9e0cc07e3caf2eae921c6c1800e6fc737f9a3443
[platform/kernel/linux-starfive.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119         .name = "AF_VSOCK",
120         .owner = THIS_MODULE,
121         .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)                               \
167         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)               \
169         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)                                \
171         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183         struct sock *sk = sk_vsock(vsk);
184         struct sockaddr_vm local_addr;
185
186         if (vsock_addr_bound(&vsk->local_addr))
187                 return 0;
188         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189         return __vsock_bind(sk, &local_addr);
190 }
191
192 static void vsock_init_tables(void)
193 {
194         int i;
195
196         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197                 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200                 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
203 static void __vsock_insert_bound(struct list_head *list,
204                                  struct vsock_sock *vsk)
205 {
206         sock_hold(&vsk->sk);
207         list_add(&vsk->bound_table, list);
208 }
209
210 static void __vsock_insert_connected(struct list_head *list,
211                                      struct vsock_sock *vsk)
212 {
213         sock_hold(&vsk->sk);
214         list_add(&vsk->connected_table, list);
215 }
216
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219         list_del_init(&vsk->bound_table);
220         sock_put(&vsk->sk);
221 }
222
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225         list_del_init(&vsk->connected_table);
226         sock_put(&vsk->sk);
227 }
228
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231         struct vsock_sock *vsk;
232
233         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235                         return sk_vsock(vsk);
236
237                 if (addr->svm_port == vsk->local_addr.svm_port &&
238                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239                      addr->svm_cid == VMADDR_CID_ANY))
240                         return sk_vsock(vsk);
241         }
242
243         return NULL;
244 }
245
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247                                                   struct sockaddr_vm *dst)
248 {
249         struct vsock_sock *vsk;
250
251         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252                             connected_table) {
253                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254                     dst->svm_port == vsk->local_addr.svm_port) {
255                         return sk_vsock(vsk);
256                 }
257         }
258
259         return NULL;
260 }
261
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264         spin_lock_bh(&vsock_table_lock);
265         __vsock_insert_bound(vsock_unbound_sockets, vsk);
266         spin_unlock_bh(&vsock_table_lock);
267 }
268
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271         struct list_head *list = vsock_connected_sockets(
272                 &vsk->remote_addr, &vsk->local_addr);
273
274         spin_lock_bh(&vsock_table_lock);
275         __vsock_insert_connected(list, vsk);
276         spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282         spin_lock_bh(&vsock_table_lock);
283         if (__vsock_in_bound_table(vsk))
284                 __vsock_remove_bound(vsk);
285         spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291         spin_lock_bh(&vsock_table_lock);
292         if (__vsock_in_connected_table(vsk))
293                 __vsock_remove_connected(vsk);
294         spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300         struct sock *sk;
301
302         spin_lock_bh(&vsock_table_lock);
303         sk = __vsock_find_bound_socket(addr);
304         if (sk)
305                 sock_hold(sk);
306
307         spin_unlock_bh(&vsock_table_lock);
308
309         return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314                                          struct sockaddr_vm *dst)
315 {
316         struct sock *sk;
317
318         spin_lock_bh(&vsock_table_lock);
319         sk = __vsock_find_connected_socket(src, dst);
320         if (sk)
321                 sock_hold(sk);
322
323         spin_unlock_bh(&vsock_table_lock);
324
325         return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331         vsock_remove_bound(vsk);
332         vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338         int i;
339
340         spin_lock_bh(&vsock_table_lock);
341
342         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343                 struct vsock_sock *vsk;
344                 list_for_each_entry(vsk, &vsock_connected_table[i],
345                                     connected_table)
346                         fn(sk_vsock(vsk));
347         }
348
349         spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355         struct vsock_sock *vlistener;
356         struct vsock_sock *vpending;
357
358         vlistener = vsock_sk(listener);
359         vpending = vsock_sk(pending);
360
361         sock_hold(pending);
362         sock_hold(listener);
363         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369         struct vsock_sock *vpending = vsock_sk(pending);
370
371         list_del_init(&vpending->pending_links);
372         sock_put(listener);
373         sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379         struct vsock_sock *vlistener;
380         struct vsock_sock *vconnected;
381
382         vlistener = vsock_sk(listener);
383         vconnected = vsock_sk(connected);
384
385         sock_hold(connected);
386         sock_hold(listener);
387         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393         if (!transport_local)
394                 return false;
395
396         if (remote_cid == VMADDR_CID_LOCAL)
397                 return true;
398
399         if (transport_g2h) {
400                 return remote_cid == transport_g2h->get_local_cid();
401         } else {
402                 return remote_cid == VMADDR_CID_HOST;
403         }
404 }
405
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408         if (!vsk->transport)
409                 return;
410
411         vsk->transport->destruct(vsk);
412         module_put(vsk->transport->module);
413         vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
427  */
428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 {
430         const struct vsock_transport *new_transport;
431         struct sock *sk = sk_vsock(vsk);
432         unsigned int remote_cid = vsk->remote_addr.svm_cid;
433         __u8 remote_flags;
434         int ret;
435
436         /* If the packet is coming with the source and destination CIDs higher
437          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438          * forwarded to the host should be established. Then the host will
439          * need to forward the packets to the guest.
440          *
441          * The flag is set on the (listen) receive path (psk is not NULL). On
442          * the connect path the flag can be set by the user space application.
443          */
444         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
447
448         remote_flags = vsk->remote_addr.svm_flags;
449
450         switch (sk->sk_type) {
451         case SOCK_DGRAM:
452                 new_transport = transport_dgram;
453                 break;
454         case SOCK_STREAM:
455                 if (vsock_use_local_transport(remote_cid))
456                         new_transport = transport_local;
457                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
458                          (remote_flags & VMADDR_FLAG_TO_HOST))
459                         new_transport = transport_g2h;
460                 else
461                         new_transport = transport_h2g;
462                 break;
463         default:
464                 return -ESOCKTNOSUPPORT;
465         }
466
467         if (vsk->transport) {
468                 if (vsk->transport == new_transport)
469                         return 0;
470
471                 /* transport->release() must be called with sock lock acquired.
472                  * This path can only be taken during vsock_stream_connect(),
473                  * where we have already held the sock lock.
474                  * In the other cases, this function is called on a new socket
475                  * which is not assigned to any transport.
476                  */
477                 vsk->transport->release(vsk);
478                 vsock_deassign_transport(vsk);
479         }
480
481         /* We increase the module refcnt to prevent the transport unloading
482          * while there are open sockets assigned to it.
483          */
484         if (!new_transport || !try_module_get(new_transport->module))
485                 return -ENODEV;
486
487         ret = new_transport->init(vsk, psk);
488         if (ret) {
489                 module_put(new_transport->module);
490                 return ret;
491         }
492
493         vsk->transport = new_transport;
494
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(vsock_assign_transport);
498
499 bool vsock_find_cid(unsigned int cid)
500 {
501         if (transport_g2h && cid == transport_g2h->get_local_cid())
502                 return true;
503
504         if (transport_h2g && cid == VMADDR_CID_HOST)
505                 return true;
506
507         if (transport_local && cid == VMADDR_CID_LOCAL)
508                 return true;
509
510         return false;
511 }
512 EXPORT_SYMBOL_GPL(vsock_find_cid);
513
514 static struct sock *vsock_dequeue_accept(struct sock *listener)
515 {
516         struct vsock_sock *vlistener;
517         struct vsock_sock *vconnected;
518
519         vlistener = vsock_sk(listener);
520
521         if (list_empty(&vlistener->accept_queue))
522                 return NULL;
523
524         vconnected = list_entry(vlistener->accept_queue.next,
525                                 struct vsock_sock, accept_queue);
526
527         list_del_init(&vconnected->accept_queue);
528         sock_put(listener);
529         /* The caller will need a reference on the connected socket so we let
530          * it call sock_put().
