wifi: cfg80211: fix regulatory disconnect for non-MLO
[platform/kernel/linux-starfive.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744         const u8 *end = p + buflen;
745         size_t plen;
746         key_ref_t key;
747
748         while (p < end) {
749                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750                  * than 256 bytes in size.
751                  */
752                 if (end - p < 4)
753                         goto dodgy_cert;
754                 if (p[0] != 0x30 &&
755                     p[1] != 0x82)
756                         goto dodgy_cert;
757                 plen = (p[2] << 8) | p[3];
758                 plen += 4;
759                 if (plen > end - p)
760                         goto dodgy_cert;
761
762                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763                                            "asymmetric", NULL, p, plen,
764                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                                             KEY_USR_VIEW | KEY_USR_READ),
766                                            KEY_ALLOC_NOT_IN_QUOTA |
767                                            KEY_ALLOC_BUILT_IN |
768                                            KEY_ALLOC_BYPASS_RESTRICTION);
769                 if (IS_ERR(key)) {
770                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771                                PTR_ERR(key));
772                 } else {
773                         pr_notice("Loaded X.509 cert '%s'\n",
774                                   key_ref_to_ptr(key)->description);
775                         key_ref_put(key);
776                 }
777                 p += plen;
778         }
779
780         return;
781
782 dodgy_cert:
783         pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
786 static int __init load_builtin_regdb_keys(void)
787 {
788         builtin_regdb_keys =
789                 keyring_alloc(".builtin_regdb_keys",
790                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794         if (IS_ERR(builtin_regdb_keys))
795                 return PTR_ERR(builtin_regdb_keys);
796
797         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807         return 0;
808 }
809
810 MODULE_FIRMWARE("regulatory.db.p7s");
811
812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814         const struct firmware *sig;
815         bool result;
816
817         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
818                 return false;
819
820         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821                                         builtin_regdb_keys,
822                                         VERIFYING_UNSPECIFIED_SIGNATURE,
823                                         NULL, NULL) == 0;
824
825         release_firmware(sig);
826
827         return result;
828 }
829
830 static void free_regdb_keyring(void)
831 {
832         key_put(builtin_regdb_keys);
833 }
834 #else
835 static int load_builtin_regdb_keys(void)
836 {
837         return 0;
838 }
839
840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842         return true;
843 }
844
845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852         const struct fwdb_header *hdr = (void *)data;
853         const struct fwdb_country *country;
854
855         if (size < sizeof(*hdr))
856                 return false;
857
858         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859                 return false;
860
861         if (hdr->version != cpu_to_be32(FWDB_VERSION))
862                 return false;
863
864         if (!regdb_has_valid_signature(data, size))
865                 return false;
866
867         country = &hdr->country[0];
868         while ((u8 *)(country + 1) <= data + size) {
869                 if (!country->coll_ptr)
870                         break;
871                 if (!valid_country(data, size, country))
872                         return false;
873                 country++;
874         }
875
876         return true;
877 }
878
879 static void set_wmm_rule(const struct fwdb_header *db,
880                          const struct fwdb_country *country,
881                          const struct fwdb_rule *rule,
882                          struct ieee80211_reg_rule *rrule)
883 {
884         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885         struct fwdb_wmm_rule *wmm;
886         unsigned int i, wmm_ptr;
887
888         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889         wmm = (void *)((u8 *)db + wmm_ptr);
890
891         if (!valid_wmm(wmm)) {
892                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894                        country->alpha2[0], country->alpha2[1]);
895                 return;
896         }
897
898         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899                 wmm_rule->client[i].cw_min =
900                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
903                 wmm_rule->client[i].cot =
904                         1000 * be16_to_cpu(wmm->client[i].cot);
905                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909         }
910
911         rrule->has_wmm = true;
912 }
913
914 static int __regdb_query_wmm(const struct fwdb_header *db,
915                              const struct fwdb_country *country, int freq,
916                              struct ieee80211_reg_rule *rrule)
917 {
918         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920         int i;
921
922         for (i = 0; i < coll->n_rules; i++) {
923                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928                         continue;
929
930                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932                         set_wmm_rule(db, country, rule, rrule);
933                         return 0;
934                 }
935         }
936
937         return -ENODATA;
938 }
939
940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942         const struct fwdb_header *hdr = regdb;
943         const struct fwdb_country *country;
944
945         if (!regdb)
946                 return -ENODATA;
947
948         if (IS_ERR(regdb))
949                 return PTR_ERR(regdb);
950
951         country = &hdr->country[0];
952         while (country->coll_ptr) {
953                 if (alpha2_equal(alpha2, country->alpha2))
954                         return __regdb_query_wmm(regdb, country, freq, rule);
955
956                 country++;
957         }
958
959         return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962
963 static int regdb_query_country(const struct fwdb_header *db,
964                                const struct fwdb_country *country)
965 {
966         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968         struct ieee80211_regdomain *regdom;
969         unsigned int i;
970
971         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972                          GFP_KERNEL);
973         if (!regdom)
974                 return -ENOMEM;
975
976         regdom->n_reg_rules = coll->n_rules;
977         regdom->alpha2[0] = country->alpha2[0];
978         regdom->alpha2[1] = country->alpha2[1];
979         regdom->dfs_region = coll->dfs_region;
980
981         for (i = 0; i < regdom->n_reg_rules; i++) {
982                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986
987                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991                 rrule->power_rule.max_antenna_gain = 0;
992                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994                 rrule->flags = 0;
995                 if (rule->flags & FWDB_FLAG_NO_OFDM)
996                         rrule->flags |= NL80211_RRF_NO_OFDM;
997                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999                 if (rule->flags & FWDB_FLAG_DFS)
1000                         rrule->flags |= NL80211_RRF_DFS;
1001                 if (rule->flags & FWDB_FLAG_NO_IR)
1002                         rrule->flags |= NL80211_RRF_NO_IR;
1003                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004                         rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006                 rrule->dfs_cac_ms = 0;
1007
1008                 /* handle optional data */
1009                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010                         rrule->dfs_cac_ms =
1011                                 1000 * be16_to_cpu(rule->cac_timeout);
1012                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013                         set_wmm_rule(db, country, rule, rrule);
1014         }
1015
1016         return reg_schedule_apply(regdom);
1017 }
1018
1019 static int query_regdb(const char *alpha2)
1020 {
1021         const struct fwdb_header *hdr = regdb;
1022         const struct fwdb_country *country;
1023
1024         ASSERT_RTNL();
1025
1026         if (IS_ERR(regdb))
1027                 return PTR_ERR(regdb);
1028
1029         country = &hdr->country[0];
1030         while (country->coll_ptr) {
1031                 if (alpha2_equal(alpha2, country->alpha2))
1032                         return regdb_query_country(regdb, country);
1033                 country++;
1034         }
1035
1036         return -ENODATA;
1037 }
1038
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041         int set_error = 0;
1042         bool restore = true;
1043         void *db;
1044
1045         if (!fw) {
1046                 pr_info("failed to load regulatory.db\n");
1047                 set_error = -ENODATA;
1048         } else if (!valid_regdb(fw->data, fw->size)) {
1049                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050                 set_error = -EINVAL;
1051         }
1052
1053         rtnl_lock();
1054         if (regdb && !IS_ERR(regdb)) {
1055                 /* negative case - a bug
1056                  * positive case - can happen due to race in case of multiple cb's in
1057                  * queue, due to usage of asynchronous callback
1058                  *
1059                  * Either case, just restore and free new db.
1060                  */
1061         } else if (set_error) {
1062                 regdb = ERR_PTR(set_error);
1063         } else if (fw) {
1064                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065                 if (db) {
1066                         regdb = db;
1067                         restore = context && query_regdb(context);
1068                 } else {
1069                         restore = true;
1070                 }
1071         }
1072
1073         if (restore)
1074                 restore_regulatory_settings(true, false);
1075
1076         rtnl_unlock();
1077
1078         kfree(context);
1079
1080         release_firmware(fw);
1081 }
1082
1083 MODULE_FIRMWARE("regulatory.db");
1084
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087         int err;
1088
1089         ASSERT_RTNL();
1090
1091         if (regdb)
1092                 return query_regdb(alpha2);
1093
1094         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095         if (!alpha2)
1096                 return -ENOMEM;
1097
1098         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099                                       &reg_pdev->dev, GFP_KERNEL,
1100                                       (void *)alpha2, regdb_fw_cb);
1101         if (err)
1102                 kfree(alpha2);
1103
1104         return err;
1105 }
1106
1107 int reg_reload_regdb(void)
1108 {
1109         const struct firmware *fw;
1110         void *db;
1111         int err;
1112         const struct ieee80211_regdomain *current_regdomain;
1113         struct regulatory_request *request;
1114
1115         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1116         if (err)
1117                 return err;
1118
1119         if (!valid_regdb(fw->data, fw->size)) {
1120                 err = -ENODATA;
1121                 goto out;
1122         }
1123
1124         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125         if (!db) {
1126                 err = -ENOMEM;
1127                 goto out;
1128         }
1129
1130         rtnl_lock();
1131         if (!IS_ERR_OR_NULL(regdb))
1132                 kfree(regdb);
1133         regdb = db;
1134
1135         /* reset regulatory domain */
1136         current_regdomain = get_cfg80211_regdom();
1137
1138         request = kzalloc(sizeof(*request), GFP_KERNEL);
1139         if (!request) {
1140                 err = -ENOMEM;
1141                 goto out_unlock;
1142         }
1143
1144         request->wiphy_idx = WIPHY_IDX_INVALID;
1145         request->alpha2[0] = current_regdomain->alpha2[0];
1146         request->alpha2[1] = current_regdomain->alpha2[1];
1147         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149
1150         reg_process_hint(request);
1151
1152 out_unlock:
1153         rtnl_unlock();
1154  out:
1155         release_firmware(fw);
1156         return err;
1157 }
1158
1159 static bool reg_query_database(struct regulatory_request *request)
1160 {
1161         if (query_regdb_file(request->alpha2) == 0)
1162                 return true;
1163
1164         if (call_crda(request->alpha2) == 0)
1165                 return true;
1166
1167         return false;
1168 }
1169
1170 bool reg_is_valid_request(const char *alpha2)
1171 {
1172         struct regulatory_request *lr = get_last_request();
1173
1174         if (!lr || lr->processed)
1175                 return false;
1176
1177         return alpha2_equal(lr->alpha2, alpha2);
1178 }
1179
1180 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181 {
1182         struct regulatory_request *lr = get_last_request();
1183
1184         /*
1185          * Follow the driver's regulatory domain, if present, unless a country
1186          * IE has been processed or a user wants to help complaince further
1187          */
1188         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190             wiphy->regd)
1191                 return get_wiphy_regdom(wiphy);
1192
1193         return get_cfg80211_regdom();
1194 }
1195
1196 static unsigned int
1197 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198                                  const struct ieee80211_reg_rule *rule)
1199 {
1200         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201         const struct ieee80211_freq_range *freq_range_tmp;
1202         const struct ieee80211_reg_rule *tmp;
1203         u32 start_freq, end_freq, idx, no;
1204
1205         for (idx = 0; idx < rd->n_reg_rules; idx++)
1206                 if (rule == &rd->reg_rules[idx])
1207                         break;
1208
1209         if (idx == rd->n_reg_rules)
1210                 return 0;
1211
1212         /* get start_freq */
1213         no = idx;
1214
1215         while (no) {
1216                 tmp = &rd->reg_rules[--no];
1217                 freq_range_tmp = &tmp->freq_range;
1218
1219                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220                         break;
1221
1222                 freq_range = freq_range_tmp;
1223         }
1224
1225         start_freq = freq_range->start_freq_khz;
1226
1227         /* get end_freq */
1228         freq_range = &rule->freq_range;
1229         no = idx;
1230
1231         while (no < rd->n_reg_rules - 1) {
1232                 tmp = &rd->reg_rules[++no];
1233                 freq_range_tmp = &tmp->freq_range;
1234
1235                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236                         break;
1237
1238                 freq_range = freq_range_tmp;
1239         }
1240
1241         end_freq = freq_range->end_freq_khz;
1242
1243         return end_freq - start_freq;
1244 }
1245
1246 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247                                    const struct ieee80211_reg_rule *rule)
1248 {
1249         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250
1251         if (rule->flags & NL80211_RRF_NO_320MHZ)
1252                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253         if (rule->flags & NL80211_RRF_NO_160MHZ)
1254                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255         if (rule->flags & NL80211_RRF_NO_80MHZ)
1256                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257
1258         /*
1259          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260          * are not allowed.
1261          */
1262         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263             rule->flags & NL80211_RRF_NO_HT40PLUS)
1264                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265
1266         return bw;
1267 }
1268
1269 /* Sanity check on a regulatory rule */
1270 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271 {
1272         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273         u32 freq_diff;
1274
1275         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276                 return false;
1277
1278         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279                 return false;
1280
1281         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282
1283         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284             freq_range->max_bandwidth_khz > freq_diff)
1285                 return false;
1286
1287         return true;
1288 }
1289
1290 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291 {
1292         const struct ieee80211_reg_rule *reg_rule = NULL;
1293         unsigned int i;
1294
1295         if (!rd->n_reg_rules)
1296                 return false;
1297
1298         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299                 return false;
1300
1301         for (i = 0; i < rd->n_reg_rules; i++) {
1302                 reg_rule = &rd->reg_rules[i];
1303                 if (!is_valid_reg_rule(reg_rule))
1304                         return false;
1305         }
1306
1307         return true;
1308 }
1309
1310 /**
1311  * freq_in_rule_band - tells us if a frequency is in a frequency band
1312  * @freq_range: frequency rule we want to query
1313  * @freq_khz: frequency we are inquiring about
1314  *
1315  * This lets us know if a specific frequency rule is or is not relevant to
1316  * a specific frequency's band. Bands are device specific and artificial
1317  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318  * however it is safe for now to assume that a frequency rule should not be
1319  * part of a frequency's band if the start freq or end freq are off by more
1320  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321  * 60 GHz band.
