sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[platform/kernel/linux-starfive.git] / net / vmw_vsock / af_vsock.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the VSOCK_SS_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  */
86
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/sched/signal.h>
94 #include <linux/kmod.h>
95 #include <linux/list.h>
96 #include <linux/miscdevice.h>
97 #include <linux/module.h>
98 #include <linux/mutex.h>
99 #include <linux/net.h>
100 #include <linux/poll.h>
101 #include <linux/skbuff.h>
102 #include <linux/smp.h>
103 #include <linux/socket.h>
104 #include <linux/stddef.h>
105 #include <linux/unistd.h>
106 #include <linux/wait.h>
107 #include <linux/workqueue.h>
108 #include <net/sock.h>
109 #include <net/af_vsock.h>
110
111 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
112 static void vsock_sk_destruct(struct sock *sk);
113 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
114
115 /* Protocol family. */
116 static struct proto vsock_proto = {
117         .name = "AF_VSOCK",
118         .owner = THIS_MODULE,
119         .obj_size = sizeof(struct vsock_sock),
120 };
121
122 /* The default peer timeout indicates how long we will wait for a peer response
123  * to a control message.
124  */
125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126
127 static const struct vsock_transport *transport;
128 static DEFINE_MUTEX(vsock_register_mutex);
129
130 /**** EXPORTS ****/
131
132 /* Get the ID of the local context.  This is transport dependent. */
133
134 int vm_sockets_get_local_cid(void)
135 {
136         return transport->get_local_cid();
137 }
138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
139
140 /**** UTILS ****/
141
142 /* Each bound VSocket is stored in the bind hash table and each connected
143  * VSocket is stored in the connected hash table.
144  *
145  * Unbound sockets are all put on the same list attached to the end of the hash
146  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
147  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
148  * represents the list that addr hashes to).
149  *
150  * Specifically, we initialize the vsock_bind_table array to a size of
151  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
152  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
153  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
154  * mods with VSOCK_HASH_SIZE to ensure this.
155  */
156 #define VSOCK_HASH_SIZE         251
157 #define MAX_PORT_RETRIES        24
158
159 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
161 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
162
163 /* XXX This can probably be implemented in a better way. */
164 #define VSOCK_CONN_HASH(src, dst)                               \
165         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
166 #define vsock_connected_sockets(src, dst)               \
167         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
168 #define vsock_connected_sockets_vsk(vsk)                                \
169         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170
171 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
172 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
173 static DEFINE_SPINLOCK(vsock_table_lock);
174
175 /* Autobind this socket to the local address if necessary. */
176 static int vsock_auto_bind(struct vsock_sock *vsk)
177 {
178         struct sock *sk = sk_vsock(vsk);
179         struct sockaddr_vm local_addr;
180
181         if (vsock_addr_bound(&vsk->local_addr))
182                 return 0;
183         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
184         return __vsock_bind(sk, &local_addr);
185 }
186
187 static void vsock_init_tables(void)
188 {
189         int i;
190
191         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
192                 INIT_LIST_HEAD(&vsock_bind_table[i]);
193
194         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
195                 INIT_LIST_HEAD(&vsock_connected_table[i]);
196 }
197
198 static void __vsock_insert_bound(struct list_head *list,
199                                  struct vsock_sock *vsk)
200 {
201         sock_hold(&vsk->sk);
202         list_add(&vsk->bound_table, list);
203 }
204
205 static void __vsock_insert_connected(struct list_head *list,
206                                      struct vsock_sock *vsk)
207 {
208         sock_hold(&vsk->sk);
209         list_add(&vsk->connected_table, list);
210 }
211
212 static void __vsock_remove_bound(struct vsock_sock *vsk)
213 {
214         list_del_init(&vsk->bound_table);
215         sock_put(&vsk->sk);
216 }
217
218 static void __vsock_remove_connected(struct vsock_sock *vsk)
219 {
220         list_del_init(&vsk->connected_table);
221         sock_put(&vsk->sk);
222 }
223
224 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
225 {
226         struct vsock_sock *vsk;
227
228         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
229                 if (addr->svm_port == vsk->local_addr.svm_port)
230                         return sk_vsock(vsk);
231
232         return NULL;
233 }
234
235 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
236                                                   struct sockaddr_vm *dst)
237 {
238         struct vsock_sock *vsk;
239
240         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
241                             connected_table) {
242                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
243                     dst->svm_port == vsk->local_addr.svm_port) {