531          */
532
533         return sk_vsock(vconnected);
534 }
535
536 static bool vsock_is_accept_queue_empty(struct sock *sk)
537 {
538         struct vsock_sock *vsk = vsock_sk(sk);
539         return list_empty(&vsk->accept_queue);
540 }
541
542 static bool vsock_is_pending(struct sock *sk)
543 {
544         struct vsock_sock *vsk = vsock_sk(sk);
545         return !list_empty(&vsk->pending_links);
546 }
547
548 static int vsock_send_shutdown(struct sock *sk, int mode)
549 {
550         struct vsock_sock *vsk = vsock_sk(sk);
551
552         if (!vsk->transport)
553                 return -ENODEV;
554
555         return vsk->transport->shutdown(vsk, mode);
556 }
557
558 static void vsock_pending_work(struct work_struct *work)
559 {
560         struct sock *sk;
561         struct sock *listener;
562         struct vsock_sock *vsk;
563         bool cleanup;
564
565         vsk = container_of(work, struct vsock_sock, pending_work.work);
566         sk = sk_vsock(vsk);
567         listener = vsk->listener;
568         cleanup = true;
569
570         lock_sock(listener);
571         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
572
573         if (vsock_is_pending(sk)) {
574                 vsock_remove_pending(listener, sk);
575
576                 sk_acceptq_removed(listener);
577         } else if (!vsk->rejected) {
578                 /* We are not on the pending list and accept() did not reject
579                  * us, so we must have been accepted by our user process.  We
580                  * just need to drop our references to the sockets and be on
581                  * our way.
582                  */
583                 cleanup = false;
584                 goto out;
585         }
586
587         /* We need to remove ourself from the global connected sockets list so
588          * incoming packets can't find this socket, and to reduce the reference
589          * count.
590          */
591         vsock_remove_connected(vsk);
592
593         sk->sk_state = TCP_CLOSE;
594
595 out:
596         release_sock(sk);
597         release_sock(listener);
598         if (cleanup)
599                 sock_put(sk);
600
601         sock_put(sk);
602         sock_put(listener);
603 }
604
605 /**** SOCKET OPERATIONS ****/
606
607 static int __vsock_bind_connectible(struct vsock_sock *vsk,
608                                     struct sockaddr_vm *addr)
609 {
610         static u32 port;
611         struct sockaddr_vm new_addr;
612
613         if (!port)
614                 port = LAST_RESERVED_PORT + 1 +
615                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
616
617         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
618
619         if (addr->svm_port == VMADDR_PORT_ANY) {
620                 bool found = false;
621                 unsigned int i;
622
623                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
624                         if (port <= LAST_RESERVED_PORT)
625                                 port = LAST_RESERVED_PORT + 1;
626
627                         new_addr.svm_port = port++;
628
629                         if (!__vsock_find_bound_socket(&new_addr)) {
630                                 found = true;
631                                 break;
632                         }
633                 }
634
635                 if (!found)
636                         return -EADDRNOTAVAIL;
637         } else {
638                 /* If port is in reserved range, ensure caller
639                  * has necessary privileges.
640                  */
641                 if (addr->svm_port <= LAST_RESERVED_PORT &&
642                     !capable(CAP_NET_BIND_SERVICE)) {
643                         return -EACCES;
644                 }
645
646                 if (__vsock_find_bound_socket(&new_addr))
647                         return -EADDRINUSE;
648         }
649
650         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
651
652         /* Remove stream sockets from the unbound list and add them to the hash
653          * table for easy lookup by its address.  The unbound list is simply an
654          * extra entry at the end of the hash table, a trick used by AF_UNIX.
655          */
656         __vsock_remove_bound(vsk);
657         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
658
659         return 0;
660 }
661
662 static int __vsock_bind_dgram(struct vsock_sock *vsk,
663                               struct sockaddr_vm *addr)
664 {
665         return vsk->transport->dgram_bind(vsk, addr);
666 }
667
668 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
669 {
670         struct vsock_sock *vsk = vsock_sk(sk);
671         int retval;
672
673         /* First ensure this socket isn't already bound. */
674         if (vsock_addr_bound(&vsk->local_addr))
675                 return -EINVAL;
676
677         /* Now bind to the provided address or select appropriate values if
678          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
679          * like AF_INET prevents binding to a non-local IP address (in most
680          * cases), we only allow binding to a local CID.
681          */
682         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
683                 return -EADDRNOTAVAIL;
684
685         switch (sk->sk_socket->type) {
686         case SOCK_STREAM:
687                 spin_lock_bh(&vsock_table_lock);
688                 retval = __vsock_bind_connectible(vsk, addr);
689                 spin_unlock_bh(&vsock_table_lock);
690                 break;
691
692         case SOCK_DGRAM:
693                 retval = __vsock_bind_dgram(vsk, addr);
694                 break;
695
696         default:
697                 retval = -EINVAL;
698                 break;
699         }
700
701         return retval;
702 }
703
704 static void vsock_connect_timeout(struct work_struct *work);
705
706 static struct sock *__vsock_create(struct net *net,
707                                    struct socket *sock,
708                                    struct sock *parent,
709                                    gfp_t priority,
710                                    unsigned short type,
711                                    int kern)
712 {
713         struct sock *sk;
714         struct vsock_sock *psk;
715         struct vsock_sock *vsk;
716
717         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
718         if (!sk)
719                 return NULL;
720
721         sock_init_data(sock, sk);
722
723         /* sk->sk_type is normally set in sock_init_data, but only if sock is
724          * non-NULL. We make sure that our sockets always have a type by
725          * setting it here if needed.
726          */
727         if (!sock)
728                 sk->sk_type = type;
729
730         vsk = vsock_sk(sk);
731         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
732         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
733
734         sk->sk_destruct = vsock_sk_destruct;
735         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
736         sock_reset_flag(sk, SOCK_DONE);
737
738         INIT_LIST_HEAD(&vsk->bound_table);
739         INIT_LIST_HEAD(&vsk->connected_table);
740         vsk->listener = NULL;
741         INIT_LIST_HEAD(&vsk->pending_links);
742         INIT_LIST_HEAD(&vsk->accept_queue);
743         vsk->rejected = false;
744         vsk->sent_request = false;
745         vsk->ignore_connecting_rst = false;
746         vsk->peer_shutdown = 0;
747         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
748         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
749
750         psk = parent ? vsock_sk(parent) : NULL;
751         if (parent) {
752                 vsk->trusted = psk->trusted;
753                 vsk->owner = get_cred(psk->owner);
754                 vsk->connect_timeout = psk->connect_timeout;
755                 vsk->buffer_size = psk->buffer_size;
756                 vsk->buffer_min_size = psk->buffer_min_size;
757                 vsk->buffer_max_size = psk->buffer_max_size;
758                 security_sk_clone(parent, sk);
759         } else {
760                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
761                 vsk->owner = get_current_cred();
762                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
763                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
764                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
765                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
766         }
767
768         return sk;
769 }
770
771 static bool sock_type_connectible(u16 type)
772 {
773         return type == SOCK_STREAM;
774 }
775
776 static void __vsock_release(struct sock *sk, int level)
777 {
778         if (sk) {
779                 struct sock *pending;
780                 struct vsock_sock *vsk;
781
782                 vsk = vsock_sk(sk);
783                 pending = NULL; /* Compiler warning. */
784
785                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
786                  * version to avoid the warning "possible recursive locking
787                  * detected". When "level" is 0, lock_sock_nested(sk, level)
788                  * is the same as lock_sock(sk).
