2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
140 return rcu_dereference_rtnl(cfg80211_regdomain);
144 * Returns the regulatory domain associated with the wiphy.
146 * Requires any of RTNL, wiphy mutex or RCU protection.
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
154 EXPORT_SYMBOL(get_wiphy_regdom);
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
161 case NL80211_DFS_FCC:
163 case NL80211_DFS_ETSI:
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
184 wiphy_regd = get_wiphy_regdom(wiphy);
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
193 if (wiphy_regd->dfs_region == regd->dfs_region)
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 static struct regulatory_request *get_last_request(void)
216 return rcu_dereference_rtnl(last_request);
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
231 struct list_head list;
232 struct ieee80211_channel chan;
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
259 NL80211_RRF_AUTO_BW),
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
264 NL80211_RRF_AUTO_BW |
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
292 static void reg_free_request(struct regulatory_request *request)
294 if (request == &core_request_world)
297 if (request != get_last_request())
301 static void reg_free_last_request(void)
303 struct regulatory_request *lr = get_last_request();
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
309 static void reg_update_last_request(struct regulatory_request *request)
311 struct regulatory_request *lr;
313 lr = get_last_request();
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
324 const struct ieee80211_regdomain *r;
328 r = get_cfg80211_regdom();
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
339 rcu_free_regdom(cfg80211_world_regdom);
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
347 reg_update_last_request(&core_request_world);
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
356 struct regulatory_request *lr;
358 lr = get_last_request();
362 reset_regdomains(false, rd);
364 cfg80211_world_regdom = rd;
367 bool is_world_regdom(const char *alpha2)
371 return alpha2[0] == '0' && alpha2[1] == '0';
374 static bool is_alpha2_set(const char *alpha2)
378 return alpha2[0] && alpha2[1];
381 static bool is_unknown_alpha2(const char *alpha2)
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
389 return alpha2[0] == '9' && alpha2[1] == '9';
392 static bool is_intersected_alpha2(const char *alpha2)
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
401 return alpha2[0] == '9' && alpha2[1] == '8';
404 static bool is_an_alpha2(const char *alpha2)
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
413 if (!alpha2_x || !alpha2_y)
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 static bool regdom_changes(const char *alpha2)
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424 return !alpha2_equal(r->alpha2, alpha2);
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
432 static bool is_user_regdom_saved(void)
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
449 struct ieee80211_regdomain *regd;
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 return ERR_PTR(-ENOMEM);
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
483 static void reg_regdb_apply(struct work_struct *work)
485 struct reg_regdb_apply_request *request;
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
494 list_del(&request->list);
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499 mutex_unlock(®_regdb_apply_mutex);
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
508 struct reg_regdb_apply_request *request;
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
516 request->regdom = regdom;
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
522 schedule_work(®_regdb_work);
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
530 static u32 reg_crda_timeouts;
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535 static void crda_timeout_work(struct work_struct *work)
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 restore_regulatory_settings(true, false);
544 static void cancel_crda_timeout(void)
546 cancel_delayed_work(&crda_timeout);
549 static void cancel_crda_timeout_sync(void)
551 cancel_delayed_work_sync(&crda_timeout);
554 static void reset_crda_timeouts(void)
556 reg_crda_timeouts = 0;
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
563 static int call_crda(const char *alpha2)
566 char *env[] = { country, NULL };
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
581 pr_debug("Calling CRDA to update world regulatory domain\n");
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
604 struct fwdb_country {
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
610 struct fwdb_collection {
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
641 __be32 start, end, max_bw;
642 /* start of optional data */
645 } __packed __aligned(4);
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
653 struct fwdb_country country[];
654 } __packed __aligned(4);
656 static int ecw2cw(int ecw)
658 return (1 << ecw) - 1;
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
671 if (cw_min >= cw_max)
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 wmm = (void *)(data + wmm_ptr);
706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
732 if (!valid_rule(data, size, rule_ptr))
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
742 static struct key *builtin_regdb_keys;
744 static int __init load_builtin_regdb_keys(void)
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
772 MODULE_FIRMWARE("regulatory.db.p7s");
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
776 const struct firmware *sig;
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
787 release_firmware(sig);
792 static void free_regdb_keyring(void)
794 key_put(builtin_regdb_keys);
797 static int load_builtin_regdb_keys(void)
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
807 static void free_regdb_keyring(void)
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
812 static bool valid_regdb(const u8 *data, unsigned int size)
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
817 if (size < sizeof(*hdr))
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
826 if (!regdb_has_valid_signature(data, size))
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
833 if (!valid_country(data, size, country))
841 static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873 rrule->has_wmm = true;
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
911 return PTR_ERR(regdb);
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
925 static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
968 rrule->dfs_cac_ms = 0;
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
978 return reg_schedule_apply(regdom);
981 static int query_regdb(const char *alpha2)
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
989 return PTR_ERR(regdb);
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 bool restore = true;
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1021 * Either case, just restore and free new db.
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029 restore = context && query_regdb(context);
1036 restore_regulatory_settings(true, false);
1042 release_firmware(fw);
1045 MODULE_FIRMWARE("regulatory.db");
1047 static int query_regdb_file(const char *alpha2)
1054 return query_regdb(alpha2);
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1069 int reg_reload_regdb(void)
1071 const struct firmware *fw;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1081 if (!valid_regdb(fw->data, fw->size)) {
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!IS_ERR_OR_NULL(regdb))
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1112 reg_process_hint(request);
1117 release_firmware(fw);
1121 static bool reg_query_database(struct regulatory_request *request)
1123 if (query_regdb_file(request->alpha2) == 0)
1126 if (call_crda(request->alpha2) == 0)
1132 bool reg_is_valid_request(const char *alpha2)
1134 struct regulatory_request *lr = get_last_request();
1136 if (!lr || lr->processed)
1139 return alpha2_equal(lr->alpha2, alpha2);
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1144 struct regulatory_request *lr = get_last_request();
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1153 return get_wiphy_regdom(wiphy);
1155 return get_cfg80211_regdom();
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1171 if (idx == rd->n_reg_rules)
1174 /* get start_freq */
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184 freq_range = freq_range_tmp;
1187 start_freq = freq_range->start_freq_khz;
1190 freq_range = &rule->freq_range;
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200 freq_range = freq_range_tmp;
1203 end_freq = freq_range->end_freq_khz;
1205 return end_freq - start_freq;
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1257 if (!rd->n_reg_rules)
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 #define ONE_GHZ_IN_KHZ 1000000
1292 * From 802.11ad: directional multi-gigabit (DMG):
1293 * Pertaining to operation in a frequency band containing a channel
1294 * with the Channel starting frequency above 45 GHz.
1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 #undef ONE_GHZ_IN_KHZ
1307 * Later on we can perhaps use the more restrictive DFS
1308 * region but we don't have information for that yet so
1309 * for now simply disallow conflicts.
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 const enum nl80211_dfs_regions dfs_region2)
1315 if (dfs_region1 != dfs_region2)
1316 return NL80211_DFS_UNSET;
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 const struct ieee80211_wmm_ac *wmm_ac2,
1322 struct ieee80211_wmm_ac *intersect)
1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1331 * Helper for regdom_intersect(), this does the real
1332 * mathematical intersection fun
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 const struct ieee80211_regdomain *rd2,
1336 const struct ieee80211_reg_rule *rule1,
1337 const struct ieee80211_reg_rule *rule2,
1338 struct ieee80211_reg_rule *intersected_rule)
1340 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 struct ieee80211_freq_range *freq_range;
1342 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 struct ieee80211_power_rule *power_rule;
1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 struct ieee80211_wmm_rule *wmm_rule;
1346 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348 freq_range1 = &rule1->freq_range;
1349 freq_range2 = &rule2->freq_range;
1350 freq_range = &intersected_rule->freq_range;
1352 power_rule1 = &rule1->power_rule;
1353 power_rule2 = &rule2->power_rule;
1354 power_rule = &intersected_rule->power_rule;
1356 wmm_rule1 = &rule1->wmm_rule;
1357 wmm_rule2 = &rule2->wmm_rule;
1358 wmm_rule = &intersected_rule->wmm_rule;
1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 freq_range2->start_freq_khz);
1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 freq_range2->end_freq_khz);
1365 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368 if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375 intersected_rule->flags = rule1->flags | rule2->flags;
1378 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 * set AUTO_BW in intersected rule also. Next we will
1380 * calculate BW correctly in handle_channel function.
1381 * In other case remove AUTO_BW flag while we calculate
1382 * maximum bandwidth correctly and auto calculation is
1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 (rule2->flags & NL80211_RRF_AUTO_BW))
1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 if (freq_range->max_bandwidth_khz > freq_diff)
1393 freq_range->max_bandwidth_khz = freq_diff;
1395 power_rule->max_eirp = min(power_rule1->max_eirp,
1396 power_rule2->max_eirp);
1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 power_rule2->max_antenna_gain);
1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 if (rule1->has_wmm && rule2->has_wmm) {
1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 &wmm_rule2->client[ac],
1409 &wmm_rule->client[ac]);
1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1415 intersected_rule->has_wmm = true;
1416 } else if (rule1->has_wmm) {
1417 *wmm_rule = *wmm_rule1;
1418 intersected_rule->has_wmm = true;
1419 } else if (rule2->has_wmm) {
1420 *wmm_rule = *wmm_rule2;
1421 intersected_rule->has_wmm = true;
1423 intersected_rule->has_wmm = false;
1426 if (!is_valid_reg_rule(intersected_rule))
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 struct ieee80211_reg_rule *r2)
1436 /* for simplicity, currently consider only same flags */
1437 if (r1->flags != r2->flags)
1440 /* verify r1 is more restrictive */
1441 if ((r1->power_rule.max_antenna_gain >
1442 r2->power_rule.max_antenna_gain) ||
1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 /* make sure r2's range is contained within r1 */
1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 /* and finally verify that r1.max_bw >= r2.max_bw */
1452 if (r1->freq_range.max_bandwidth_khz <
1453 r2->freq_range.max_bandwidth_khz)
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 struct ieee80211_reg_rule *tmp_rule;
1466 for (i = 0; i < *n_rules; i++) {
1467 tmp_rule = ®_rules[i];
1468 /* rule is already contained - do nothing */
1469 if (rule_contains(tmp_rule, rule))
1472 /* extend rule if possible */
1473 if (rule_contains(rule, tmp_rule)) {
1474 memcpy(tmp_rule, rule, sizeof(*rule));
1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1484 * regdom_intersect - do the intersection between two regulatory domains
1485 * @rd1: first regulatory domain
1486 * @rd2: second regulatory domain
1488 * Use this function to get the intersection between two regulatory domains.