1322  * This resolution can be lowered and should be considered as we add
1323  * regulatory rule support for other "bands".
1324  **/
1325 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326                               u32 freq_khz)
1327 {
1328 #define ONE_GHZ_IN_KHZ  1000000
1329         /*
1330          * From 802.11ad: directional multi-gigabit (DMG):
1331          * Pertaining to operation in a frequency band containing a channel
1332          * with the Channel starting frequency above 45 GHz.
1333          */
1334         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337                 return true;
1338         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339                 return true;
1340         return false;
1341 #undef ONE_GHZ_IN_KHZ
1342 }
1343
1344 /*
1345  * Later on we can perhaps use the more restrictive DFS
1346  * region but we don't have information for that yet so
1347  * for now simply disallow conflicts.
1348  */
1349 static enum nl80211_dfs_regions
1350 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351                          const enum nl80211_dfs_regions dfs_region2)
1352 {
1353         if (dfs_region1 != dfs_region2)
1354                 return NL80211_DFS_UNSET;
1355         return dfs_region1;
1356 }
1357
1358 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359                                     const struct ieee80211_wmm_ac *wmm_ac2,
1360                                     struct ieee80211_wmm_ac *intersect)
1361 {
1362         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366 }
1367
1368 /*
1369  * Helper for regdom_intersect(), this does the real
1370  * mathematical intersection fun
1371  */
1372 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373                                const struct ieee80211_regdomain *rd2,
1374                                const struct ieee80211_reg_rule *rule1,
1375                                const struct ieee80211_reg_rule *rule2,
1376                                struct ieee80211_reg_rule *intersected_rule)
1377 {
1378         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379         struct ieee80211_freq_range *freq_range;
1380         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381         struct ieee80211_power_rule *power_rule;
1382         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383         struct ieee80211_wmm_rule *wmm_rule;
1384         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385
1386         freq_range1 = &rule1->freq_range;
1387         freq_range2 = &rule2->freq_range;
1388         freq_range = &intersected_rule->freq_range;
1389
1390         power_rule1 = &rule1->power_rule;
1391         power_rule2 = &rule2->power_rule;
1392         power_rule = &intersected_rule->power_rule;
1393
1394         wmm_rule1 = &rule1->wmm_rule;
1395         wmm_rule2 = &rule2->wmm_rule;
1396         wmm_rule = &intersected_rule->wmm_rule;
1397
1398         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399                                          freq_range2->start_freq_khz);
1400         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401                                        freq_range2->end_freq_khz);
1402
1403         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405
1406         if (rule1->flags & NL80211_RRF_AUTO_BW)
1407                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408         if (rule2->flags & NL80211_RRF_AUTO_BW)
1409                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410
1411         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412
1413         intersected_rule->flags = rule1->flags | rule2->flags;
1414
1415         /*
1416          * In case NL80211_RRF_AUTO_BW requested for both rules
1417          * set AUTO_BW in intersected rule also. Next we will
1418          * calculate BW correctly in handle_channel function.
1419          * In other case remove AUTO_BW flag while we calculate
1420          * maximum bandwidth correctly and auto calculation is
1421          * not required.
1422          */
1423         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424             (rule2->flags & NL80211_RRF_AUTO_BW))
1425                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426         else
1427                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428
1429         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430         if (freq_range->max_bandwidth_khz > freq_diff)
1431                 freq_range->max_bandwidth_khz = freq_diff;
1432
1433         power_rule->max_eirp = min(power_rule1->max_eirp,
1434                 power_rule2->max_eirp);
1435         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436                 power_rule2->max_antenna_gain);
1437
1438         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439                                            rule2->dfs_cac_ms);
1440
1441         if (rule1->has_wmm && rule2->has_wmm) {
1442                 u8 ac;
1443
1444                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446                                                 &wmm_rule2->client[ac],
1447                                                 &wmm_rule->client[ac]);
1448                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449                                                 &wmm_rule2->ap[ac],
1450                                                 &wmm_rule->ap[ac]);
1451                 }
1452
1453                 intersected_rule->has_wmm = true;
1454         } else if (rule1->has_wmm) {
1455                 *wmm_rule = *wmm_rule1;
1456                 intersected_rule->has_wmm = true;
1457         } else if (rule2->has_wmm) {
1458                 *wmm_rule = *wmm_rule2;
1459                 intersected_rule->has_wmm = true;
1460         } else {
1461                 intersected_rule->has_wmm = false;
1462         }
1463
1464         if (!is_valid_reg_rule(intersected_rule))
1465                 return -EINVAL;
1466
1467         return 0;
1468 }
1469
1470 /* check whether old rule contains new rule */
1471 static bool rule_contains(struct ieee80211_reg_rule *r1,
1472                           struct ieee80211_reg_rule *r2)
1473 {
1474         /* for simplicity, currently consider only same flags */
1475         if (r1->flags != r2->flags)
1476                 return false;
1477
1478         /* verify r1 is more restrictive */
1479         if ((r1->power_rule.max_antenna_gain >
1480              r2->power_rule.max_antenna_gain) ||
1481             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482                 return false;
1483
1484         /* make sure r2's range is contained within r1 */
1485         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487                 return false;
1488
1489         /* and finally verify that r1.max_bw >= r2.max_bw */
1490         if (r1->freq_range.max_bandwidth_khz <
1491             r2->freq_range.max_bandwidth_khz)
1492                 return false;
1493
1494         return true;
1495 }
1496
1497 /* add or extend current rules. do nothing if rule is already contained */
1498 static void add_rule(struct ieee80211_reg_rule *rule,
1499                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500 {
1501         struct ieee80211_reg_rule *tmp_rule;
1502         int i;
1503
1504         for (i = 0; i < *n_rules; i++) {
1505                 tmp_rule = &reg_rules[i];
1506                 /* rule is already contained - do nothing */
1507                 if (rule_contains(tmp_rule, rule))
1508                         return;
1509
1510                 /* extend rule if possible */
1511                 if (rule_contains(rule, tmp_rule)) {
1512                         memcpy(tmp_rule, rule, sizeof(*rule));
1513                         return;
1514                 }
1515         }
1516
1517         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1518         (*n_rules)++;
1519 }
1520
1521 /**
1522  * regdom_intersect - do the intersection between two regulatory domains
1523  * @rd1: first regulatory domain
1524  * @rd2: second regulatory domain
1525  *
1526  * Use this function to get the intersection between two regulatory domains.
1527  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528  * as no one single alpha2 can represent this regulatory domain.
1529  *
1530  * Returns a pointer to the regulatory domain structure which will hold the
1531  * resulting intersection of rules between rd1 and rd2. We will
1532  * kzalloc() this structure for you.
1533  */
1534 static struct ieee80211_regdomain *
1535 regdom_intersect(const struct ieee80211_regdomain *rd1,
1536                  const struct ieee80211_regdomain *rd2)
1537 {
1538         int r;
1539         unsigned int x, y;
1540         unsigned int num_rules = 0;
1541         const struct ieee80211_reg_rule *rule1, *rule2;
1542         struct ieee80211_reg_rule intersected_rule;
1543         struct ieee80211_regdomain *rd;
1544
1545         if (!rd1 || !rd2)
1546                 return NULL;
1547
1548         /*
1549          * First we get a count of the rules we'll need, then we actually
1550          * build them. This is to so we can malloc() and free() a
1551          * regdomain once. The reason we use reg_rules_intersect() here
1552          * is it will return -EINVAL if the rule computed makes no sense.
1553          * All rules that do check out OK are valid.
1554          */
1555
1556         for (x = 0; x < rd1->n_reg_rules; x++) {
1557                 rule1 = &rd1->reg_rules[x];
1558                 for (y = 0; y < rd2->n_reg_rules; y++) {
1559                         rule2 = &rd2->reg_rules[y];
1560                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561                                                  &intersected_rule))
1562                                 num_rules++;
1563                 }
1564         }
1565
1566         if (!num_rules)
1567                 return NULL;
1568
1569         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1570         if (!rd)
1571                 return NULL;
1572
1573         for (x = 0; x < rd1->n_reg_rules; x++) {
1574                 rule1 = &rd1->reg_rules[x];
1575                 for (y = 0; y < rd2->n_reg_rules; y++) {
1576                         rule2 = &rd2->reg_rules[y];
1577                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578                                                 &intersected_rule);
1579                         /*
1580                          * No need to memset here the intersected rule here as
1581                          * we're not using the stack anymore
1582                          */
1583                         if (r)
1584                                 continue;
1585
1586                         add_rule(&intersected_rule, rd->reg_rules,
1587                                  &rd->n_reg_rules);
1588                 }
1589         }
1590
1591         rd->alpha2[0] = '9';
1592         rd->alpha2[1] = '8';
1593         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594                                                   rd2->dfs_region);
1595
1596         return rd;
1597 }
1598
1599 /*
1600  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601  * want to just have the channel structure use these
1602  */
1603 static u32 map_regdom_flags(u32 rd_flags)
1604 {
1605         u32 channel_flags = 0;
1606         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607                 channel_flags |= IEEE80211_CHAN_NO_IR;
1608         if (rd_flags & NL80211_RRF_DFS)
1609                 channel_flags |= IEEE80211_CHAN_RADAR;
1610         if (rd_flags & NL80211_RRF_NO_OFDM)
1611                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620         if (rd_flags & NL80211_RRF_NO_80MHZ)
1621                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622         if (rd_flags & NL80211_RRF_NO_160MHZ)
1623                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624         if (rd_flags & NL80211_RRF_NO_HE)
1625                 channel_flags |= IEEE80211_CHAN_NO_HE;
1626         if (rd_flags & NL80211_RRF_NO_320MHZ)
1627                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628         return channel_flags;
1629 }
1630
1631 static const struct ieee80211_reg_rule *
1632 freq_reg_info_regd(u32 center_freq,
1633                    const struct ieee80211_regdomain *regd, u32 bw)
1634 {
1635         int i;
1636         bool band_rule_found = false;
1637         bool bw_fits = false;
1638
1639         if (!regd)
1640                 return ERR_PTR(-EINVAL);
1641
1642         for (i = 0; i < regd->n_reg_rules; i++) {
1643                 const struct ieee80211_reg_rule *rr;
1644                 const struct ieee80211_freq_range *fr = NULL;
1645
1646                 rr = &regd->reg_rules[i];
1647                 fr = &rr->freq_range;
1648
1649                 /*
1650                  * We only need to know if one frequency rule was
1651                  * in center_freq's band, that's enough, so let's
1652                  * not overwrite it once found
1653                  */
1654                 if (!band_rule_found)
1655                         band_rule_found = freq_in_rule_band(fr, center_freq);
1656
1657                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658
1659                 if (band_rule_found && bw_fits)
1660                         return rr;
1661         }
1662
1663         if (!band_rule_found)
1664                 return ERR_PTR(-ERANGE);
1665
1666         return ERR_PTR(-EINVAL);
1667 }
1668
1669 static const struct ieee80211_reg_rule *
1670 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671 {
1672         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675         int i = ARRAY_SIZE(bws) - 1;
1676         u32 bw;
1677
1678         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680                 if (!IS_ERR(reg_rule))
1681                         return reg_rule;
1682         }
1683
1684         return reg_rule;
1685 }
1686
1687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688                                                u32 center_freq)
1689 {
1690         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691
1692         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693 }
1694 EXPORT_SYMBOL(freq_reg_info);
1695
1696 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697 {
1698         switch (initiator) {
1699         case NL80211_REGDOM_SET_BY_CORE:
1700                 return "core";
1701         case NL80211_REGDOM_SET_BY_USER:
1702                 return "user";
1703         case NL80211_REGDOM_SET_BY_DRIVER:
1704                 return "driver";
1705         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706                 return "country element";
1707         default:
1708                 WARN_ON(1);
1709                 return "bug";
1710         }
1711 }
1712 EXPORT_SYMBOL(reg_initiator_name);
1713
1714 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715                                           const struct ieee80211_reg_rule *reg_rule,
1716                                           const struct ieee80211_channel *chan)
1717 {
1718         const struct ieee80211_freq_range *freq_range = NULL;
1719         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721
1722         freq_range = &reg_rule->freq_range;
1723
1724         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725         center_freq_khz = ieee80211_channel_to_khz(chan);
1726         /* Check if auto calculation requested */
1727         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729
1730         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1731         if (!cfg80211_does_bw_fit_range(freq_range,
1732                                         center_freq_khz,
1733                                         MHZ_TO_KHZ(10)))
1734                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735         if (!cfg80211_does_bw_fit_range(freq_range,
1736                                         center_freq_khz,
1737                                         MHZ_TO_KHZ(20)))
1738                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739
1740         if (is_s1g) {
1741                 /* S1G is strict about non overlapping channels. We can
1742                  * calculate which bandwidth is allowed per channel by finding
1743                  * the largest bandwidth which cleanly divides the freq_range.
