
595 power_rule2->max_antenna_gain);
597 intersected_rule->flags = rule1->flags | rule2->flags;
599 if (!is_valid_reg_rule(intersected_rule))
606 * regdom_intersect - do the intersection between two regulatory domains
607 * @rd1: first regulatory domain
608 * @rd2: second regulatory domain
610 * Use this function to get the intersection between two regulatory domains.
611 * Once completed we will mark the alpha2 for the rd as intersected, "98",
612 * as no one single alpha2 can represent this regulatory domain.
614 * Returns a pointer to the regulatory domain structure which will hold the
615 * resulting intersection of rules between rd1 and rd2. We will
616 * kzalloc() this structure for you.
618 static struct ieee80211_regdomain *
619 regdom_intersect(const struct ieee80211_regdomain *rd1,
620 const struct ieee80211_regdomain *rd2)
624 unsigned int num_rules = 0, rule_idx = 0;
625 const struct ieee80211_reg_rule *rule1, *rule2;
626 struct ieee80211_reg_rule *intersected_rule;
627 struct ieee80211_regdomain *rd;
628 /* This is just a dummy holder to help us count */
629 struct ieee80211_reg_rule dummy_rule;
635 * First we get a count of the rules we'll need, then we actually
636 * build them. This is to so we can malloc() and free() a
637 * regdomain once. The reason we use reg_rules_intersect() here
638 * is it will return -EINVAL if the rule computed makes no sense.
639 * All rules that do check out OK are valid.
642 for (x = 0; x < rd1->n_reg_rules; x++) {
643 rule1 = &rd1->reg_rules[x];
644 for (y = 0; y < rd2->n_reg_rules; y++) {
645 rule2 = &rd2->reg_rules[y];
646 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
654 size_of_regd = sizeof(struct ieee80211_regdomain) +
655 num_rules * sizeof(struct ieee80211_reg_rule);
657 rd = kzalloc(size_of_regd, GFP_KERNEL);
661 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
662 rule1 = &rd1->reg_rules[x];
663 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
664 rule2 = &rd2->reg_rules[y];
666 * This time around instead of using the stack lets
667 * write to the target rule directly saving ourselves
670 intersected_rule = &rd->reg_rules[rule_idx];
671 r = reg_rules_intersect(rule1, rule2, intersected_rule);
673 * No need to memset here the intersected rule here as
674 * we're not using the stack anymore
682 if (rule_idx != num_rules) {
687 rd->n_reg_rules = num_rules;
695 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
696 * want to just have the channel structure use these
698 static u32 map_regdom_flags(u32 rd_flags)
700 u32 channel_flags = 0;
701 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
702 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
703 if (rd_flags & NL80211_RRF_NO_IBSS)
704 channel_flags |= IEEE80211_CHAN_NO_IBSS;
705 if (rd_flags & NL80211_RRF_DFS)
706 channel_flags |= IEEE80211_CHAN_RADAR;
707 if (rd_flags & NL80211_RRF_NO_OFDM)
708 channel_flags |= IEEE80211_CHAN_NO_OFDM;
709 return channel_flags;
712 static const struct ieee80211_reg_rule *
713 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
714 const struct ieee80211_regdomain *regd)
717 bool band_rule_found = false;
718 bool bw_fits = false;
721 return ERR_PTR(-EINVAL);
723 for (i = 0; i < regd->n_reg_rules; i++) {
724 const struct ieee80211_reg_rule *rr;
725 const struct ieee80211_freq_range *fr = NULL;
727 rr = ®d->reg_rules[i];
728 fr = &rr->freq_range;
731 * We only need to know if one frequency rule was
732 * was in center_freq's band, that's enough, so lets
733 * not overwrite it once found
735 if (!band_rule_found)
736 band_rule_found = freq_in_rule_band(fr, center_freq);
738 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740 if (band_rule_found && bw_fits)
744 if (!band_rule_found)
745 return ERR_PTR(-ERANGE);
747 return ERR_PTR(-EINVAL);
750 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
753 const struct ieee80211_regdomain *regd;
754 struct regulatory_request *lr = get_last_request();
757 * Follow the driver's regulatory domain, if present, unless a country
758 * IE has been processed or a user wants to help complaince further
760 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
761 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
763 regd = get_wiphy_regdom(wiphy);
765 regd = get_cfg80211_regdom();
767 return freq_reg_info_regd(wiphy, center_freq, regd);
769 EXPORT_SYMBOL(freq_reg_info);
771 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
774 case NL80211_REGDOM_SET_BY_CORE:
776 case NL80211_REGDOM_SET_BY_USER:
778 case NL80211_REGDOM_SET_BY_DRIVER:
780 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
787 EXPORT_SYMBOL(reg_initiator_name);
789 #ifdef CONFIG_CFG80211_REG_DEBUG
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791 const struct ieee80211_reg_rule *reg_rule)
793 const struct ieee80211_power_rule *power_rule;
794 const struct ieee80211_freq_range *freq_range;
795 char max_antenna_gain[32];
797 power_rule = ®_rule->power_rule;
798 freq_range = ®_rule->freq_range;
800 if (!power_rule->max_antenna_gain)
801 snprintf(max_antenna_gain, 32, "N/A");
803 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
805 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
808 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809 freq_range->start_freq_khz, freq_range->end_freq_khz,
810 freq_range->max_bandwidth_khz, max_antenna_gain,
811 power_rule->max_eirp);
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815 const struct ieee80211_reg_rule *reg_rule)
822 * Note that right now we assume the desired channel bandwidth
823 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824 * per channel, the primary and the extension channel).