244                         return sk_vsock(vsk);
245                 }
246         }
247
248         return NULL;
249 }
250
251 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
252 {
253         return !list_empty(&vsk->bound_table);
254 }
255
256 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
257 {
258         return !list_empty(&vsk->connected_table);
259 }
260
261 static void vsock_insert_unbound(struct vsock_sock *vsk)
262 {
263         spin_lock_bh(&vsock_table_lock);
264         __vsock_insert_bound(vsock_unbound_sockets, vsk);
265         spin_unlock_bh(&vsock_table_lock);
266 }
267
268 void vsock_insert_connected(struct vsock_sock *vsk)
269 {
270         struct list_head *list = vsock_connected_sockets(
271                 &vsk->remote_addr, &vsk->local_addr);
272
273         spin_lock_bh(&vsock_table_lock);
274         __vsock_insert_connected(list, vsk);
275         spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_insert_connected);
278
279 void vsock_remove_bound(struct vsock_sock *vsk)
280 {
281         spin_lock_bh(&vsock_table_lock);
282         __vsock_remove_bound(vsk);
283         spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_remove_bound);
286
287 void vsock_remove_connected(struct vsock_sock *vsk)
288 {
289         spin_lock_bh(&vsock_table_lock);
290         __vsock_remove_connected(vsk);
291         spin_unlock_bh(&vsock_table_lock);
292 }
293 EXPORT_SYMBOL_GPL(vsock_remove_connected);
294
295 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
296 {
297         struct sock *sk;
298
299         spin_lock_bh(&vsock_table_lock);
300         sk = __vsock_find_bound_socket(addr);
301         if (sk)
302                 sock_hold(sk);
303
304         spin_unlock_bh(&vsock_table_lock);
305
306         return sk;
307 }
308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
309
310 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
311                                          struct sockaddr_vm *dst)
312 {
313         struct sock *sk;
314
315         spin_lock_bh(&vsock_table_lock);
316         sk = __vsock_find_connected_socket(src, dst);
317         if (sk)
318                 sock_hold(sk);
319
320         spin_unlock_bh(&vsock_table_lock);
321
322         return sk;
323 }
324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
325
326 static bool vsock_in_bound_table(struct vsock_sock *vsk)
327 {
328         bool ret;
329
330         spin_lock_bh(&vsock_table_lock);
331         ret = __vsock_in_bound_table(vsk);
332         spin_unlock_bh(&vsock_table_lock);
333
334         return ret;
335 }
336
337 static bool vsock_in_connected_table(struct vsock_sock *vsk)
338 {
339         bool ret;
340
341         spin_lock_bh(&vsock_table_lock);
342         ret = __vsock_in_connected_table(vsk);
343         spin_unlock_bh(&vsock_table_lock);
344
345         return ret;
346 }
347
348 void vsock_remove_sock(struct vsock_sock *vsk)
349 {
350         if (vsock_in_bound_table(vsk))
351                 vsock_remove_bound(vsk);
352
353         if (vsock_in_connected_table(vsk))
354                 vsock_remove_connected(vsk);
355 }
356 EXPORT_SYMBOL_GPL(vsock_remove_sock);
357
358 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
359 {
360         int i;
361
362         spin_lock_bh(&vsock_table_lock);
363
364         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
365                 struct vsock_sock *vsk;
366                 list_for_each_entry(vsk, &vsock_connected_table[i],
367                                     connected_table)
368                         fn(sk_vsock(vsk));
369         }
370
371         spin_unlock_bh(&vsock_table_lock);
372 }
373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
374
375 void vsock_add_pending(struct sock *listener, struct sock *pending)
376 {
377         struct vsock_sock *vlistener;
378         struct vsock_sock *vpending;
379
380         vlistener = vsock_sk(listener);
381         vpending = vsock_sk(pending);
382
383         sock_hold(pending);
384         sock_hold(listener);
385         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
386 }
387 EXPORT_SYMBOL_GPL(vsock_add_pending);
388
389 void vsock_remove_pending(struct sock *listener, struct sock *pending)
390 {
391         struct vsock_sock *vpending = vsock_sk(pending);
392
393         list_del_init(&vpending->pending_links);
394         sock_put(listener);
395         sock_put(pending);
396 }
397 EXPORT_SYMBOL_GPL(vsock_remove_pending);
398
399 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
400 {
401         struct vsock_sock *vlistener;
402         struct vsock_sock *vconnected;
403
404         vlistener = vsock_sk(listener);
405         vconnected = vsock_sk(connected);
406
407         sock_hold(connected);
408         sock_hold(listener);
409         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
410 }
411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
412
413 static struct sock *vsock_dequeue_accept(struct sock *listener)
414 {
415         struct vsock_sock *vlistener;
416         struct vsock_sock *vconnected;
417
418         vlistener = vsock_sk(listener);
419
420         if (list_empty(&vlistener->accept_queue))
421                 return NULL;
422
423         vconnected = list_entry(vlistener->accept_queue.next,
424                                 struct vsock_sock, accept_queue);
425
426         list_del_init(&vconnected->accept_queue);
427         sock_put(listener);
428         /* The caller will need a reference on the connected socket so we let
429          * it call sock_put().