1744                  */
1745                 int edge_offset;
1746                 int ch_bw = max_bandwidth_khz;
1747
1748                 while (ch_bw) {
1749                         edge_offset = (center_freq_khz - ch_bw / 2) -
1750                                       freq_range->start_freq_khz;
1751                         if (edge_offset % ch_bw == 0) {
1752                                 switch (KHZ_TO_MHZ(ch_bw)) {
1753                                 case 1:
1754                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1755                                         break;
1756                                 case 2:
1757                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1758                                         break;
1759                                 case 4:
1760                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1761                                         break;
1762                                 case 8:
1763                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1764                                         break;
1765                                 case 16:
1766                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1767                                         break;
1768                                 default:
1769                                         /* If we got here, no bandwidths fit on
1770                                          * this frequency, ie. band edge.
1771                                          */
1772                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1773                                         break;
1774                                 }
1775                                 break;
1776                         }
1777                         ch_bw /= 2;
1778                 }
1779         } else {
1780                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1786                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792         }
1793         return bw_flags;
1794 }
1795
1796 static void handle_channel_single_rule(struct wiphy *wiphy,
1797                                        enum nl80211_reg_initiator initiator,
1798                                        struct ieee80211_channel *chan,
1799                                        u32 flags,
1800                                        struct regulatory_request *lr,
1801                                        struct wiphy *request_wiphy,
1802                                        const struct ieee80211_reg_rule *reg_rule)
1803 {
1804         u32 bw_flags = 0;
1805         const struct ieee80211_power_rule *power_rule = NULL;
1806         const struct ieee80211_regdomain *regd;
1807
1808         regd = reg_get_regdomain(wiphy);
1809
1810         power_rule = &reg_rule->power_rule;
1811         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812
1813         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814             request_wiphy && request_wiphy == wiphy &&
1815             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816                 /*
1817                  * This guarantees the driver's requested regulatory domain
1818                  * will always be used as a base for further regulatory
1819                  * settings
1820                  */
1821                 chan->flags = chan->orig_flags =
1822                         map_regdom_flags(reg_rule->flags) | bw_flags;
1823                 chan->max_antenna_gain = chan->orig_mag =
1824                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826                         (int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1829                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830                         if (reg_rule->dfs_cac_ms)
1831                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832                 }
1833
1834                 return;
1835         }
1836
1837         chan->dfs_state = NL80211_DFS_USABLE;
1838         chan->dfs_state_entered = jiffies;
1839
1840         chan->beacon_found = false;
1841         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842         chan->max_antenna_gain =
1843                 min_t(int, chan->orig_mag,
1844                       MBI_TO_DBI(power_rule->max_antenna_gain));
1845         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846
1847         if (chan->flags & IEEE80211_CHAN_RADAR) {
1848                 if (reg_rule->dfs_cac_ms)
1849                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850                 else
1851                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852         }
1853
1854         if (chan->orig_mpwr) {
1855                 /*
1856                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857                  * will always follow the passed country IE power settings.
1858                  */
1859                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861                         chan->max_power = chan->max_reg_power;
1862                 else
1863                         chan->max_power = min(chan->orig_mpwr,
1864                                               chan->max_reg_power);
1865         } else
1866                 chan->max_power = chan->max_reg_power;
1867 }
1868
1869 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870                                           enum nl80211_reg_initiator initiator,
1871                                           struct ieee80211_channel *chan,
1872                                           u32 flags,
1873                                           struct regulatory_request *lr,
1874                                           struct wiphy *request_wiphy,
1875                                           const struct ieee80211_reg_rule *rrule1,
1876                                           const struct ieee80211_reg_rule *rrule2,
1877                                           struct ieee80211_freq_range *comb_range)
1878 {
1879         u32 bw_flags1 = 0;
1880         u32 bw_flags2 = 0;
1881         const struct ieee80211_power_rule *power_rule1 = NULL;
1882         const struct ieee80211_power_rule *power_rule2 = NULL;
1883         const struct ieee80211_regdomain *regd;
1884
1885         regd = reg_get_regdomain(wiphy);
1886
1887         power_rule1 = &rrule1->power_rule;
1888         power_rule2 = &rrule2->power_rule;
1889         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891
1892         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893             request_wiphy && request_wiphy == wiphy &&
1894             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895                 /* This guarantees the driver's requested regulatory domain
1896                  * will always be used as a base for further regulatory
1897                  * settings
1898                  */
1899                 chan->flags =
1900                         map_regdom_flags(rrule1->flags) |
1901                         map_regdom_flags(rrule2->flags) |
1902                         bw_flags1 |
1903                         bw_flags2;
1904                 chan->orig_flags = chan->flags;
1905                 chan->max_antenna_gain =
1906                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1908                 chan->orig_mag = chan->max_antenna_gain;
1909                 chan->max_reg_power =
1910                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911                               MBM_TO_DBM(power_rule2->max_eirp));
1912                 chan->max_power = chan->max_reg_power;
1913                 chan->orig_mpwr = chan->max_reg_power;
1914
1915                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1916                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918                                 chan->dfs_cac_ms = max_t(unsigned int,
1919                                                          rrule1->dfs_cac_ms,
1920                                                          rrule2->dfs_cac_ms);
1921                 }
1922
1923                 return;
1924         }
1925
1926         chan->dfs_state = NL80211_DFS_USABLE;
1927         chan->dfs_state_entered = jiffies;
1928
1929         chan->beacon_found = false;
1930         chan->flags = flags | bw_flags1 | bw_flags2 |
1931                       map_regdom_flags(rrule1->flags) |
1932                       map_regdom_flags(rrule2->flags);
1933
1934         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935          * (otherwise no adj. rule case), recheck therefore
1936          */
1937         if (cfg80211_does_bw_fit_range(comb_range,
1938                                        ieee80211_channel_to_khz(chan),
1939                                        MHZ_TO_KHZ(10)))
1940                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941         if (cfg80211_does_bw_fit_range(comb_range,
1942                                        ieee80211_channel_to_khz(chan),
1943                                        MHZ_TO_KHZ(20)))
1944                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945
1946         chan->max_antenna_gain =
1947                 min_t(int, chan->orig_mag,
1948                       min_t(int,
1949                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1950                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951         chan->max_reg_power = min_t(int,
1952                                     MBM_TO_DBM(power_rule1->max_eirp),
1953                                     MBM_TO_DBM(power_rule2->max_eirp));
1954
1955         if (chan->flags & IEEE80211_CHAN_RADAR) {
1956                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957                         chan->dfs_cac_ms = max_t(unsigned int,
1958                                                  rrule1->dfs_cac_ms,
1959                                                  rrule2->dfs_cac_ms);
1960                 else
1961                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962         }
1963
1964         if (chan->orig_mpwr) {
1965                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966                  * will always follow the passed country IE power settings.
1967                  */
1968                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970                         chan->max_power = chan->max_reg_power;
1971                 else
1972                         chan->max_power = min(chan->orig_mpwr,
1973                                               chan->max_reg_power);
1974         } else {
1975                 chan->max_power = chan->max_reg_power;
1976         }
1977 }
1978
1979 /* Note that right now we assume the desired channel bandwidth
1980  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981  * per channel, the primary and the extension channel).
1982  */
1983 static void handle_channel(struct wiphy *wiphy,
1984                            enum nl80211_reg_initiator initiator,
1985                            struct ieee80211_channel *chan)
1986 {
1987         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988         struct regulatory_request *lr = get_last_request();
1989         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990         const struct ieee80211_reg_rule *rrule = NULL;
1991         const struct ieee80211_reg_rule *rrule1 = NULL;
1992         const struct ieee80211_reg_rule *rrule2 = NULL;
1993
1994         u32 flags = chan->orig_flags;
1995
1996         rrule = freq_reg_info(wiphy, orig_chan_freq);
1997         if (IS_ERR(rrule)) {
1998                 /* check for adjacent match, therefore get rules for
1999                  * chan - 20 MHz and chan + 20 MHz and test
2000                  * if reg rules are adjacent
2001                  */
2002                 rrule1 = freq_reg_info(wiphy,
2003                                        orig_chan_freq - MHZ_TO_KHZ(20));
2004                 rrule2 = freq_reg_info(wiphy,
2005                                        orig_chan_freq + MHZ_TO_KHZ(20));
2006                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007                         struct ieee80211_freq_range comb_range;
2008
2009                         if (rrule1->freq_range.end_freq_khz !=
2010                             rrule2->freq_range.start_freq_khz)
2011                                 goto disable_chan;
2012
2013                         comb_range.start_freq_khz =
2014                                 rrule1->freq_range.start_freq_khz;
2015                         comb_range.end_freq_khz =
2016                                 rrule2->freq_range.end_freq_khz;
2017                         comb_range.max_bandwidth_khz =
2018                                 min_t(u32,
2019                                       rrule1->freq_range.max_bandwidth_khz,
2020                                       rrule2->freq_range.max_bandwidth_khz);
2021
2022                         if (!cfg80211_does_bw_fit_range(&comb_range,
2023                                                         orig_chan_freq,
2024                                                         MHZ_TO_KHZ(20)))
2025                                 goto disable_chan;
2026
2027                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2028                                                       flags, lr, request_wiphy,
2029                                                       rrule1, rrule2,
2030                                                       &comb_range);
2031                         return;
2032                 }
2033
2034 disable_chan:
2035                 /* We will disable all channels that do not match our
2036                  * received regulatory rule unless the hint is coming
2037                  * from a Country IE and the Country IE had no information
2038                  * about a band. The IEEE 802.11 spec allows for an AP
2039                  * to send only a subset of the regulatory rules allowed,
2040                  * so an AP in the US that only supports 2.4 GHz may only send
2041                  * a country IE with information for the 2.4 GHz band
2042                  * while 5 GHz is still supported.
2043                  */
2044                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045                     PTR_ERR(rrule) == -ERANGE)
2046                         return;
2047
2048                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049                     request_wiphy && request_wiphy == wiphy &&
2050                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2052                                  chan->center_freq, chan->freq_offset);
2053                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054                         chan->flags = chan->orig_flags;
2055                 } else {
2056                         pr_debug("Disabling freq %d.%03d MHz\n",
2057                                  chan->center_freq, chan->freq_offset);
2058                         chan->flags |= IEEE80211_CHAN_DISABLED;
2059                 }
2060                 return;
2061         }
2062
2063         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064                                    request_wiphy, rrule);
2065 }
2066
2067 static void handle_band(struct wiphy *wiphy,
2068                         enum nl80211_reg_initiator initiator,
2069                         struct ieee80211_supported_band *sband)
2070 {
2071         unsigned int i;
2072
2073         if (!sband)
2074                 return;
2075
2076         for (i = 0; i < sband->n_channels; i++)
2077                 handle_channel(wiphy, initiator, &sband->channels[i]);
2078 }
2079
2080 static bool reg_request_cell_base(struct regulatory_request *request)
2081 {
2082         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083                 return false;
2084         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085 }
2086
2087 bool reg_last_request_cell_base(void)
2088 {
2089         return reg_request_cell_base(get_last_request());
2090 }
2091
2092 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093 /* Core specific check */
2094 static enum reg_request_treatment
2095 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096 {
2097         struct regulatory_request *lr = get_last_request();
2098
2099         if (!reg_num_devs_support_basehint)
2100                 return REG_REQ_IGNORE;
2101
2102         if (reg_request_cell_base(lr) &&
2103             !regdom_changes(pending_request->alpha2))
2104                 return REG_REQ_ALREADY_SET;
2105
2106         return REG_REQ_OK;
2107 }
2108
2109 /* Device specific check */
2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113 }
2114 #else
2115 static enum reg_request_treatment
2116 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117 {
2118         return REG_REQ_IGNORE;
2119 }
2120
2121 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122 {
2123         return true;
2124 }
2125 #endif
2126
2127 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128 {
2129         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131                 return true;
2132         return false;
2133 }
2134
2135 static bool ignore_reg_update(struct wiphy *wiphy,
2136                               enum nl80211_reg_initiator initiator)
2137 {
2138         struct regulatory_request *lr = get_last_request();
2139
2140         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141                 return true;
2142
2143         if (!lr) {
2144                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145                          reg_initiator_name(initiator));
2146                 return true;
2147         }
2148
2149         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152                          reg_initiator_name(initiator));
2153                 return true;
2154         }
2155
2156         /*
2157          * wiphy->regd will be set once the device has its own
2158          * desired regulatory domain set
2159          */
2160         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162             !is_world_regdom(lr->alpha2)) {
2163                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164                          reg_initiator_name(initiator));
2165                 return true;
2166         }
2167
2168         if (reg_request_cell_base(lr))
2169                 return reg_dev_ignore_cell_hint(wiphy);
2170
2171         return false;
2172 }
2173
2174 static bool reg_is_world_roaming(struct wiphy *wiphy)
2175 {
2176         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178         struct regulatory_request *lr = get_last_request();
2179
2180         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181                 return true;
2182
2183         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185                 return true;
2186
2187         return false;
2188 }
2189
2190 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191                               struct reg_beacon *reg_beacon)
2192 {
2193         struct ieee80211_supported_band *sband;
2194         struct ieee80211_channel *chan;
2195         bool channel_changed = false;
2196         struct ieee80211_channel chan_before;
2197
2198         sband = wiphy->bands[reg_beacon->chan.band];
2199         chan = &sband->channels[chan_idx];
2200
2201         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2202                 return;
2203
2204         if (chan->beacon_found)
2205                 return;
2206
2207         chan->beacon_found = true;
2208
2209         if (!reg_is_world_roaming(wiphy))
2210                 return;
2211
2212         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213                 return;
2214
2215         chan_before = *chan;
2216
2217         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219                 channel_changed = true;
2220         }
2221
2222         if (channel_changed)
2223                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 }
2225
2226 /*
2227  * Called when a scan on a wiphy finds a beacon on
2228  * new channel
2229  */
2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231                                     struct reg_beacon *reg_beacon)
2232 {
2233         unsigned int i;
2234         struct ieee80211_supported_band *sband;
2235
2236         if (!wiphy->bands[reg_beacon->chan.band])
2237                 return;
2238
2239         sband = wiphy->bands[reg_beacon->chan.band];
2240
2241         for (i = 0; i < sband->n_channels; i++)
2242                 handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244
2245 /*
2246  * Called upon reg changes or a new wiphy is added
2247  */
2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250         unsigned int i;
2251         struct ieee80211_supported_band *sband;
2252         struct reg_beacon *reg_beacon;
2253
2254         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2255                 if (!wiphy->bands[reg_beacon->chan.band])
2256                         continue;
2257                 sband = wiphy->bands[reg_beacon->chan.band];
2258                 for (i = 0; i < sband->n_channels; i++)
2259                         handle_reg_beacon(wiphy, i, reg_beacon);
2260         }
2261 }
2262
2263 /* Reap the advantages of previously found beacons */
2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266         /*
2267          * Means we are just firing up cfg80211, so no beacons would
2268          * have been processed yet.