826 static void handle_channel(struct wiphy *wiphy,
827 enum nl80211_reg_initiator initiator,
828 struct ieee80211_channel *chan)
830 u32 flags, bw_flags = 0;
831 const struct ieee80211_reg_rule *reg_rule = NULL;
832 const struct ieee80211_power_rule *power_rule = NULL;
833 const struct ieee80211_freq_range *freq_range = NULL;
834 struct wiphy *request_wiphy = NULL;
835 struct regulatory_request *lr = get_last_request();
837 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
839 flags = chan->orig_flags;
841 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842 if (IS_ERR(reg_rule)) {
844 * We will disable all channels that do not match our
845 * received regulatory rule unless the hint is coming
846 * from a Country IE and the Country IE had no information
847 * about a band. The IEEE 802.11 spec allows for an AP
848 * to send only a subset of the regulatory rules allowed,
849 * so an AP in the US that only supports 2.4 GHz may only send
850 * a country IE with information for the 2.4 GHz band
851 * while 5 GHz is still supported.
853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854 PTR_ERR(reg_rule) == -ERANGE)
857 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858 chan->flags |= IEEE80211_CHAN_DISABLED;
862 chan_reg_rule_print_dbg(chan, reg_rule);
864 power_rule = ®_rule->power_rule;
865 freq_range = ®_rule->freq_range;
867 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868 bw_flags = IEEE80211_CHAN_NO_HT40;
869 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
870 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
871 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
872 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
875 request_wiphy && request_wiphy == wiphy &&
876 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
878 * This guarantees the driver's requested regulatory domain
879 * will always be used as a base for further regulatory
882 chan->flags = chan->orig_flags =
883 map_regdom_flags(reg_rule->flags) | bw_flags;
884 chan->max_antenna_gain = chan->orig_mag =
885 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
886 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
887 (int) MBM_TO_DBM(power_rule->max_eirp);
891 chan->dfs_state = NL80211_DFS_USABLE;
892 chan->dfs_state_entered = jiffies;
894 chan->beacon_found = false;
895 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896 chan->max_antenna_gain =
897 min_t(int, chan->orig_mag,
898 MBI_TO_DBI(power_rule->max_antenna_gain));
899 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
900 if (chan->orig_mpwr) {
902 * Devices that have their own custom regulatory domain
903 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
904 * passed country IE power settings.
906 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
908 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
909 chan->max_power = chan->max_reg_power;
911 chan->max_power = min(chan->orig_mpwr,
912 chan->max_reg_power);
914 chan->max_power = chan->max_reg_power;
917 static void handle_band(struct wiphy *wiphy,
918 enum nl80211_reg_initiator initiator,
919 struct ieee80211_supported_band *sband)
926 for (i = 0; i < sband->n_channels; i++)
927 handle_channel(wiphy, initiator, &sband->channels[i]);
930 static bool reg_request_cell_base(struct regulatory_request *request)
932 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
934 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
937 bool reg_last_request_cell_base(void)
939 return reg_request_cell_base(get_last_request());
942 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
943 /* Core specific check */
944 static enum reg_request_treatment
945 reg_ignore_cell_hint(struct regulatory_request *pending_request)
947 struct regulatory_request *lr = get_last_request();
949 if (!reg_num_devs_support_basehint)
950 return REG_REQ_IGNORE;
952 if (reg_request_cell_base(lr) &&
953 !regdom_changes(pending_request->alpha2))
954 return REG_REQ_ALREADY_SET;
959 /* Device specific check */
960 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
962 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
967 return REG_REQ_IGNORE;
970 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
976 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
978 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
979 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
984 static bool ignore_reg_update(struct wiphy *wiphy,
985 enum nl80211_reg_initiator initiator)
987 struct regulatory_request *lr = get_last_request();
990 REG_DBG_PRINT("Ignoring regulatory request set by %s "
991 "since last_request is not set\n",
992 reg_initiator_name(initiator));
996 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
997 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
998 REG_DBG_PRINT("Ignoring regulatory request set by %s "
999 "since the driver uses its own custom "
1000 "regulatory domain\n",
1001 reg_initiator_name(initiator));
1006 * wiphy->regd will be set once the device has its own
1007 * desired regulatory domain set
1009 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1010 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1011 !is_world_regdom(lr->alpha2)) {
1012 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1013 "since the driver requires its own regulatory "
1014 "domain to be set first\n",
1015 reg_initiator_name(initiator));
1019 if (reg_request_cell_base(lr))
1020 return reg_dev_ignore_cell_hint(wiphy);
1025 static bool reg_is_world_roaming(struct wiphy *wiphy)
1027 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1028 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1029 struct regulatory_request *lr = get_last_request();
1031 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1034 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1035 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1041 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1042 struct reg_beacon *reg_beacon)
1044 struct ieee80211_supported_band *sband;
1045 struct ieee80211_channel *chan;
1046 bool channel_changed = false;
1047 struct ieee80211_channel chan_before;
1049 sband = wiphy->bands[reg_beacon->chan.band];
1050 chan = &sband->channels[chan_idx];
1052 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1055 if (chan->beacon_found)
1058 chan->beacon_found = true;
1060 if (!reg_is_world_roaming(wiphy))