789                  */
790                 lock_sock_nested(sk, level);
791
792                 if (vsk->transport)
793                         vsk->transport->release(vsk);
794                 else if (sock_type_connectible(sk->sk_type))
795                         vsock_remove_sock(vsk);
796
797                 sock_orphan(sk);
798                 sk->sk_shutdown = SHUTDOWN_MASK;
799
800                 skb_queue_purge(&sk->sk_receive_queue);
801
802                 /* Clean up any sockets that never were accepted. */
803                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
804                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
805                         sock_put(pending);
806                 }
807
808                 release_sock(sk);
809                 sock_put(sk);
810         }
811 }
812
813 static void vsock_sk_destruct(struct sock *sk)
814 {
815         struct vsock_sock *vsk = vsock_sk(sk);
816
817         vsock_deassign_transport(vsk);
818
819         /* When clearing these addresses, there's no need to set the family and
820          * possibly register the address family with the kernel.
821          */
822         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
823         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
824
825         put_cred(vsk->owner);
826 }
827
828 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
829 {
830         int err;
831
832         err = sock_queue_rcv_skb(sk, skb);
833         if (err)
834                 kfree_skb(skb);
835
836         return err;
837 }
838
839 struct sock *vsock_create_connected(struct sock *parent)
840 {
841         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
842                               parent->sk_type, 0);
843 }
844 EXPORT_SYMBOL_GPL(vsock_create_connected);
845
846 s64 vsock_stream_has_data(struct vsock_sock *vsk)
847 {
848         return vsk->transport->stream_has_data(vsk);
849 }
850 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
851
852 s64 vsock_stream_has_space(struct vsock_sock *vsk)
853 {
854         return vsk->transport->stream_has_space(vsk);
855 }
856 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
857
858 static int vsock_release(struct socket *sock)
859 {
860         __vsock_release(sock->sk, 0);
861         sock->sk = NULL;
862         sock->state = SS_FREE;
863
864         return 0;
865 }
866
867 static int
868 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
869 {
870         int err;
871         struct sock *sk;
872         struct sockaddr_vm *vm_addr;
873
874         sk = sock->sk;
875
876         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
877                 return -EINVAL;
878
879         lock_sock(sk);
880         err = __vsock_bind(sk, vm_addr);
881         release_sock(sk);
882
883         return err;
884 }
885
886 static int vsock_getname(struct socket *sock,
887                          struct sockaddr *addr, int peer)
888 {
889         int err;
890         struct sock *sk;
891         struct vsock_sock *vsk;
892         struct sockaddr_vm *vm_addr;
893
894         sk = sock->sk;
895         vsk = vsock_sk(sk);
896         err = 0;
897
898         lock_sock(sk);
899
900         if (peer) {
901                 if (sock->state != SS_CONNECTED) {
902                         err = -ENOTCONN;
903                         goto out;
904                 }
905                 vm_addr = &vsk->remote_addr;
906         } else {
907                 vm_addr = &vsk->local_addr;
908         }
909
910         if (!vm_addr) {
911                 err = -EINVAL;
912                 goto out;
913         }
914
915         /* sys_getsockname() and sys_getpeername() pass us a
916          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
917          * that macro is defined in socket.c instead of .h, so we hardcode its
918          * value here.
919          */
920         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
921         memcpy(addr, vm_addr, sizeof(*vm_addr));
922         err = sizeof(*vm_addr);
923
924 out:
925         release_sock(sk);
926         return err;
927 }
928
929 static int vsock_shutdown(struct socket *sock, int mode)
930 {
931         int err;
932         struct sock *sk;
933
934         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
935          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
936          * here like the other address families do.  Note also that the
937          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
938          * which is what we want.
939          */
940         mode++;
941
942         if ((mode & ~SHUTDOWN_MASK) || !mode)
943                 return -EINVAL;
944
945         /* If this is a STREAM socket and it is not connected then bail out
946          * immediately.  If it is a DGRAM socket then we must first kick the
947          * socket so that it wakes up from any sleeping calls, for example
948          * recv(), and then afterwards return the error.
949          */
950
951         sk = sock->sk;
952
953         lock_sock(sk);
954         if (sock->state == SS_UNCONNECTED) {
955                 err = -ENOTCONN;
956                 if (sock_type_connectible(sk->sk_type))
957                         goto out;
958         } else {
959                 sock->state = SS_DISCONNECTING;
960                 err = 0;
961         }
962
963         /* Receive and send shutdowns are treated alike. */
964         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
965         if (mode) {
966                 sk->sk_shutdown |= mode;
967                 sk->sk_state_change(sk);
968
969                 if (sock_type_connectible(sk->sk_type)) {
970                         sock_reset_flag(sk, SOCK_DONE);
971                         vsock_send_shutdown(sk, mode);
972                 }
973         }
974
975 out:
976         release_sock(sk);
977         return err;
978 }
979
980 static __poll_t vsock_poll(struct file *file, struct socket *sock,
981                                poll_table *wait)
982 {
983         struct sock *sk;
984         __poll_t mask;
985         struct vsock_sock *vsk;
986
987         sk = sock->sk;
988         vsk = vsock_sk(sk);
989
990         poll_wait(file, sk_sleep(sk), wait);
991         mask = 0;
992
993         if (sk->sk_err)
994                 /* Signify that there has been an error on this socket. */
995                 mask |= EPOLLERR;
996
997         /* INET sockets treat local write shutdown and peer write shutdown as a
998          * case of EPOLLHUP set.
999          */
1000         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1001             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1002              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1003                 mask |= EPOLLHUP;
1004         }
1005
1006         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1007             vsk->peer_shutdown & SEND_SHUTDOWN) {
1008                 mask |= EPOLLRDHUP;
1009         }
1010
1011         if (sock->type == SOCK_DGRAM) {
1012                 /* For datagram sockets we can read if there is something in
1013                  * the queue and write as long as the socket isn't shutdown for
1014                  * sending.
1015                  */
1016                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1017                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1018                         mask |= EPOLLIN | EPOLLRDNORM;
1019                 }
1020
1021                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1022                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1023
1024         } else if (sock_type_connectible(sk->sk_type)) {
1025                 const struct vsock_transport *transport;
1026
1027                 lock_sock(sk);
1028
1029                 transport = vsk->transport;
1030
1031                 /* Listening sockets that have connections in their accept
1032                  * queue can be read.
1033                  */
1034                 if (sk->sk_state == TCP_LISTEN
1035                     && !vsock_is_accept_queue_empty(sk))
1036                         mask |= EPOLLIN | EPOLLRDNORM;
1037
1038                 /* If there is something in the queue then we can read. */
1039                 if (transport && transport->stream_is_active(vsk) &&
1040                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1041                         bool data_ready_now = false;
1042                         int ret = transport->notify_poll_in(
1043                                         vsk, 1, &data_ready_now);
1044                         if (ret < 0) {
1045                                 mask |= EPOLLERR;
1046                         } else {
1047                                 if (data_ready_now)
1048                                         mask |= EPOLLIN | EPOLLRDNORM;
1049
1050                         }
1051                 }
1052
1053                 /* Sockets whose connections have been closed, reset, or
1054                  * terminated should also be considered read, and we check the
1055                  * shutdown flag for that.