1489 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490 * as no one single alpha2 can represent this regulatory domain.
1492 * Returns a pointer to the regulatory domain structure which will hold the
1493 * resulting intersection of rules between rd1 and rd2. We will
1494 * kzalloc() this structure for you.
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 const struct ieee80211_regdomain *rd2)
1502 unsigned int num_rules = 0;
1503 const struct ieee80211_reg_rule *rule1, *rule2;
1504 struct ieee80211_reg_rule intersected_rule;
1505 struct ieee80211_regdomain *rd;
1511 * First we get a count of the rules we'll need, then we actually
1512 * build them. This is to so we can malloc() and free() a
1513 * regdomain once. The reason we use reg_rules_intersect() here
1514 * is it will return -EINVAL if the rule computed makes no sense.
1515 * All rules that do check out OK are valid.
1518 for (x = 0; x < rd1->n_reg_rules; x++) {
1519 rule1 = &rd1->reg_rules[x];
1520 for (y = 0; y < rd2->n_reg_rules; y++) {
1521 rule2 = &rd2->reg_rules[y];
1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535 for (x = 0; x < rd1->n_reg_rules; x++) {
1536 rule1 = &rd1->reg_rules[x];
1537 for (y = 0; y < rd2->n_reg_rules; y++) {
1538 rule2 = &rd2->reg_rules[y];
1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1542 * No need to memset here the intersected rule here as
1543 * we're not using the stack anymore
1548 add_rule(&intersected_rule, rd->reg_rules,
1553 rd->alpha2[0] = '9';
1554 rd->alpha2[1] = '8';
1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563 * want to just have the channel structure use these
1565 static u32 map_regdom_flags(u32 rd_flags)
1567 u32 channel_flags = 0;
1568 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 channel_flags |= IEEE80211_CHAN_NO_IR;
1570 if (rd_flags & NL80211_RRF_DFS)
1571 channel_flags |= IEEE80211_CHAN_RADAR;
1572 if (rd_flags & NL80211_RRF_NO_OFDM)
1573 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 if (rd_flags & NL80211_RRF_NO_HE)
1587 channel_flags |= IEEE80211_CHAN_NO_HE;
1588 if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 if (rd_flags & NL80211_RRF_NO_EHT)
1591 channel_flags |= IEEE80211_CHAN_NO_EHT;
1592 return channel_flags;
1595 static const struct ieee80211_reg_rule *
1596 freq_reg_info_regd(u32 center_freq,
1597 const struct ieee80211_regdomain *regd, u32 bw)
1600 bool band_rule_found = false;
1601 bool bw_fits = false;
1604 return ERR_PTR(-EINVAL);
1606 for (i = 0; i < regd->n_reg_rules; i++) {
1607 const struct ieee80211_reg_rule *rr;
1608 const struct ieee80211_freq_range *fr = NULL;
1610 rr = ®d->reg_rules[i];
1611 fr = &rr->freq_range;
1614 * We only need to know if one frequency rule was
1615 * in center_freq's band, that's enough, so let's
1616 * not overwrite it once found
1618 if (!band_rule_found)
1619 band_rule_found = freq_in_rule_band(fr, center_freq);
1621 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1623 if (band_rule_found && bw_fits)
1627 if (!band_rule_found)
1628 return ERR_PTR(-ERANGE);
1630 return ERR_PTR(-EINVAL);
1633 static const struct ieee80211_reg_rule *
1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1636 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1637 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1638 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1639 int i = ARRAY_SIZE(bws) - 1;
1642 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1643 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1644 if (!IS_ERR(reg_rule))
1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1654 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1656 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1658 EXPORT_SYMBOL(freq_reg_info);
1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1662 switch (initiator) {
1663 case NL80211_REGDOM_SET_BY_CORE:
1665 case NL80211_REGDOM_SET_BY_USER:
1667 case NL80211_REGDOM_SET_BY_DRIVER:
1669 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1670 return "country element";
1676 EXPORT_SYMBOL(reg_initiator_name);
1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1679 const struct ieee80211_reg_rule *reg_rule,
1680 const struct ieee80211_channel *chan)
1682 const struct ieee80211_freq_range *freq_range = NULL;
1683 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1684 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1686 freq_range = ®_rule->freq_range;
1688 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1689 center_freq_khz = ieee80211_channel_to_khz(chan);
1690 /* Check if auto calculation requested */
1691 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1692 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1695 if (!cfg80211_does_bw_fit_range(freq_range,
1698 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1699 if (!cfg80211_does_bw_fit_range(freq_range,
1702 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1705 /* S1G is strict about non overlapping channels. We can
1706 * calculate which bandwidth is allowed per channel by finding
1707 * the largest bandwidth which cleanly divides the freq_range.
1710 int ch_bw = max_bandwidth_khz;
1713 edge_offset = (center_freq_khz - ch_bw / 2) -
1714 freq_range->start_freq_khz;
1715 if (edge_offset % ch_bw == 0) {
1716 switch (KHZ_TO_MHZ(ch_bw)) {
1718 bw_flags |= IEEE80211_CHAN_1MHZ;
1721 bw_flags |= IEEE80211_CHAN_2MHZ;
1724 bw_flags |= IEEE80211_CHAN_4MHZ;
1727 bw_flags |= IEEE80211_CHAN_8MHZ;
1730 bw_flags |= IEEE80211_CHAN_16MHZ;
1733 /* If we got here, no bandwidths fit on
1734 * this frequency, ie. band edge.
1736 bw_flags |= IEEE80211_CHAN_DISABLED;
1744 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1745 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1746 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1747 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1748 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1749 bw_flags |= IEEE80211_CHAN_NO_HT40;
1750 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1751 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1752 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1753 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1754 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1755 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1760 static void handle_channel_single_rule(struct wiphy *wiphy,
1761 enum nl80211_reg_initiator initiator,
1762 struct ieee80211_channel *chan,
1764 struct regulatory_request *lr,
1765 struct wiphy *request_wiphy,
1766 const struct ieee80211_reg_rule *reg_rule)
1769 const struct ieee80211_power_rule *power_rule = NULL;
1770 const struct ieee80211_regdomain *regd;
1772 regd = reg_get_regdomain(wiphy);
1774 power_rule = ®_rule->power_rule;
1775 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1777 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1778 request_wiphy && request_wiphy == wiphy &&
1779 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1781 * This guarantees the driver's requested regulatory domain
1782 * will always be used as a base for further regulatory
1785 chan->flags = chan->orig_flags =
1786 map_regdom_flags(reg_rule->flags) | bw_flags;
1787 chan->max_antenna_gain = chan->orig_mag =
1788 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1789 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1790 (int) MBM_TO_DBM(power_rule->max_eirp);
1792 if (chan->flags & IEEE80211_CHAN_RADAR) {
1793 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1794 if (reg_rule->dfs_cac_ms)
1795 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1801 chan->dfs_state = NL80211_DFS_USABLE;
1802 chan->dfs_state_entered = jiffies;
1804 chan->beacon_found = false;
1805 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1806 chan->max_antenna_gain =
1807 min_t(int, chan->orig_mag,
1808 MBI_TO_DBI(power_rule->max_antenna_gain));
1809 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1811 if (chan->flags & IEEE80211_CHAN_RADAR) {
1812 if (reg_rule->dfs_cac_ms)
1813 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1815 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1818 if (chan->orig_mpwr) {
1820 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1821 * will always follow the passed country IE power settings.