1063 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1066 chan_before.center_freq = chan->center_freq;
1067 chan_before.flags = chan->flags;
1069 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1070 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1071 channel_changed = true;
1074 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1075 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1076 channel_changed = true;
1079 if (channel_changed)
1080 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1084 * Called when a scan on a wiphy finds a beacon on
1087 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1088 struct reg_beacon *reg_beacon)
1091 struct ieee80211_supported_band *sband;
1093 if (!wiphy->bands[reg_beacon->chan.band])
1096 sband = wiphy->bands[reg_beacon->chan.band];
1098 for (i = 0; i < sband->n_channels; i++)
1099 handle_reg_beacon(wiphy, i, reg_beacon);
1103 * Called upon reg changes or a new wiphy is added
1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1108 struct ieee80211_supported_band *sband;
1109 struct reg_beacon *reg_beacon;
1111 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1112 if (!wiphy->bands[reg_beacon->chan.band])
1114 sband = wiphy->bands[reg_beacon->chan.band];
1115 for (i = 0; i < sband->n_channels; i++)
1116 handle_reg_beacon(wiphy, i, reg_beacon);
1120 /* Reap the advantages of previously found beacons */
1121 static void reg_process_beacons(struct wiphy *wiphy)
1124 * Means we are just firing up cfg80211, so no beacons would
1125 * have been processed yet.
1129 wiphy_update_beacon_reg(wiphy);
1132 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1136 if (chan->flags & IEEE80211_CHAN_DISABLED)
1138 /* This would happen when regulatory rules disallow HT40 completely */
1139 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1144 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1145 struct ieee80211_channel *channel)
1147 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1148 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1151 if (!is_ht40_allowed(channel)) {
1152 channel->flags |= IEEE80211_CHAN_NO_HT40;
1157 * We need to ensure the extension channels exist to
1158 * be able to use HT40- or HT40+, this finds them (or not)
1160 for (i = 0; i < sband->n_channels; i++) {
1161 struct ieee80211_channel *c = &sband->channels[i];
1163 if (c->center_freq == (channel->center_freq - 20))
1165 if (c->center_freq == (channel->center_freq + 20))
1170 * Please note that this assumes target bandwidth is 20 MHz,
1171 * if that ever changes we also need to change the below logic
1172 * to include that as well.
1174 if (!is_ht40_allowed(channel_before))
1175 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1177 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1179 if (!is_ht40_allowed(channel_after))
1180 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1182 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1185 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1186 struct ieee80211_supported_band *sband)
1193 for (i = 0; i < sband->n_channels; i++)
1194 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1197 static void reg_process_ht_flags(struct wiphy *wiphy)
1199 enum ieee80211_band band;
1204 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1205 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1208 static void wiphy_update_regulatory(struct wiphy *wiphy,
1209 enum nl80211_reg_initiator initiator)
1211 enum ieee80211_band band;
1212 struct regulatory_request *lr = get_last_request();
1214 if (ignore_reg_update(wiphy, initiator))
1217 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1219 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1220 handle_band(wiphy, initiator, wiphy->bands[band]);
1222 reg_process_beacons(wiphy);
1223 reg_process_ht_flags(wiphy);
1225 if (wiphy->reg_notifier)
1226 wiphy->reg_notifier(wiphy, lr);
1229 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1231 struct cfg80211_registered_device *rdev;
1232 struct wiphy *wiphy;
1236 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1237 wiphy = &rdev->wiphy;
1238 wiphy_update_regulatory(wiphy, initiator);
1240 * Regulatory updates set by CORE are ignored for custom
1241 * regulatory cards. Let us notify the changes to the driver,
1242 * as some drivers used this to restore its orig_* reg domain.
1244 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1245 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1246 wiphy->reg_notifier)
1247 wiphy->reg_notifier(wiphy, get_last_request());
1251 static void handle_channel_custom(struct wiphy *wiphy,
1252 struct ieee80211_channel *chan,
1253 const struct ieee80211_regdomain *regd)
1256 const struct ieee80211_reg_rule *reg_rule = NULL;
1257 const struct ieee80211_power_rule *power_rule = NULL;
1258 const struct ieee80211_freq_range *freq_range = NULL;
1260 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1263 if (IS_ERR(reg_rule)) {
1264 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1266 chan->flags = IEEE80211_CHAN_DISABLED;
1270 chan_reg_rule_print_dbg(chan, reg_rule);
1272 power_rule = ®_rule->power_rule;
1273 freq_range = ®_rule->freq_range;
1275 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1276 bw_flags = IEEE80211_CHAN_NO_HT40;
1277 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1278 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1279 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1280 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1282 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1283 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1284 chan->max_reg_power = chan->max_power =
1285 (int) MBM_TO_DBM(power_rule->max_eirp);
1288 static void handle_band_custom(struct wiphy *wiphy,
1289 struct ieee80211_supported_band *sband,
1290 const struct ieee80211_regdomain *regd)
1297 for (i = 0; i < sband->n_channels; i++)
1298 handle_channel_custom(wiphy, &sband->channels[i], regd);
1301 /* Used by drivers prior to wiphy registration */
1302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1303 const struct ieee80211_regdomain *regd)
1305 enum ieee80211_band band;
1306 unsigned int bands_set = 0;
1308 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1309 if (!wiphy->bands[band])
1311 handle_band_custom(wiphy, wiphy->bands[band], regd);
1316 * no point in calling this if it won't have any effect
1317 * on your device's supported bands.