1056                  */
1057                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1058                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1059                         mask |= EPOLLIN | EPOLLRDNORM;
1060                 }
1061
1062                 /* Connected sockets that can produce data can be written. */
1063                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1064                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1065                                 bool space_avail_now = false;
1066                                 int ret = transport->notify_poll_out(
1067                                                 vsk, 1, &space_avail_now);
1068                                 if (ret < 0) {
1069                                         mask |= EPOLLERR;
1070                                 } else {
1071                                         if (space_avail_now)
1072                                                 /* Remove EPOLLWRBAND since INET
1073                                                  * sockets are not setting it.
1074                                                  */
1075                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1076
1077                                 }
1078                         }
1079                 }
1080
1081                 /* Simulate INET socket poll behaviors, which sets
1082                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1083                  * but local send is not shutdown.
1084                  */
1085                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1086                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1087                                 mask |= EPOLLOUT | EPOLLWRNORM;
1088
1089                 }
1090
1091                 release_sock(sk);
1092         }
1093
1094         return mask;
1095 }
1096
1097 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1098                                size_t len)
1099 {
1100         int err;
1101         struct sock *sk;
1102         struct vsock_sock *vsk;
1103         struct sockaddr_vm *remote_addr;
1104         const struct vsock_transport *transport;
1105
1106         if (msg->msg_flags & MSG_OOB)
1107                 return -EOPNOTSUPP;
1108
1109         /* For now, MSG_DONTWAIT is always assumed... */
1110         err = 0;
1111         sk = sock->sk;
1112         vsk = vsock_sk(sk);
1113
1114         lock_sock(sk);
1115
1116         transport = vsk->transport;
1117
1118         err = vsock_auto_bind(vsk);
1119         if (err)
1120                 goto out;
1121
1122
1123         /* If the provided message contains an address, use that.  Otherwise
1124          * fall back on the socket's remote handle (if it has been connected).
1125          */
1126         if (msg->msg_name &&
1127             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1128                             &remote_addr) == 0) {
1129                 /* Ensure this address is of the right type and is a valid
1130                  * destination.
1131                  */
1132
1133                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1134                         remote_addr->svm_cid = transport->get_local_cid();
1135
1136                 if (!vsock_addr_bound(remote_addr)) {
1137                         err = -EINVAL;
1138                         goto out;
1139                 }
1140         } else if (sock->state == SS_CONNECTED) {
1141                 remote_addr = &vsk->remote_addr;
1142
1143                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1144                         remote_addr->svm_cid = transport->get_local_cid();
1145
1146                 /* XXX Should connect() or this function ensure remote_addr is
1147                  * bound?
1148                  */
1149                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1150                         err = -EINVAL;
1151                         goto out;
1152                 }
1153         } else {
1154                 err = -EINVAL;
1155                 goto out;
1156         }
1157
1158         if (!transport->dgram_allow(remote_addr->svm_cid,
1159                                     remote_addr->svm_port)) {
1160                 err = -EINVAL;
1161                 goto out;
1162         }
1163
1164         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1165
1166 out:
1167         release_sock(sk);
1168         return err;
1169 }
1170
1171 static int vsock_dgram_connect(struct socket *sock,
1172                                struct sockaddr *addr, int addr_len, int flags)
1173 {
1174         int err;
1175         struct sock *sk;
1176         struct vsock_sock *vsk;
1177         struct sockaddr_vm *remote_addr;
1178
1179         sk = sock->sk;
1180         vsk = vsock_sk(sk);
1181
1182         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1183         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1184                 lock_sock(sk);
1185                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1186                                 VMADDR_PORT_ANY);
1187                 sock->state = SS_UNCONNECTED;
1188                 release_sock(sk);
1189                 return 0;
1190         } else if (err != 0)
1191                 return -EINVAL;
1192
1193         lock_sock(sk);
1194
1195         err = vsock_auto_bind(vsk);
1196         if (err)
1197                 goto out;
1198
1199         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1200                                          remote_addr->svm_port)) {
1201                 err = -EINVAL;
1202                 goto out;
1203         }
1204
1205         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1206         sock->state = SS_CONNECTED;
1207
1208 out:
1209         release_sock(sk);
1210         return err;
1211 }
1212
1213 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1214                                size_t len, int flags)
1215 {
1216         struct vsock_sock *vsk = vsock_sk(sock->sk);
1217
1218         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1219 }
1220
1221 static const struct proto_ops vsock_dgram_ops = {
1222         .family = PF_VSOCK,
1223         .owner = THIS_MODULE,
1224         .release = vsock_release,
1225         .bind = vsock_bind,
1226         .connect = vsock_dgram_connect,
1227         .socketpair = sock_no_socketpair,
1228         .accept = sock_no_accept,
1229         .getname = vsock_getname,
1230         .poll = vsock_poll,
1231         .ioctl = sock_no_ioctl,
1232         .listen = sock_no_listen,
1233         .shutdown = vsock_shutdown,
1234         .sendmsg = vsock_dgram_sendmsg,
1235         .recvmsg = vsock_dgram_recvmsg,
1236         .mmap = sock_no_mmap,
1237         .sendpage = sock_no_sendpage,
1238 };
1239
1240 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1241 {
1242         const struct vsock_transport *transport = vsk->transport;
1243
1244         if (!transport || !transport->cancel_pkt)
1245                 return -EOPNOTSUPP;
1246
1247         return transport->cancel_pkt(vsk);
1248 }
1249
1250 static void vsock_connect_timeout(struct work_struct *work)
1251 {
1252         struct sock *sk;
1253         struct vsock_sock *vsk;
1254
1255         vsk = container_of(work, struct vsock_sock, connect_work.work);
1256         sk = sk_vsock(vsk);
1257
1258         lock_sock(sk);
1259         if (sk->sk_state == TCP_SYN_SENT &&
1260             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1261                 sk->sk_state = TCP_CLOSE;
1262                 sk->sk_err = ETIMEDOUT;
1263                 sk->sk_error_report(sk);
1264                 vsock_transport_cancel_pkt(vsk);
1265         }
1266         release_sock(sk);
1267
1268         sock_put(sk);
1269 }
1270
1271 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1272                          int addr_len, int flags)
1273 {
1274         int err;
1275         struct sock *sk;
1276         struct vsock_sock *vsk;
1277         const struct vsock_transport *transport;
1278         struct sockaddr_vm *remote_addr;
1279         long timeout;
1280         DEFINE_WAIT(wait);
1281
1282         err = 0;
1283         sk = sock->sk;
1284         vsk = vsock_sk(sk);
1285
1286         lock_sock(sk);
1287
1288         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1289         switch (sock->state) {
1290         case SS_CONNECTED:
1291                 err = -EISCONN;
1292                 goto out;
1293         case SS_DISCONNECTING:
1294                 err = -EINVAL;
1295                 goto out;
1296         case SS_CONNECTING:
1297                 /* This continues on so we can move sock into the SS_CONNECTED
1298                  * state once the connection has completed (at which point err
1299                  * will be set to zero also).  Otherwise, we will either wait
1300                  * for the connection or return -EALREADY should this be a
1301                  * non-blocking call.
1302                  */
1303                 err = -EALREADY;
1304                 break;
1305         default:
1306                 if ((sk->sk_state == TCP_LISTEN) ||
1307                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1308                         err = -EINVAL;
1309                         goto out;
1310                 }
1311
1312                 /* Set the remote address that we are connecting to. */
1313                 memcpy(&vsk->remote_addr, remote_addr,
1314                        sizeof(vsk->remote_addr));
1315
1316                 err = vsock_assign_transport(vsk, NULL);
1317                 if (err)
1318                         goto out;
1319
1320                 transport = vsk->transport;
1321
1322                 /* The hypervisor and well-known contexts do not have socket
1323                  * endpoints.
