1 // SPDX-License-Identifier: GPL-2.0-only
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117 /* Protocol family. */
118 static struct proto vsock_proto = {
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
159 #define MAX_PORT_RETRIES 24
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
186 if (vsock_addr_bound(&vsk->local_addr))
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
192 static void vsock_init_tables(void)
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
207 list_add(&vsk->bound_table, list);
210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
214 list_add(&vsk->connected_table, list);
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 list_del_init(&vsk->bound_table);
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 list_del_init(&vsk->connected_table);
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 struct vsock_sock *vsk;
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
249 struct vsock_sock *vsk;
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
269 void vsock_insert_connected(struct vsock_sock *vsk)
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280 void vsock_remove_bound(struct vsock_sock *vsk)
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289 void vsock_remove_connected(struct vsock_sock *vsk)
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
307 spin_unlock_bh(&vsock_table_lock);
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
323 spin_unlock_bh(&vsock_table_lock);
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329 void vsock_remove_sock(struct vsock_sock *vsk)
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
340 spin_lock_bh(&vsock_table_lock);
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
349 spin_unlock_bh(&vsock_table_lock);
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
369 struct vsock_sock *vpending = vsock_sk(pending);
371 list_del_init(&vpending->pending_links);
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
385 sock_hold(connected);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
391 static bool vsock_use_local_transport(unsigned int remote_cid)
393 if (!transport_local)
396 if (remote_cid == VMADDR_CID_LOCAL)
400 return remote_cid == transport_g2h->get_local_cid();
402 return remote_cid == VMADDR_CID_HOST;
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
416 /* Assign a transport to a socket and call the .init transport callback.
418 * Note: for connection oriented socket this must be called when vsk->remote_addr
419 * is set (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
430 const struct vsock_transport *new_transport;
431 struct sock *sk = sk_vsock(vsk);
432 unsigned int remote_cid = vsk->remote_addr.svm_cid;
436 /* If the packet is coming with the source and destination CIDs higher
437 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438 * forwarded to the host should be established. Then the host will
439 * need to forward the packets to the guest.
441 * The flag is set on the (listen) receive path (psk is not NULL). On
442 * the connect path the flag can be set by the user space application.
444 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
448 remote_flags = vsk->remote_addr.svm_flags;
450 switch (sk->sk_type) {
452 new_transport = transport_dgram;
456 if (vsock_use_local_transport(remote_cid))
457 new_transport = transport_local;
458 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
459 (remote_flags & VMADDR_FLAG_TO_HOST))
460 new_transport = transport_g2h;
462 new_transport = transport_h2g;
465 return -ESOCKTNOSUPPORT;
468 if (vsk->transport) {
469 if (vsk->transport == new_transport)
472 /* transport->release() must be called with sock lock acquired.
473 * This path can only be taken during vsock_connect(), where we
474 * have already held the sock lock. In the other cases, this
475 * function is called on a new socket which is not assigned to
478 vsk->transport->release(vsk);
479 vsock_deassign_transport(vsk);
482 /* We increase the module refcnt to prevent the transport unloading
483 * while there are open sockets assigned to it.
485 if (!new_transport || !try_module_get(new_transport->module))
488 if (sk->sk_type == SOCK_SEQPACKET) {
489 if (!new_transport->seqpacket_allow ||
490 !new_transport->seqpacket_allow(remote_cid)) {
491 module_put(new_transport->module);
492 return -ESOCKTNOSUPPORT;
496 ret = new_transport->init(vsk, psk);
498 module_put(new_transport->module);
502 vsk->transport = new_transport;
506 EXPORT_SYMBOL_GPL(vsock_assign_transport);
508 bool vsock_find_cid(unsigned int cid)
510 if (transport_g2h && cid == transport_g2h->get_local_cid())
513 if (transport_h2g && cid == VMADDR_CID_HOST)
516 if (transport_local && cid == VMADDR_CID_LOCAL)
521 EXPORT_SYMBOL_GPL(vsock_find_cid);
523 static struct sock *vsock_dequeue_accept(struct sock *listener)
525 struct vsock_sock *vlistener;
526 struct vsock_sock *vconnected;
528 vlistener = vsock_sk(listener);
530 if (list_empty(&vlistener->accept_queue))
533 vconnected = list_entry(vlistener->accept_queue.next,
534 struct vsock_sock, accept_queue);
536 list_del_init(&vconnected->accept_queue);
538 /* The caller will need a reference on the connected socket so we let
539 * it call sock_put().