1319 WARN_ON(!bands_set);
1321 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1323 /* This has the logic which determines when a new request
1324 * should be ignored. */
1325 static enum reg_request_treatment
1326 get_reg_request_treatment(struct wiphy *wiphy,
1327 struct regulatory_request *pending_request)
1329 struct wiphy *last_wiphy = NULL;
1330 struct regulatory_request *lr = get_last_request();
1332 /* All initial requests are respected */
1336 switch (pending_request->initiator) {
1337 case NL80211_REGDOM_SET_BY_CORE:
1339 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1340 if (reg_request_cell_base(lr)) {
1341 /* Trust a Cell base station over the AP's country IE */
1342 if (regdom_changes(pending_request->alpha2))
1343 return REG_REQ_IGNORE;
1344 return REG_REQ_ALREADY_SET;
1347 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1349 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1351 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1352 if (last_wiphy != wiphy) {
1354 * Two cards with two APs claiming different
1355 * Country IE alpha2s. We could
1356 * intersect them, but that seems unlikely
1357 * to be correct. Reject second one for now.
1359 if (regdom_changes(pending_request->alpha2))
1360 return REG_REQ_IGNORE;
1361 return REG_REQ_ALREADY_SET;
1364 * Two consecutive Country IE hints on the same wiphy.
1365 * This should be picked up early by the driver/stack
1367 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1369 return REG_REQ_ALREADY_SET;
1372 case NL80211_REGDOM_SET_BY_DRIVER:
1373 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1374 if (regdom_changes(pending_request->alpha2))
1376 return REG_REQ_ALREADY_SET;
1380 * This would happen if you unplug and plug your card
1381 * back in or if you add a new device for which the previously
1382 * loaded card also agrees on the regulatory domain.
1384 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1385 !regdom_changes(pending_request->alpha2))
1386 return REG_REQ_ALREADY_SET;
1388 return REG_REQ_INTERSECT;
1389 case NL80211_REGDOM_SET_BY_USER:
1390 if (reg_request_cell_base(pending_request))
1391 return reg_ignore_cell_hint(pending_request);
1393 if (reg_request_cell_base(lr))
1394 return REG_REQ_IGNORE;
1396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1397 return REG_REQ_INTERSECT;
1399 * If the user knows better the user should set the regdom
1400 * to their country before the IE is picked up
1402 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1404 return REG_REQ_IGNORE;
1406 * Process user requests only after previous user/driver/core
1407 * requests have been processed
1409 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1410 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1411 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1412 regdom_changes(lr->alpha2))
1413 return REG_REQ_IGNORE;
1415 if (!regdom_changes(pending_request->alpha2))
1416 return REG_REQ_ALREADY_SET;
1421 return REG_REQ_IGNORE;
1424 static void reg_set_request_processed(void)
1426 bool need_more_processing = false;
1427 struct regulatory_request *lr = get_last_request();
1429 lr->processed = true;
1431 spin_lock(®_requests_lock);
1432 if (!list_empty(®_requests_list))
1433 need_more_processing = true;
1434 spin_unlock(®_requests_lock);
1436 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1437 cancel_delayed_work(®_timeout);
1439 if (need_more_processing)
1440 schedule_work(®_work);
1444 * __regulatory_hint - hint to the wireless core a regulatory domain
1445 * @wiphy: if the hint comes from country information from an AP, this
1446 * is required to be set to the wiphy that received the information
1447 * @pending_request: the regulatory request currently being processed
1449 * The Wireless subsystem can use this function to hint to the wireless core
1450 * what it believes should be the current regulatory domain.
1452 * Returns one of the different reg request treatment values.