1324                  */
1325                 if (!transport ||
1326                     !transport->stream_allow(remote_addr->svm_cid,
1327                                              remote_addr->svm_port)) {
1328                         err = -ENETUNREACH;
1329                         goto out;
1330                 }
1331
1332                 err = vsock_auto_bind(vsk);
1333                 if (err)
1334                         goto out;
1335
1336                 sk->sk_state = TCP_SYN_SENT;
1337
1338                 err = transport->connect(vsk);
1339                 if (err < 0)
1340                         goto out;
1341
1342                 /* Mark sock as connecting and set the error code to in
1343                  * progress in case this is a non-blocking connect.
1344                  */
1345                 sock->state = SS_CONNECTING;
1346                 err = -EINPROGRESS;
1347         }
1348
1349         /* The receive path will handle all communication until we are able to
1350          * enter the connected state.  Here we wait for the connection to be
1351          * completed or a notification of an error.
1352          */
1353         timeout = vsk->connect_timeout;
1354         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1355
1356         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1357                 if (flags & O_NONBLOCK) {
1358                         /* If we're not going to block, we schedule a timeout
1359                          * function to generate a timeout on the connection
1360                          * attempt, in case the peer doesn't respond in a
1361                          * timely manner. We hold on to the socket until the
1362                          * timeout fires.
1363                          */
1364                         sock_hold(sk);
1365                         schedule_delayed_work(&vsk->connect_work, timeout);
1366
1367                         /* Skip ahead to preserve error code set above. */
1368                         goto out_wait;
1369                 }
1370
1371                 release_sock(sk);
1372                 timeout = schedule_timeout(timeout);
1373                 lock_sock(sk);
1374
1375                 if (signal_pending(current)) {
1376                         err = sock_intr_errno(timeout);
1377                         sk->sk_state = TCP_CLOSE;
1378                         sock->state = SS_UNCONNECTED;
1379                         vsock_transport_cancel_pkt(vsk);
1380                         goto out_wait;
1381                 } else if (timeout == 0) {
1382                         err = -ETIMEDOUT;
1383                         sk->sk_state = TCP_CLOSE;
1384                         sock->state = SS_UNCONNECTED;
1385                         vsock_transport_cancel_pkt(vsk);
1386                         goto out_wait;
1387                 }
1388
1389                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1390         }
1391
1392         if (sk->sk_err) {
1393                 err = -sk->sk_err;
1394                 sk->sk_state = TCP_CLOSE;
1395                 sock->state = SS_UNCONNECTED;
1396         } else {
1397                 err = 0;
1398         }
1399
1400 out_wait:
1401         finish_wait(sk_sleep(sk), &wait);
1402 out:
1403         release_sock(sk);
1404         return err;
1405 }
1406
1407 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1408                         bool kern)
1409 {
1410         struct sock *listener;
1411         int err;
1412         struct sock *connected;
1413         struct vsock_sock *vconnected;
1414         long timeout;
1415         DEFINE_WAIT(wait);
1416
1417         err = 0;
1418         listener = sock->sk;
1419
1420         lock_sock(listener);
1421
1422         if (!sock_type_connectible(sock->type)) {
1423                 err = -EOPNOTSUPP;
1424                 goto out;
1425         }
1426
1427         if (listener->sk_state != TCP_LISTEN) {
1428                 err = -EINVAL;
1429                 goto out;
1430         }
1431
1432         /* Wait for children sockets to appear; these are the new sockets
1433          * created upon connection establishment.
1434          */
1435         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1436         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1437
1438         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1439                listener->sk_err == 0) {
1440                 release_sock(listener);
1441                 timeout = schedule_timeout(timeout);
1442                 finish_wait(sk_sleep(listener), &wait);
1443                 lock_sock(listener);
1444
1445                 if (signal_pending(current)) {
1446                         err = sock_intr_errno(timeout);
1447                         goto out;
1448                 } else if (timeout == 0) {
1449                         err = -EAGAIN;
1450                         goto out;
1451                 }
1452
1453                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1454         }
1455         finish_wait(sk_sleep(listener), &wait);
1456
1457         if (listener->sk_err)
1458                 err = -listener->sk_err;
1459
1460         if (connected) {
1461                 sk_acceptq_removed(listener);
1462
1463                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1464                 vconnected = vsock_sk(connected);
1465
1466                 /* If the listener socket has received an error, then we should
1467                  * reject this socket and return.  Note that we simply mark the
1468                  * socket rejected, drop our reference, and let the cleanup
1469                  * function handle the cleanup; the fact that we found it in
1470                  * the listener's accept queue guarantees that the cleanup
1471                  * function hasn't run yet.
1472                  */
1473                 if (err) {
1474                         vconnected->rejected = true;
1475                 } else {
1476                         newsock->state = SS_CONNECTED;
1477                         sock_graft(connected, newsock);
1478                 }
1479
1480                 release_sock(connected);
1481                 sock_put(connected);
1482         }
1483
1484 out:
1485         release_sock(listener);
1486         return err;
1487 }
1488
1489 static int vsock_listen(struct socket *sock, int backlog)
1490 {
1491         int err;
1492         struct sock *sk;
1493         struct vsock_sock *vsk;
1494
1495         sk = sock->sk;
1496
1497         lock_sock(sk);
1498
1499         if (!sock_type_connectible(sk->sk_type)) {
1500                 err = -EOPNOTSUPP;
1501                 goto out;
1502         }
1503
1504         if (sock->state != SS_UNCONNECTED) {
1505                 err = -EINVAL;
1506                 goto out;
1507         }
1508
1509         vsk = vsock_sk(sk);
1510
1511         if (!vsock_addr_bound(&vsk->local_addr)) {
1512                 err = -EINVAL;
1513                 goto out;
1514         }
1515
1516         sk->sk_max_ack_backlog = backlog;
1517         sk->sk_state = TCP_LISTEN;
1518
1519         err = 0;
1520
1521 out:
1522         release_sock(sk);
1523         return err;
1524 }
1525
1526 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1527                                      const struct vsock_transport *transport,
1528                                      u64 val)
1529 {
1530         if (val > vsk->buffer_max_size)
1531                 val = vsk->buffer_max_size;
1532
1533         if (val < vsk->buffer_min_size)
1534                 val = vsk->buffer_min_size;
1535
1536         if (val != vsk->buffer_size &&
1537             transport && transport->notify_buffer_size)
1538                 transport->notify_buffer_size(vsk, &val);
1539
1540         vsk->buffer_size = val;
1541 }
1542
1543 static int vsock_connectible_setsockopt(struct socket *sock,
1544                                         int level,
1545                                         int optname,
1546                                         sockptr_t optval,
1547                                         unsigned int optlen)
1548 {
1549         int err;
1550         struct sock *sk;
1551         struct vsock_sock *vsk;
1552         const struct vsock_transport *transport;
1553         u64 val;
1554
1555         if (level != AF_VSOCK)
1556                 return -ENOPROTOOPT;
1557
1558 #define COPY_IN(_v)                                       \
1559         do {                                              \
1560                 if (optlen < sizeof(_v)) {                \
1561                         err = -EINVAL;                    \
1562                         goto exit;                        \
1563                 }                                         \
1564                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1565                         err = -EFAULT;                                  \
1566                         goto exit;                                      \
1567                 }                                                       \
1568         } while (0)
1569
1570         err = 0;
1571         sk = sock->sk;
1572         vsk = vsock_sk(sk);
1573
1574         lock_sock(sk);
1575
1576         transport = vsk->transport;
1577
1578         switch (optname) {
1579         case SO_VM_SOCKETS_BUFFER_SIZE:
1580                 COPY_IN(val);
1581                 vsock_update_buffer_size(vsk, transport, val);
1582                 break;
1583
1584         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1585                 COPY_IN(val);
1586                 vsk->buffer_max_size = val;