430          */
431
432         return sk_vsock(vconnected);
433 }
434
435 static bool vsock_is_accept_queue_empty(struct sock *sk)
436 {
437         struct vsock_sock *vsk = vsock_sk(sk);
438         return list_empty(&vsk->accept_queue);
439 }
440
441 static bool vsock_is_pending(struct sock *sk)
442 {
443         struct vsock_sock *vsk = vsock_sk(sk);
444         return !list_empty(&vsk->pending_links);
445 }
446
447 static int vsock_send_shutdown(struct sock *sk, int mode)
448 {
449         return transport->shutdown(vsock_sk(sk), mode);
450 }
451
452 void vsock_pending_work(struct work_struct *work)
453 {
454         struct sock *sk;
455         struct sock *listener;
456         struct vsock_sock *vsk;
457         bool cleanup;
458
459         vsk = container_of(work, struct vsock_sock, dwork.work);
460         sk = sk_vsock(vsk);
461         listener = vsk->listener;
462         cleanup = true;
463
464         lock_sock(listener);
465         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
466
467         if (vsock_is_pending(sk)) {
468                 vsock_remove_pending(listener, sk);
469
470                 listener->sk_ack_backlog--;
471         } else if (!vsk->rejected) {
472                 /* We are not on the pending list and accept() did not reject
473                  * us, so we must have been accepted by our user process.  We
474                  * just need to drop our references to the sockets and be on
475                  * our way.
476                  */
477                 cleanup = false;
478                 goto out;
479         }
480
481         /* We need to remove ourself from the global connected sockets list so
482          * incoming packets can't find this socket, and to reduce the reference
483          * count.
484          */
485         if (vsock_in_connected_table(vsk))
486                 vsock_remove_connected(vsk);
487
488         sk->sk_state = SS_FREE;
489
490 out:
491         release_sock(sk);
492         release_sock(listener);
493         if (cleanup)
494                 sock_put(sk);
495
496         sock_put(sk);
497         sock_put(listener);
498 }
499 EXPORT_SYMBOL_GPL(vsock_pending_work);
500
501 /**** SOCKET OPERATIONS ****/
502
503 static int __vsock_bind_stream(struct vsock_sock *vsk,
504                                struct sockaddr_vm *addr)
505 {
506         static u32 port = LAST_RESERVED_PORT + 1;
507         struct sockaddr_vm new_addr;
508
509         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
510
511         if (addr->svm_port == VMADDR_PORT_ANY) {
512                 bool found = false;
513                 unsigned int i;
514
515                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
516                         if (port <= LAST_RESERVED_PORT)
517                                 port = LAST_RESERVED_PORT + 1;
518
519                         new_addr.svm_port = port++;
520
521                         if (!__vsock_find_bound_socket(&new_addr)) {
522                                 found = true;
523                                 break;
524                         }
525                 }
526
527                 if (!found)
528                         return -EADDRNOTAVAIL;
529         } else {
530                 /* If port is in reserved range, ensure caller
531                  * has necessary privileges.