1454 static enum reg_request_treatment
1455 __regulatory_hint(struct wiphy *wiphy,
1456 struct regulatory_request *pending_request)
1458 const struct ieee80211_regdomain *regd;
1459 bool intersect = false;
1460 enum reg_request_treatment treatment;
1461 struct regulatory_request *lr;
1463 treatment = get_reg_request_treatment(wiphy, pending_request);
1465 switch (treatment) {
1466 case REG_REQ_INTERSECT:
1467 if (pending_request->initiator ==
1468 NL80211_REGDOM_SET_BY_DRIVER) {
1469 regd = reg_copy_regd(get_cfg80211_regdom());
1471 kfree(pending_request);
1472 return PTR_ERR(regd);
1474 rcu_assign_pointer(wiphy->regd, regd);
1482 * If the regulatory domain being requested by the
1483 * driver has already been set just copy it to the
1486 if (treatment == REG_REQ_ALREADY_SET &&
1487 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1488 regd = reg_copy_regd(get_cfg80211_regdom());
1490 kfree(pending_request);
1491 return REG_REQ_IGNORE;
1493 treatment = REG_REQ_ALREADY_SET;
1494 rcu_assign_pointer(wiphy->regd, regd);
1497 kfree(pending_request);
1502 lr = get_last_request();
1503 if (lr != &core_request_world && lr)
1504 kfree_rcu(lr, rcu_head);
1506 pending_request->intersect = intersect;
1507 pending_request->processed = false;
1508 rcu_assign_pointer(last_request, pending_request);
1509 lr = pending_request;
1511 pending_request = NULL;
1513 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1514 user_alpha2[0] = lr->alpha2[0];
1515 user_alpha2[1] = lr->alpha2[1];
1518 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1519 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1521 * Since CRDA will not be called in this case as we already
1522 * have applied the requested regulatory domain before we just
1523 * inform userspace we have processed the request
1525 if (treatment == REG_REQ_ALREADY_SET) {
1526 nl80211_send_reg_change_event(lr);
1527 reg_set_request_processed();
1532 if (call_crda(lr->alpha2))
1533 return REG_REQ_IGNORE;
1537 /* This processes *all* regulatory hints */
1538 static void reg_process_hint(struct regulatory_request *reg_request,
1539 enum nl80211_reg_initiator reg_initiator)
1541 struct wiphy *wiphy = NULL;
1543 if (WARN_ON(!reg_request->alpha2))
1546 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1547 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1549 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1554 switch (__regulatory_hint(wiphy, reg_request)) {
1555 case REG_REQ_ALREADY_SET:
1556 /* This is required so that the orig_* parameters are saved */
1557 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1558 wiphy_update_regulatory(wiphy, reg_initiator);
1561 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1562 schedule_delayed_work(®_timeout,
1563 msecs_to_jiffies(3142));
1569 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1570 * Regulatory hints come on a first come first serve basis and we
1571 * must process each one atomically.
1573 static void reg_process_pending_hints(void)
1575 struct regulatory_request *reg_request, *lr;
1577 lr = get_last_request();
1579 /* When last_request->processed becomes true this will be rescheduled */
1580 if (lr && !lr->processed) {
1581 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1585 spin_lock(®_requests_lock);
1587 if (list_empty(®_requests_list)) {
1588 spin_unlock(®_requests_lock);
1592 reg_request = list_first_entry(®_requests_list,
1593 struct regulatory_request,
1595 list_del_init(®_request->list);
1597 spin_unlock(®_requests_lock);
1599 reg_process_hint(reg_request, reg_request->initiator);
1602 /* Processes beacon hints -- this has nothing to do with country IEs */
1603 static void reg_process_pending_beacon_hints(void)
1605 struct cfg80211_registered_device *rdev;
1606 struct reg_beacon *pending_beacon, *tmp;
1608 /* This goes through the _pending_ beacon list */
1609 spin_lock_bh(®_pending_beacons_lock);
1611 list_for_each_entry_safe(pending_beacon, tmp,
1612 ®_pending_beacons, list) {
1613 list_del_init(&pending_beacon->list);
1615 /* Applies the beacon hint to current wiphys */
1616 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1617 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1619 /* Remembers the beacon hint for new wiphys or reg changes */
1620 list_add_tail(&pending_beacon->list, ®_beacon_list);
1623 spin_unlock_bh(®_pending_beacons_lock);
1626 static void reg_todo(struct work_struct *work)
1629 reg_process_pending_hints();
1630 reg_process_pending_beacon_hints();
1634 static void queue_regulatory_request(struct regulatory_request *request)
1636 request->alpha2[0] = toupper(request->alpha2[0]);
1637 request->alpha2[1] = toupper(request->alpha2[1]);
1639 spin_lock(®_requests_lock);
1640 list_add_tail(&request->list, ®_requests_list);
1641 spin_unlock(®_requests_lock);
1643 schedule_work(®_work);
1647 * Core regulatory hint -- happens during cfg80211_init()
1648 * and when we restore regulatory settings.
1650 static int regulatory_hint_core(const char *alpha2)
1652 struct regulatory_request *request;
1654 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1658 request->alpha2[0] = alpha2[0];
1659 request->alpha2[1] = alpha2[1];
1660 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1662 queue_regulatory_request(request);
1668 int regulatory_hint_user(const char *alpha2,
1669 enum nl80211_user_reg_hint_type user_reg_hint_type)
1671 struct regulatory_request *request;
1673 if (WARN_ON(!alpha2))
1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1680 request->wiphy_idx = WIPHY_IDX_INVALID;
1681 request->alpha2[0] = alpha2[0];
1682 request->alpha2[1] = alpha2[1];
1683 request->initiator = NL80211_REGDOM_SET_BY_USER;
1684 request->user_reg_hint_type = user_reg_hint_type;
1686 queue_regulatory_request(request);
1692 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1694 struct regulatory_request *request;
1696 if (WARN_ON(!alpha2 || !wiphy))
1699 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1703 request->wiphy_idx = get_wiphy_idx(wiphy);
1705 request->alpha2[0] = alpha2[0];
1706 request->alpha2[1] = alpha2[1];
1707 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1709 queue_regulatory_request(request);
1713 EXPORT_SYMBOL(regulatory_hint);
1715 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1716 const u8 *country_ie, u8 country_ie_len)
1719 enum environment_cap env = ENVIRON_ANY;
1720 struct regulatory_request *request = NULL, *lr;
1722 /* IE len must be evenly divisible by 2 */
1723 if (country_ie_len & 0x01)
1726 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1729 request = kzalloc(sizeof(*request), GFP_KERNEL);
1733 alpha2[0] = country_ie[0];
1734 alpha2[1] = country_ie[1];
1736 if (country_ie[2] == 'I')
1737 env = ENVIRON_INDOOR;
1738 else if (country_ie[2] == 'O')
1739 env = ENVIRON_OUTDOOR;
1742 lr = get_last_request();
1748 * We will run this only upon a successful connection on cfg80211.