1587                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588                 break;
1589
1590         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1591                 COPY_IN(val);
1592                 vsk->buffer_min_size = val;
1593                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1594                 break;
1595
1596         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1597                 struct __kernel_old_timeval tv;
1598                 COPY_IN(tv);
1599                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1600                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1601                         vsk->connect_timeout = tv.tv_sec * HZ +
1602                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1603                         if (vsk->connect_timeout == 0)
1604                                 vsk->connect_timeout =
1605                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1606
1607                 } else {
1608                         err = -ERANGE;
1609                 }
1610                 break;
1611         }
1612
1613         default:
1614                 err = -ENOPROTOOPT;
1615                 break;
1616         }
1617
1618 #undef COPY_IN
1619
1620 exit:
1621         release_sock(sk);
1622         return err;
1623 }
1624
1625 static int vsock_connectible_getsockopt(struct socket *sock,
1626                                         int level, int optname,
1627                                         char __user *optval,
1628                                         int __user *optlen)
1629 {
1630         int err;
1631         int len;
1632         struct sock *sk;
1633         struct vsock_sock *vsk;
1634         u64 val;
1635
1636         if (level != AF_VSOCK)
1637                 return -ENOPROTOOPT;
1638
1639         err = get_user(len, optlen);
1640         if (err != 0)
1641                 return err;
1642
1643 #define COPY_OUT(_v)                            \
1644         do {                                    \
1645                 if (len < sizeof(_v))           \
1646                         return -EINVAL;         \
1647                                                 \
1648                 len = sizeof(_v);               \
1649                 if (copy_to_user(optval, &_v, len) != 0)        \
1650                         return -EFAULT;                         \
1651                                                                 \
1652         } while (0)
1653
1654         err = 0;
1655         sk = sock->sk;
1656         vsk = vsock_sk(sk);
1657
1658         switch (optname) {
1659         case SO_VM_SOCKETS_BUFFER_SIZE:
1660                 val = vsk->buffer_size;
1661                 COPY_OUT(val);
1662                 break;
1663
1664         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1665                 val = vsk->buffer_max_size;
1666                 COPY_OUT(val);
1667                 break;
1668
1669         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1670                 val = vsk->buffer_min_size;
1671                 COPY_OUT(val);
1672                 break;
1673
1674         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1675                 struct __kernel_old_timeval tv;
1676                 tv.tv_sec = vsk->connect_timeout / HZ;
1677                 tv.tv_usec =
1678                     (vsk->connect_timeout -
1679                      tv.tv_sec * HZ) * (1000000 / HZ);
1680                 COPY_OUT(tv);
1681                 break;
1682         }
1683         default:
1684                 return -ENOPROTOOPT;
1685         }
1686
1687         err = put_user(len, optlen);
1688         if (err != 0)
1689                 return -EFAULT;
1690
1691 #undef COPY_OUT
1692
1693         return 0;
1694 }
1695
1696 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1697                                      size_t len)
1698 {
1699         struct sock *sk;
1700         struct vsock_sock *vsk;
1701         const struct vsock_transport *transport;
1702         ssize_t total_written;
1703         long timeout;
1704         int err;
1705         struct vsock_transport_send_notify_data send_data;
1706         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1707
1708         sk = sock->sk;
1709         vsk = vsock_sk(sk);
1710         total_written = 0;
1711         err = 0;
1712
1713         if (msg->msg_flags & MSG_OOB)
1714                 return -EOPNOTSUPP;
1715
1716         lock_sock(sk);
1717
1718         transport = vsk->transport;
1719
1720         /* Callers should not provide a destination with stream sockets. */
1721         if (msg->msg_namelen) {
1722                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1723                 goto out;
1724         }
1725
1726         /* Send data only if both sides are not shutdown in the direction. */
1727         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1728             vsk->peer_shutdown & RCV_SHUTDOWN) {
1729                 err = -EPIPE;
1730                 goto out;
1731         }
1732
1733         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1734             !vsock_addr_bound(&vsk->local_addr)) {
1735                 err = -ENOTCONN;
1736                 goto out;
1737         }
1738
1739         if (!vsock_addr_bound(&vsk->remote_addr)) {
1740                 err = -EDESTADDRREQ;
1741                 goto out;
1742         }
1743
1744         /* Wait for room in the produce queue to enqueue our user's data. */
1745         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1746
1747         err = transport->notify_send_init(vsk, &send_data);
1748         if (err < 0)
1749                 goto out;
1750
1751         while (total_written < len) {
1752                 ssize_t written;
1753
1754                 add_wait_queue(sk_sleep(sk), &wait);
1755                 while (vsock_stream_has_space(vsk) == 0 &&
1756                        sk->sk_err == 0 &&
1757                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1758                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1759
1760                         /* Don't wait for non-blocking sockets. */
1761                         if (timeout == 0) {
1762                                 err = -EAGAIN;
1763                                 remove_wait_queue(sk_sleep(sk), &wait);
1764                                 goto out_err;
1765                         }
1766
1767                         err = transport->notify_send_pre_block(vsk, &send_data);
1768                         if (err < 0) {
1769                                 remove_wait_queue(sk_sleep(sk), &wait);
1770                                 goto out_err;
1771                         }
1772
1773                         release_sock(sk);
1774                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1775                         lock_sock(sk);
1776                         if (signal_pending(current)) {
1777                                 err = sock_intr_errno(timeout);
1778                                 remove_wait_queue(sk_sleep(sk), &wait);
1779                                 goto out_err;
1780                         } else if (timeout == 0) {
1781                                 err = -EAGAIN;
1782                                 remove_wait_queue(sk_sleep(sk), &wait);
1783                                 goto out_err;
1784                         }
1785                 }
1786                 remove_wait_queue(sk_sleep(sk), &wait);
1787
1788                 /* These checks occur both as part of and after the loop
1789                  * conditional since we need to check before and after
1790                  * sleeping.
1791                  */
1792                 if (sk->sk_err) {
1793                         err = -sk->sk_err;
1794                         goto out_err;
1795                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1796                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1797                         err = -EPIPE;
1798                         goto out_err;
1799                 }
1800
1801                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1802                 if (err < 0)
1803                         goto out_err;
1804
1805                 /* Note that enqueue will only write as many bytes as are free
1806                  * in the produce queue, so we don't need to ensure len is
1807                  * smaller than the queue size.  It is the caller's
1808                  * responsibility to check how many bytes we were able to send.
1809                  */
1810
1811                 if (sk->sk_type == SOCK_SEQPACKET) {
1812                         written = transport->seqpacket_enqueue(vsk,
1813                                                 msg, len - total_written);
1814                 } else {
1815                         written = transport->stream_enqueue(vsk,
1816                                         msg, len - total_written);
1817                 }
1818                 if (written < 0) {
1819                         err = -ENOMEM;
1820                         goto out_err;
1821                 }
1822
1823                 total_written += written;
1824
1825                 err = transport->notify_send_post_enqueue(
1826                                 vsk, written, &send_data);
1827                 if (err < 0)
1828                         goto out_err;
1829
1830         }
1831
1832 out_err:
1833         if (total_written > 0) {
1834                 /* Return number of written bytes only if:
1835                  * 1) SOCK_STREAM socket.