1823 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1825 chan->max_power = chan->max_reg_power;
1827 chan->max_power = min(chan->orig_mpwr,
1828 chan->max_reg_power);
1830 chan->max_power = chan->max_reg_power;
1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1834 enum nl80211_reg_initiator initiator,
1835 struct ieee80211_channel *chan,
1837 struct regulatory_request *lr,
1838 struct wiphy *request_wiphy,
1839 const struct ieee80211_reg_rule *rrule1,
1840 const struct ieee80211_reg_rule *rrule2,
1841 struct ieee80211_freq_range *comb_range)
1845 const struct ieee80211_power_rule *power_rule1 = NULL;
1846 const struct ieee80211_power_rule *power_rule2 = NULL;
1847 const struct ieee80211_regdomain *regd;
1849 regd = reg_get_regdomain(wiphy);
1851 power_rule1 = &rrule1->power_rule;
1852 power_rule2 = &rrule2->power_rule;
1853 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1854 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1856 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1857 request_wiphy && request_wiphy == wiphy &&
1858 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1859 /* This guarantees the driver's requested regulatory domain
1860 * will always be used as a base for further regulatory
1864 map_regdom_flags(rrule1->flags) |
1865 map_regdom_flags(rrule2->flags) |
1868 chan->orig_flags = chan->flags;
1869 chan->max_antenna_gain =
1870 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1871 MBI_TO_DBI(power_rule2->max_antenna_gain));
1872 chan->orig_mag = chan->max_antenna_gain;
1873 chan->max_reg_power =
1874 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1875 MBM_TO_DBM(power_rule2->max_eirp));
1876 chan->max_power = chan->max_reg_power;
1877 chan->orig_mpwr = chan->max_reg_power;
1879 if (chan->flags & IEEE80211_CHAN_RADAR) {
1880 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1881 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1882 chan->dfs_cac_ms = max_t(unsigned int,
1884 rrule2->dfs_cac_ms);
1890 chan->dfs_state = NL80211_DFS_USABLE;
1891 chan->dfs_state_entered = jiffies;
1893 chan->beacon_found = false;
1894 chan->flags = flags | bw_flags1 | bw_flags2 |
1895 map_regdom_flags(rrule1->flags) |
1896 map_regdom_flags(rrule2->flags);
1898 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899 * (otherwise no adj. rule case), recheck therefore
1901 if (cfg80211_does_bw_fit_range(comb_range,
1902 ieee80211_channel_to_khz(chan),
1904 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905 if (cfg80211_does_bw_fit_range(comb_range,
1906 ieee80211_channel_to_khz(chan),
1908 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1910 chan->max_antenna_gain =
1911 min_t(int, chan->orig_mag,
1913 MBI_TO_DBI(power_rule1->max_antenna_gain),
1914 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915 chan->max_reg_power = min_t(int,
1916 MBM_TO_DBM(power_rule1->max_eirp),
1917 MBM_TO_DBM(power_rule2->max_eirp));
1919 if (chan->flags & IEEE80211_CHAN_RADAR) {
1920 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921 chan->dfs_cac_ms = max_t(unsigned int,
1923 rrule2->dfs_cac_ms);
1925 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1928 if (chan->orig_mpwr) {
1929 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930 * will always follow the passed country IE power settings.
1932 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934 chan->max_power = chan->max_reg_power;
1936 chan->max_power = min(chan->orig_mpwr,
1937 chan->max_reg_power);
1939 chan->max_power = chan->max_reg_power;
1943 /* Note that right now we assume the desired channel bandwidth
1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945 * per channel, the primary and the extension channel).
1947 static void handle_channel(struct wiphy *wiphy,
1948 enum nl80211_reg_initiator initiator,
1949 struct ieee80211_channel *chan)
1951 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952 struct regulatory_request *lr = get_last_request();
1953 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954 const struct ieee80211_reg_rule *rrule = NULL;
1955 const struct ieee80211_reg_rule *rrule1 = NULL;
1956 const struct ieee80211_reg_rule *rrule2 = NULL;
1958 u32 flags = chan->orig_flags;
1960 rrule = freq_reg_info(wiphy, orig_chan_freq);
1961 if (IS_ERR(rrule)) {
1962 /* check for adjacent match, therefore get rules for
1963 * chan - 20 MHz and chan + 20 MHz and test
1964 * if reg rules are adjacent
1966 rrule1 = freq_reg_info(wiphy,
1967 orig_chan_freq - MHZ_TO_KHZ(20));
1968 rrule2 = freq_reg_info(wiphy,
1969 orig_chan_freq + MHZ_TO_KHZ(20));
1970 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971 struct ieee80211_freq_range comb_range;
1973 if (rrule1->freq_range.end_freq_khz !=
1974 rrule2->freq_range.start_freq_khz)
1977 comb_range.start_freq_khz =
1978 rrule1->freq_range.start_freq_khz;
1979 comb_range.end_freq_khz =
1980 rrule2->freq_range.end_freq_khz;
1981 comb_range.max_bandwidth_khz =
1983 rrule1->freq_range.max_bandwidth_khz,
1984 rrule2->freq_range.max_bandwidth_khz);
1986 if (!cfg80211_does_bw_fit_range(&comb_range,
1991 handle_channel_adjacent_rules(wiphy, initiator, chan,
1992 flags, lr, request_wiphy,
1999 /* We will disable all channels that do not match our
2000 * received regulatory rule unless the hint is coming
2001 * from a Country IE and the Country IE had no information
2002 * about a band. The IEEE 802.11 spec allows for an AP
2003 * to send only a subset of the regulatory rules allowed,
2004 * so an AP in the US that only supports 2.4 GHz may only send
2005 * a country IE with information for the 2.4 GHz band
2006 * while 5 GHz is still supported.
2008 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009 PTR_ERR(rrule) == -ERANGE)
2012 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013 request_wiphy && request_wiphy == wiphy &&
2014 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015 pr_debug("Disabling freq %d.%03d MHz for good\n",
2016 chan->center_freq, chan->freq_offset);
2017 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018 chan->flags = chan->orig_flags;
2020 pr_debug("Disabling freq %d.%03d MHz\n",
2021 chan->center_freq, chan->freq_offset);
2022 chan->flags |= IEEE80211_CHAN_DISABLED;
2027 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028 request_wiphy, rrule);
2031 static void handle_band(struct wiphy *wiphy,
2032 enum nl80211_reg_initiator initiator,
2033 struct ieee80211_supported_band *sband)
2040 for (i = 0; i < sband->n_channels; i++)
2041 handle_channel(wiphy, initiator, &sband->channels[i]);
2044 static bool reg_request_cell_base(struct regulatory_request *request)
2046 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2048 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2051 bool reg_last_request_cell_base(void)
2053 return reg_request_cell_base(get_last_request());
2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057 /* Core specific check */
2058 static enum reg_request_treatment
2059 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2061 struct regulatory_request *lr = get_last_request();
2063 if (!reg_num_devs_support_basehint)
2064 return REG_REQ_IGNORE;
2066 if (reg_request_cell_base(lr) &&
2067 !regdom_changes(pending_request->alpha2))
2068 return REG_REQ_ALREADY_SET;
2073 /* Device specific check */
2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2076 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2079 static enum reg_request_treatment
2080 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2082 return REG_REQ_IGNORE;
2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2093 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2099 static bool ignore_reg_update(struct wiphy *wiphy,
2100 enum nl80211_reg_initiator initiator)
2102 struct regulatory_request *lr = get_last_request();
2104 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2108 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109 reg_initiator_name(initiator));
2113 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116 reg_initiator_name(initiator));
2121 * wiphy->regd will be set once the device has its own
2122 * desired regulatory domain set
2124 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126 !is_world_regdom(lr->alpha2)) {
2127 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128 reg_initiator_name(initiator));
2132 if (reg_request_cell_base(lr))
2133 return reg_dev_ignore_cell_hint(wiphy);
2138 static bool reg_is_world_roaming(struct wiphy *wiphy)
2140 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142 struct regulatory_request *lr = get_last_request();
2144 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2147 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2155 struct reg_beacon *reg_beacon)
2157 struct ieee80211_supported_band *sband;
2158 struct ieee80211_channel *chan;
2159 bool channel_changed = false;
2160 struct ieee80211_channel chan_before;
2162 sband = wiphy->bands[reg_beacon->chan.band];
2163 chan = &sband->channels[chan_idx];
2165 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2168 if (chan->beacon_found)
2171 chan->beacon_found = true;
2173 if (!reg_is_world_roaming(wiphy))
2176 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2179 chan_before = *chan;
2181 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2182 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2183 channel_changed = true;
2186 if (channel_changed)
2187 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2191 * Called when a scan on a wiphy finds a beacon on
2194 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2195 struct reg_beacon *reg_beacon)
2198 struct ieee80211_supported_band *sband;
2200 if (!wiphy->bands[reg_beacon->chan.band])
2203 sband = wiphy->bands[reg_beacon->chan.band];
2205 for (i = 0; i < sband->n_channels; i++)
2206 handle_reg_beacon(wiphy, i, reg_beacon);
2210 * Called upon reg changes or a new wiphy is added
2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2215 struct ieee80211_supported_band *sband;
2216 struct reg_beacon *reg_beacon;
2218 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2219 if (!wiphy->bands[reg_beacon->chan.band])
2221 sband = wiphy->bands[reg_beacon->chan.band];
2222 for (i = 0; i < sband->n_channels; i++)
2223 handle_reg_beacon(wiphy, i, reg_beacon);
2227 /* Reap the advantages of previously found beacons */
2228 static void reg_process_beacons(struct wiphy *wiphy)
2231 * Means we are just firing up cfg80211, so no beacons would
2232 * have been processed yet.
2236 wiphy_update_beacon_reg(wiphy);
2239 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2243 if (chan->flags & IEEE80211_CHAN_DISABLED)
2245 /* This would happen when regulatory rules disallow HT40 completely */
2246 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2252 struct ieee80211_channel *channel)
2254 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2255 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2256 const struct ieee80211_regdomain *regd;
2260 if (!is_ht40_allowed(channel)) {
2261 channel->flags |= IEEE80211_CHAN_NO_HT40;
2266 * We need to ensure the extension channels exist to
2267 * be able to use HT40- or HT40+, this finds them (or not)
2269 for (i = 0; i < sband->n_channels; i++) {
2270 struct ieee80211_channel *c = &sband->channels[i];
2272 if (c->center_freq == (channel->center_freq - 20))
2274 if (c->center_freq == (channel->center_freq + 20))
2279 regd = get_wiphy_regdom(wiphy);
2281 const struct ieee80211_reg_rule *reg_rule =
2282 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2283 regd, MHZ_TO_KHZ(20));
2285 if (!IS_ERR(reg_rule))
2286 flags = reg_rule->flags;
2290 * Please note that this assumes target bandwidth is 20 MHz,
2291 * if that ever changes we also need to change the below logic
2292 * to include that as well.