532                  */
533                 if (addr->svm_port <= LAST_RESERVED_PORT &&
534                     !capable(CAP_NET_BIND_SERVICE)) {
535                         return -EACCES;
536                 }
537
538                 if (__vsock_find_bound_socket(&new_addr))
539                         return -EADDRINUSE;
540         }
541
542         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
543
544         /* Remove stream sockets from the unbound list and add them to the hash
545          * table for easy lookup by its address.  The unbound list is simply an
546          * extra entry at the end of the hash table, a trick used by AF_UNIX.
547          */
548         __vsock_remove_bound(vsk);
549         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
550
551         return 0;
552 }
553
554 static int __vsock_bind_dgram(struct vsock_sock *vsk,
555                               struct sockaddr_vm *addr)
556 {
557         return transport->dgram_bind(vsk, addr);
558 }
559
560 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
561 {
562         struct vsock_sock *vsk = vsock_sk(sk);
563         u32 cid;
564         int retval;
565
566         /* First ensure this socket isn't already bound. */
567         if (vsock_addr_bound(&vsk->local_addr))
568                 return -EINVAL;
569
570         /* Now bind to the provided address or select appropriate values if
571          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
572          * like AF_INET prevents binding to a non-local IP address (in most
573          * cases), we only allow binding to the local CID.
574          */
575         cid = transport->get_local_cid();
576         if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
577                 return -EADDRNOTAVAIL;
578
579         switch (sk->sk_socket->type) {
580         case SOCK_STREAM:
581                 spin_lock_bh(&vsock_table_lock);
582                 retval = __vsock_bind_stream(vsk, addr);
583                 spin_unlock_bh(&vsock_table_lock);
584                 break;
585
586         case SOCK_DGRAM:
587                 retval = __vsock_bind_dgram(vsk, addr);
588                 break;
589
590         default:
591                 retval = -EINVAL;
592                 break;
593         }
594
595         return retval;
596 }
597
598 struct sock *__vsock_create(struct net *net,
599                             struct socket *sock,
600                             struct sock *parent,
601                             gfp_t priority,
602                             unsigned short type,
603                             int kern)
604 {
605         struct sock *sk;
606         struct vsock_sock *psk;
607         struct vsock_sock *vsk;
608
609         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
610         if (!sk)
611                 return NULL;
612
613         sock_init_data(sock, sk);
614
615         /* sk->sk_type is normally set in sock_init_data, but only if sock is
616          * non-NULL. We make sure that our sockets always have a type by
617          * setting it here if needed.
618          */
619         if (!sock)
620                 sk->sk_type = type;
621
622         vsk = vsock_sk(sk);
623         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625
626         sk->sk_destruct = vsock_sk_destruct;
627         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
628         sk->sk_state = 0;
629         sock_reset_flag(sk, SOCK_DONE);
630
631         INIT_LIST_HEAD(&vsk->bound_table);
632         INIT_LIST_HEAD(&vsk->connected_table);
633         vsk->listener = NULL;
634         INIT_LIST_HEAD(&vsk->pending_links);
635         INIT_LIST_HEAD(&vsk->accept_queue);
636         vsk->rejected = false;
637         vsk->sent_request = false;
638         vsk->ignore_connecting_rst = false;
639         vsk->peer_shutdown = 0;
640
641         psk = parent ? vsock_sk(parent) : NULL;
642         if (parent) {
643                 vsk->trusted = psk->trusted;
644                 vsk->owner = get_cred(psk->owner);
645                 vsk->connect_timeout = psk->connect_timeout;
646         } else {
647                 vsk->trusted = capable(CAP_NET_ADMIN);
648                 vsk->owner = get_current_cred();
649                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
650         }
651
652         if (transport->init(vsk, psk) < 0) {
653                 sk_free(sk);
654                 return NULL;
655         }
656
657         if (sock)
658                 vsock_insert_unbound(vsk);
659
660         return sk;
661 }
662 EXPORT_SYMBOL_GPL(__vsock_create);
663
664 static void __vsock_release(struct sock *sk)
665 {
666         if (sk) {
667                 struct sk_buff *skb;
668                 struct sock *pending;
669                 struct vsock_sock *vsk;
670
671                 vsk = vsock_sk(sk);
672                 pending = NULL; /* Compiler warning. */
673
674                 transport->release(vsk);
675
676                 lock_sock(sk);
677                 sock_orphan(sk);
678                 sk->sk_shutdown = SHUTDOWN_MASK;
679
680                 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681                         kfree_skb(skb);
682
683                 /* Clean up any sockets that never were accepted. */
684                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685                         __vsock_release(pending);
686                         sock_put(pending);
687                 }
688
689                 release_sock(sk);
690                 sock_put(sk);
691         }
692 }
693
694 static void vsock_sk_destruct(struct sock *sk)
695 {
696         struct vsock_sock *vsk = vsock_sk(sk);
697
698         transport->destruct(vsk);
699
700         /* When clearing these addresses, there's no need to set the family and
701          * possibly register the address family with the kernel.