2269          */
2270         if (!last_request)
2271                 return;
2272         wiphy_update_beacon_reg(wiphy);
2273 }
2274
2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277         if (!chan)
2278                 return false;
2279         if (chan->flags & IEEE80211_CHAN_DISABLED)
2280                 return false;
2281         /* This would happen when regulatory rules disallow HT40 completely */
2282         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283                 return false;
2284         return true;
2285 }
2286
2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288                                          struct ieee80211_channel *channel)
2289 {
2290         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292         const struct ieee80211_regdomain *regd;
2293         unsigned int i;
2294         u32 flags;
2295
2296         if (!is_ht40_allowed(channel)) {
2297                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298                 return;
2299         }
2300
2301         /*
2302          * We need to ensure the extension channels exist to
2303          * be able to use HT40- or HT40+, this finds them (or not)
2304          */
2305         for (i = 0; i < sband->n_channels; i++) {
2306                 struct ieee80211_channel *c = &sband->channels[i];
2307
2308                 if (c->center_freq == (channel->center_freq - 20))
2309                         channel_before = c;
2310                 if (c->center_freq == (channel->center_freq + 20))
2311                         channel_after = c;
2312         }
2313
2314         flags = 0;
2315         regd = get_wiphy_regdom(wiphy);
2316         if (regd) {
2317                 const struct ieee80211_reg_rule *reg_rule =
2318                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319                                            regd, MHZ_TO_KHZ(20));
2320
2321                 if (!IS_ERR(reg_rule))
2322                         flags = reg_rule->flags;
2323         }
2324
2325         /*
2326          * Please note that this assumes target bandwidth is 20 MHz,
2327          * if that ever changes we also need to change the below logic
2328          * to include that as well.
2329          */
2330         if (!is_ht40_allowed(channel_before) ||
2331             flags & NL80211_RRF_NO_HT40MINUS)
2332                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333         else
2334                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336         if (!is_ht40_allowed(channel_after) ||
2337             flags & NL80211_RRF_NO_HT40PLUS)
2338                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339         else
2340                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342
2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344                                       struct ieee80211_supported_band *sband)
2345 {
2346         unsigned int i;
2347
2348         if (!sband)
2349                 return;
2350
2351         for (i = 0; i < sband->n_channels; i++)
2352                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354
2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357         enum nl80211_band band;
2358
2359         if (!wiphy)
2360                 return;
2361
2362         for (band = 0; band < NUM_NL80211_BANDS; band++)
2363                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365
2366 static void reg_call_notifier(struct wiphy *wiphy,
2367                               struct regulatory_request *request)
2368 {
2369         if (wiphy->reg_notifier)
2370                 wiphy->reg_notifier(wiphy, request);
2371 }
2372
2373 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374 {
2375         struct cfg80211_chan_def chandef = {};
2376         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377         enum nl80211_iftype iftype;
2378         bool ret;
2379         int link;
2380
2381         wdev_lock(wdev);
2382         iftype = wdev->iftype;
2383
2384         /* make sure the interface is active */
2385         if (!wdev->netdev || !netif_running(wdev->netdev))
2386                 goto wdev_inactive_unlock;
2387
2388         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389                 struct ieee80211_channel *chan;
2390
2391                 if (!wdev->valid_links && link > 0)
2392                         break;
2393                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2394                         continue;
2395                 switch (iftype) {
2396                 case NL80211_IFTYPE_AP:
2397                 case NL80211_IFTYPE_P2P_GO:
2398                         if (!wdev->links[link].ap.beacon_interval)
2399                                 continue;
2400                         chandef = wdev->links[link].ap.chandef;
2401                         break;
2402                 case NL80211_IFTYPE_MESH_POINT:
2403                         if (!wdev->u.mesh.beacon_interval)
2404                                 continue;
2405                         chandef = wdev->u.mesh.chandef;
2406                         break;
2407                 case NL80211_IFTYPE_ADHOC:
2408                         if (!wdev->u.ibss.ssid_len)
2409                                 continue;
2410                         chandef = wdev->u.ibss.chandef;
2411                         break;
2412                 case NL80211_IFTYPE_STATION:
2413                 case NL80211_IFTYPE_P2P_CLIENT:
2414                         /* Maybe we could consider disabling that link only? */
2415                         if (!wdev->links[link].client.current_bss)
2416                                 continue;
2417
2418                         chan = wdev->links[link].client.current_bss->pub.channel;
2419                         if (!chan)
2420                                 continue;
2421
2422                         if (!rdev->ops->get_channel ||
2423                             rdev_get_channel(rdev, wdev, link, &chandef))
2424                                 cfg80211_chandef_create(&chandef, chan,
2425                                                         NL80211_CHAN_NO_HT);
2426                         break;
2427                 case NL80211_IFTYPE_MONITOR:
2428                 case NL80211_IFTYPE_AP_VLAN:
2429                 case NL80211_IFTYPE_P2P_DEVICE:
2430                         /* no enforcement required */
2431                         break;
2432                 case NL80211_IFTYPE_OCB:
2433                         if (!wdev->u.ocb.chandef.chan)
2434                                 continue;
2435                         chandef = wdev->u.ocb.chandef;
2436                         break;
2437                 case NL80211_IFTYPE_NAN:
2438                         /* we have no info, but NAN is also pretty universal */
2439                         continue;
2440                 default:
2441                         /* others not implemented for now */
2442                         WARN_ON_ONCE(1);
2443                         break;
2444                 }
2445
2446                 wdev_unlock(wdev);
2447
2448                 switch (iftype) {
2449                 case NL80211_IFTYPE_AP:
2450                 case NL80211_IFTYPE_P2P_GO:
2451                 case NL80211_IFTYPE_ADHOC:
2452                 case NL80211_IFTYPE_MESH_POINT:
2453                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2454                                                             iftype);
2455                         if (!ret)
2456                                 return ret;
2457                         break;
2458                 case NL80211_IFTYPE_STATION:
2459                 case NL80211_IFTYPE_P2P_CLIENT:
2460                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2461                                                       IEEE80211_CHAN_DISABLED);
2462                         if (!ret)
2463                                 return ret;
2464                         break;
2465                 default:
2466                         break;
2467                 }
2468
2469                 wdev_lock(wdev);
2470         }
2471
2472         wdev_unlock(wdev);
2473
2474         return true;
2475
2476 wdev_inactive_unlock:
2477         wdev_unlock(wdev);
2478         return true;
2479 }
2480
2481 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2482 {
2483         struct wireless_dev *wdev;
2484         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2485
2486         wiphy_lock(wiphy);
2487         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2488                 if (!reg_wdev_chan_valid(wiphy, wdev))
2489                         cfg80211_leave(rdev, wdev);
2490         wiphy_unlock(wiphy);
2491 }
2492
2493 static void reg_check_chans_work(struct work_struct *work)
2494 {
2495         struct cfg80211_registered_device *rdev;
2496
2497         pr_debug("Verifying active interfaces after reg change\n");
2498         rtnl_lock();
2499
2500         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2501                 reg_leave_invalid_chans(&rdev->wiphy);
2502
2503         rtnl_unlock();
2504 }
2505
2506 static void reg_check_channels(void)
2507 {
2508         /*
2509          * Give usermode a chance to do something nicer (move to another
2510          * channel, orderly disconnection), before forcing a disconnection.
2511          */
2512         mod_delayed_work(system_power_efficient_wq,
2513                          &reg_check_chans,
2514                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2515 }
2516
2517 static void wiphy_update_regulatory(struct wiphy *wiphy,
2518                                     enum nl80211_reg_initiator initiator)
2519 {
2520         enum nl80211_band band;
2521         struct regulatory_request *lr = get_last_request();
2522
2523         if (ignore_reg_update(wiphy, initiator)) {
2524                 /*
2525                  * Regulatory updates set by CORE are ignored for custom
2526                  * regulatory cards. Let us notify the changes to the driver,
2527                  * as some drivers used this to restore its orig_* reg domain.
2528                  */
2529                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2530                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2531                     !(wiphy->regulatory_flags &
2532                       REGULATORY_WIPHY_SELF_MANAGED))
2533                         reg_call_notifier(wiphy, lr);
2534                 return;
2535         }
2536
2537         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2538
2539         for (band = 0; band < NUM_NL80211_BANDS; band++)
2540                 handle_band(wiphy, initiator, wiphy->bands[band]);
2541
2542         reg_process_beacons(wiphy);
2543         reg_process_ht_flags(wiphy);
2544         reg_call_notifier(wiphy, lr);
2545 }
2546
2547 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2548 {
2549         struct cfg80211_registered_device *rdev;
2550         struct wiphy *wiphy;
2551
2552         ASSERT_RTNL();
2553
2554         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2555                 wiphy = &rdev->wiphy;
2556                 wiphy_update_regulatory(wiphy, initiator);
2557         }
2558
2559         reg_check_channels();
2560 }
2561
2562 static void handle_channel_custom(struct wiphy *wiphy,
2563                                   struct ieee80211_channel *chan,
2564                                   const struct ieee80211_regdomain *regd,
2565                                   u32 min_bw)
2566 {
2567         u32 bw_flags = 0;
2568         const struct ieee80211_reg_rule *reg_rule = NULL;
2569         const struct ieee80211_power_rule *power_rule = NULL;
2570         u32 bw, center_freq_khz;
2571
2572         center_freq_khz = ieee80211_channel_to_khz(chan);
2573         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2574                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2575                 if (!IS_ERR(reg_rule))
2576                         break;
2577         }
2578
2579         if (IS_ERR_OR_NULL(reg_rule)) {
2580                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2581                          chan->center_freq, chan->freq_offset);
2582                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2583                         chan->flags |= IEEE80211_CHAN_DISABLED;
2584                 } else {
2585                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2586                         chan->flags = chan->orig_flags;
2587                 }
2588                 return;
2589         }
2590
2591         power_rule = &reg_rule->power_rule;
2592         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2593
2594         chan->dfs_state_entered = jiffies;
2595         chan->dfs_state = NL80211_DFS_USABLE;
2596
2597         chan->beacon_found = false;
2598
2599         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2600                 chan->flags = chan->orig_flags | bw_flags |
2601                               map_regdom_flags(reg_rule->flags);
2602         else
2603                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2604
2605         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2606         chan->max_reg_power = chan->max_power =
2607                 (int) MBM_TO_DBM(power_rule->max_eirp);
2608
2609         if (chan->flags & IEEE80211_CHAN_RADAR) {
2610                 if (reg_rule->dfs_cac_ms)
2611                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2612                 else
2613                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2614         }
2615
2616         chan->max_power = chan->max_reg_power;
2617 }
2618
2619 static void handle_band_custom(struct wiphy *wiphy,
2620                                struct ieee80211_supported_band *sband,
2621                                const struct ieee80211_regdomain *regd)
2622 {
2623         unsigned int i;
2624
2625         if (!sband)
2626                 return;
2627
2628         /*
2629          * We currently assume that you always want at least 20 MHz,
2630          * otherwise channel 12 might get enabled if this rule is
2631          * compatible to US, which permits 2402 - 2472 MHz.
2632          */
2633         for (i = 0; i < sband->n_channels; i++)
2634                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2635                                       MHZ_TO_KHZ(20));
2636 }
2637
2638 /* Used by drivers prior to wiphy registration */
2639 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2640                                    const struct ieee80211_regdomain *regd)
2641 {
2642         const struct ieee80211_regdomain *new_regd, *tmp;
2643         enum nl80211_band band;
2644         unsigned int bands_set = 0;
2645
2646         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2647              "wiphy should have REGULATORY_CUSTOM_REG\n");
2648         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2649
2650         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2651                 if (!wiphy->bands[band])
2652                         continue;
2653                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2654                 bands_set++;
2655         }
2656
2657         /*
2658          * no point in calling this if it won't have any effect
2659          * on your device's supported bands.