2294 if (!is_ht40_allowed(channel_before) ||
2295 flags & NL80211_RRF_NO_HT40MINUS)
2296 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2298 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2300 if (!is_ht40_allowed(channel_after) ||
2301 flags & NL80211_RRF_NO_HT40PLUS)
2302 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2304 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2307 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2308 struct ieee80211_supported_band *sband)
2315 for (i = 0; i < sband->n_channels; i++)
2316 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2319 static void reg_process_ht_flags(struct wiphy *wiphy)
2321 enum nl80211_band band;
2326 for (band = 0; band < NUM_NL80211_BANDS; band++)
2327 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2330 static void reg_call_notifier(struct wiphy *wiphy,
2331 struct regulatory_request *request)
2333 if (wiphy->reg_notifier)
2334 wiphy->reg_notifier(wiphy, request);
2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2339 struct cfg80211_chan_def chandef = {};
2340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2341 enum nl80211_iftype iftype;
2346 iftype = wdev->iftype;
2348 /* make sure the interface is active */
2349 if (!wdev->netdev || !netif_running(wdev->netdev))
2350 goto wdev_inactive_unlock;
2352 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2353 struct ieee80211_channel *chan;
2355 if (!wdev->valid_links && link > 0)
2357 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2360 case NL80211_IFTYPE_AP:
2361 case NL80211_IFTYPE_P2P_GO:
2362 if (!wdev->links[link].ap.beacon_interval)
2364 chandef = wdev->links[link].ap.chandef;
2366 case NL80211_IFTYPE_MESH_POINT:
2367 if (!wdev->u.mesh.beacon_interval)
2369 chandef = wdev->u.mesh.chandef;
2371 case NL80211_IFTYPE_ADHOC:
2372 if (!wdev->u.ibss.ssid_len)
2374 chandef = wdev->u.ibss.chandef;
2376 case NL80211_IFTYPE_STATION:
2377 case NL80211_IFTYPE_P2P_CLIENT:
2378 /* Maybe we could consider disabling that link only? */
2379 if (!wdev->links[link].client.current_bss)
2382 chan = wdev->links[link].client.current_bss->pub.channel;
2386 if (!rdev->ops->get_channel ||
2387 rdev_get_channel(rdev, wdev, link, &chandef))
2388 cfg80211_chandef_create(&chandef, chan,
2389 NL80211_CHAN_NO_HT);
2391 case NL80211_IFTYPE_MONITOR:
2392 case NL80211_IFTYPE_AP_VLAN:
2393 case NL80211_IFTYPE_P2P_DEVICE:
2394 /* no enforcement required */
2396 case NL80211_IFTYPE_OCB:
2397 if (!wdev->u.ocb.chandef.chan)
2399 chandef = wdev->u.ocb.chandef;
2401 case NL80211_IFTYPE_NAN:
2402 /* we have no info, but NAN is also pretty universal */
2405 /* others not implemented for now */
2413 case NL80211_IFTYPE_AP:
2414 case NL80211_IFTYPE_P2P_GO:
2415 case NL80211_IFTYPE_ADHOC:
2416 case NL80211_IFTYPE_MESH_POINT:
2417 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2422 case NL80211_IFTYPE_STATION:
2423 case NL80211_IFTYPE_P2P_CLIENT:
2424 ret = cfg80211_chandef_usable(wiphy, &chandef,
2425 IEEE80211_CHAN_DISABLED);
2440 wdev_inactive_unlock:
2445 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2447 struct wireless_dev *wdev;
2448 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2451 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452 if (!reg_wdev_chan_valid(wiphy, wdev))
2453 cfg80211_leave(rdev, wdev);
2454 wiphy_unlock(wiphy);
2457 static void reg_check_chans_work(struct work_struct *work)
2459 struct cfg80211_registered_device *rdev;
2461 pr_debug("Verifying active interfaces after reg change\n");
2464 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2465 reg_leave_invalid_chans(&rdev->wiphy);
2470 static void reg_check_channels(void)
2473 * Give usermode a chance to do something nicer (move to another
2474 * channel, orderly disconnection), before forcing a disconnection.
2476 mod_delayed_work(system_power_efficient_wq,
2478 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2481 static void wiphy_update_regulatory(struct wiphy *wiphy,
2482 enum nl80211_reg_initiator initiator)
2484 enum nl80211_band band;
2485 struct regulatory_request *lr = get_last_request();
2487 if (ignore_reg_update(wiphy, initiator)) {
2489 * Regulatory updates set by CORE are ignored for custom
2490 * regulatory cards. Let us notify the changes to the driver,
2491 * as some drivers used this to restore its orig_* reg domain.
2493 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2494 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2495 !(wiphy->regulatory_flags &
2496 REGULATORY_WIPHY_SELF_MANAGED))
2497 reg_call_notifier(wiphy, lr);
2501 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2503 for (band = 0; band < NUM_NL80211_BANDS; band++)
2504 handle_band(wiphy, initiator, wiphy->bands[band]);
2506 reg_process_beacons(wiphy);
2507 reg_process_ht_flags(wiphy);
2508 reg_call_notifier(wiphy, lr);
2511 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2513 struct cfg80211_registered_device *rdev;
2514 struct wiphy *wiphy;
2518 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2519 wiphy = &rdev->wiphy;
2520 wiphy_update_regulatory(wiphy, initiator);
2523 reg_check_channels();
2526 static void handle_channel_custom(struct wiphy *wiphy,
2527 struct ieee80211_channel *chan,
2528 const struct ieee80211_regdomain *regd,
2532 const struct ieee80211_reg_rule *reg_rule = NULL;
2533 const struct ieee80211_power_rule *power_rule = NULL;
2534 u32 bw, center_freq_khz;
2536 center_freq_khz = ieee80211_channel_to_khz(chan);
2537 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2538 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2539 if (!IS_ERR(reg_rule))
2543 if (IS_ERR_OR_NULL(reg_rule)) {
2544 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2545 chan->center_freq, chan->freq_offset);
2546 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2547 chan->flags |= IEEE80211_CHAN_DISABLED;
2549 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2550 chan->flags = chan->orig_flags;
2555 power_rule = ®_rule->power_rule;
2556 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2558 chan->dfs_state_entered = jiffies;
2559 chan->dfs_state = NL80211_DFS_USABLE;
2561 chan->beacon_found = false;
2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2564 chan->flags = chan->orig_flags | bw_flags |
2565 map_regdom_flags(reg_rule->flags);
2567 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2569 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2570 chan->max_reg_power = chan->max_power =
2571 (int) MBM_TO_DBM(power_rule->max_eirp);
2573 if (chan->flags & IEEE80211_CHAN_RADAR) {
2574 if (reg_rule->dfs_cac_ms)
2575 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2577 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2580 chan->max_power = chan->max_reg_power;
2583 static void handle_band_custom(struct wiphy *wiphy,
2584 struct ieee80211_supported_band *sband,
2585 const struct ieee80211_regdomain *regd)
2593 * We currently assume that you always want at least 20 MHz,
2594 * otherwise channel 12 might get enabled if this rule is
2595 * compatible to US, which permits 2402 - 2472 MHz.
2597 for (i = 0; i < sband->n_channels; i++)
2598 handle_channel_custom(wiphy, &sband->channels[i], regd,
2602 /* Used by drivers prior to wiphy registration */
2603 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2604 const struct ieee80211_regdomain *regd)
2606 const struct ieee80211_regdomain *new_regd, *tmp;
2607 enum nl80211_band band;
2608 unsigned int bands_set = 0;
2610 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2611 "wiphy should have REGULATORY_CUSTOM_REG\n");
2612 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2614 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2615 if (!wiphy->bands[band])
2617 handle_band_custom(wiphy, wiphy->bands[band], regd);
2622 * no point in calling this if it won't have any effect
2623 * on your device's supported bands.
2625 WARN_ON(!bands_set);
2626 new_regd = reg_copy_regd(regd);
2627 if (IS_ERR(new_regd))
2633 tmp = get_wiphy_regdom(wiphy);
2634 rcu_assign_pointer(wiphy->regd, new_regd);
2635 rcu_free_regdom(tmp);
2637 wiphy_unlock(wiphy);
2640 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2642 static void reg_set_request_processed(void)
2644 bool need_more_processing = false;
2645 struct regulatory_request *lr = get_last_request();
2647 lr->processed = true;
2649 spin_lock(®_requests_lock);
2650 if (!list_empty(®_requests_list))
2651 need_more_processing = true;
2652 spin_unlock(®_requests_lock);
2654 cancel_crda_timeout();
2656 if (need_more_processing)
2657 schedule_work(®_work);
2661 * reg_process_hint_core - process core regulatory requests
2662 * @core_request: a pending core regulatory request
2664 * The wireless subsystem can use this function to process
2665 * a regulatory request issued by the regulatory core.
2667 static enum reg_request_treatment
2668 reg_process_hint_core(struct regulatory_request *core_request)
2670 if (reg_query_database(core_request)) {
2671 core_request->intersect = false;
2672 core_request->processed = false;
2673 reg_update_last_request(core_request);
2677 return REG_REQ_IGNORE;
2680 static enum reg_request_treatment
2681 __reg_process_hint_user(struct regulatory_request *user_request)
2683 struct regulatory_request *lr = get_last_request();
2685 if (reg_request_cell_base(user_request))
2686 return reg_ignore_cell_hint(user_request);
2688 if (reg_request_cell_base(lr))
2689 return REG_REQ_IGNORE;
2691 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2692 return REG_REQ_INTERSECT;
2694 * If the user knows better the user should set the regdom
2695 * to their country before the IE is picked up
2697 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2699 return REG_REQ_IGNORE;
2701 * Process user requests only after previous user/driver/core
2702 * requests have been processed
2704 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2705 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2706 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2707 regdom_changes(lr->alpha2))
2708 return REG_REQ_IGNORE;
2710 if (!regdom_changes(user_request->alpha2))
2711 return REG_REQ_ALREADY_SET;
2717 * reg_process_hint_user - process user regulatory requests
2718 * @user_request: a pending user regulatory request
2720 * The wireless subsystem can use this function to process
2721 * a regulatory request initiated by userspace.