1749 * We leave conflict resolution to the workqueue, where can hold
1752 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1753 lr->wiphy_idx != WIPHY_IDX_INVALID)
1756 request->wiphy_idx = get_wiphy_idx(wiphy);
1757 request->alpha2[0] = alpha2[0];
1758 request->alpha2[1] = alpha2[1];
1759 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1760 request->country_ie_env = env;
1762 queue_regulatory_request(request);
1769 static void restore_alpha2(char *alpha2, bool reset_user)
1771 /* indicates there is no alpha2 to consider for restoration */
1775 /* The user setting has precedence over the module parameter */
1776 if (is_user_regdom_saved()) {
1777 /* Unless we're asked to ignore it and reset it */
1779 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1780 user_alpha2[0] = '9';
1781 user_alpha2[1] = '7';
1784 * If we're ignoring user settings, we still need to
1785 * check the module parameter to ensure we put things
1786 * back as they were for a full restore.
1788 if (!is_world_regdom(ieee80211_regdom)) {
1789 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1790 ieee80211_regdom[0], ieee80211_regdom[1]);
1791 alpha2[0] = ieee80211_regdom[0];
1792 alpha2[1] = ieee80211_regdom[1];
1795 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1796 user_alpha2[0], user_alpha2[1]);
1797 alpha2[0] = user_alpha2[0];
1798 alpha2[1] = user_alpha2[1];
1800 } else if (!is_world_regdom(ieee80211_regdom)) {
1801 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1802 ieee80211_regdom[0], ieee80211_regdom[1]);
1803 alpha2[0] = ieee80211_regdom[0];
1804 alpha2[1] = ieee80211_regdom[1];
1806 REG_DBG_PRINT("Restoring regulatory settings\n");
1809 static void restore_custom_reg_settings(struct wiphy *wiphy)
1811 struct ieee80211_supported_band *sband;
1812 enum ieee80211_band band;
1813 struct ieee80211_channel *chan;
1816 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1817 sband = wiphy->bands[band];
1820 for (i = 0; i < sband->n_channels; i++) {
1821 chan = &sband->channels[i];
1822 chan->flags = chan->orig_flags;
1823 chan->max_antenna_gain = chan->orig_mag;
1824 chan->max_power = chan->orig_mpwr;
1825 chan->beacon_found = false;
1831 * Restoring regulatory settings involves ingoring any
1832 * possibly stale country IE information and user regulatory
1833 * settings if so desired, this includes any beacon hints
1834 * learned as we could have traveled outside to another country
1835 * after disconnection. To restore regulatory settings we do
1836 * exactly what we did at bootup:
1838 * - send a core regulatory hint
1839 * - send a user regulatory hint if applicable
1841 * Device drivers that send a regulatory hint for a specific country
1842 * keep their own regulatory domain on wiphy->regd so that does does
1843 * not need to be remembered.
1845 static void restore_regulatory_settings(bool reset_user)
1848 char world_alpha2[2];
1849 struct reg_beacon *reg_beacon, *btmp;
1850 struct regulatory_request *reg_request, *tmp;
1851 LIST_HEAD(tmp_reg_req_list);
1852 struct cfg80211_registered_device *rdev;
1856 reset_regdomains(true, &world_regdom);
1857 restore_alpha2(alpha2, reset_user);
1860 * If there's any pending requests we simply
1861 * stash them to a temporary pending queue and
1862 * add then after we've restored regulatory
1865 spin_lock(®_requests_lock);
1866 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
1867 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1869 list_move_tail(®_request->list, &tmp_reg_req_list);
1871 spin_unlock(®_requests_lock);
1873 /* Clear beacon hints */
1874 spin_lock_bh(®_pending_beacons_lock);
1875 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
1876 list_del(®_beacon->list);
1879 spin_unlock_bh(®_pending_beacons_lock);
1881 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
1882 list_del(®_beacon->list);
1886 /* First restore to the basic regulatory settings */
1887 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1888 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1890 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892 restore_custom_reg_settings(&rdev->wiphy);
1895 regulatory_hint_core(world_alpha2);
1898 * This restores the ieee80211_regdom module parameter
1899 * preference or the last user requested regulatory
1900 * settings, user regulatory settings takes precedence.