2660          */
2661         WARN_ON(!bands_set);
2662         new_regd = reg_copy_regd(regd);
2663         if (IS_ERR(new_regd))
2664                 return;
2665
2666         rtnl_lock();
2667         wiphy_lock(wiphy);
2668
2669         tmp = get_wiphy_regdom(wiphy);
2670         rcu_assign_pointer(wiphy->regd, new_regd);
2671         rcu_free_regdom(tmp);
2672
2673         wiphy_unlock(wiphy);
2674         rtnl_unlock();
2675 }
2676 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2677
2678 static void reg_set_request_processed(void)
2679 {
2680         bool need_more_processing = false;
2681         struct regulatory_request *lr = get_last_request();
2682
2683         lr->processed = true;
2684
2685         spin_lock(&reg_requests_lock);
2686         if (!list_empty(&reg_requests_list))
2687                 need_more_processing = true;
2688         spin_unlock(&reg_requests_lock);
2689
2690         cancel_crda_timeout();
2691
2692         if (need_more_processing)
2693                 schedule_work(&reg_work);
2694 }
2695
2696 /**
2697  * reg_process_hint_core - process core regulatory requests
2698  * @core_request: a pending core regulatory request
2699  *
2700  * The wireless subsystem can use this function to process
2701  * a regulatory request issued by the regulatory core.
2702  */
2703 static enum reg_request_treatment
2704 reg_process_hint_core(struct regulatory_request *core_request)
2705 {
2706         if (reg_query_database(core_request)) {
2707                 core_request->intersect = false;
2708                 core_request->processed = false;
2709                 reg_update_last_request(core_request);
2710                 return REG_REQ_OK;
2711         }
2712
2713         return REG_REQ_IGNORE;
2714 }
2715
2716 static enum reg_request_treatment
2717 __reg_process_hint_user(struct regulatory_request *user_request)
2718 {
2719         struct regulatory_request *lr = get_last_request();
2720
2721         if (reg_request_cell_base(user_request))
2722                 return reg_ignore_cell_hint(user_request);
2723
2724         if (reg_request_cell_base(lr))
2725                 return REG_REQ_IGNORE;
2726
2727         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2728                 return REG_REQ_INTERSECT;
2729         /*
2730          * If the user knows better the user should set the regdom
2731          * to their country before the IE is picked up
2732          */
2733         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2734             lr->intersect)
2735                 return REG_REQ_IGNORE;
2736         /*
2737          * Process user requests only after previous user/driver/core
2738          * requests have been processed
2739          */
2740         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2741              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2742              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2743             regdom_changes(lr->alpha2))
2744                 return REG_REQ_IGNORE;
2745
2746         if (!regdom_changes(user_request->alpha2))
2747                 return REG_REQ_ALREADY_SET;
2748
2749         return REG_REQ_OK;
2750 }
2751
2752 /**
2753  * reg_process_hint_user - process user regulatory requests
2754  * @user_request: a pending user regulatory request
2755  *
2756  * The wireless subsystem can use this function to process
2757  * a regulatory request initiated by userspace.
2758  */
2759 static enum reg_request_treatment
2760 reg_process_hint_user(struct regulatory_request *user_request)
2761 {
2762         enum reg_request_treatment treatment;
2763
2764         treatment = __reg_process_hint_user(user_request);
2765         if (treatment == REG_REQ_IGNORE ||
2766             treatment == REG_REQ_ALREADY_SET)
2767                 return REG_REQ_IGNORE;
2768
2769         user_request->intersect = treatment == REG_REQ_INTERSECT;
2770         user_request->processed = false;
2771
2772         if (reg_query_database(user_request)) {
2773                 reg_update_last_request(user_request);
2774                 user_alpha2[0] = user_request->alpha2[0];
2775                 user_alpha2[1] = user_request->alpha2[1];
2776                 return REG_REQ_OK;
2777         }
2778
2779         return REG_REQ_IGNORE;
2780 }
2781
2782 static enum reg_request_treatment
2783 __reg_process_hint_driver(struct regulatory_request *driver_request)
2784 {
2785         struct regulatory_request *lr = get_last_request();
2786
2787         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2788                 if (regdom_changes(driver_request->alpha2))
2789                         return REG_REQ_OK;
2790                 return REG_REQ_ALREADY_SET;
2791         }
2792
2793         /*
2794          * This would happen if you unplug and plug your card
2795          * back in or if you add a new device for which the previously
2796          * loaded card also agrees on the regulatory domain.
2797          */
2798         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2799             !regdom_changes(driver_request->alpha2))
2800                 return REG_REQ_ALREADY_SET;
2801
2802         return REG_REQ_INTERSECT;
2803 }
2804
2805 /**
2806  * reg_process_hint_driver - process driver regulatory requests
2807  * @wiphy: the wireless device for the regulatory request
2808  * @driver_request: a pending driver regulatory request
2809  *
2810  * The wireless subsystem can use this function to process
2811  * a regulatory request issued by an 802.11 driver.
2812  *
2813  * Returns one of the different reg request treatment values.
2814  */
2815 static enum reg_request_treatment
2816 reg_process_hint_driver(struct wiphy *wiphy,
2817                         struct regulatory_request *driver_request)
2818 {
2819         const struct ieee80211_regdomain *regd, *tmp;
2820         enum reg_request_treatment treatment;
2821
2822         treatment = __reg_process_hint_driver(driver_request);
2823
2824         switch (treatment) {
2825         case REG_REQ_OK:
2826                 break;
2827         case REG_REQ_IGNORE:
2828                 return REG_REQ_IGNORE;
2829         case REG_REQ_INTERSECT:
2830         case REG_REQ_ALREADY_SET:
2831                 regd = reg_copy_regd(get_cfg80211_regdom());
2832                 if (IS_ERR(regd))
2833                         return REG_REQ_IGNORE;
2834
2835                 tmp = get_wiphy_regdom(wiphy);
2836                 ASSERT_RTNL();
2837                 wiphy_lock(wiphy);
2838                 rcu_assign_pointer(wiphy->regd, regd);
2839                 wiphy_unlock(wiphy);
2840                 rcu_free_regdom(tmp);
2841         }
2842
2843
2844         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2845         driver_request->processed = false;
2846
2847         /*
2848          * Since CRDA will not be called in this case as we already
2849          * have applied the requested regulatory domain before we just
2850          * inform userspace we have processed the request
2851          */
2852         if (treatment == REG_REQ_ALREADY_SET) {
2853                 nl80211_send_reg_change_event(driver_request);
2854                 reg_update_last_request(driver_request);
2855                 reg_set_request_processed();
2856                 return REG_REQ_ALREADY_SET;
2857         }
2858
2859         if (reg_query_database(driver_request)) {
2860                 reg_update_last_request(driver_request);
2861                 return REG_REQ_OK;
2862         }
2863
2864         return REG_REQ_IGNORE;
2865 }
2866
2867 static enum reg_request_treatment
2868 __reg_process_hint_country_ie(struct wiphy *wiphy,
2869                               struct regulatory_request *country_ie_request)
2870 {
2871         struct wiphy *last_wiphy = NULL;
2872         struct regulatory_request *lr = get_last_request();
2873
2874         if (reg_request_cell_base(lr)) {
2875                 /* Trust a Cell base station over the AP's country IE */
2876                 if (regdom_changes(country_ie_request->alpha2))
2877                         return REG_REQ_IGNORE;
2878                 return REG_REQ_ALREADY_SET;
2879         } else {
2880                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2881                         return REG_REQ_IGNORE;
2882         }
2883
2884         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2885                 return -EINVAL;
2886
2887         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2888                 return REG_REQ_OK;
2889
2890         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2891
2892         if (last_wiphy != wiphy) {
2893                 /*
2894                  * Two cards with two APs claiming different
2895                  * Country IE alpha2s. We could
2896                  * intersect them, but that seems unlikely
2897                  * to be correct. Reject second one for now.
2898                  */
2899                 if (regdom_changes(country_ie_request->alpha2))
2900                         return REG_REQ_IGNORE;
2901                 return REG_REQ_ALREADY_SET;
2902         }
2903
2904         if (regdom_changes(country_ie_request->alpha2))
2905                 return REG_REQ_OK;
2906         return REG_REQ_ALREADY_SET;
2907 }
2908
2909 /**
2910  * reg_process_hint_country_ie - process regulatory requests from country IEs
2911  * @wiphy: the wireless device for the regulatory request
2912  * @country_ie_request: a regulatory request from a country IE
2913  *
2914  * The wireless subsystem can use this function to process
2915  * a regulatory request issued by a country Information Element.
2916  *
2917  * Returns one of the different reg request treatment values.
2918  */
2919 static enum reg_request_treatment
2920 reg_process_hint_country_ie(struct wiphy *wiphy,
2921                             struct regulatory_request *country_ie_request)
2922 {
2923         enum reg_request_treatment treatment;
2924
2925         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2926
2927         switch (treatment) {
2928         case REG_REQ_OK:
2929                 break;
2930         case REG_REQ_IGNORE:
2931                 return REG_REQ_IGNORE;
2932         case REG_REQ_ALREADY_SET:
2933                 reg_free_request(country_ie_request);
2934                 return REG_REQ_ALREADY_SET;
2935         case REG_REQ_INTERSECT:
2936                 /*
2937                  * This doesn't happen yet, not sure we
2938                  * ever want to support it for this case.
2939                  */
2940                 WARN_ONCE(1, "Unexpected intersection for country elements");
2941                 return REG_REQ_IGNORE;
2942         }
2943
2944         country_ie_request->intersect = false;
2945         country_ie_request->processed = false;
2946
2947         if (reg_query_database(country_ie_request)) {
2948                 reg_update_last_request(country_ie_request);
2949                 return REG_REQ_OK;
2950         }
2951
2952         return REG_REQ_IGNORE;
2953 }
2954
2955 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2956 {
2957         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2958         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2959         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2960         bool dfs_domain_same;
2961
2962         rcu_read_lock();
2963
2964         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2965         wiphy1_regd = rcu_dereference(wiphy1->regd);
2966         if (!wiphy1_regd)
2967                 wiphy1_regd = cfg80211_regd;
2968
2969         wiphy2_regd = rcu_dereference(wiphy2->regd);
2970         if (!wiphy2_regd)
2971                 wiphy2_regd = cfg80211_regd;
2972
2973         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2974
2975         rcu_read_unlock();
2976
2977         return dfs_domain_same;
2978 }
2979
2980 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2981                                     struct ieee80211_channel *src_chan)
2982 {
2983         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2984             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2985                 return;
2986
2987         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2988             src_chan->flags & IEEE80211_CHAN_DISABLED)
2989                 return;
2990
2991         if (src_chan->center_freq == dst_chan->center_freq &&
2992             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2993                 dst_chan->dfs_state = src_chan->dfs_state;
2994                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2995         }
2996 }
2997
2998 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2999                                        struct wiphy *src_wiphy)
3000 {
3001         struct ieee80211_supported_band *src_sband, *dst_sband;
3002         struct ieee80211_channel *src_chan, *dst_chan;
3003         int i, j, band;
3004
3005         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3006                 return;
3007
3008         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3009                 dst_sband = dst_wiphy->bands[band];
3010                 src_sband = src_wiphy->bands[band];
3011                 if (!dst_sband || !src_sband)
3012                         continue;
3013
3014                 for (i = 0; i < dst_sband->n_channels; i++) {
3015                         dst_chan = &dst_sband->channels[i];
3016                         for (j = 0; j < src_sband->n_channels; j++) {
3017                                 src_chan = &src_sband->channels[j];
3018                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3019                         }
3020                 }
3021         }
3022 }
3023
3024 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3025 {
3026         struct cfg80211_registered_device *rdev;
3027
3028         ASSERT_RTNL();
3029
3030         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3031                 if (wiphy == &rdev->wiphy)
3032                         continue;
3033                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3034         }
3035 }
3036
3037 /* This processes *all* regulatory hints */
3038 static void reg_process_hint(struct regulatory_request *reg_request)
3039 {
3040         struct wiphy *wiphy = NULL;
3041         enum reg_request_treatment treatment;
3042         enum nl80211_reg_initiator initiator = reg_request->initiator;
3043
3044         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3045                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3046
3047         switch (initiator) {
3048         case NL80211_REGDOM_SET_BY_CORE:
3049                 treatment = reg_process_hint_core(reg_request);
3050                 break;
3051         case NL80211_REGDOM_SET_BY_USER:
3052                 treatment = reg_process_hint_user(reg_request);
3053                 break;
3054         case NL80211_REGDOM_SET_BY_DRIVER:
3055                 if (!wiphy)
3056                         goto out_free;
3057                 treatment = reg_process_hint_driver(wiphy, reg_request);
3058                 break;
3059         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3060                 if (!wiphy)
3061                         goto out_free;
3062                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3063                 break;
3064         default:
3065                 WARN(1, "invalid initiator %d\n", initiator);
3066                 goto out_free;
3067         }
3068
3069         if (treatment == REG_REQ_IGNORE)
3070                 goto out_free;
3071
3072         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3073              "unexpected treatment value %d\n", treatment);
3074
3075         /* This is required so that the orig_* parameters are saved.