542 return sk_vsock(vconnected);
545 static bool vsock_is_accept_queue_empty(struct sock *sk)
547 struct vsock_sock *vsk = vsock_sk(sk);
548 return list_empty(&vsk->accept_queue);
551 static bool vsock_is_pending(struct sock *sk)
553 struct vsock_sock *vsk = vsock_sk(sk);
554 return !list_empty(&vsk->pending_links);
557 static int vsock_send_shutdown(struct sock *sk, int mode)
559 struct vsock_sock *vsk = vsock_sk(sk);
564 return vsk->transport->shutdown(vsk, mode);
567 static void vsock_pending_work(struct work_struct *work)
570 struct sock *listener;
571 struct vsock_sock *vsk;
574 vsk = container_of(work, struct vsock_sock, pending_work.work);
576 listener = vsk->listener;
580 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
582 if (vsock_is_pending(sk)) {
583 vsock_remove_pending(listener, sk);
585 sk_acceptq_removed(listener);
586 } else if (!vsk->rejected) {
587 /* We are not on the pending list and accept() did not reject
588 * us, so we must have been accepted by our user process. We
589 * just need to drop our references to the sockets and be on
596 /* We need to remove ourself from the global connected sockets list so
597 * incoming packets can't find this socket, and to reduce the reference
600 vsock_remove_connected(vsk);
602 sk->sk_state = TCP_CLOSE;
606 release_sock(listener);
614 /**** SOCKET OPERATIONS ****/
616 static int __vsock_bind_connectible(struct vsock_sock *vsk,
617 struct sockaddr_vm *addr)
620 struct sockaddr_vm new_addr;
623 port = LAST_RESERVED_PORT + 1 +
624 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
626 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
628 if (addr->svm_port == VMADDR_PORT_ANY) {
632 for (i = 0; i < MAX_PORT_RETRIES; i++) {
633 if (port <= LAST_RESERVED_PORT)
634 port = LAST_RESERVED_PORT + 1;
636 new_addr.svm_port = port++;
638 if (!__vsock_find_bound_socket(&new_addr)) {
645 return -EADDRNOTAVAIL;
647 /* If port is in reserved range, ensure caller
648 * has necessary privileges.
650 if (addr->svm_port <= LAST_RESERVED_PORT &&
651 !capable(CAP_NET_BIND_SERVICE)) {
655 if (__vsock_find_bound_socket(&new_addr))
659 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
661 /* Remove connection oriented sockets from the unbound list and add them
662 * to the hash table for easy lookup by its address. The unbound list
663 * is simply an extra entry at the end of the hash table, a trick used
666 __vsock_remove_bound(vsk);
667 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
672 static int __vsock_bind_dgram(struct vsock_sock *vsk,
673 struct sockaddr_vm *addr)
675 return vsk->transport->dgram_bind(vsk, addr);
678 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
680 struct vsock_sock *vsk = vsock_sk(sk);
683 /* First ensure this socket isn't already bound. */
684 if (vsock_addr_bound(&vsk->local_addr))
687 /* Now bind to the provided address or select appropriate values if
688 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
689 * like AF_INET prevents binding to a non-local IP address (in most
690 * cases), we only allow binding to a local CID.
692 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
693 return -EADDRNOTAVAIL;
695 switch (sk->sk_socket->type) {
698 spin_lock_bh(&vsock_table_lock);
699 retval = __vsock_bind_connectible(vsk, addr);
700 spin_unlock_bh(&vsock_table_lock);
704 retval = __vsock_bind_dgram(vsk, addr);
715 static void vsock_connect_timeout(struct work_struct *work);
717 static struct sock *__vsock_create(struct net *net,
725 struct vsock_sock *psk;
726 struct vsock_sock *vsk;
728 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
732 sock_init_data(sock, sk);
734 /* sk->sk_type is normally set in sock_init_data, but only if sock is
735 * non-NULL. We make sure that our sockets always have a type by
736 * setting it here if needed.
742 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
743 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
745 sk->sk_destruct = vsock_sk_destruct;
746 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
747 sock_reset_flag(sk, SOCK_DONE);
749 INIT_LIST_HEAD(&vsk->bound_table);
750 INIT_LIST_HEAD(&vsk->connected_table);
751 vsk->listener = NULL;
752 INIT_LIST_HEAD(&vsk->pending_links);
753 INIT_LIST_HEAD(&vsk->accept_queue);
754 vsk->rejected = false;
755 vsk->sent_request = false;
756 vsk->ignore_connecting_rst = false;
757 vsk->peer_shutdown = 0;
758 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
759 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
761 psk = parent ? vsock_sk(parent) : NULL;
763 vsk->trusted = psk->trusted;
764 vsk->owner = get_cred(psk->owner);
765 vsk->connect_timeout = psk->connect_timeout;
766 vsk->buffer_size = psk->buffer_size;
767 vsk->buffer_min_size = psk->buffer_min_size;
768 vsk->buffer_max_size = psk->buffer_max_size;
769 security_sk_clone(parent, sk);
771 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
772 vsk->owner = get_current_cred();
773 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
774 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
775 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
776 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
782 static bool sock_type_connectible(u16 type)
784 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
787 static void __vsock_release(struct sock *sk, int level)
790 struct sock *pending;
791 struct vsock_sock *vsk;
794 pending = NULL; /* Compiler warning. */
796 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
797 * version to avoid the warning "possible recursive locking
798 * detected". When "level" is 0, lock_sock_nested(sk, level)
799 * is the same as lock_sock(sk).