2723 static enum reg_request_treatment
2724 reg_process_hint_user(struct regulatory_request *user_request)
2726 enum reg_request_treatment treatment;
2728 treatment = __reg_process_hint_user(user_request);
2729 if (treatment == REG_REQ_IGNORE ||
2730 treatment == REG_REQ_ALREADY_SET)
2731 return REG_REQ_IGNORE;
2733 user_request->intersect = treatment == REG_REQ_INTERSECT;
2734 user_request->processed = false;
2736 if (reg_query_database(user_request)) {
2737 reg_update_last_request(user_request);
2738 user_alpha2[0] = user_request->alpha2[0];
2739 user_alpha2[1] = user_request->alpha2[1];
2743 return REG_REQ_IGNORE;
2746 static enum reg_request_treatment
2747 __reg_process_hint_driver(struct regulatory_request *driver_request)
2749 struct regulatory_request *lr = get_last_request();
2751 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2752 if (regdom_changes(driver_request->alpha2))
2754 return REG_REQ_ALREADY_SET;
2758 * This would happen if you unplug and plug your card
2759 * back in or if you add a new device for which the previously
2760 * loaded card also agrees on the regulatory domain.
2762 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2763 !regdom_changes(driver_request->alpha2))
2764 return REG_REQ_ALREADY_SET;
2766 return REG_REQ_INTERSECT;
2770 * reg_process_hint_driver - process driver regulatory requests
2771 * @wiphy: the wireless device for the regulatory request
2772 * @driver_request: a pending driver regulatory request
2774 * The wireless subsystem can use this function to process
2775 * a regulatory request issued by an 802.11 driver.
2777 * Returns one of the different reg request treatment values.
2779 static enum reg_request_treatment
2780 reg_process_hint_driver(struct wiphy *wiphy,
2781 struct regulatory_request *driver_request)
2783 const struct ieee80211_regdomain *regd, *tmp;
2784 enum reg_request_treatment treatment;
2786 treatment = __reg_process_hint_driver(driver_request);
2788 switch (treatment) {
2791 case REG_REQ_IGNORE:
2792 return REG_REQ_IGNORE;
2793 case REG_REQ_INTERSECT:
2794 case REG_REQ_ALREADY_SET:
2795 regd = reg_copy_regd(get_cfg80211_regdom());
2797 return REG_REQ_IGNORE;
2799 tmp = get_wiphy_regdom(wiphy);
2802 rcu_assign_pointer(wiphy->regd, regd);
2803 wiphy_unlock(wiphy);
2804 rcu_free_regdom(tmp);
2808 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2809 driver_request->processed = false;
2812 * Since CRDA will not be called in this case as we already
2813 * have applied the requested regulatory domain before we just
2814 * inform userspace we have processed the request
2816 if (treatment == REG_REQ_ALREADY_SET) {
2817 nl80211_send_reg_change_event(driver_request);
2818 reg_update_last_request(driver_request);
2819 reg_set_request_processed();
2820 return REG_REQ_ALREADY_SET;
2823 if (reg_query_database(driver_request)) {
2824 reg_update_last_request(driver_request);
2828 return REG_REQ_IGNORE;
2831 static enum reg_request_treatment
2832 __reg_process_hint_country_ie(struct wiphy *wiphy,
2833 struct regulatory_request *country_ie_request)
2835 struct wiphy *last_wiphy = NULL;
2836 struct regulatory_request *lr = get_last_request();
2838 if (reg_request_cell_base(lr)) {
2839 /* Trust a Cell base station over the AP's country IE */
2840 if (regdom_changes(country_ie_request->alpha2))
2841 return REG_REQ_IGNORE;
2842 return REG_REQ_ALREADY_SET;
2844 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2845 return REG_REQ_IGNORE;
2848 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2851 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2854 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2856 if (last_wiphy != wiphy) {
2858 * Two cards with two APs claiming different
2859 * Country IE alpha2s. We could
2860 * intersect them, but that seems unlikely
2861 * to be correct. Reject second one for now.
2863 if (regdom_changes(country_ie_request->alpha2))
2864 return REG_REQ_IGNORE;
2865 return REG_REQ_ALREADY_SET;
2868 if (regdom_changes(country_ie_request->alpha2))
2870 return REG_REQ_ALREADY_SET;
2874 * reg_process_hint_country_ie - process regulatory requests from country IEs
2875 * @wiphy: the wireless device for the regulatory request
2876 * @country_ie_request: a regulatory request from a country IE
2878 * The wireless subsystem can use this function to process
2879 * a regulatory request issued by a country Information Element.
2881 * Returns one of the different reg request treatment values.
2883 static enum reg_request_treatment
2884 reg_process_hint_country_ie(struct wiphy *wiphy,
2885 struct regulatory_request *country_ie_request)
2887 enum reg_request_treatment treatment;
2889 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2891 switch (treatment) {
2894 case REG_REQ_IGNORE:
2895 return REG_REQ_IGNORE;
2896 case REG_REQ_ALREADY_SET:
2897 reg_free_request(country_ie_request);
2898 return REG_REQ_ALREADY_SET;
2899 case REG_REQ_INTERSECT:
2901 * This doesn't happen yet, not sure we
2902 * ever want to support it for this case.
2904 WARN_ONCE(1, "Unexpected intersection for country elements");
2905 return REG_REQ_IGNORE;
2908 country_ie_request->intersect = false;
2909 country_ie_request->processed = false;
2911 if (reg_query_database(country_ie_request)) {
2912 reg_update_last_request(country_ie_request);
2916 return REG_REQ_IGNORE;
2919 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2921 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2922 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2923 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2924 bool dfs_domain_same;
2928 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2929 wiphy1_regd = rcu_dereference(wiphy1->regd);
2931 wiphy1_regd = cfg80211_regd;
2933 wiphy2_regd = rcu_dereference(wiphy2->regd);
2935 wiphy2_regd = cfg80211_regd;
2937 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2941 return dfs_domain_same;
2944 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2945 struct ieee80211_channel *src_chan)
2947 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2948 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2951 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2952 src_chan->flags & IEEE80211_CHAN_DISABLED)
2955 if (src_chan->center_freq == dst_chan->center_freq &&
2956 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2957 dst_chan->dfs_state = src_chan->dfs_state;
2958 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2962 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2963 struct wiphy *src_wiphy)
2965 struct ieee80211_supported_band *src_sband, *dst_sband;
2966 struct ieee80211_channel *src_chan, *dst_chan;
2969 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2972 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2973 dst_sband = dst_wiphy->bands[band];
2974 src_sband = src_wiphy->bands[band];
2975 if (!dst_sband || !src_sband)
2978 for (i = 0; i < dst_sband->n_channels; i++) {
2979 dst_chan = &dst_sband->channels[i];
2980 for (j = 0; j < src_sband->n_channels; j++) {
2981 src_chan = &src_sband->channels[j];
2982 reg_copy_dfs_chan_state(dst_chan, src_chan);
2988 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2990 struct cfg80211_registered_device *rdev;
2994 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2995 if (wiphy == &rdev->wiphy)
2997 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3001 /* This processes *all* regulatory hints */
3002 static void reg_process_hint(struct regulatory_request *reg_request)
3004 struct wiphy *wiphy = NULL;
3005 enum reg_request_treatment treatment;
3006 enum nl80211_reg_initiator initiator = reg_request->initiator;
3008 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3009 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3011 switch (initiator) {
3012 case NL80211_REGDOM_SET_BY_CORE:
3013 treatment = reg_process_hint_core(reg_request);
3015 case NL80211_REGDOM_SET_BY_USER:
3016 treatment = reg_process_hint_user(reg_request);
3018 case NL80211_REGDOM_SET_BY_DRIVER:
3021 treatment = reg_process_hint_driver(wiphy, reg_request);
3023 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3026 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3029 WARN(1, "invalid initiator %d\n", initiator);
3033 if (treatment == REG_REQ_IGNORE)
3036 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3037 "unexpected treatment value %d\n", treatment);
3039 /* This is required so that the orig_* parameters are saved.
3040 * NOTE: treatment must be set for any case that reaches here!
3042 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3043 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3044 wiphy_update_regulatory(wiphy, initiator);
3045 wiphy_all_share_dfs_chan_state(wiphy);
3046 reg_check_channels();
3052 reg_free_request(reg_request);
3055 static void notify_self_managed_wiphys(struct regulatory_request *request)
3057 struct cfg80211_registered_device *rdev;
3058 struct wiphy *wiphy;
3060 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3061 wiphy = &rdev->wiphy;
3062 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3063 request->initiator == NL80211_REGDOM_SET_BY_USER)
3064 reg_call_notifier(wiphy, request);
3069 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3070 * Regulatory hints come on a first come first serve basis and we
3071 * must process each one atomically.