1836                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1837                  */
1838                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1839                         err = total_written;
1840         }
1841 out:
1842         release_sock(sk);
1843         return err;
1844 }
1845
1846 static int vsock_wait_data(struct sock *sk, struct wait_queue_entry *wait,
1847                            long timeout,
1848                            struct vsock_transport_recv_notify_data *recv_data,
1849                            size_t target)
1850 {
1851         const struct vsock_transport *transport;
1852         struct vsock_sock *vsk;
1853         s64 data;
1854         int err;
1855
1856         vsk = vsock_sk(sk);
1857         err = 0;
1858         transport = vsk->transport;
1859
1860         while ((data = vsock_stream_has_data(vsk)) == 0) {
1861                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1862
1863                 if (sk->sk_err != 0 ||
1864                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
1865                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1866                         break;
1867                 }
1868
1869                 /* Don't wait for non-blocking sockets. */
1870                 if (timeout == 0) {
1871                         err = -EAGAIN;
1872                         break;
1873                 }
1874
1875                 if (recv_data) {
1876                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
1877                         if (err < 0)
1878                                 break;
1879                 }
1880
1881                 release_sock(sk);
1882                 timeout = schedule_timeout(timeout);
1883                 lock_sock(sk);
1884
1885                 if (signal_pending(current)) {
1886                         err = sock_intr_errno(timeout);
1887                         break;
1888                 } else if (timeout == 0) {
1889                         err = -EAGAIN;
1890                         break;
1891                 }
1892         }
1893
1894         finish_wait(sk_sleep(sk), wait);
1895
1896         if (err)
1897                 return err;
1898
1899         /* Internal transport error when checking for available
1900          * data. XXX This should be changed to a connection
1901          * reset in a later change.
1902          */
1903         if (data < 0)
1904                 return -ENOMEM;
1905
1906         return data;
1907 }
1908
1909 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1910                                   size_t len, int flags)
1911 {
1912         struct vsock_transport_recv_notify_data recv_data;
1913         const struct vsock_transport *transport;
1914         struct vsock_sock *vsk;
1915         ssize_t copied;
1916         size_t target;
1917         long timeout;
1918         int err;
1919
1920         DEFINE_WAIT(wait);
1921
1922         vsk = vsock_sk(sk);
1923         transport = vsk->transport;
1924
1925         /* We must not copy less than target bytes into the user's buffer
1926          * before returning successfully, so we wait for the consume queue to
1927          * have that much data to consume before dequeueing.  Note that this
1928          * makes it impossible to handle cases where target is greater than the
1929          * queue size.
1930          */
1931         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1932         if (target >= transport->stream_rcvhiwat(vsk)) {
1933                 err = -ENOMEM;
1934                 goto out;
1935         }
1936         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1937         copied = 0;
1938
1939         err = transport->notify_recv_init(vsk, target, &recv_data);
1940         if (err < 0)
1941                 goto out;
1942
1943
1944         while (1) {
1945                 ssize_t read;
1946
1947                 err = vsock_wait_data(sk, &wait, timeout, &recv_data, target);
1948                 if (err <= 0)
1949                         break;
1950
1951                 err = transport->notify_recv_pre_dequeue(vsk, target,
1952                                                          &recv_data);
1953                 if (err < 0)
1954                         break;
1955
1956                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1957                 if (read < 0) {
1958                         err = -ENOMEM;
1959                         break;
1960                 }
1961
1962                 copied += read;
1963
1964                 err = transport->notify_recv_post_dequeue(vsk, target, read,
1965                                                 !(flags & MSG_PEEK), &recv_data);
1966                 if (err < 0)
1967                         goto out;
1968
1969                 if (read >= target || flags & MSG_PEEK)
1970                         break;
1971
1972                 target -= read;
1973         }
1974
1975         if (sk->sk_err)
1976                 err = -sk->sk_err;
1977         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1978                 err = 0;
1979
1980         if (copied > 0)
1981                 err = copied;
1982
1983 out:
1984         return err;
1985 }
1986
1987 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
1988                                      size_t len, int flags)
1989 {
1990         const struct vsock_transport *transport;
1991         struct vsock_sock *vsk;
1992         ssize_t record_len;
1993         long timeout;
1994         int err = 0;
1995         DEFINE_WAIT(wait);
1996
1997         vsk = vsock_sk(sk);
1998         transport = vsk->transport;
1999
2000         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2001
2002         err = vsock_wait_data(sk, &wait, timeout, NULL, 0);
2003         if (err <= 0)
2004                 goto out;
2005
2006         record_len = transport->seqpacket_dequeue(vsk, msg, flags);
2007
2008         if (record_len < 0) {
2009                 err = -ENOMEM;
2010                 goto out;
2011         }
2012
2013         if (sk->sk_err) {
2014                 err = -sk->sk_err;
2015         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2016                 err = 0;
2017         } else {
2018                 /* User sets MSG_TRUNC, so return real length of
2019                  * packet.
2020                  */
2021                 if (flags & MSG_TRUNC)
2022                         err = record_len;
2023                 else
2024                         err = len - msg_data_left(msg);
2025
2026                 /* Always set MSG_TRUNC if real length of packet is
2027                  * bigger than user's buffer.
2028                  */
2029                 if (record_len > len)
2030                         msg->msg_flags |= MSG_TRUNC;
2031         }
2032
2033 out:
2034         return err;
2035 }
2036
2037 static int
2038 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2039                           int flags)
2040 {
2041         struct sock *sk;
2042         struct vsock_sock *vsk;
2043         const struct vsock_transport *transport;
2044         int err;
2045
2046         DEFINE_WAIT(wait);
2047
2048         sk = sock->sk;
2049         vsk = vsock_sk(sk);
2050         err = 0;
2051
2052         lock_sock(sk);
2053
2054         transport = vsk->transport;
2055
2056         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2057                 /* Recvmsg is supposed to return 0 if a peer performs an
2058                  * orderly shutdown. Differentiate between that case and when a
2059                  * peer has not connected or a local shutdown occurred with the
2060                  * SOCK_DONE flag.
2061                  */
2062                 if (sock_flag(sk, SOCK_DONE))
2063                         err = 0;
2064                 else
2065                         err = -ENOTCONN;
2066
2067                 goto out;
2068         }
2069
2070         if (flags & MSG_OOB) {
2071                 err = -EOPNOTSUPP;
2072                 goto out;
2073         }
2074
2075         /* We don't check peer_shutdown flag here since peer may actually shut
2076          * down, but there can be data in the queue that a local socket can
2077          * receive.
2078          */
2079         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2080                 err = 0;
2081                 goto out;
2082         }
2083
2084         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2085          * is not an error.  We may as well bail out now.