801 lock_sock_nested(sk, level);
804 vsk->transport->release(vsk);
805 else if (sock_type_connectible(sk->sk_type))
806 vsock_remove_sock(vsk);
809 sk->sk_shutdown = SHUTDOWN_MASK;
811 skb_queue_purge(&sk->sk_receive_queue);
813 /* Clean up any sockets that never were accepted. */
814 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
815 __vsock_release(pending, SINGLE_DEPTH_NESTING);
824 static void vsock_sk_destruct(struct sock *sk)
826 struct vsock_sock *vsk = vsock_sk(sk);
828 vsock_deassign_transport(vsk);
830 /* When clearing these addresses, there's no need to set the family and
831 * possibly register the address family with the kernel.
833 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
834 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
836 put_cred(vsk->owner);
839 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
843 err = sock_queue_rcv_skb(sk, skb);
850 struct sock *vsock_create_connected(struct sock *parent)
852 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
855 EXPORT_SYMBOL_GPL(vsock_create_connected);
857 s64 vsock_stream_has_data(struct vsock_sock *vsk)
859 return vsk->transport->stream_has_data(vsk);
861 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
863 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
865 struct sock *sk = sk_vsock(vsk);
867 if (sk->sk_type == SOCK_SEQPACKET)
868 return vsk->transport->seqpacket_has_data(vsk);
870 return vsock_stream_has_data(vsk);
873 s64 vsock_stream_has_space(struct vsock_sock *vsk)
875 return vsk->transport->stream_has_space(vsk);
877 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
879 static int vsock_release(struct socket *sock)
881 __vsock_release(sock->sk, 0);
883 sock->state = SS_FREE;
889 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
893 struct sockaddr_vm *vm_addr;
897 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
901 err = __vsock_bind(sk, vm_addr);
907 static int vsock_getname(struct socket *sock,
908 struct sockaddr *addr, int peer)
912 struct vsock_sock *vsk;
913 struct sockaddr_vm *vm_addr;
922 if (sock->state != SS_CONNECTED) {
926 vm_addr = &vsk->remote_addr;
928 vm_addr = &vsk->local_addr;
936 /* sys_getsockname() and sys_getpeername() pass us a
937 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
938 * that macro is defined in socket.c instead of .h, so we hardcode its
941 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
942 memcpy(addr, vm_addr, sizeof(*vm_addr));
943 err = sizeof(*vm_addr);
950 static int vsock_shutdown(struct socket *sock, int mode)
955 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
956 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
957 * here like the other address families do. Note also that the
958 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
959 * which is what we want.
963 if ((mode & ~SHUTDOWN_MASK) || !mode)
966 /* If this is a connection oriented socket and it is not connected then
967 * bail out immediately. If it is a DGRAM socket then we must first
968 * kick the socket so that it wakes up from any sleeping calls, for
969 * example recv(), and then afterwards return the error.
975 if (sock->state == SS_UNCONNECTED) {
977 if (sock_type_connectible(sk->sk_type))
980 sock->state = SS_DISCONNECTING;
984 /* Receive and send shutdowns are treated alike. */
985 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
987 sk->sk_shutdown |= mode;
988 sk->sk_state_change(sk);
990 if (sock_type_connectible(sk->sk_type)) {
991 sock_reset_flag(sk, SOCK_DONE);
992 vsock_send_shutdown(sk, mode);
1001 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1006 struct vsock_sock *vsk;
1011 poll_wait(file, sk_sleep(sk), wait);
1015 /* Signify that there has been an error on this socket. */
1018 /* INET sockets treat local write shutdown and peer write shutdown as a
1019 * case of EPOLLHUP set.
1021 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1022 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1023 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1027 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1028 vsk->peer_shutdown & SEND_SHUTDOWN) {
1032 if (sock->type == SOCK_DGRAM) {
1033 /* For datagram sockets we can read if there is something in
1034 * the queue and write as long as the socket isn't shutdown for
1037 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1038 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1039 mask |= EPOLLIN | EPOLLRDNORM;
1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1043 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1045 } else if (sock_type_connectible(sk->sk_type)) {
1046 const struct vsock_transport *transport;
1050 transport = vsk->transport;
1052 /* Listening sockets that have connections in their accept
1053 * queue can be read.