3073 static void reg_process_pending_hints(void)
3075 struct regulatory_request *reg_request, *lr;
3077 lr = get_last_request();
3079 /* When last_request->processed becomes true this will be rescheduled */
3080 if (lr && !lr->processed) {
3081 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3085 spin_lock(®_requests_lock);
3087 if (list_empty(®_requests_list)) {
3088 spin_unlock(®_requests_lock);
3092 reg_request = list_first_entry(®_requests_list,
3093 struct regulatory_request,
3095 list_del_init(®_request->list);
3097 spin_unlock(®_requests_lock);
3099 notify_self_managed_wiphys(reg_request);
3101 reg_process_hint(reg_request);
3103 lr = get_last_request();
3105 spin_lock(®_requests_lock);
3106 if (!list_empty(®_requests_list) && lr && lr->processed)
3107 schedule_work(®_work);
3108 spin_unlock(®_requests_lock);
3111 /* Processes beacon hints -- this has nothing to do with country IEs */
3112 static void reg_process_pending_beacon_hints(void)
3114 struct cfg80211_registered_device *rdev;
3115 struct reg_beacon *pending_beacon, *tmp;
3117 /* This goes through the _pending_ beacon list */
3118 spin_lock_bh(®_pending_beacons_lock);
3120 list_for_each_entry_safe(pending_beacon, tmp,
3121 ®_pending_beacons, list) {
3122 list_del_init(&pending_beacon->list);
3124 /* Applies the beacon hint to current wiphys */
3125 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3126 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3128 /* Remembers the beacon hint for new wiphys or reg changes */
3129 list_add_tail(&pending_beacon->list, ®_beacon_list);
3132 spin_unlock_bh(®_pending_beacons_lock);
3135 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3137 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3138 const struct ieee80211_regdomain *tmp;
3139 const struct ieee80211_regdomain *regd;
3140 enum nl80211_band band;
3141 struct regulatory_request request = {};
3144 lockdep_assert_wiphy(wiphy);
3146 spin_lock(®_requests_lock);
3147 regd = rdev->requested_regd;
3148 rdev->requested_regd = NULL;
3149 spin_unlock(®_requests_lock);
3154 tmp = get_wiphy_regdom(wiphy);
3155 rcu_assign_pointer(wiphy->regd, regd);
3156 rcu_free_regdom(tmp);
3158 for (band = 0; band < NUM_NL80211_BANDS; band++)
3159 handle_band_custom(wiphy, wiphy->bands[band], regd);
3161 reg_process_ht_flags(wiphy);
3163 request.wiphy_idx = get_wiphy_idx(wiphy);
3164 request.alpha2[0] = regd->alpha2[0];
3165 request.alpha2[1] = regd->alpha2[1];
3166 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3168 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3169 reg_call_notifier(wiphy, &request);
3171 nl80211_send_wiphy_reg_change_event(&request);
3174 static void reg_process_self_managed_hints(void)
3176 struct cfg80211_registered_device *rdev;
3180 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3181 wiphy_lock(&rdev->wiphy);
3182 reg_process_self_managed_hint(&rdev->wiphy);
3183 wiphy_unlock(&rdev->wiphy);
3186 reg_check_channels();
3189 static void reg_todo(struct work_struct *work)
3192 reg_process_pending_hints();
3193 reg_process_pending_beacon_hints();
3194 reg_process_self_managed_hints();
3198 static void queue_regulatory_request(struct regulatory_request *request)
3200 request->alpha2[0] = toupper(request->alpha2[0]);
3201 request->alpha2[1] = toupper(request->alpha2[1]);
3203 spin_lock(®_requests_lock);
3204 list_add_tail(&request->list, ®_requests_list);
3205 spin_unlock(®_requests_lock);
3207 schedule_work(®_work);
3211 * Core regulatory hint -- happens during cfg80211_init()
3212 * and when we restore regulatory settings.
3214 static int regulatory_hint_core(const char *alpha2)
3216 struct regulatory_request *request;
3218 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3222 request->alpha2[0] = alpha2[0];
3223 request->alpha2[1] = alpha2[1];
3224 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3225 request->wiphy_idx = WIPHY_IDX_INVALID;
3227 queue_regulatory_request(request);
3233 int regulatory_hint_user(const char *alpha2,
3234 enum nl80211_user_reg_hint_type user_reg_hint_type)
3236 struct regulatory_request *request;
3238 if (WARN_ON(!alpha2))
3241 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3248 request->wiphy_idx = WIPHY_IDX_INVALID;
3249 request->alpha2[0] = alpha2[0];
3250 request->alpha2[1] = alpha2[1];
3251 request->initiator = NL80211_REGDOM_SET_BY_USER;
3252 request->user_reg_hint_type = user_reg_hint_type;
3254 /* Allow calling CRDA again */
3255 reset_crda_timeouts();
3257 queue_regulatory_request(request);
3262 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3264 spin_lock(®_indoor_lock);
3266 /* It is possible that more than one user space process is trying to
3267 * configure the indoor setting. To handle such cases, clear the indoor
3268 * setting in case that some process does not think that the device
3269 * is operating in an indoor environment. In addition, if a user space
3270 * process indicates that it is controlling the indoor setting, save its
3271 * portid, i.e., make it the owner.
3273 reg_is_indoor = is_indoor;
3274 if (reg_is_indoor) {
3275 if (!reg_is_indoor_portid)
3276 reg_is_indoor_portid = portid;
3278 reg_is_indoor_portid = 0;
3281 spin_unlock(®_indoor_lock);
3284 reg_check_channels();
3289 void regulatory_netlink_notify(u32 portid)
3291 spin_lock(®_indoor_lock);
3293 if (reg_is_indoor_portid != portid) {
3294 spin_unlock(®_indoor_lock);
3298 reg_is_indoor = false;
3299 reg_is_indoor_portid = 0;
3301 spin_unlock(®_indoor_lock);
3303 reg_check_channels();
3307 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3309 struct regulatory_request *request;
3311 if (WARN_ON(!alpha2 || !wiphy))
3314 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3320 request->wiphy_idx = get_wiphy_idx(wiphy);
3322 request->alpha2[0] = alpha2[0];
3323 request->alpha2[1] = alpha2[1];
3324 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3326 /* Allow calling CRDA again */
3327 reset_crda_timeouts();
3329 queue_regulatory_request(request);
3333 EXPORT_SYMBOL(regulatory_hint);
3335 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3336 const u8 *country_ie, u8 country_ie_len)
3339 enum environment_cap env = ENVIRON_ANY;
3340 struct regulatory_request *request = NULL, *lr;
3342 /* IE len must be evenly divisible by 2 */
3343 if (country_ie_len & 0x01)
3346 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3349 request = kzalloc(sizeof(*request), GFP_KERNEL);
3353 alpha2[0] = country_ie[0];
3354 alpha2[1] = country_ie[1];
3356 if (country_ie[2] == 'I')
3357 env = ENVIRON_INDOOR;
3358 else if (country_ie[2] == 'O')
3359 env = ENVIRON_OUTDOOR;
3362 lr = get_last_request();
3368 * We will run this only upon a successful connection on cfg80211.
3369 * We leave conflict resolution to the workqueue, where can hold
3372 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3373 lr->wiphy_idx != WIPHY_IDX_INVALID)
3376 request->wiphy_idx = get_wiphy_idx(wiphy);
3377 request->alpha2[0] = alpha2[0];
3378 request->alpha2[1] = alpha2[1];
3379 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3380 request->country_ie_env = env;
3382 /* Allow calling CRDA again */
3383 reset_crda_timeouts();
3385 queue_regulatory_request(request);
3392 static void restore_alpha2(char *alpha2, bool reset_user)
3394 /* indicates there is no alpha2 to consider for restoration */
3398 /* The user setting has precedence over the module parameter */
3399 if (is_user_regdom_saved()) {
3400 /* Unless we're asked to ignore it and reset it */
3402 pr_debug("Restoring regulatory settings including user preference\n");
3403 user_alpha2[0] = '9';
3404 user_alpha2[1] = '7';
3407 * If we're ignoring user settings, we still need to
3408 * check the module parameter to ensure we put things
3409 * back as they were for a full restore.
3411 if (!is_world_regdom(ieee80211_regdom)) {
3412 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413 ieee80211_regdom[0], ieee80211_regdom[1]);
3414 alpha2[0] = ieee80211_regdom[0];
3415 alpha2[1] = ieee80211_regdom[1];
3418 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3419 user_alpha2[0], user_alpha2[1]);
3420 alpha2[0] = user_alpha2[0];
3421 alpha2[1] = user_alpha2[1];
3423 } else if (!is_world_regdom(ieee80211_regdom)) {
3424 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3425 ieee80211_regdom[0], ieee80211_regdom[1]);
3426 alpha2[0] = ieee80211_regdom[0];
3427 alpha2[1] = ieee80211_regdom[1];
3429 pr_debug("Restoring regulatory settings\n");
3432 static void restore_custom_reg_settings(struct wiphy *wiphy)
3434 struct ieee80211_supported_band *sband;
3435 enum nl80211_band band;
3436 struct ieee80211_channel *chan;
3439 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3440 sband = wiphy->bands[band];
3443 for (i = 0; i < sband->n_channels; i++) {
3444 chan = &sband->channels[i];
3445 chan->flags = chan->orig_flags;
3446 chan->max_antenna_gain = chan->orig_mag;
3447 chan->max_power = chan->orig_mpwr;
3448 chan->beacon_found = false;
3454 * Restoring regulatory settings involves ignoring any
3455 * possibly stale country IE information and user regulatory
3456 * settings if so desired, this includes any beacon hints
3457 * learned as we could have traveled outside to another country
3458 * after disconnection. To restore regulatory settings we do
3459 * exactly what we did at bootup:
3461 * - send a core regulatory hint
3462 * - send a user regulatory hint if applicable
3464 * Device drivers that send a regulatory hint for a specific country
3465 * keep their own regulatory domain on wiphy->regd so that does
3466 * not need to be remembered.