1902 if (is_an_alpha2(alpha2))
1903 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1905 spin_lock(®_requests_lock);
1906 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
1907 spin_unlock(®_requests_lock);
1909 REG_DBG_PRINT("Kicking the queue\n");
1911 schedule_work(®_work);
1914 void regulatory_hint_disconnect(void)
1916 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1917 restore_regulatory_settings(false);
1920 static bool freq_is_chan_12_13_14(u16 freq)
1922 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1923 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1924 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1929 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1931 struct reg_beacon *pending_beacon;
1933 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
1934 if (beacon_chan->center_freq ==
1935 pending_beacon->chan.center_freq)
1940 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1941 struct ieee80211_channel *beacon_chan,
1944 struct reg_beacon *reg_beacon;
1947 if (beacon_chan->beacon_found ||
1948 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1949 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1950 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1953 spin_lock_bh(®_pending_beacons_lock);
1954 processing = pending_reg_beacon(beacon_chan);
1955 spin_unlock_bh(®_pending_beacons_lock);
1960 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1964 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1965 beacon_chan->center_freq,
1966 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1969 memcpy(®_beacon->chan, beacon_chan,
1970 sizeof(struct ieee80211_channel));
1973 * Since we can be called from BH or and non-BH context
1974 * we must use spin_lock_bh()
1976 spin_lock_bh(®_pending_beacons_lock);
1977 list_add_tail(®_beacon->list, ®_pending_beacons);
1978 spin_unlock_bh(®_pending_beacons_lock);
1980 schedule_work(®_work);
1985 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1988 const struct ieee80211_reg_rule *reg_rule = NULL;
1989 const struct ieee80211_freq_range *freq_range = NULL;
1990 const struct ieee80211_power_rule *power_rule = NULL;
1992 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1994 for (i = 0; i < rd->n_reg_rules; i++) {
1995 reg_rule = &rd->reg_rules[i];
1996 freq_range = ®_rule->freq_range;
1997 power_rule = ®_rule->power_rule;
2000 * There may not be documentation for max antenna gain
2001 * in certain regions
2003 if (power_rule->max_antenna_gain)
2004 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2005 freq_range->start_freq_khz,
2006 freq_range->end_freq_khz,
2007 freq_range->max_bandwidth_khz,
2008 power_rule->max_antenna_gain,
2009 power_rule->max_eirp);
2011 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2012 freq_range->start_freq_khz,
2013 freq_range->end_freq_khz,
2014 freq_range->max_bandwidth_khz,
2015 power_rule->max_eirp);
2019 bool reg_supported_dfs_region(u8 dfs_region)
2021 switch (dfs_region) {
2022 case NL80211_DFS_UNSET:
2023 case NL80211_DFS_FCC:
2024 case NL80211_DFS_ETSI:
2025 case NL80211_DFS_JP:
2028 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2034 static void print_dfs_region(u8 dfs_region)
2039 switch (dfs_region) {
2040 case NL80211_DFS_FCC:
2041 pr_info(" DFS Master region FCC");
2043 case NL80211_DFS_ETSI:
2044 pr_info(" DFS Master region ETSI");
2046 case NL80211_DFS_JP:
2047 pr_info(" DFS Master region JP");
2050 pr_info(" DFS Master region Unknown");
2055 static void print_regdomain(const struct ieee80211_regdomain *rd)
2057 struct regulatory_request *lr = get_last_request();
2059 if (is_intersected_alpha2(rd->alpha2)) {
2060 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061 struct cfg80211_registered_device *rdev;
2062 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2064 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2065 rdev->country_ie_alpha2[0],
2066 rdev->country_ie_alpha2[1]);
2068 pr_info("Current regulatory domain intersected:\n");
2070 pr_info("Current regulatory domain intersected:\n");
2071 } else if (is_world_regdom(rd->alpha2)) {
2072 pr_info("World regulatory domain updated:\n");
2074 if (is_unknown_alpha2(rd->alpha2))
2075 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2077 if (reg_request_cell_base(lr))
2078 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2079 rd->alpha2[0], rd->alpha2[1]);
2081 pr_info("Regulatory domain changed to country: %c%c\n",
2082 rd->alpha2[0], rd->alpha2[1]);
2086 print_dfs_region(rd->dfs_region);
2090 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2092 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2096 /* Takes ownership of rd only if it doesn't fail */
2097 static int __set_regdom(const struct ieee80211_regdomain *rd)
2099 const struct ieee80211_regdomain *regd;
2100 const struct ieee80211_regdomain *intersected_rd = NULL;
2101 struct wiphy *request_wiphy;
2102 struct regulatory_request *lr = get_last_request();
2104 /* Some basic sanity checks first */
2106 if (!reg_is_valid_request(rd->alpha2))
2109 if (is_world_regdom(rd->alpha2)) {
2110 update_world_regdomain(rd);
2114 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2115 !is_unknown_alpha2(rd->alpha2))
2119 * Lets only bother proceeding on the same alpha2 if the current
2120 * rd is non static (it means CRDA was present and was used last)
2121 * and the pending request came in from a country IE
2123 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2125 * If someone else asked us to change the rd lets only bother
2126 * checking if the alpha2 changes if CRDA was already called
2128 if (!regdom_changes(rd->alpha2))
2133 * Now lets set the regulatory domain, update all driver channels
2134 * and finally inform them of what we have done, in case they want
2135 * to review or adjust their own settings based on their own
2136 * internal EEPROM data
2139 if (!is_valid_rd(rd)) {
2140 pr_err("Invalid regulatory domain detected:\n");
2141 print_regdomain_info(rd);
2145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2146 if (!request_wiphy &&
2147 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2148 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2149 schedule_delayed_work(®_timeout, 0);
2153 if (!lr->intersect) {
2154 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2155 reset_regdomains(false, rd);
2160 * For a driver hint, lets copy the regulatory domain the
2161 * driver wanted to the wiphy to deal with conflicts
2165 * Userspace could have sent two replies with only
2166 * one kernel request.