1055 if (sk->sk_state == TCP_LISTEN
1056 && !vsock_is_accept_queue_empty(sk))
1057 mask |= EPOLLIN | EPOLLRDNORM;
1059 /* If there is something in the queue then we can read. */
1060 if (transport && transport->stream_is_active(vsk) &&
1061 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1062 bool data_ready_now = false;
1063 int ret = transport->notify_poll_in(
1064 vsk, 1, &data_ready_now);
1069 mask |= EPOLLIN | EPOLLRDNORM;
1074 /* Sockets whose connections have been closed, reset, or
1075 * terminated should also be considered read, and we check the
1076 * shutdown flag for that.
1078 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1079 vsk->peer_shutdown & SEND_SHUTDOWN) {
1080 mask |= EPOLLIN | EPOLLRDNORM;
1083 /* Connected sockets that can produce data can be written. */
1084 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1085 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1086 bool space_avail_now = false;
1087 int ret = transport->notify_poll_out(
1088 vsk, 1, &space_avail_now);
1092 if (space_avail_now)
1093 /* Remove EPOLLWRBAND since INET
1094 * sockets are not setting it.
1096 mask |= EPOLLOUT | EPOLLWRNORM;
1102 /* Simulate INET socket poll behaviors, which sets
1103 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1104 * but local send is not shutdown.
1106 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1108 mask |= EPOLLOUT | EPOLLWRNORM;
1118 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1123 struct vsock_sock *vsk;
1124 struct sockaddr_vm *remote_addr;
1125 const struct vsock_transport *transport;
1127 if (msg->msg_flags & MSG_OOB)
1130 /* For now, MSG_DONTWAIT is always assumed... */
1137 transport = vsk->transport;
1139 err = vsock_auto_bind(vsk);
1144 /* If the provided message contains an address, use that. Otherwise
1145 * fall back on the socket's remote handle (if it has been connected).
1147 if (msg->msg_name &&
1148 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1149 &remote_addr) == 0) {
1150 /* Ensure this address is of the right type and is a valid
1154 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1155 remote_addr->svm_cid = transport->get_local_cid();
1157 if (!vsock_addr_bound(remote_addr)) {
1161 } else if (sock->state == SS_CONNECTED) {
1162 remote_addr = &vsk->remote_addr;
1164 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1165 remote_addr->svm_cid = transport->get_local_cid();
1167 /* XXX Should connect() or this function ensure remote_addr is
1170 if (!vsock_addr_bound(&vsk->remote_addr)) {
1179 if (!transport->dgram_allow(remote_addr->svm_cid,
1180 remote_addr->svm_port)) {
1185 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1192 static int vsock_dgram_connect(struct socket *sock,
1193 struct sockaddr *addr, int addr_len, int flags)
1197 struct vsock_sock *vsk;
1198 struct sockaddr_vm *remote_addr;
1203 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1204 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1206 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1208 sock->state = SS_UNCONNECTED;
1211 } else if (err != 0)
1216 err = vsock_auto_bind(vsk);
1220 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1221 remote_addr->svm_port)) {
1226 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1227 sock->state = SS_CONNECTED;
1234 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1235 size_t len, int flags)
1237 struct vsock_sock *vsk = vsock_sk(sock->sk);
1239 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1242 static const struct proto_ops vsock_dgram_ops = {
1244 .owner = THIS_MODULE,
1245 .release = vsock_release,
1247 .connect = vsock_dgram_connect,
1248 .socketpair = sock_no_socketpair,
1249 .accept = sock_no_accept,
1250 .getname = vsock_getname,
1252 .ioctl = sock_no_ioctl,
1253 .listen = sock_no_listen,
1254 .shutdown = vsock_shutdown,
1255 .sendmsg = vsock_dgram_sendmsg,
1256 .recvmsg = vsock_dgram_recvmsg,
1257 .mmap = sock_no_mmap,
1258 .sendpage = sock_no_sendpage,
1261 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1263 const struct vsock_transport *transport = vsk->transport;
1265 if (!transport || !transport->cancel_pkt)
1268 return transport->cancel_pkt(vsk);
1271 static void vsock_connect_timeout(struct work_struct *work)
1274 struct vsock_sock *vsk;
1276 vsk = container_of(work, struct vsock_sock, connect_work.work);
1280 if (sk->sk_state == TCP_SYN_SENT &&
1281 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1282 sk->sk_state = TCP_CLOSE;
1283 sk->sk_err = ETIMEDOUT;
1284 sk_error_report(sk);
1285 vsock_transport_cancel_pkt(vsk);
1292 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1293 int addr_len, int flags)
1297 struct vsock_sock *vsk;
1298 const struct vsock_transport *transport;
1299 struct sockaddr_vm *remote_addr;
1309 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1310 switch (sock->state) {
1314 case SS_DISCONNECTING:
1318 /* This continues on so we can move sock into the SS_CONNECTED
1319 * state once the connection has completed (at which point err
1320 * will be set to zero also). Otherwise, we will either wait
1321 * for the connection or return -EALREADY should this be a
1322 * non-blocking call.