3468 static void restore_regulatory_settings(bool reset_user, bool cached)
3471 char world_alpha2[2];
3472 struct reg_beacon *reg_beacon, *btmp;
3473 LIST_HEAD(tmp_reg_req_list);
3474 struct cfg80211_registered_device *rdev;
3479 * Clear the indoor setting in case that it is not controlled by user
3480 * space, as otherwise there is no guarantee that the device is still
3481 * operating in an indoor environment.
3483 spin_lock(®_indoor_lock);
3484 if (reg_is_indoor && !reg_is_indoor_portid) {
3485 reg_is_indoor = false;
3486 reg_check_channels();
3488 spin_unlock(®_indoor_lock);
3490 reset_regdomains(true, &world_regdom);
3491 restore_alpha2(alpha2, reset_user);
3494 * If there's any pending requests we simply
3495 * stash them to a temporary pending queue and
3496 * add then after we've restored regulatory
3499 spin_lock(®_requests_lock);
3500 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3501 spin_unlock(®_requests_lock);
3503 /* Clear beacon hints */
3504 spin_lock_bh(®_pending_beacons_lock);
3505 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3506 list_del(®_beacon->list);
3509 spin_unlock_bh(®_pending_beacons_lock);
3511 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3512 list_del(®_beacon->list);
3516 /* First restore to the basic regulatory settings */
3517 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3518 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3520 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3521 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3523 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3524 restore_custom_reg_settings(&rdev->wiphy);
3527 if (cached && (!is_an_alpha2(alpha2) ||
3528 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3529 reset_regdomains(false, cfg80211_world_regdom);
3530 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3531 print_regdomain(get_cfg80211_regdom());
3532 nl80211_send_reg_change_event(&core_request_world);
3533 reg_set_request_processed();
3535 if (is_an_alpha2(alpha2) &&
3536 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3537 struct regulatory_request *ureq;
3539 spin_lock(®_requests_lock);
3540 ureq = list_last_entry(®_requests_list,
3541 struct regulatory_request,
3543 list_del(&ureq->list);
3544 spin_unlock(®_requests_lock);
3546 notify_self_managed_wiphys(ureq);
3547 reg_update_last_request(ureq);
3548 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3549 REGD_SOURCE_CACHED);
3552 regulatory_hint_core(world_alpha2);
3555 * This restores the ieee80211_regdom module parameter
3556 * preference or the last user requested regulatory
3557 * settings, user regulatory settings takes precedence.
3559 if (is_an_alpha2(alpha2))
3560 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3563 spin_lock(®_requests_lock);
3564 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3565 spin_unlock(®_requests_lock);
3567 pr_debug("Kicking the queue\n");
3569 schedule_work(®_work);
3572 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3574 struct cfg80211_registered_device *rdev;
3575 struct wireless_dev *wdev;
3577 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3578 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3580 if (!(wdev->wiphy->regulatory_flags & flag)) {
3591 void regulatory_hint_disconnect(void)
3593 /* Restore of regulatory settings is not required when wiphy(s)
3594 * ignore IE from connected access point but clearance of beacon hints
3595 * is required when wiphy(s) supports beacon hints.
3597 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3598 struct reg_beacon *reg_beacon, *btmp;
3600 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3603 spin_lock_bh(®_pending_beacons_lock);
3604 list_for_each_entry_safe(reg_beacon, btmp,
3605 ®_pending_beacons, list) {
3606 list_del(®_beacon->list);
3609 spin_unlock_bh(®_pending_beacons_lock);
3611 list_for_each_entry_safe(reg_beacon, btmp,
3612 ®_beacon_list, list) {
3613 list_del(®_beacon->list);
3620 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3621 restore_regulatory_settings(false, true);
3624 static bool freq_is_chan_12_13_14(u32 freq)
3626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3635 struct reg_beacon *pending_beacon;
3637 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3638 if (ieee80211_channel_equal(beacon_chan,
3639 &pending_beacon->chan))
3644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3645 struct ieee80211_channel *beacon_chan,
3648 struct reg_beacon *reg_beacon;
3651 if (beacon_chan->beacon_found ||
3652 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3653 (beacon_chan->band == NL80211_BAND_2GHZ &&
3654 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3657 spin_lock_bh(®_pending_beacons_lock);
3658 processing = pending_reg_beacon(beacon_chan);
3659 spin_unlock_bh(®_pending_beacons_lock);
3664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3668 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3669 beacon_chan->center_freq, beacon_chan->freq_offset,
3670 ieee80211_freq_khz_to_channel(
3671 ieee80211_channel_to_khz(beacon_chan)),
3674 memcpy(®_beacon->chan, beacon_chan,
3675 sizeof(struct ieee80211_channel));
3678 * Since we can be called from BH or and non-BH context
3679 * we must use spin_lock_bh()
3681 spin_lock_bh(®_pending_beacons_lock);
3682 list_add_tail(®_beacon->list, ®_pending_beacons);
3683 spin_unlock_bh(®_pending_beacons_lock);
3685 schedule_work(®_work);
3690 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3693 const struct ieee80211_reg_rule *reg_rule = NULL;
3694 const struct ieee80211_freq_range *freq_range = NULL;
3695 const struct ieee80211_power_rule *power_rule = NULL;
3696 char bw[32], cac_time[32];
3698 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3700 for (i = 0; i < rd->n_reg_rules; i++) {
3701 reg_rule = &rd->reg_rules[i];
3702 freq_range = ®_rule->freq_range;
3703 power_rule = ®_rule->power_rule;
3705 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3706 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3707 freq_range->max_bandwidth_khz,
3708 reg_get_max_bandwidth(rd, reg_rule));
3710 snprintf(bw, sizeof(bw), "%d KHz",
3711 freq_range->max_bandwidth_khz);
3713 if (reg_rule->flags & NL80211_RRF_DFS)
3714 scnprintf(cac_time, sizeof(cac_time), "%u s",
3715 reg_rule->dfs_cac_ms/1000);
3717 scnprintf(cac_time, sizeof(cac_time), "N/A");
3721 * There may not be documentation for max antenna gain
3722 * in certain regions
3724 if (power_rule->max_antenna_gain)
3725 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3726 freq_range->start_freq_khz,
3727 freq_range->end_freq_khz,
3729 power_rule->max_antenna_gain,
3730 power_rule->max_eirp,
3733 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3734 freq_range->start_freq_khz,
3735 freq_range->end_freq_khz,
3737 power_rule->max_eirp,
3742 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3744 switch (dfs_region) {
3745 case NL80211_DFS_UNSET:
3746 case NL80211_DFS_FCC:
3747 case NL80211_DFS_ETSI:
3748 case NL80211_DFS_JP:
3751 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3756 static void print_regdomain(const struct ieee80211_regdomain *rd)
3758 struct regulatory_request *lr = get_last_request();
3760 if (is_intersected_alpha2(rd->alpha2)) {
3761 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3762 struct cfg80211_registered_device *rdev;
3763 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3765 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3766 rdev->country_ie_alpha2[0],
3767 rdev->country_ie_alpha2[1]);
3769 pr_debug("Current regulatory domain intersected:\n");
3771 pr_debug("Current regulatory domain intersected:\n");
3772 } else if (is_world_regdom(rd->alpha2)) {
3773 pr_debug("World regulatory domain updated:\n");
3775 if (is_unknown_alpha2(rd->alpha2))
3776 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3778 if (reg_request_cell_base(lr))
3779 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3780 rd->alpha2[0], rd->alpha2[1]);
3782 pr_debug("Regulatory domain changed to country: %c%c\n",
3783 rd->alpha2[0], rd->alpha2[1]);
3787 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3793 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3797 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3799 if (!is_world_regdom(rd->alpha2))
3801 update_world_regdomain(rd);
3805 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3806 struct regulatory_request *user_request)
3808 const struct ieee80211_regdomain *intersected_rd = NULL;
3810 if (!regdom_changes(rd->alpha2))
3813 if (!is_valid_rd(rd)) {
3814 pr_err("Invalid regulatory domain detected: %c%c\n",
3815 rd->alpha2[0], rd->alpha2[1]);
3816 print_regdomain_info(rd);
3820 if (!user_request->intersect) {
3821 reset_regdomains(false, rd);
3825 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3826 if (!intersected_rd)
3831 reset_regdomains(false, intersected_rd);
3836 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3837 struct regulatory_request *driver_request)
3839 const struct ieee80211_regdomain *regd;
3840 const struct ieee80211_regdomain *intersected_rd = NULL;
3841 const struct ieee80211_regdomain *tmp;
3842 struct wiphy *request_wiphy;
3844 if (is_world_regdom(rd->alpha2))
3847 if (!regdom_changes(rd->alpha2))
3850 if (!is_valid_rd(rd)) {
3851 pr_err("Invalid regulatory domain detected: %c%c\n",
3852 rd->alpha2[0], rd->alpha2[1]);
3853 print_regdomain_info(rd);
3857 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3861 if (!driver_request->intersect) {
3863 wiphy_lock(request_wiphy);
3864 if (request_wiphy->regd) {
3865 wiphy_unlock(request_wiphy);
3869 regd = reg_copy_regd(rd);
3871 wiphy_unlock(request_wiphy);
3872 return PTR_ERR(regd);
3875 rcu_assign_pointer(request_wiphy->regd, regd);
3876 wiphy_unlock(request_wiphy);
3877 reset_regdomains(false, rd);
3881 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3882 if (!intersected_rd)
3886 * We can trash what CRDA provided now.