702          */
703         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705
706         put_cred(vsk->owner);
707 }
708
709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 {
711         int err;
712
713         err = sock_queue_rcv_skb(sk, skb);
714         if (err)
715                 kfree_skb(skb);
716
717         return err;
718 }
719
720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 {
722         return transport->stream_has_data(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725
726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 {
728         return transport->stream_has_space(vsk);
729 }
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731
732 static int vsock_release(struct socket *sock)
733 {
734         __vsock_release(sock->sk);
735         sock->sk = NULL;
736         sock->state = SS_FREE;
737
738         return 0;
739 }
740
741 static int
742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 {
744         int err;
745         struct sock *sk;
746         struct sockaddr_vm *vm_addr;
747
748         sk = sock->sk;
749
750         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751                 return -EINVAL;
752
753         lock_sock(sk);
754         err = __vsock_bind(sk, vm_addr);
755         release_sock(sk);
756
757         return err;
758 }
759
760 static int vsock_getname(struct socket *sock,
761                          struct sockaddr *addr, int *addr_len, int peer)
762 {
763         int err;
764         struct sock *sk;
765         struct vsock_sock *vsk;
766         struct sockaddr_vm *vm_addr;
767
768         sk = sock->sk;
769         vsk = vsock_sk(sk);
770         err = 0;
771
772         lock_sock(sk);
773
774         if (peer) {
775                 if (sock->state != SS_CONNECTED) {
776                         err = -ENOTCONN;
777                         goto out;
778                 }
779                 vm_addr = &vsk->remote_addr;
780         } else {
781                 vm_addr = &vsk->local_addr;
782         }
783
784         if (!vm_addr) {
785                 err = -EINVAL;
786                 goto out;
787         }
788
789         /* sys_getsockname() and sys_getpeername() pass us a
790          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
791          * that macro is defined in socket.c instead of .h, so we hardcode its
792          * value here.
793          */
794         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795         memcpy(addr, vm_addr, sizeof(*vm_addr));
796         *addr_len = sizeof(*vm_addr);
797
798 out:
799         release_sock(sk);
800         return err;
801 }
802
803 static int vsock_shutdown(struct socket *sock, int mode)
804 {
805         int err;
806         struct sock *sk;
807
808         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810          * here like the other address families do.  Note also that the
811          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812          * which is what we want.
813          */
814         mode++;
815
816         if ((mode & ~SHUTDOWN_MASK) || !mode)
817                 return -EINVAL;
818
819         /* If this is a STREAM socket and it is not connected then bail out
820          * immediately.  If it is a DGRAM socket then we must first kick the
821          * socket so that it wakes up from any sleeping calls, for example
822          * recv(), and then afterwards return the error.
823          */
824
825         sk = sock->sk;
826         if (sock->state == SS_UNCONNECTED) {
827                 err = -ENOTCONN;
828                 if (sk->sk_type == SOCK_STREAM)
829                         return err;
830         } else {
831                 sock->state = SS_DISCONNECTING;
832                 err = 0;
833         }
834
835         /* Receive and send shutdowns are treated alike. */
836         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837         if (mode) {
838                 lock_sock(sk);
839                 sk->sk_shutdown |= mode;
840                 sk->sk_state_change(sk);
841                 release_sock(sk);
842
843                 if (sk->sk_type == SOCK_STREAM) {
844                         sock_reset_flag(sk, SOCK_DONE);
845                         vsock_send_shutdown(sk, mode);
846                 }
847         }
848
849         return err;
850 }
851
852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853                                poll_table *wait)
854 {
855         struct sock *sk;
856         unsigned int mask;
857         struct vsock_sock *vsk;
858
859         sk = sock->sk;
860         vsk = vsock_sk(sk);
861
862         poll_wait(file, sk_sleep(sk), wait);
863         mask = 0;
864
865         if (sk->sk_err)
866                 /* Signify that there has been an error on this socket. */
867                 mask |= POLLERR;
868
869         /* INET sockets treat local write shutdown and peer write shutdown as a
870          * case of POLLHUP set.