3076          * NOTE: treatment must be set for any case that reaches here!
3077          */
3078         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3079             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3080                 wiphy_update_regulatory(wiphy, initiator);
3081                 wiphy_all_share_dfs_chan_state(wiphy);
3082                 reg_check_channels();
3083         }
3084
3085         return;
3086
3087 out_free:
3088         reg_free_request(reg_request);
3089 }
3090
3091 static void notify_self_managed_wiphys(struct regulatory_request *request)
3092 {
3093         struct cfg80211_registered_device *rdev;
3094         struct wiphy *wiphy;
3095
3096         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3097                 wiphy = &rdev->wiphy;
3098                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3099                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3100                         reg_call_notifier(wiphy, request);
3101         }
3102 }
3103
3104 /*
3105  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3106  * Regulatory hints come on a first come first serve basis and we
3107  * must process each one atomically.
3108  */
3109 static void reg_process_pending_hints(void)
3110 {
3111         struct regulatory_request *reg_request, *lr;
3112
3113         lr = get_last_request();
3114
3115         /* When last_request->processed becomes true this will be rescheduled */
3116         if (lr && !lr->processed) {
3117                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3118                 return;
3119         }
3120
3121         spin_lock(&reg_requests_lock);
3122
3123         if (list_empty(&reg_requests_list)) {
3124                 spin_unlock(&reg_requests_lock);
3125                 return;
3126         }
3127
3128         reg_request = list_first_entry(&reg_requests_list,
3129                                        struct regulatory_request,
3130                                        list);
3131         list_del_init(&reg_request->list);
3132
3133         spin_unlock(&reg_requests_lock);
3134
3135         notify_self_managed_wiphys(reg_request);
3136
3137         reg_process_hint(reg_request);
3138
3139         lr = get_last_request();
3140
3141         spin_lock(&reg_requests_lock);
3142         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3143                 schedule_work(&reg_work);
3144         spin_unlock(&reg_requests_lock);
3145 }
3146
3147 /* Processes beacon hints -- this has nothing to do with country IEs */
3148 static void reg_process_pending_beacon_hints(void)
3149 {
3150         struct cfg80211_registered_device *rdev;
3151         struct reg_beacon *pending_beacon, *tmp;
3152
3153         /* This goes through the _pending_ beacon list */
3154         spin_lock_bh(&reg_pending_beacons_lock);
3155
3156         list_for_each_entry_safe(pending_beacon, tmp,
3157                                  &reg_pending_beacons, list) {
3158                 list_del_init(&pending_beacon->list);
3159
3160                 /* Applies the beacon hint to current wiphys */
3161                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3162                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3163
3164                 /* Remembers the beacon hint for new wiphys or reg changes */
3165                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3166         }
3167
3168         spin_unlock_bh(&reg_pending_beacons_lock);
3169 }
3170
3171 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3172 {
3173         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3174         const struct ieee80211_regdomain *tmp;
3175         const struct ieee80211_regdomain *regd;
3176         enum nl80211_band band;
3177         struct regulatory_request request = {};
3178
3179         ASSERT_RTNL();
3180         lockdep_assert_wiphy(wiphy);
3181
3182         spin_lock(&reg_requests_lock);
3183         regd = rdev->requested_regd;
3184         rdev->requested_regd = NULL;
3185         spin_unlock(&reg_requests_lock);
3186
3187         if (!regd)
3188                 return;
3189
3190         tmp = get_wiphy_regdom(wiphy);
3191         rcu_assign_pointer(wiphy->regd, regd);
3192         rcu_free_regdom(tmp);
3193
3194         for (band = 0; band < NUM_NL80211_BANDS; band++)
3195                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3196
3197         reg_process_ht_flags(wiphy);
3198
3199         request.wiphy_idx = get_wiphy_idx(wiphy);
3200         request.alpha2[0] = regd->alpha2[0];
3201         request.alpha2[1] = regd->alpha2[1];
3202         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3203
3204         nl80211_send_wiphy_reg_change_event(&request);
3205 }
3206
3207 static void reg_process_self_managed_hints(void)
3208 {
3209         struct cfg80211_registered_device *rdev;
3210
3211         ASSERT_RTNL();
3212
3213         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214                 wiphy_lock(&rdev->wiphy);
3215                 reg_process_self_managed_hint(&rdev->wiphy);
3216                 wiphy_unlock(&rdev->wiphy);
3217         }
3218
3219         reg_check_channels();
3220 }
3221
3222 static void reg_todo(struct work_struct *work)
3223 {
3224         rtnl_lock();
3225         reg_process_pending_hints();
3226         reg_process_pending_beacon_hints();
3227         reg_process_self_managed_hints();
3228         rtnl_unlock();
3229 }
3230
3231 static void queue_regulatory_request(struct regulatory_request *request)
3232 {
3233         request->alpha2[0] = toupper(request->alpha2[0]);
3234         request->alpha2[1] = toupper(request->alpha2[1]);
3235
3236         spin_lock(&reg_requests_lock);
3237         list_add_tail(&request->list, &reg_requests_list);
3238         spin_unlock(&reg_requests_lock);
3239
3240         schedule_work(&reg_work);
3241 }
3242
3243 /*
3244  * Core regulatory hint -- happens during cfg80211_init()
3245  * and when we restore regulatory settings.
3246  */
3247 static int regulatory_hint_core(const char *alpha2)
3248 {
3249         struct regulatory_request *request;
3250
3251         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3252         if (!request)
3253                 return -ENOMEM;
3254
3255         request->alpha2[0] = alpha2[0];
3256         request->alpha2[1] = alpha2[1];
3257         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3258         request->wiphy_idx = WIPHY_IDX_INVALID;
3259
3260         queue_regulatory_request(request);
3261
3262         return 0;
3263 }
3264
3265 /* User hints */
3266 int regulatory_hint_user(const char *alpha2,
3267                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3268 {
3269         struct regulatory_request *request;
3270
3271         if (WARN_ON(!alpha2))
3272                 return -EINVAL;
3273
3274         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3275                 return -EINVAL;
3276
3277         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3278         if (!request)
3279                 return -ENOMEM;
3280
3281         request->wiphy_idx = WIPHY_IDX_INVALID;
3282         request->alpha2[0] = alpha2[0];
3283         request->alpha2[1] = alpha2[1];
3284         request->initiator = NL80211_REGDOM_SET_BY_USER;
3285         request->user_reg_hint_type = user_reg_hint_type;
3286
3287         /* Allow calling CRDA again */
3288         reset_crda_timeouts();
3289
3290         queue_regulatory_request(request);
3291
3292         return 0;
3293 }
3294
3295 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3296 {
3297         spin_lock(&reg_indoor_lock);
3298
3299         /* It is possible that more than one user space process is trying to
3300          * configure the indoor setting. To handle such cases, clear the indoor
3301          * setting in case that some process does not think that the device
3302          * is operating in an indoor environment. In addition, if a user space
3303          * process indicates that it is controlling the indoor setting, save its
3304          * portid, i.e., make it the owner.
3305          */
3306         reg_is_indoor = is_indoor;
3307         if (reg_is_indoor) {
3308                 if (!reg_is_indoor_portid)
3309                         reg_is_indoor_portid = portid;
3310         } else {
3311                 reg_is_indoor_portid = 0;
3312         }
3313
3314         spin_unlock(&reg_indoor_lock);
3315
3316         if (!is_indoor)
3317                 reg_check_channels();
3318
3319         return 0;
3320 }
3321
3322 void regulatory_netlink_notify(u32 portid)
3323 {
3324         spin_lock(&reg_indoor_lock);
3325
3326         if (reg_is_indoor_portid != portid) {
3327                 spin_unlock(&reg_indoor_lock);
3328                 return;
3329         }
3330
3331         reg_is_indoor = false;
3332         reg_is_indoor_portid = 0;
3333
3334         spin_unlock(&reg_indoor_lock);
3335
3336         reg_check_channels();
3337 }
3338
3339 /* Driver hints */
3340 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3341 {
3342         struct regulatory_request *request;
3343
3344         if (WARN_ON(!alpha2 || !wiphy))
3345                 return -EINVAL;
3346
3347         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3348
3349         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3350         if (!request)
3351                 return -ENOMEM;
3352
3353         request->wiphy_idx = get_wiphy_idx(wiphy);
3354
3355         request->alpha2[0] = alpha2[0];
3356         request->alpha2[1] = alpha2[1];
3357         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3358
3359         /* Allow calling CRDA again */
3360         reset_crda_timeouts();
3361
3362         queue_regulatory_request(request);
3363
3364         return 0;
3365 }
3366 EXPORT_SYMBOL(regulatory_hint);
3367
3368 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3369                                 const u8 *country_ie, u8 country_ie_len)
3370 {
3371         char alpha2[2];
3372         enum environment_cap env = ENVIRON_ANY;
3373         struct regulatory_request *request = NULL, *lr;
3374
3375         /* IE len must be evenly divisible by 2 */
3376         if (country_ie_len & 0x01)
3377                 return;
3378
3379         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3380                 return;
3381
3382         request = kzalloc(sizeof(*request), GFP_KERNEL);
3383         if (!request)
3384                 return;
3385
3386         alpha2[0] = country_ie[0];
3387         alpha2[1] = country_ie[1];
3388
3389         if (country_ie[2] == 'I')
3390                 env = ENVIRON_INDOOR;
3391         else if (country_ie[2] == 'O')
3392                 env = ENVIRON_OUTDOOR;
3393
3394         rcu_read_lock();
3395         lr = get_last_request();
3396
3397         if (unlikely(!lr))
3398                 goto out;
3399
3400         /*
3401          * We will run this only upon a successful connection on cfg80211.
3402          * We leave conflict resolution to the workqueue, where can hold
3403          * the RTNL.
3404          */
3405         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3406             lr->wiphy_idx != WIPHY_IDX_INVALID)
3407                 goto out;
3408
3409         request->wiphy_idx = get_wiphy_idx(wiphy);
3410         request->alpha2[0] = alpha2[0];
3411         request->alpha2[1] = alpha2[1];
3412         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3413         request->country_ie_env = env;
3414
3415         /* Allow calling CRDA again */
3416         reset_crda_timeouts();
3417
3418         queue_regulatory_request(request);
3419         request = NULL;
3420 out:
3421         kfree(request);
3422         rcu_read_unlock();
3423 }
3424
3425 static void restore_alpha2(char *alpha2, bool reset_user)
3426 {
3427         /* indicates there is no alpha2 to consider for restoration */
3428         alpha2[0] = '9';
3429         alpha2[1] = '7';
3430
3431         /* The user setting has precedence over the module parameter */
3432         if (is_user_regdom_saved()) {
3433                 /* Unless we're asked to ignore it and reset it */
3434                 if (reset_user) {
3435                         pr_debug("Restoring regulatory settings including user preference\n");
3436                         user_alpha2[0] = '9';
3437                         user_alpha2[1] = '7';
3438
3439                         /*
3440                          * If we're ignoring user settings, we still need to
3441                          * check the module parameter to ensure we put things
3442                          * back as they were for a full restore.
3443                          */
3444                         if (!is_world_regdom(ieee80211_regdom)) {
3445                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3446                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3447                                 alpha2[0] = ieee80211_regdom[0];
3448                                 alpha2[1] = ieee80211_regdom[1];
3449                         }
3450                 } else {
3451                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3452                                  user_alpha2[0], user_alpha2[1]);
3453                         alpha2[0] = user_alpha2[0];
3454                         alpha2[1] = user_alpha2[1];
3455                 }
3456         } else if (!is_world_regdom(ieee80211_regdom)) {
3457                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3458                          ieee80211_regdom[0], ieee80211_regdom[1]);
3459                 alpha2[0] = ieee80211_regdom[0];
3460                 alpha2[1] = ieee80211_regdom[1];
3461         } else
3462                 pr_debug("Restoring regulatory settings\n");
3463 }
3464
3465 static void restore_custom_reg_settings(struct wiphy *wiphy)
3466 {
3467         struct ieee80211_supported_band *sband;
3468         enum nl80211_band band;
3469         struct ieee80211_channel *chan;
3470         int i;
3471
3472         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3473                 sband = wiphy->bands[band];
3474                 if (!sband)
3475                         continue;
3476                 for (i = 0; i < sband->n_channels; i++) {
3477                         chan = &sband->channels[i];
3478                         chan->flags = chan->orig_flags;
3479                         chan->max_antenna_gain = chan->orig_mag;
3480                         chan->max_power = chan->orig_mpwr;
3481                         chan->beacon_found = false;
3482                 }
3483         }
3484 }
3485
3486 /*
3487  * Restoring regulatory settings involves ignoring any
3488  * possibly stale country IE information and user regulatory
3489  * settings if so desired, this includes any beacon hints
3490  * learned as we could have traveled outside to another country
3491  * after disconnection. To restore regulatory settings we do
3492  * exactly what we did at bootup:
3493  *
3494  *   - send a core regulatory hint
3495  *   - send a user regulatory hint if applicable
3496  *
3497  * Device drivers that send a regulatory hint for a specific country
3498  * keep their own regulatory domain on wiphy->regd so that does
3499  * not need to be remembered.