1327 if ((sk->sk_state == TCP_LISTEN) ||
1328 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1333 /* Set the remote address that we are connecting to. */
1334 memcpy(&vsk->remote_addr, remote_addr,
1335 sizeof(vsk->remote_addr));
1337 err = vsock_assign_transport(vsk, NULL);
1341 transport = vsk->transport;
1343 /* The hypervisor and well-known contexts do not have socket
1347 !transport->stream_allow(remote_addr->svm_cid,
1348 remote_addr->svm_port)) {
1353 err = vsock_auto_bind(vsk);
1357 sk->sk_state = TCP_SYN_SENT;
1359 err = transport->connect(vsk);
1363 /* Mark sock as connecting and set the error code to in
1364 * progress in case this is a non-blocking connect.
1366 sock->state = SS_CONNECTING;
1370 /* The receive path will handle all communication until we are able to
1371 * enter the connected state. Here we wait for the connection to be
1372 * completed or a notification of an error.
1374 timeout = vsk->connect_timeout;
1375 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1377 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1378 if (flags & O_NONBLOCK) {
1379 /* If we're not going to block, we schedule a timeout
1380 * function to generate a timeout on the connection
1381 * attempt, in case the peer doesn't respond in a
1382 * timely manner. We hold on to the socket until the
1386 schedule_delayed_work(&vsk->connect_work, timeout);
1388 /* Skip ahead to preserve error code set above. */
1393 timeout = schedule_timeout(timeout);
1396 if (signal_pending(current)) {
1397 err = sock_intr_errno(timeout);
1398 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1399 sock->state = SS_UNCONNECTED;
1400 vsock_transport_cancel_pkt(vsk);
1402 } else if (timeout == 0) {
1404 sk->sk_state = TCP_CLOSE;
1405 sock->state = SS_UNCONNECTED;
1406 vsock_transport_cancel_pkt(vsk);
1410 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1415 sk->sk_state = TCP_CLOSE;
1416 sock->state = SS_UNCONNECTED;
1422 finish_wait(sk_sleep(sk), &wait);
1428 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1431 struct sock *listener;
1433 struct sock *connected;
1434 struct vsock_sock *vconnected;
1439 listener = sock->sk;
1441 lock_sock(listener);
1443 if (!sock_type_connectible(sock->type)) {
1448 if (listener->sk_state != TCP_LISTEN) {
1453 /* Wait for children sockets to appear; these are the new sockets
1454 * created upon connection establishment.
1456 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1457 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1459 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1460 listener->sk_err == 0) {
1461 release_sock(listener);
1462 timeout = schedule_timeout(timeout);
1463 finish_wait(sk_sleep(listener), &wait);
1464 lock_sock(listener);
1466 if (signal_pending(current)) {
1467 err = sock_intr_errno(timeout);
1469 } else if (timeout == 0) {
1474 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1476 finish_wait(sk_sleep(listener), &wait);
1478 if (listener->sk_err)
1479 err = -listener->sk_err;
1482 sk_acceptq_removed(listener);
1484 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1485 vconnected = vsock_sk(connected);
1487 /* If the listener socket has received an error, then we should
1488 * reject this socket and return. Note that we simply mark the
1489 * socket rejected, drop our reference, and let the cleanup
1490 * function handle the cleanup; the fact that we found it in
1491 * the listener's accept queue guarantees that the cleanup
1492 * function hasn't run yet.