871          */
872         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875                 mask |= POLLHUP;
876         }
877
878         if (sk->sk_shutdown & RCV_SHUTDOWN ||
879             vsk->peer_shutdown & SEND_SHUTDOWN) {
880                 mask |= POLLRDHUP;
881         }
882
883         if (sock->type == SOCK_DGRAM) {
884                 /* For datagram sockets we can read if there is something in
885                  * the queue and write as long as the socket isn't shutdown for
886                  * sending.
887                  */
888                 if (!skb_queue_empty(&sk->sk_receive_queue) ||
889                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
890                         mask |= POLLIN | POLLRDNORM;
891                 }
892
893                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894                         mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895
896         } else if (sock->type == SOCK_STREAM) {
897                 lock_sock(sk);
898
899                 /* Listening sockets that have connections in their accept
900                  * queue can be read.
901                  */
902                 if (sk->sk_state == VSOCK_SS_LISTEN
903                     && !vsock_is_accept_queue_empty(sk))
904                         mask |= POLLIN | POLLRDNORM;
905
906                 /* If there is something in the queue then we can read. */
907                 if (transport->stream_is_active(vsk) &&
908                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909                         bool data_ready_now = false;
910                         int ret = transport->notify_poll_in(
911                                         vsk, 1, &data_ready_now);
912                         if (ret < 0) {
913                                 mask |= POLLERR;
914                         } else {
915                                 if (data_ready_now)
916                                         mask |= POLLIN | POLLRDNORM;
917
918                         }
919                 }
920
921                 /* Sockets whose connections have been closed, reset, or
922                  * terminated should also be considered read, and we check the
923                  * shutdown flag for that.
924                  */
925                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
926                     vsk->peer_shutdown & SEND_SHUTDOWN) {
927                         mask |= POLLIN | POLLRDNORM;
928                 }
929
930                 /* Connected sockets that can produce data can be written. */
931                 if (sk->sk_state == SS_CONNECTED) {
932                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933                                 bool space_avail_now = false;
934                                 int ret = transport->notify_poll_out(
935                                                 vsk, 1, &space_avail_now);
936                                 if (ret < 0) {
937                                         mask |= POLLERR;
938                                 } else {
939                                         if (space_avail_now)
940                                                 /* Remove POLLWRBAND since INET
941                                                  * sockets are not setting it.
942                                                  */
943                                                 mask |= POLLOUT | POLLWRNORM;
944
945                                 }
946                         }
947                 }
948
949                 /* Simulate INET socket poll behaviors, which sets
950                  * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951                  * but local send is not shutdown.
952                  */
953                 if (sk->sk_state == SS_UNCONNECTED) {
954                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955                                 mask |= POLLOUT | POLLWRNORM;
956
957                 }
958
959                 release_sock(sk);
960         }
961
962         return mask;
963 }
964
965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966                                size_t len)
967 {
968         int err;
969         struct sock *sk;
970         struct vsock_sock *vsk;
971         struct sockaddr_vm *remote_addr;
972
973         if (msg->msg_flags & MSG_OOB)
974                 return -EOPNOTSUPP;
975
976         /* For now, MSG_DONTWAIT is always assumed... */
977         err = 0;
978         sk = sock->sk;
979         vsk = vsock_sk(sk);
980
981         lock_sock(sk);
982
983         err = vsock_auto_bind(vsk);
984         if (err)
985                 goto out;
986
987
988         /* If the provided message contains an address, use that.  Otherwise
989          * fall back on the socket's remote handle (if it has been connected).
990          */
991         if (msg->msg_name &&
992             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993                             &remote_addr) == 0) {
994                 /* Ensure this address is of the right type and is a valid
995                  * destination.