3500  */
3501 static void restore_regulatory_settings(bool reset_user, bool cached)
3502 {
3503         char alpha2[2];
3504         char world_alpha2[2];
3505         struct reg_beacon *reg_beacon, *btmp;
3506         LIST_HEAD(tmp_reg_req_list);
3507         struct cfg80211_registered_device *rdev;
3508
3509         ASSERT_RTNL();
3510
3511         /*
3512          * Clear the indoor setting in case that it is not controlled by user
3513          * space, as otherwise there is no guarantee that the device is still
3514          * operating in an indoor environment.
3515          */
3516         spin_lock(&reg_indoor_lock);
3517         if (reg_is_indoor && !reg_is_indoor_portid) {
3518                 reg_is_indoor = false;
3519                 reg_check_channels();
3520         }
3521         spin_unlock(&reg_indoor_lock);
3522
3523         reset_regdomains(true, &world_regdom);
3524         restore_alpha2(alpha2, reset_user);
3525
3526         /*
3527          * If there's any pending requests we simply
3528          * stash them to a temporary pending queue and
3529          * add then after we've restored regulatory
3530          * settings.
3531          */
3532         spin_lock(&reg_requests_lock);
3533         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3534         spin_unlock(&reg_requests_lock);
3535
3536         /* Clear beacon hints */
3537         spin_lock_bh(&reg_pending_beacons_lock);
3538         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3539                 list_del(&reg_beacon->list);
3540                 kfree(reg_beacon);
3541         }
3542         spin_unlock_bh(&reg_pending_beacons_lock);
3543
3544         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3545                 list_del(&reg_beacon->list);
3546                 kfree(reg_beacon);
3547         }
3548
3549         /* First restore to the basic regulatory settings */
3550         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3551         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3552
3553         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3554                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3555                         continue;
3556                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3557                         restore_custom_reg_settings(&rdev->wiphy);
3558         }
3559
3560         if (cached && (!is_an_alpha2(alpha2) ||
3561                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3562                 reset_regdomains(false, cfg80211_world_regdom);
3563                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3564                 print_regdomain(get_cfg80211_regdom());
3565                 nl80211_send_reg_change_event(&core_request_world);
3566                 reg_set_request_processed();
3567
3568                 if (is_an_alpha2(alpha2) &&
3569                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3570                         struct regulatory_request *ureq;
3571
3572                         spin_lock(&reg_requests_lock);
3573                         ureq = list_last_entry(&reg_requests_list,
3574                                                struct regulatory_request,
3575                                                list);
3576                         list_del(&ureq->list);
3577                         spin_unlock(&reg_requests_lock);
3578
3579                         notify_self_managed_wiphys(ureq);
3580                         reg_update_last_request(ureq);
3581                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3582                                    REGD_SOURCE_CACHED);
3583                 }
3584         } else {
3585                 regulatory_hint_core(world_alpha2);
3586
3587                 /*
3588                  * This restores the ieee80211_regdom module parameter
3589                  * preference or the last user requested regulatory
3590                  * settings, user regulatory settings takes precedence.
3591                  */
3592                 if (is_an_alpha2(alpha2))
3593                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3594         }
3595
3596         spin_lock(&reg_requests_lock);
3597         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3598         spin_unlock(&reg_requests_lock);
3599
3600         pr_debug("Kicking the queue\n");
3601
3602         schedule_work(&reg_work);
3603 }
3604
3605 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3606 {
3607         struct cfg80211_registered_device *rdev;
3608         struct wireless_dev *wdev;
3609
3610         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3611                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3612                         wdev_lock(wdev);
3613                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3614                                 wdev_unlock(wdev);
3615                                 return false;
3616                         }
3617                         wdev_unlock(wdev);
3618                 }
3619         }
3620
3621         return true;
3622 }
3623
3624 void regulatory_hint_disconnect(void)
3625 {
3626         /* Restore of regulatory settings is not required when wiphy(s)
3627          * ignore IE from connected access point but clearance of beacon hints
3628          * is required when wiphy(s) supports beacon hints.
3629          */
3630         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3631                 struct reg_beacon *reg_beacon, *btmp;
3632
3633                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3634                         return;
3635
3636                 spin_lock_bh(&reg_pending_beacons_lock);
3637                 list_for_each_entry_safe(reg_beacon, btmp,
3638                                          &reg_pending_beacons, list) {
3639                         list_del(&reg_beacon->list);
3640                         kfree(reg_beacon);
3641                 }
3642                 spin_unlock_bh(&reg_pending_beacons_lock);
3643
3644                 list_for_each_entry_safe(reg_beacon, btmp,
3645                                          &reg_beacon_list, list) {
3646                         list_del(&reg_beacon->list);
3647                         kfree(reg_beacon);
3648                 }
3649
3650                 return;
3651         }
3652
3653         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3654         restore_regulatory_settings(false, true);
3655 }
3656
3657 static bool freq_is_chan_12_13_14(u32 freq)
3658 {
3659         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3660             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3661             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3662                 return true;
3663         return false;
3664 }
3665
3666 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3667 {
3668         struct reg_beacon *pending_beacon;
3669
3670         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3671                 if (ieee80211_channel_equal(beacon_chan,
3672                                             &pending_beacon->chan))
3673                         return true;
3674         return false;
3675 }
3676
3677 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3678                                  struct ieee80211_channel *beacon_chan,
3679                                  gfp_t gfp)
3680 {
3681         struct reg_beacon *reg_beacon;
3682         bool processing;
3683
3684         if (beacon_chan->beacon_found ||
3685             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3686             (beacon_chan->band == NL80211_BAND_2GHZ &&
3687              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3688                 return 0;
3689
3690         spin_lock_bh(&reg_pending_beacons_lock);
3691         processing = pending_reg_beacon(beacon_chan);
3692         spin_unlock_bh(&reg_pending_beacons_lock);
3693
3694         if (processing)
3695                 return 0;
3696
3697         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3698         if (!reg_beacon)
3699                 return -ENOMEM;
3700
3701         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3702                  beacon_chan->center_freq, beacon_chan->freq_offset,
3703                  ieee80211_freq_khz_to_channel(
3704                          ieee80211_channel_to_khz(beacon_chan)),
3705                  wiphy_name(wiphy));
3706
3707         memcpy(&reg_beacon->chan, beacon_chan,
3708                sizeof(struct ieee80211_channel));
3709
3710         /*
3711          * Since we can be called from BH or and non-BH context
3712          * we must use spin_lock_bh()
3713          */
3714         spin_lock_bh(&reg_pending_beacons_lock);
3715         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3716         spin_unlock_bh(&reg_pending_beacons_lock);
3717
3718         schedule_work(&reg_work);
3719
3720         return 0;
3721 }
3722
3723 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3724 {
3725         unsigned int i;
3726         const struct ieee80211_reg_rule *reg_rule = NULL;
3727         const struct ieee80211_freq_range *freq_range = NULL;
3728         const struct ieee80211_power_rule *power_rule = NULL;
3729         char bw[32], cac_time[32];
3730
3731         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3732
3733         for (i = 0; i < rd->n_reg_rules; i++) {
3734                 reg_rule = &rd->reg_rules[i];
3735                 freq_range = &reg_rule->freq_range;
3736                 power_rule = &reg_rule->power_rule;
3737
3738                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3739                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3740                                  freq_range->max_bandwidth_khz,
3741                                  reg_get_max_bandwidth(rd, reg_rule));
3742                 else
3743                         snprintf(bw, sizeof(bw), "%d KHz",
3744                                  freq_range->max_bandwidth_khz);
3745
3746                 if (reg_rule->flags & NL80211_RRF_DFS)
3747                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3748                                   reg_rule->dfs_cac_ms/1000);
3749                 else
3750                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3751
3752
3753                 /*
3754                  * There may not be documentation for max antenna gain
3755                  * in certain regions
3756                  */
3757                 if (power_rule->max_antenna_gain)
3758                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3759                                 freq_range->start_freq_khz,
3760                                 freq_range->end_freq_khz,
3761                                 bw,
3762                                 power_rule->max_antenna_gain,
3763                                 power_rule->max_eirp,
3764                                 cac_time);
3765                 else
3766                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3767                                 freq_range->start_freq_khz,
3768                                 freq_range->end_freq_khz,
3769                                 bw,
3770                                 power_rule->max_eirp,
3771                                 cac_time);
3772         }
3773 }
3774
3775 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3776 {
3777         switch (dfs_region) {
3778         case NL80211_DFS_UNSET:
3779         case NL80211_DFS_FCC:
3780         case NL80211_DFS_ETSI:
3781         case NL80211_DFS_JP:
3782                 return true;
3783         default:
3784                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3785                 return false;
3786         }
3787 }
3788
3789 static void print_regdomain(const struct ieee80211_regdomain *rd)
3790 {
3791         struct regulatory_request *lr = get_last_request();
3792
3793         if (is_intersected_alpha2(rd->alpha2)) {
3794                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3795                         struct cfg80211_registered_device *rdev;
3796                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3797                         if (rdev) {
3798                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3799                                         rdev->country_ie_alpha2[0],
3800                                         rdev->country_ie_alpha2[1]);
3801                         } else
3802                                 pr_debug("Current regulatory domain intersected:\n");
3803                 } else
3804                         pr_debug("Current regulatory domain intersected:\n");
3805         } else if (is_world_regdom(rd->alpha2)) {
3806                 pr_debug("World regulatory domain updated:\n");
3807         } else {
3808                 if (is_unknown_alpha2(rd->alpha2))
3809                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3810                 else {
3811                         if (reg_request_cell_base(lr))
3812                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3813                                         rd->alpha2[0], rd->alpha2[1]);
3814                         else
3815                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3816                                         rd->alpha2[0], rd->alpha2[1]);
3817                 }
3818         }
3819
3820         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3821         print_rd_rules(rd);
3822 }
3823
3824 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3825 {
3826         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3827         print_rd_rules(rd);
3828 }
3829
3830 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3831 {
3832         if (!is_world_regdom(rd->alpha2))
3833                 return -EINVAL;
3834         update_world_regdomain(rd);
3835         return 0;
3836 }
3837
3838 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3839                            struct regulatory_request *user_request)
3840 {
3841         const struct ieee80211_regdomain *intersected_rd = NULL;
3842
3843         if (!regdom_changes(rd->alpha2))
3844                 return -EALREADY;
3845
3846         if (!is_valid_rd(rd)) {
3847                 pr_err("Invalid regulatory domain detected: %c%c\n",
3848                        rd->alpha2[0], rd->alpha2[1]);
3849                 print_regdomain_info(rd);
3850                 return -EINVAL;
3851         }
3852
3853         if (!user_request->intersect) {
3854                 reset_regdomains(false, rd);
3855                 return 0;
3856         }
3857
3858         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3859         if (!intersected_rd)
3860                 return -EINVAL;
3861
3862         kfree(rd);
3863         rd = NULL;
3864         reset_regdomains(false, intersected_rd);
3865
3866         return 0;
3867 }
3868
3869 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3870                              struct regulatory_request *driver_request)
3871 {
3872         const struct ieee80211_regdomain *regd;
3873         const struct ieee80211_regdomain *intersected_rd = NULL;
3874         const struct ieee80211_regdomain *tmp;
3875         struct wiphy *request_wiphy;
3876
3877         if (is_world_regdom(rd->alpha2))
3878                 return -EINVAL;
3879
3880         if (!regdom_changes(rd->alpha2))
3881                 return -EALREADY;
3882
3883         if (!is_valid_rd(rd)) {
3884                 pr_err("Invalid regulatory domain detected: %c%c\n",
3885                        rd->alpha2[0], rd->alpha2[1]);
3886                 print_regdomain_info(rd);
3887                 return -EINVAL;
3888         }
3889
3890         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3891         if (!request_wiphy)
3892                 return -ENODEV;
3893
3894         if (!driver_request->intersect) {
3895                 ASSERT_RTNL();
3896                 wiphy_lock(request_wiphy);
3897                 if (request_wiphy->regd) {
3898                         wiphy_unlock(request_wiphy);
3899                         return -EALREADY;
3900                 }
3901
3902                 regd = reg_copy_regd(rd);
3903                 if (IS_ERR(regd)) {
3904                         wiphy_unlock(request_wiphy);
3905                         return PTR_ERR(regd);
3906                 }
3907
3908                 rcu_assign_pointer(request_wiphy->regd, regd);
3909                 wiphy_unlock(request_wiphy);
3910                 reset_regdomains(false, rd);
3911                 return 0;
3912         }
3913
3914         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3915         if (!intersected_rd)
3916                 return -EINVAL;
3917
3918         /*
3919          * We can trash what CRDA provided now.
3920          * However if a driver requested this specific regulatory
3921          * domain we keep it for its private use
3922          */
3923         tmp = get_wiphy_regdom(request_wiphy);
3924         rcu_assign_pointer(request_wiphy->regd, rd);
3925         rcu_free_regdom(tmp);
3926
3927         rd = NULL;
3928
3929         reset_regdomains(false, intersected_rd);
3930
3931         return 0;
3932 }
3933
3934 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3935                                  struct regulatory_request *country_ie_request)
3936 {
3937         struct wiphy *request_wiphy;
3938
3939         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3940             !is_unknown_alpha2(rd->alpha2))
3941                 return -EINVAL;
3942
3943         /*
3944          * Lets only bother proceeding on the same alpha2 if the current
3945          * rd is non static (it means CRDA was present and was used last)
3946          * and the pending request came in from a country IE
3947          */
3948
3949         if (!is_valid_rd(rd)) {
3950                 pr_err("Invalid regulatory domain detected: %c%c\n",
3951                        rd->alpha2[0], rd->alpha2[1]);
3952                 print_regdomain_info(rd);
3953                 return -EINVAL;
3954         }
3955
3956         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3957         if (!request_wiphy)
3958                 return -ENODEV;
3959
3960         if (country_ie_request->intersect)
3961                 return -EINVAL;
3962
3963         reset_regdomains(false, rd);
3964         return 0;
3965 }
3966
3967 /*
3968  * Use this call to set the current regulatory domain. Conflicts with
3969  * multiple drivers can be ironed out later. Caller must've already
3970  * kmalloc'd the rd structure.