1495 vconnected->rejected = true;
1497 newsock->state = SS_CONNECTED;
1498 sock_graft(connected, newsock);
1501 release_sock(connected);
1502 sock_put(connected);
1506 release_sock(listener);
1510 static int vsock_listen(struct socket *sock, int backlog)
1514 struct vsock_sock *vsk;
1520 if (!sock_type_connectible(sk->sk_type)) {
1525 if (sock->state != SS_UNCONNECTED) {
1532 if (!vsock_addr_bound(&vsk->local_addr)) {
1537 sk->sk_max_ack_backlog = backlog;
1538 sk->sk_state = TCP_LISTEN;
1547 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1548 const struct vsock_transport *transport,
1551 if (val > vsk->buffer_max_size)
1552 val = vsk->buffer_max_size;
1554 if (val < vsk->buffer_min_size)
1555 val = vsk->buffer_min_size;
1557 if (val != vsk->buffer_size &&
1558 transport && transport->notify_buffer_size)
1559 transport->notify_buffer_size(vsk, &val);
1561 vsk->buffer_size = val;
1564 static int vsock_connectible_setsockopt(struct socket *sock,
1568 unsigned int optlen)
1572 struct vsock_sock *vsk;
1573 const struct vsock_transport *transport;
1576 if (level != AF_VSOCK)
1577 return -ENOPROTOOPT;
1579 #define COPY_IN(_v) \
1581 if (optlen < sizeof(_v)) { \
1585 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1597 transport = vsk->transport;
1600 case SO_VM_SOCKETS_BUFFER_SIZE:
1602 vsock_update_buffer_size(vsk, transport, val);
1605 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1607 vsk->buffer_max_size = val;
1608 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1611 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1613 vsk->buffer_min_size = val;
1614 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1617 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1618 struct __kernel_old_timeval tv;
1620 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1621 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1622 vsk->connect_timeout = tv.tv_sec * HZ +
1623 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1624 if (vsk->connect_timeout == 0)
1625 vsk->connect_timeout =
1626 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1646 static int vsock_connectible_getsockopt(struct socket *sock,
1647 int level, int optname,
1648 char __user *optval,
1654 struct vsock_sock *vsk;
1657 if (level != AF_VSOCK)
1658 return -ENOPROTOOPT;
1660 err = get_user(len, optlen);
1664 #define COPY_OUT(_v) \
1666 if (len < sizeof(_v)) \
1670 if (copy_to_user(optval, &_v, len) != 0) \
1680 case SO_VM_SOCKETS_BUFFER_SIZE:
1681 val = vsk->buffer_size;
1685 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1686 val = vsk->buffer_max_size;
1690 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1691 val = vsk->buffer_min_size;
1695 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1696 struct __kernel_old_timeval tv;
1697 tv.tv_sec = vsk->connect_timeout / HZ;
1699 (vsk->connect_timeout -
1700 tv.tv_sec * HZ) * (1000000 / HZ);
1705 return -ENOPROTOOPT;
1708 err = put_user(len, optlen);
1717 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1721 struct vsock_sock *vsk;
1722 const struct vsock_transport *transport;
1723 ssize_t total_written;
1726 struct vsock_transport_send_notify_data send_data;
1727 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1734 if (msg->msg_flags & MSG_OOB)
1739 transport = vsk->transport;
1741 /* Callers should not provide a destination with connection oriented
1744 if (msg->msg_namelen) {
1745 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1749 /* Send data only if both sides are not shutdown in the direction. */
1750 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1751 vsk->peer_shutdown & RCV_SHUTDOWN) {
1756 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1757 !vsock_addr_bound(&vsk->local_addr)) {
1762 if (!vsock_addr_bound(&vsk->remote_addr)) {
1763 err = -EDESTADDRREQ;
1767 /* Wait for room in the produce queue to enqueue our user's data. */
1768 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1770 err = transport->notify_send_init(vsk, &send_data);
1774 while (total_written < len) {
1777 add_wait_queue(sk_sleep(sk), &wait);
1778 while (vsock_stream_has_space(vsk) == 0 &&
1780 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1781 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1783 /* Don't wait for non-blocking sockets. */
1786 remove_wait_queue(sk_sleep(sk), &wait);
1790 err = transport->notify_send_pre_block(vsk, &send_data);
1792 remove_wait_queue(sk_sleep(sk), &wait);
1797 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1799 if (signal_pending(current)) {
1800 err = sock_intr_errno(timeout);
1801 remove_wait_queue(sk_sleep(sk), &wait);
1803 } else if (timeout == 0) {
1805 remove_wait_queue(sk_sleep(sk), &wait);
1809 remove_wait_queue(sk_sleep(sk), &wait);
1811 /* These checks occur both as part of and after the loop
1812 * conditional since we need to check before and after
1818 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1819 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1824 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1828 /* Note that enqueue will only write as many bytes as are free
1829 * in the produce queue, so we don't need to ensure len is
1830 * smaller than the queue size. It is the caller's
1831 * responsibility to check how many bytes we were able to send.
1834 if (sk->sk_type == SOCK_SEQPACKET) {
1835 written = transport->seqpacket_enqueue(vsk,
1836 msg, len - total_written);
1838 written = transport->stream_enqueue(vsk,
1839 msg, len - total_written);
1846 total_written += written;
1848 err = transport->notify_send_post_enqueue(
1849 vsk, written, &send_data);
1856 if (total_written > 0) {
1857 /* Return number of written bytes only if:
1858 * 1) SOCK_STREAM socket.