996                  */
997
998                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
999                         remote_addr->svm_cid = transport->get_local_cid();
1000
1001                 if (!vsock_addr_bound(remote_addr)) {
1002                         err = -EINVAL;
1003                         goto out;
1004                 }
1005         } else if (sock->state == SS_CONNECTED) {
1006                 remote_addr = &vsk->remote_addr;
1007
1008                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009                         remote_addr->svm_cid = transport->get_local_cid();
1010
1011                 /* XXX Should connect() or this function ensure remote_addr is
1012                  * bound?
1013                  */
1014                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1015                         err = -EINVAL;
1016                         goto out;
1017                 }
1018         } else {
1019                 err = -EINVAL;
1020                 goto out;
1021         }
1022
1023         if (!transport->dgram_allow(remote_addr->svm_cid,
1024                                     remote_addr->svm_port)) {
1025                 err = -EINVAL;
1026                 goto out;
1027         }
1028
1029         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030
1031 out:
1032         release_sock(sk);
1033         return err;
1034 }
1035
1036 static int vsock_dgram_connect(struct socket *sock,
1037                                struct sockaddr *addr, int addr_len, int flags)
1038 {
1039         int err;
1040         struct sock *sk;
1041         struct vsock_sock *vsk;
1042         struct sockaddr_vm *remote_addr;
1043
1044         sk = sock->sk;
1045         vsk = vsock_sk(sk);
1046
1047         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049                 lock_sock(sk);
1050                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051                                 VMADDR_PORT_ANY);
1052                 sock->state = SS_UNCONNECTED;
1053                 release_sock(sk);
1054                 return 0;
1055         } else if (err != 0)
1056                 return -EINVAL;
1057
1058         lock_sock(sk);
1059
1060         err = vsock_auto_bind(vsk);
1061         if (err)
1062                 goto out;
1063
1064         if (!transport->dgram_allow(remote_addr->svm_cid,
1065                                     remote_addr->svm_port)) {
1066                 err = -EINVAL;
1067                 goto out;
1068         }
1069
1070         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071         sock->state = SS_CONNECTED;
1072
1073 out:
1074         release_sock(sk);
1075         return err;
1076 }
1077
1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079                                size_t len, int flags)
1080 {
1081         return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1082 }
1083
1084 static const struct proto_ops vsock_dgram_ops = {
1085         .family = PF_VSOCK,
1086         .owner = THIS_MODULE,
1087         .release = vsock_release,
1088         .bind = vsock_bind,
1089         .connect = vsock_dgram_connect,
1090         .socketpair = sock_no_socketpair,
1091         .accept = sock_no_accept,
1092         .getname = vsock_getname,
1093         .poll = vsock_poll,
1094         .ioctl = sock_no_ioctl,
1095         .listen = sock_no_listen,
1096         .shutdown = vsock_shutdown,
1097         .setsockopt = sock_no_setsockopt,
1098         .getsockopt = sock_no_getsockopt,
1099         .sendmsg = vsock_dgram_sendmsg,
1100         .recvmsg = vsock_dgram_recvmsg,
1101         .mmap = sock_no_mmap,
1102         .sendpage = sock_no_sendpage,
1103 };
1104
1105 static void vsock_connect_timeout(struct work_struct *work)
1106 {
1107         struct sock *sk;
1108         struct vsock_sock *vsk;
1109
1110         vsk = container_of(work, struct vsock_sock, dwork.work);
1111         sk = sk_vsock(vsk);
1112
1113         lock_sock(sk);
1114         if (sk->sk_state == SS_CONNECTING &&
1115             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1116                 sk->sk_state = SS_UNCONNECTED;
1117                 sk->sk_err = ETIMEDOUT;
1118                 sk->sk_error_report(sk);
1119         }
1120         release_sock(sk);
1121
1122         sock_put(sk);
1123 }
1124
1125 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1126                                 int addr_len, int flags)
1127 {
1128         int err;
1129         struct sock *sk;
1130         struct vsock_sock *vsk;
1131         struct sockaddr_vm *remote_addr;
1132         long timeout;
1133         DEFINE_WAIT(wait);
1134
1135         err = 0;
1136         sk = sock->sk;
1137         vsk = vsock_sk(sk);
1138
1139         lock_sock(sk);
1140
1141         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1142         switch (sock->state) {
1143         case SS_CONNECTED:
1144                 err = -EISCONN;
1145                 goto out;
1146         case SS_DISCONNECTING:
1147                 err = -EINVAL;
1148                 goto out;
1149         case SS_CONNECTING:
1150                 /* This continues on so we can move sock into the SS_CONNECTED
1151                  * state once the connection has completed (at which point err
1152                  * will be set to zero also).  Otherwise, we will either wait
1153                  * for the connection or return -EALREADY should this be a
1154                  * non-blocking call.