3887 * However if a driver requested this specific regulatory
3888 * domain we keep it for its private use
3890 tmp = get_wiphy_regdom(request_wiphy);
3891 rcu_assign_pointer(request_wiphy->regd, rd);
3892 rcu_free_regdom(tmp);
3896 reset_regdomains(false, intersected_rd);
3901 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3902 struct regulatory_request *country_ie_request)
3904 struct wiphy *request_wiphy;
3906 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3907 !is_unknown_alpha2(rd->alpha2))
3911 * Lets only bother proceeding on the same alpha2 if the current
3912 * rd is non static (it means CRDA was present and was used last)
3913 * and the pending request came in from a country IE
3916 if (!is_valid_rd(rd)) {
3917 pr_err("Invalid regulatory domain detected: %c%c\n",
3918 rd->alpha2[0], rd->alpha2[1]);
3919 print_regdomain_info(rd);
3923 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3927 if (country_ie_request->intersect)
3930 reset_regdomains(false, rd);
3935 * Use this call to set the current regulatory domain. Conflicts with
3936 * multiple drivers can be ironed out later. Caller must've already
3937 * kmalloc'd the rd structure.
3939 int set_regdom(const struct ieee80211_regdomain *rd,
3940 enum ieee80211_regd_source regd_src)
3942 struct regulatory_request *lr;
3943 bool user_reset = false;
3946 if (IS_ERR_OR_NULL(rd))
3949 if (!reg_is_valid_request(rd->alpha2)) {
3954 if (regd_src == REGD_SOURCE_CRDA)
3955 reset_crda_timeouts();
3957 lr = get_last_request();
3959 /* Note that this doesn't update the wiphys, this is done below */
3960 switch (lr->initiator) {
3961 case NL80211_REGDOM_SET_BY_CORE:
3962 r = reg_set_rd_core(rd);
3964 case NL80211_REGDOM_SET_BY_USER:
3965 cfg80211_save_user_regdom(rd);
3966 r = reg_set_rd_user(rd, lr);
3969 case NL80211_REGDOM_SET_BY_DRIVER:
3970 r = reg_set_rd_driver(rd, lr);
3972 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3973 r = reg_set_rd_country_ie(rd, lr);
3976 WARN(1, "invalid initiator %d\n", lr->initiator);
3984 reg_set_request_processed();
3987 /* Back to world regulatory in case of errors */
3988 restore_regulatory_settings(user_reset, false);
3995 /* This would make this whole thing pointless */
3996 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3999 /* update all wiphys now with the new established regulatory domain */
4000 update_all_wiphy_regulatory(lr->initiator);
4002 print_regdomain(get_cfg80211_regdom());
4004 nl80211_send_reg_change_event(lr);
4006 reg_set_request_processed();
4011 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4012 struct ieee80211_regdomain *rd)
4014 const struct ieee80211_regdomain *regd;
4015 const struct ieee80211_regdomain *prev_regd;
4016 struct cfg80211_registered_device *rdev;
4018 if (WARN_ON(!wiphy || !rd))
4021 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4022 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4025 if (WARN(!is_valid_rd(rd),
4026 "Invalid regulatory domain detected: %c%c\n",
4027 rd->alpha2[0], rd->alpha2[1])) {
4028 print_regdomain_info(rd);
4032 regd = reg_copy_regd(rd);
4034 return PTR_ERR(regd);
4036 rdev = wiphy_to_rdev(wiphy);
4038 spin_lock(®_requests_lock);
4039 prev_regd = rdev->requested_regd;
4040 rdev->requested_regd = regd;
4041 spin_unlock(®_requests_lock);
4047 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4048 struct ieee80211_regdomain *rd)
4050 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4055 schedule_work(®_work);
4058 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4060 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4061 struct ieee80211_regdomain *rd)
4067 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4071 /* process the request immediately */
4072 reg_process_self_managed_hint(wiphy);
4073 reg_check_channels();
4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4078 void wiphy_regulatory_register(struct wiphy *wiphy)
4080 struct regulatory_request *lr = get_last_request();
4082 /* self-managed devices ignore beacon hints and country IE */
4083 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4084 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4085 REGULATORY_COUNTRY_IE_IGNORE;
4088 * The last request may have been received before this
4089 * registration call. Call the driver notifier if
4090 * initiator is USER.
4092 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4093 reg_call_notifier(wiphy, lr);
4096 if (!reg_dev_ignore_cell_hint(wiphy))
4097 reg_num_devs_support_basehint++;
4099 wiphy_update_regulatory(wiphy, lr->initiator);
4100 wiphy_all_share_dfs_chan_state(wiphy);
4101 reg_process_self_managed_hints();
4104 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4106 struct wiphy *request_wiphy = NULL;
4107 struct regulatory_request *lr;
4109 lr = get_last_request();
4111 if (!reg_dev_ignore_cell_hint(wiphy))
4112 reg_num_devs_support_basehint--;
4114 rcu_free_regdom(get_wiphy_regdom(wiphy));
4115 RCU_INIT_POINTER(wiphy->regd, NULL);
4118 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4120 if (!request_wiphy || request_wiphy != wiphy)
4123 lr->wiphy_idx = WIPHY_IDX_INVALID;
4124 lr->country_ie_env = ENVIRON_ANY;
4128 * See FCC notices for UNII band definitions
4129 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4130 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4132 int cfg80211_get_unii(int freq)
4135 if (freq >= 5150 && freq <= 5250)
4139 if (freq > 5250 && freq <= 5350)
4143 if (freq > 5350 && freq <= 5470)
4147 if (freq > 5470 && freq <= 5725)
4151 if (freq > 5725 && freq <= 5825)
4155 if (freq > 5925 && freq <= 6425)
4159 if (freq > 6425 && freq <= 6525)
4163 if (freq > 6525 && freq <= 6875)
4167 if (freq > 6875 && freq <= 7125)
4173 bool regulatory_indoor_allowed(void)
4175 return reg_is_indoor;
4178 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4180 const struct ieee80211_regdomain *regd = NULL;
4181 const struct ieee80211_regdomain *wiphy_regd = NULL;
4182 bool pre_cac_allowed = false;
4186 regd = rcu_dereference(cfg80211_regdomain);
4187 wiphy_regd = rcu_dereference(wiphy->regd);
4189 if (regd->dfs_region == NL80211_DFS_ETSI)
4190 pre_cac_allowed = true;
4194 return pre_cac_allowed;
4197 if (regd->dfs_region == wiphy_regd->dfs_region &&
4198 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4199 pre_cac_allowed = true;
4203 return pre_cac_allowed;
4205 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4207 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4209 struct wireless_dev *wdev;
4210 /* If we finished CAC or received radar, we should end any
4211 * CAC running on the same channels.
4212 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4213 * either all channels are available - those the CAC_FINISHED
4214 * event has effected another wdev state, or there is a channel
4215 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4216 * event has effected another wdev state.
4217 * In both cases we should end the CAC on the wdev.
4219 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4220 struct cfg80211_chan_def *chandef;
4222 if (!wdev->cac_started)
4225 /* FIXME: radar detection is tied to link 0 for now */
4226 chandef = wdev_chandef(wdev, 0);
4230 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4231 rdev_end_cac(rdev, wdev->netdev);
4235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4236 struct cfg80211_chan_def *chandef,
4237 enum nl80211_dfs_state dfs_state,
4238 enum nl80211_radar_event event)
4240 struct cfg80211_registered_device *rdev;
4244 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4248 if (wiphy == &rdev->wiphy)
4251 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4254 if (!ieee80211_get_channel(&rdev->wiphy,
4255 chandef->chan->center_freq))
4258 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4260 if (event == NL80211_RADAR_DETECTED ||
4261 event == NL80211_RADAR_CAC_FINISHED) {
4262 cfg80211_sched_dfs_chan_update(rdev);
4263 cfg80211_check_and_end_cac(rdev);
4266 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4270 static int __init regulatory_init_db(void)
4275 * It's possible that - due to other bugs/issues - cfg80211
4276 * never called regulatory_init() below, or that it failed;
4277 * in that case, don't try to do any further work here as
4278 * it's doomed to lead to crashes.
4280 if (IS_ERR_OR_NULL(reg_pdev))
4283 err = load_builtin_regdb_keys();
4285 platform_device_unregister(reg_pdev);
4289 /* We always try to get an update for the static regdomain */
4290 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4292 if (err == -ENOMEM) {
4293 platform_device_unregister(reg_pdev);
4297 * N.B. kobject_uevent_env() can fail mainly for when we're out
4298 * memory which is handled and propagated appropriately above
4299 * but it can also fail during a netlink_broadcast() or during
4300 * early boot for call_usermodehelper(). For now treat these
4301 * errors as non-fatal.
4303 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4307 * Finally, if the user set the module parameter treat it
4310 if (!is_world_regdom(ieee80211_regdom))
4311 regulatory_hint_user(ieee80211_regdom,
4312 NL80211_USER_REG_HINT_USER);
4317 late_initcall(regulatory_init_db);
4320 int __init regulatory_init(void)
4322 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4323 if (IS_ERR(reg_pdev))
4324 return PTR_ERR(reg_pdev);
4326 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4328 user_alpha2[0] = '9';
4329 user_alpha2[1] = '7';
4332 return regulatory_init_db();
4338 void regulatory_exit(void)
4340 struct regulatory_request *reg_request, *tmp;
4341 struct reg_beacon *reg_beacon, *btmp;
4343 cancel_work_sync(®_work);
4344 cancel_crda_timeout_sync();
4345 cancel_delayed_work_sync(®_check_chans);
4347 /* Lock to suppress warnings */
4349 reset_regdomains(true, NULL);
4352 dev_set_uevent_suppress(®_pdev->dev, true);
4354 platform_device_unregister(reg_pdev);
4356 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4357 list_del(®_beacon->list);
4361 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4362 list_del(®_beacon->list);
4366 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4367 list_del(®_request->list);
4371 if (!IS_ERR_OR_NULL(regdb))
4373 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4374 kfree(cfg80211_user_regdom);
4376 free_regdb_keyring();