1859 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1861 if (sk->sk_type == SOCK_STREAM || total_written == len)
1862 err = total_written;
1869 static int vsock_connectible_wait_data(struct sock *sk,
1870 struct wait_queue_entry *wait,
1872 struct vsock_transport_recv_notify_data *recv_data,
1875 const struct vsock_transport *transport;
1876 struct vsock_sock *vsk;
1882 transport = vsk->transport;
1884 while ((data = vsock_connectible_has_data(vsk)) == 0) {
1885 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1887 if (sk->sk_err != 0 ||
1888 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1889 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1893 /* Don't wait for non-blocking sockets. */
1900 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1906 timeout = schedule_timeout(timeout);
1909 if (signal_pending(current)) {
1910 err = sock_intr_errno(timeout);
1912 } else if (timeout == 0) {
1918 finish_wait(sk_sleep(sk), wait);
1923 /* Internal transport error when checking for available
1924 * data. XXX This should be changed to a connection
1925 * reset in a later change.
1933 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1934 size_t len, int flags)
1936 struct vsock_transport_recv_notify_data recv_data;
1937 const struct vsock_transport *transport;
1938 struct vsock_sock *vsk;
1947 transport = vsk->transport;
1949 /* We must not copy less than target bytes into the user's buffer
1950 * before returning successfully, so we wait for the consume queue to
1951 * have that much data to consume before dequeueing. Note that this
1952 * makes it impossible to handle cases where target is greater than the
1955 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1956 if (target >= transport->stream_rcvhiwat(vsk)) {
1960 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1963 err = transport->notify_recv_init(vsk, target, &recv_data);
1971 err = vsock_connectible_wait_data(sk, &wait, timeout,
1972 &recv_data, target);
1976 err = transport->notify_recv_pre_dequeue(vsk, target,
1981 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1989 err = transport->notify_recv_post_dequeue(vsk, target, read,
1990 !(flags & MSG_PEEK), &recv_data);
1994 if (read >= target || flags & MSG_PEEK)
2002 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2012 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2013 size_t len, int flags)
2015 const struct vsock_transport *transport;
2016 struct vsock_sock *vsk;
2023 transport = vsk->transport;
2025 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2027 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2031 record_len = transport->seqpacket_dequeue(vsk, msg, flags);
2033 if (record_len < 0) {
2040 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2043 /* User sets MSG_TRUNC, so return real length of
2046 if (flags & MSG_TRUNC)
2049 err = len - msg_data_left(msg);
2051 /* Always set MSG_TRUNC if real length of packet is
2052 * bigger than user's buffer.
2054 if (record_len > len)
2055 msg->msg_flags |= MSG_TRUNC;
2063 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2067 struct vsock_sock *vsk;
2068 const struct vsock_transport *transport;
2079 transport = vsk->transport;
2081 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2082 /* Recvmsg is supposed to return 0 if a peer performs an
2083 * orderly shutdown. Differentiate between that case and when a
2084 * peer has not connected or a local shutdown occurred with the
2087 if (sock_flag(sk, SOCK_DONE))
2095 if (flags & MSG_OOB) {
2100 /* We don't check peer_shutdown flag here since peer may actually shut
2101 * down, but there can be data in the queue that a local socket can
2104 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2109 /* It is valid on Linux to pass in a zero-length receive buffer. This
2110 * is not an error. We may as well bail out now.
2117 if (sk->sk_type == SOCK_STREAM)
2118 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2120 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2127 static const struct proto_ops vsock_stream_ops = {
2129 .owner = THIS_MODULE,
2130 .release = vsock_release,
2132 .connect = vsock_connect,
2133 .socketpair = sock_no_socketpair,
2134 .accept = vsock_accept,
2135 .getname = vsock_getname,
2137 .ioctl = sock_no_ioctl,
2138 .listen = vsock_listen,
2139 .shutdown = vsock_shutdown,
2140 .setsockopt = vsock_connectible_setsockopt,
2141 .getsockopt = vsock_connectible_getsockopt,
2142 .sendmsg = vsock_connectible_sendmsg,
2143 .recvmsg = vsock_connectible_recvmsg,
2144 .mmap = sock_no_mmap,
2145 .sendpage = sock_no_sendpage,
2148 static const struct proto_ops vsock_seqpacket_ops = {
2150 .owner = THIS_MODULE,
2151 .release = vsock_release,
2153 .connect = vsock_connect,