2086          */
2087         if (!len) {
2088                 err = 0;
2089                 goto out;
2090         }
2091
2092         if (sk->sk_type == SOCK_STREAM)
2093                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2094         else
2095                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2096
2097 out:
2098         release_sock(sk);
2099         return err;
2100 }
2101
2102 static const struct proto_ops vsock_stream_ops = {
2103         .family = PF_VSOCK,
2104         .owner = THIS_MODULE,
2105         .release = vsock_release,
2106         .bind = vsock_bind,
2107         .connect = vsock_connect,
2108         .socketpair = sock_no_socketpair,
2109         .accept = vsock_accept,
2110         .getname = vsock_getname,
2111         .poll = vsock_poll,
2112         .ioctl = sock_no_ioctl,
2113         .listen = vsock_listen,
2114         .shutdown = vsock_shutdown,
2115         .setsockopt = vsock_connectible_setsockopt,
2116         .getsockopt = vsock_connectible_getsockopt,
2117         .sendmsg = vsock_connectible_sendmsg,
2118         .recvmsg = vsock_connectible_recvmsg,
2119         .mmap = sock_no_mmap,
2120         .sendpage = sock_no_sendpage,
2121 };
2122
2123 static int vsock_create(struct net *net, struct socket *sock,
2124                         int protocol, int kern)
2125 {
2126         struct vsock_sock *vsk;
2127         struct sock *sk;
2128         int ret;
2129
2130         if (!sock)
2131                 return -EINVAL;
2132
2133         if (protocol && protocol != PF_VSOCK)
2134                 return -EPROTONOSUPPORT;
2135
2136         switch (sock->type) {
2137         case SOCK_DGRAM:
2138                 sock->ops = &vsock_dgram_ops;
2139                 break;
2140         case SOCK_STREAM:
2141                 sock->ops = &vsock_stream_ops;
2142                 break;
2143         default:
2144                 return -ESOCKTNOSUPPORT;
2145         }
2146
2147         sock->state = SS_UNCONNECTED;
2148
2149         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2150         if (!sk)
2151                 return -ENOMEM;
2152
2153         vsk = vsock_sk(sk);
2154
2155         if (sock->type == SOCK_DGRAM) {
2156                 ret = vsock_assign_transport(vsk, NULL);
2157                 if (ret < 0) {
2158                         sock_put(sk);
2159                         return ret;
2160                 }
2161         }
2162
2163         vsock_insert_unbound(vsk);
2164
2165         return 0;
2166 }
2167
2168 static const struct net_proto_family vsock_family_ops = {
2169         .family = AF_VSOCK,
2170         .create = vsock_create,
2171         .owner = THIS_MODULE,
2172 };
2173
2174 static long vsock_dev_do_ioctl(struct file *filp,
2175                                unsigned int cmd, void __user *ptr)
2176 {
2177         u32 __user *p = ptr;
2178         u32 cid = VMADDR_CID_ANY;
2179         int retval = 0;
2180
2181         switch (cmd) {
2182         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2183                 /* To be compatible with the VMCI behavior, we prioritize the
2184                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2185                  */
2186                 if (transport_g2h)
2187                         cid = transport_g2h->get_local_cid();
2188                 else if (transport_h2g)
2189                         cid = transport_h2g->get_local_cid();
2190
2191                 if (put_user(cid, p) != 0)
2192                         retval = -EFAULT;
2193                 break;
2194
2195         default:
2196                 retval = -ENOIOCTLCMD;
2197         }
2198
2199         return retval;
2200 }
2201
2202 static long vsock_dev_ioctl(struct file *filp,
2203                             unsigned int cmd, unsigned long arg)
2204 {
2205         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2206 }
2207
2208 #ifdef CONFIG_COMPAT
2209 static long vsock_dev_compat_ioctl(struct file *filp,
2210                                    unsigned int cmd, unsigned long arg)
2211 {
2212         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2213 }
2214 #endif
2215
2216 static const struct file_operations vsock_device_ops = {
2217         .owner          = THIS_MODULE,
2218         .unlocked_ioctl = vsock_dev_ioctl,
2219 #ifdef CONFIG_COMPAT
2220         .compat_ioctl   = vsock_dev_compat_ioctl,
2221 #endif
2222         .open           = nonseekable_open,
2223 };
2224
2225 static struct miscdevice vsock_device = {
2226         .name           = "vsock",
2227         .fops           = &vsock_device_ops,
2228 };
2229
2230 static int __init vsock_init(void)
2231 {
2232         int err = 0;
2233
2234         vsock_init_tables();
2235
2236         vsock_proto.owner = THIS_MODULE;
2237         vsock_device.minor = MISC_DYNAMIC_MINOR;
2238         err = misc_register(&vsock_device);
2239         if (err) {
2240                 pr_err("Failed to register misc device\n");
2241                 goto err_reset_transport;
2242         }
2243
2244         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2245         if (err) {
2246                 pr_err("Cannot register vsock protocol\n");
2247                 goto err_deregister_misc;
2248         }
2249
2250         err = sock_register(&vsock_family_ops);
2251         if (err) {
2252                 pr_err("could not register af_vsock (%d) address family: %d\n",
2253                        AF_VSOCK, err);
2254                 goto err_unregister_proto;
2255         }
2256
2257         return 0;
2258
2259 err_unregister_proto:
2260         proto_unregister(&vsock_proto);
2261 err_deregister_misc:
2262         misc_deregister(&vsock_device);
2263 err_reset_transport:
2264         return err;
2265 }
2266
2267 static void __exit vsock_exit(void)
2268 {
2269         misc_deregister(&vsock_device);
2270         sock_unregister(AF_VSOCK);
2271         proto_unregister(&vsock_proto);
2272 }
2273
2274 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2275 {
2276         return vsk->transport;
2277 }
2278 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2279
2280 int vsock_core_register(const struct vsock_transport *t, int features)
2281 {
2282         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2283         int err = mutex_lock_interruptible(&vsock_register_mutex);
2284
2285         if (err)
2286                 return err;
2287
2288         t_h2g = transport_h2g;
2289         t_g2h = transport_g2h;
2290         t_dgram = transport_dgram;
2291         t_local = transport_local;
2292
2293         if (features & VSOCK_TRANSPORT_F_H2G) {
2294                 if (t_h2g) {
2295                         err = -EBUSY;
2296                         goto err_busy;
2297                 }
2298                 t_h2g = t;
2299         }
2300
2301         if (features & VSOCK_TRANSPORT_F_G2H) {
2302                 if (t_g2h) {
2303                         err = -EBUSY;
2304                         goto err_busy;
2305                 }
2306                 t_g2h = t;
2307         }
2308
2309         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2310                 if (t_dgram) {
2311                         err = -EBUSY;
2312                         goto err_busy;
2313                 }
2314                 t_dgram = t;
2315         }
2316
2317         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2318                 if (t_local) {
2319                         err = -EBUSY;
2320                         goto err_busy;
2321                 }
2322                 t_local = t;
2323         }
2324
2325         transport_h2g = t_h2g;
2326         transport_g2h = t_g2h;
2327         transport_dgram = t_dgram;
2328         transport_local = t_local;
2329
2330 err_busy:
2331         mutex_unlock(&vsock_register_mutex);
2332         return err;
2333 }
2334 EXPORT_SYMBOL_GPL(vsock_core_register);
2335
2336 void vsock_core_unregister(const struct vsock_transport *t)
2337 {
2338         mutex_lock(&vsock_register_mutex);
2339
2340         if (transport_h2g == t)
2341                 transport_h2g = NULL;
2342
2343         if (transport_g2h == t)
2344                 transport_g2h = NULL;
2345
2346         if (transport_dgram == t)
2347                 transport_dgram = NULL;
2348
2349         if (transport_local == t)
2350                 transport_local = NULL;
2351
2352         mutex_unlock(&vsock_register_mutex);
2353 }
2354 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2355
2356 module_init(vsock_init);
2357 module_exit(vsock_exit);
2358
2359 MODULE_AUTHOR("VMware, Inc.");
2360 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2361 MODULE_VERSION("1.0.2.0-k");
2362 MODULE_LICENSE("GPL v2");