3971  */
3972 int set_regdom(const struct ieee80211_regdomain *rd,
3973                enum ieee80211_regd_source regd_src)
3974 {
3975         struct regulatory_request *lr;
3976         bool user_reset = false;
3977         int r;
3978
3979         if (IS_ERR_OR_NULL(rd))
3980                 return -ENODATA;
3981
3982         if (!reg_is_valid_request(rd->alpha2)) {
3983                 kfree(rd);
3984                 return -EINVAL;
3985         }
3986
3987         if (regd_src == REGD_SOURCE_CRDA)
3988                 reset_crda_timeouts();
3989
3990         lr = get_last_request();
3991
3992         /* Note that this doesn't update the wiphys, this is done below */
3993         switch (lr->initiator) {
3994         case NL80211_REGDOM_SET_BY_CORE:
3995                 r = reg_set_rd_core(rd);
3996                 break;
3997         case NL80211_REGDOM_SET_BY_USER:
3998                 cfg80211_save_user_regdom(rd);
3999                 r = reg_set_rd_user(rd, lr);
4000                 user_reset = true;
4001                 break;
4002         case NL80211_REGDOM_SET_BY_DRIVER:
4003                 r = reg_set_rd_driver(rd, lr);
4004                 break;
4005         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4006                 r = reg_set_rd_country_ie(rd, lr);
4007                 break;
4008         default:
4009                 WARN(1, "invalid initiator %d\n", lr->initiator);
4010                 kfree(rd);
4011                 return -EINVAL;
4012         }
4013
4014         if (r) {
4015                 switch (r) {
4016                 case -EALREADY:
4017                         reg_set_request_processed();
4018                         break;
4019                 default:
4020                         /* Back to world regulatory in case of errors */
4021                         restore_regulatory_settings(user_reset, false);
4022                 }
4023
4024                 kfree(rd);
4025                 return r;
4026         }
4027
4028         /* This would make this whole thing pointless */
4029         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4030                 return -EINVAL;
4031
4032         /* update all wiphys now with the new established regulatory domain */
4033         update_all_wiphy_regulatory(lr->initiator);
4034
4035         print_regdomain(get_cfg80211_regdom());
4036
4037         nl80211_send_reg_change_event(lr);
4038
4039         reg_set_request_processed();
4040
4041         return 0;
4042 }
4043
4044 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4045                                        struct ieee80211_regdomain *rd)
4046 {
4047         const struct ieee80211_regdomain *regd;
4048         const struct ieee80211_regdomain *prev_regd;
4049         struct cfg80211_registered_device *rdev;
4050
4051         if (WARN_ON(!wiphy || !rd))
4052                 return -EINVAL;
4053
4054         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4055                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4056                 return -EPERM;
4057
4058         if (WARN(!is_valid_rd(rd),
4059                  "Invalid regulatory domain detected: %c%c\n",
4060                  rd->alpha2[0], rd->alpha2[1])) {
4061                 print_regdomain_info(rd);
4062                 return -EINVAL;
4063         }
4064
4065         regd = reg_copy_regd(rd);
4066         if (IS_ERR(regd))
4067                 return PTR_ERR(regd);
4068
4069         rdev = wiphy_to_rdev(wiphy);
4070
4071         spin_lock(&reg_requests_lock);
4072         prev_regd = rdev->requested_regd;
4073         rdev->requested_regd = regd;
4074         spin_unlock(&reg_requests_lock);
4075
4076         kfree(prev_regd);
4077         return 0;
4078 }
4079
4080 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4081                               struct ieee80211_regdomain *rd)
4082 {
4083         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4084
4085         if (ret)
4086                 return ret;
4087
4088         schedule_work(&reg_work);
4089         return 0;
4090 }
4091 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4092
4093 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4094                                    struct ieee80211_regdomain *rd)
4095 {
4096         int ret;
4097
4098         ASSERT_RTNL();
4099
4100         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4101         if (ret)
4102                 return ret;
4103
4104         /* process the request immediately */
4105         reg_process_self_managed_hint(wiphy);
4106         reg_check_channels();
4107         return 0;
4108 }
4109 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4110
4111 void wiphy_regulatory_register(struct wiphy *wiphy)
4112 {
4113         struct regulatory_request *lr = get_last_request();
4114
4115         /* self-managed devices ignore beacon hints and country IE */
4116         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4117                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4118                                            REGULATORY_COUNTRY_IE_IGNORE;
4119
4120                 /*
4121                  * The last request may have been received before this
4122                  * registration call. Call the driver notifier if
4123                  * initiator is USER.
4124                  */
4125                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4126                         reg_call_notifier(wiphy, lr);
4127         }
4128
4129         if (!reg_dev_ignore_cell_hint(wiphy))
4130                 reg_num_devs_support_basehint++;
4131
4132         wiphy_update_regulatory(wiphy, lr->initiator);
4133         wiphy_all_share_dfs_chan_state(wiphy);
4134         reg_process_self_managed_hints();
4135 }
4136
4137 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4138 {
4139         struct wiphy *request_wiphy = NULL;
4140         struct regulatory_request *lr;
4141
4142         lr = get_last_request();
4143
4144         if (!reg_dev_ignore_cell_hint(wiphy))
4145                 reg_num_devs_support_basehint--;
4146
4147         rcu_free_regdom(get_wiphy_regdom(wiphy));
4148         RCU_INIT_POINTER(wiphy->regd, NULL);
4149
4150         if (lr)
4151                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4152
4153         if (!request_wiphy || request_wiphy != wiphy)
4154                 return;
4155
4156         lr->wiphy_idx = WIPHY_IDX_INVALID;
4157         lr->country_ie_env = ENVIRON_ANY;
4158 }
4159
4160 /*
4161  * See FCC notices for UNII band definitions
4162  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4163  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4164  */
4165 int cfg80211_get_unii(int freq)
4166 {
4167         /* UNII-1 */
4168         if (freq >= 5150 && freq <= 5250)
4169                 return 0;
4170
4171         /* UNII-2A */
4172         if (freq > 5250 && freq <= 5350)
4173                 return 1;
4174
4175         /* UNII-2B */
4176         if (freq > 5350 && freq <= 5470)
4177                 return 2;
4178
4179         /* UNII-2C */
4180         if (freq > 5470 && freq <= 5725)
4181                 return 3;
4182
4183         /* UNII-3 */
4184         if (freq > 5725 && freq <= 5825)
4185                 return 4;
4186
4187         /* UNII-5 */
4188         if (freq > 5925 && freq <= 6425)
4189                 return 5;
4190
4191         /* UNII-6 */
4192         if (freq > 6425 && freq <= 6525)
4193                 return 6;
4194
4195         /* UNII-7 */
4196         if (freq > 6525 && freq <= 6875)
4197                 return 7;
4198
4199         /* UNII-8 */
4200         if (freq > 6875 && freq <= 7125)
4201                 return 8;
4202
4203         return -EINVAL;
4204 }
4205
4206 bool regulatory_indoor_allowed(void)
4207 {
4208         return reg_is_indoor;
4209 }
4210
4211 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4212 {
4213         const struct ieee80211_regdomain *regd = NULL;
4214         const struct ieee80211_regdomain *wiphy_regd = NULL;
4215         bool pre_cac_allowed = false;
4216
4217         rcu_read_lock();
4218
4219         regd = rcu_dereference(cfg80211_regdomain);
4220         wiphy_regd = rcu_dereference(wiphy->regd);
4221         if (!wiphy_regd) {
4222                 if (regd->dfs_region == NL80211_DFS_ETSI)
4223                         pre_cac_allowed = true;
4224
4225                 rcu_read_unlock();
4226
4227                 return pre_cac_allowed;
4228         }
4229
4230         if (regd->dfs_region == wiphy_regd->dfs_region &&
4231             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4232                 pre_cac_allowed = true;
4233
4234         rcu_read_unlock();
4235
4236         return pre_cac_allowed;
4237 }
4238 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4239
4240 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4241 {
4242         struct wireless_dev *wdev;
4243         /* If we finished CAC or received radar, we should end any
4244          * CAC running on the same channels.
4245          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4246          * either all channels are available - those the CAC_FINISHED
4247          * event has effected another wdev state, or there is a channel
4248          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4249          * event has effected another wdev state.
4250          * In both cases we should end the CAC on the wdev.
4251          */
4252         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4253                 struct cfg80211_chan_def *chandef;
4254
4255                 if (!wdev->cac_started)
4256                         continue;
4257
4258                 /* FIXME: radar detection is tied to link 0 for now */
4259                 chandef = wdev_chandef(wdev, 0);
4260                 if (!chandef)
4261                         continue;
4262
4263                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4264                         rdev_end_cac(rdev, wdev->netdev);
4265         }
4266 }
4267
4268 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4269                                     struct cfg80211_chan_def *chandef,
4270                                     enum nl80211_dfs_state dfs_state,
4271                                     enum nl80211_radar_event event)
4272 {
4273         struct cfg80211_registered_device *rdev;
4274
4275         ASSERT_RTNL();
4276
4277         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4278                 return;
4279
4280         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4281                 if (wiphy == &rdev->wiphy)
4282                         continue;
4283
4284                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4285                         continue;
4286
4287                 if (!ieee80211_get_channel(&rdev->wiphy,
4288                                            chandef->chan->center_freq))
4289                         continue;
4290
4291                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4292
4293                 if (event == NL80211_RADAR_DETECTED ||
4294                     event == NL80211_RADAR_CAC_FINISHED) {
4295                         cfg80211_sched_dfs_chan_update(rdev);
4296                         cfg80211_check_and_end_cac(rdev);
4297                 }
4298
4299                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4300         }
4301 }
4302
4303 static int __init regulatory_init_db(void)
4304 {
4305         int err;
4306
4307         /*
4308          * It's possible that - due to other bugs/issues - cfg80211
4309          * never called regulatory_init() below, or that it failed;
4310          * in that case, don't try to do any further work here as
4311          * it's doomed to lead to crashes.
4312          */
4313         if (IS_ERR_OR_NULL(reg_pdev))
4314                 return -EINVAL;
4315
4316         err = load_builtin_regdb_keys();
4317         if (err) {
4318                 platform_device_unregister(reg_pdev);
4319                 return err;
4320         }
4321
4322         /* We always try to get an update for the static regdomain */
4323         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4324         if (err) {
4325                 if (err == -ENOMEM) {
4326                         platform_device_unregister(reg_pdev);
4327                         return err;
4328                 }
4329                 /*
4330                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4331                  * memory which is handled and propagated appropriately above
4332                  * but it can also fail during a netlink_broadcast() or during
4333                  * early boot for call_usermodehelper(). For now treat these
4334                  * errors as non-fatal.
4335                  */
4336                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4337         }
4338
4339         /*
4340          * Finally, if the user set the module parameter treat it
4341          * as a user hint.
4342          */
4343         if (!is_world_regdom(ieee80211_regdom))
4344                 regulatory_hint_user(ieee80211_regdom,
4345                                      NL80211_USER_REG_HINT_USER);
4346
4347         return 0;
4348 }
4349 #ifndef MODULE
4350 late_initcall(regulatory_init_db);
4351 #endif
4352
4353 int __init regulatory_init(void)
4354 {
4355         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4356         if (IS_ERR(reg_pdev))
4357                 return PTR_ERR(reg_pdev);
4358
4359         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4360
4361         user_alpha2[0] = '9';
4362         user_alpha2[1] = '7';
4363
4364 #ifdef MODULE
4365         return regulatory_init_db();
4366 #else
4367         return 0;
4368 #endif
4369 }
4370
4371 void regulatory_exit(void)
4372 {
4373         struct regulatory_request *reg_request, *tmp;
4374         struct reg_beacon *reg_beacon, *btmp;
4375
4376         cancel_work_sync(&reg_work);
4377         cancel_crda_timeout_sync();
4378         cancel_delayed_work_sync(&reg_check_chans);
4379
4380         /* Lock to suppress warnings */
4381         rtnl_lock();
4382         reset_regdomains(true, NULL);
4383         rtnl_unlock();
4384
4385         dev_set_uevent_suppress(&reg_pdev->dev, true);
4386
4387         platform_device_unregister(reg_pdev);
4388
4389         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4390                 list_del(&reg_beacon->list);
4391                 kfree(reg_beacon);
4392         }
4393
4394         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4395                 list_del(&reg_beacon->list);
4396                 kfree(reg_beacon);
4397         }
4398
4399         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4400                 list_del(&reg_request->list);
4401                 kfree(reg_request);
4402         }
4403
4404         if (!IS_ERR_OR_NULL(regdb))
4405                 kfree(regdb);
4406         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4407                 kfree(cfg80211_user_regdom);
4408
4409         free_regdb_keyring();
4410 }