2168 if (request_wiphy->regd)
2171 regd = reg_copy_regd(rd);
2173 return PTR_ERR(regd);
2175 rcu_assign_pointer(request_wiphy->regd, regd);
2176 reset_regdomains(false, rd);
2180 /* Intersection requires a bit more work */
2182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2183 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2184 if (!intersected_rd)
2188 * We can trash what CRDA provided now.
2189 * However if a driver requested this specific regulatory
2190 * domain we keep it for its private use
2192 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2193 const struct ieee80211_regdomain *tmp;
2195 tmp = get_wiphy_regdom(request_wiphy);
2196 rcu_assign_pointer(request_wiphy->regd, rd);
2197 rcu_free_regdom(tmp);
2204 reset_regdomains(false, intersected_rd);
2214 * Use this call to set the current regulatory domain. Conflicts with
2215 * multiple drivers can be ironed out later. Caller must've already
2216 * kmalloc'd the rd structure.
2218 int set_regdom(const struct ieee80211_regdomain *rd)
2220 struct regulatory_request *lr;
2223 lr = get_last_request();
2225 /* Note that this doesn't update the wiphys, this is done below */
2226 r = __set_regdom(rd);
2229 reg_set_request_processed();
2235 /* This would make this whole thing pointless */
2236 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2239 /* update all wiphys now with the new established regulatory domain */
2240 update_all_wiphy_regulatory(lr->initiator);
2242 print_regdomain(get_cfg80211_regdom());
2244 nl80211_send_reg_change_event(lr);
2246 reg_set_request_processed();
2251 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2253 struct regulatory_request *lr;
2258 lr = get_last_request();
2259 if (lr && !lr->processed) {
2260 memcpy(alpha2, lr->alpha2, 2);
2266 return add_uevent_var(env, "COUNTRY=%c%c",
2267 alpha2[0], alpha2[1]);
2271 void wiphy_regulatory_register(struct wiphy *wiphy)
2273 struct regulatory_request *lr;
2275 if (!reg_dev_ignore_cell_hint(wiphy))
2276 reg_num_devs_support_basehint++;
2278 lr = get_last_request();
2279 wiphy_update_regulatory(wiphy, lr->initiator);
2282 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2284 struct wiphy *request_wiphy = NULL;
2285 struct regulatory_request *lr;
2287 lr = get_last_request();
2289 if (!reg_dev_ignore_cell_hint(wiphy))
2290 reg_num_devs_support_basehint--;
2292 rcu_free_regdom(get_wiphy_regdom(wiphy));
2293 rcu_assign_pointer(wiphy->regd, NULL);
2296 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2298 if (!request_wiphy || request_wiphy != wiphy)
2301 lr->wiphy_idx = WIPHY_IDX_INVALID;
2302 lr->country_ie_env = ENVIRON_ANY;
2305 static void reg_timeout_work(struct work_struct *work)
2307 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2309 restore_regulatory_settings(true);
2313 int __init regulatory_init(void)
2317 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2318 if (IS_ERR(reg_pdev))
2319 return PTR_ERR(reg_pdev);
2321 reg_pdev->dev.type = ®_device_type;
2323 spin_lock_init(®_requests_lock);
2324 spin_lock_init(®_pending_beacons_lock);
2326 reg_regdb_size_check();
2328 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2330 user_alpha2[0] = '9';
2331 user_alpha2[1] = '7';
2333 /* We always try to get an update for the static regdomain */
2334 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2339 * N.B. kobject_uevent_env() can fail mainly for when we're out
2340 * memory which is handled and propagated appropriately above
2341 * but it can also fail during a netlink_broadcast() or during
2342 * early boot for call_usermodehelper(). For now treat these
2343 * errors as non-fatal.
2345 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2349 * Finally, if the user set the module parameter treat it
2352 if (!is_world_regdom(ieee80211_regdom))
2353 regulatory_hint_user(ieee80211_regdom,
2354 NL80211_USER_REG_HINT_USER);
2359 void regulatory_exit(void)
2361 struct regulatory_request *reg_request, *tmp;
2362 struct reg_beacon *reg_beacon, *btmp;
2364 cancel_work_sync(®_work);
2365 cancel_delayed_work_sync(®_timeout);
2367 /* Lock to suppress warnings */
2369 reset_regdomains(true, NULL);
2372 dev_set_uevent_suppress(®_pdev->dev, true);
2374 platform_device_unregister(reg_pdev);
2376 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
2377 list_del(®_beacon->list);
2381 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
2382 list_del(®_beacon->list);
2386 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
2387 list_del(®_request->list);