2154 .socketpair = sock_no_socketpair,
2155 .accept = vsock_accept,
2156 .getname = vsock_getname,
2158 .ioctl = sock_no_ioctl,
2159 .listen = vsock_listen,
2160 .shutdown = vsock_shutdown,
2161 .setsockopt = vsock_connectible_setsockopt,
2162 .getsockopt = vsock_connectible_getsockopt,
2163 .sendmsg = vsock_connectible_sendmsg,
2164 .recvmsg = vsock_connectible_recvmsg,
2165 .mmap = sock_no_mmap,
2166 .sendpage = sock_no_sendpage,
2169 static int vsock_create(struct net *net, struct socket *sock,
2170 int protocol, int kern)
2172 struct vsock_sock *vsk;
2179 if (protocol && protocol != PF_VSOCK)
2180 return -EPROTONOSUPPORT;
2182 switch (sock->type) {
2184 sock->ops = &vsock_dgram_ops;
2187 sock->ops = &vsock_stream_ops;
2189 case SOCK_SEQPACKET:
2190 sock->ops = &vsock_seqpacket_ops;
2193 return -ESOCKTNOSUPPORT;
2196 sock->state = SS_UNCONNECTED;
2198 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2204 if (sock->type == SOCK_DGRAM) {
2205 ret = vsock_assign_transport(vsk, NULL);
2212 vsock_insert_unbound(vsk);
2217 static const struct net_proto_family vsock_family_ops = {
2219 .create = vsock_create,
2220 .owner = THIS_MODULE,
2223 static long vsock_dev_do_ioctl(struct file *filp,
2224 unsigned int cmd, void __user *ptr)
2226 u32 __user *p = ptr;
2227 u32 cid = VMADDR_CID_ANY;
2231 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2232 /* To be compatible with the VMCI behavior, we prioritize the
2233 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2236 cid = transport_g2h->get_local_cid();
2237 else if (transport_h2g)
2238 cid = transport_h2g->get_local_cid();
2240 if (put_user(cid, p) != 0)
2245 retval = -ENOIOCTLCMD;
2251 static long vsock_dev_ioctl(struct file *filp,
2252 unsigned int cmd, unsigned long arg)
2254 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2257 #ifdef CONFIG_COMPAT
2258 static long vsock_dev_compat_ioctl(struct file *filp,
2259 unsigned int cmd, unsigned long arg)
2261 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2265 static const struct file_operations vsock_device_ops = {
2266 .owner = THIS_MODULE,
2267 .unlocked_ioctl = vsock_dev_ioctl,
2268 #ifdef CONFIG_COMPAT
2269 .compat_ioctl = vsock_dev_compat_ioctl,
2271 .open = nonseekable_open,
2274 static struct miscdevice vsock_device = {
2276 .fops = &vsock_device_ops,
2279 static int __init vsock_init(void)
2283 vsock_init_tables();
2285 vsock_proto.owner = THIS_MODULE;
2286 vsock_device.minor = MISC_DYNAMIC_MINOR;
2287 err = misc_register(&vsock_device);
2289 pr_err("Failed to register misc device\n");
2290 goto err_reset_transport;
2293 err = proto_register(&vsock_proto, 1); /* we want our slab */
2295 pr_err("Cannot register vsock protocol\n");
2296 goto err_deregister_misc;
2299 err = sock_register(&vsock_family_ops);
2301 pr_err("could not register af_vsock (%d) address family: %d\n",
2303 goto err_unregister_proto;
2308 err_unregister_proto:
2309 proto_unregister(&vsock_proto);
2310 err_deregister_misc:
2311 misc_deregister(&vsock_device);
2312 err_reset_transport:
2316 static void __exit vsock_exit(void)
2318 misc_deregister(&vsock_device);
2319 sock_unregister(AF_VSOCK);
2320 proto_unregister(&vsock_proto);
2323 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2325 return vsk->transport;
2327 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2329 int vsock_core_register(const struct vsock_transport *t, int features)
2331 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2332 int err = mutex_lock_interruptible(&vsock_register_mutex);
2337 t_h2g = transport_h2g;
2338 t_g2h = transport_g2h;
2339 t_dgram = transport_dgram;
2340 t_local = transport_local;
2342 if (features & VSOCK_TRANSPORT_F_H2G) {
2350 if (features & VSOCK_TRANSPORT_F_G2H) {
2358 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2366 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2374 transport_h2g = t_h2g;
2375 transport_g2h = t_g2h;
2376 transport_dgram = t_dgram;
2377 transport_local = t_local;
2380 mutex_unlock(&vsock_register_mutex);
2383 EXPORT_SYMBOL_GPL(vsock_core_register);
2385 void vsock_core_unregister(const struct vsock_transport *t)
2387 mutex_lock(&vsock_register_mutex);
2389 if (transport_h2g == t)
2390 transport_h2g = NULL;
2392 if (transport_g2h == t)
2393 transport_g2h = NULL;
2395 if (transport_dgram == t)
2396 transport_dgram = NULL;
2398 if (transport_local == t)
2399 transport_local = NULL;
2401 mutex_unlock(&vsock_register_mutex);
2403 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2405 module_init(vsock_init);
2406 module_exit(vsock_exit);
2408 MODULE_AUTHOR("VMware, Inc.");
2409 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2410 MODULE_VERSION("1.0.2.0-k");
2411 MODULE_LICENSE("GPL v2");