1155                  */
1156                 err = -EALREADY;
1157                 break;
1158         default:
1159                 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1160                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1161                         err = -EINVAL;
1162                         goto out;
1163                 }
1164
1165                 /* The hypervisor and well-known contexts do not have socket
1166                  * endpoints.
1167                  */
1168                 if (!transport->stream_allow(remote_addr->svm_cid,
1169                                              remote_addr->svm_port)) {
1170                         err = -ENETUNREACH;
1171                         goto out;
1172                 }
1173
1174                 /* Set the remote address that we are connecting to. */
1175                 memcpy(&vsk->remote_addr, remote_addr,
1176                        sizeof(vsk->remote_addr));
1177
1178                 err = vsock_auto_bind(vsk);
1179                 if (err)
1180                         goto out;
1181
1182                 sk->sk_state = SS_CONNECTING;
1183
1184                 err = transport->connect(vsk);
1185                 if (err < 0)
1186                         goto out;
1187
1188                 /* Mark sock as connecting and set the error code to in
1189                  * progress in case this is a non-blocking connect.
1190                  */
1191                 sock->state = SS_CONNECTING;
1192                 err = -EINPROGRESS;
1193         }
1194
1195         /* The receive path will handle all communication until we are able to
1196          * enter the connected state.  Here we wait for the connection to be
1197          * completed or a notification of an error.
1198          */
1199         timeout = vsk->connect_timeout;
1200         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1201
1202         while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1203                 if (flags & O_NONBLOCK) {
1204                         /* If we're not going to block, we schedule a timeout
1205                          * function to generate a timeout on the connection
1206                          * attempt, in case the peer doesn't respond in a
1207                          * timely manner. We hold on to the socket until the
1208                          * timeout fires.
1209                          */
1210                         sock_hold(sk);
1211                         INIT_DELAYED_WORK(&vsk->dwork,
1212                                           vsock_connect_timeout);
1213                         schedule_delayed_work(&vsk->dwork, timeout);
1214
1215                         /* Skip ahead to preserve error code set above. */
1216                         goto out_wait;
1217                 }
1218
1219                 release_sock(sk);
1220                 timeout = schedule_timeout(timeout);
1221                 lock_sock(sk);
1222
1223                 if (signal_pending(current)) {
1224                         err = sock_intr_errno(timeout);
1225                         sk->sk_state = SS_UNCONNECTED;
1226                         sock->state = SS_UNCONNECTED;
1227                         goto out_wait;
1228                 } else if (timeout == 0) {
1229                         err = -ETIMEDOUT;
1230                         sk->sk_state = SS_UNCONNECTED;
1231                         sock->state = SS_UNCONNECTED;
1232                         goto out_wait;
1233                 }
1234
1235                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1236         }
1237
1238         if (sk->sk_err) {
1239                 err = -sk->sk_err;
1240                 sk->sk_state = SS_UNCONNECTED;
1241                 sock->state = SS_UNCONNECTED;
1242         } else {
1243                 err = 0;
1244         }
1245
1246 out_wait:
1247         finish_wait(sk_sleep(sk), &wait);
1248 out:
1249         release_sock(sk);
1250         return err;
1251 }
1252
1253 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1254 {
1255         struct sock *listener;
1256         int err;
1257         struct sock *connected;
1258         struct vsock_sock *vconnected;
1259         long timeout;
1260         DEFINE_WAIT(wait);
1261
1262         err = 0;
1263         listener = sock->sk;
1264
1265         lock_sock(listener);
1266
1267         if (sock->type != SOCK_STREAM) {
1268                 err = -EOPNOTSUPP;
1269                 goto out;
1270         }
1271
1272         if (listener->sk_state != VSOCK_SS_LISTEN) {
1273                 err = -EINVAL;
1274                 goto out;
1275         }
1276
1277         /* Wait for children sockets to appear; these are the new sockets
1278          * created upon connection establishment.
1279          */
1280         timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1281         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1282
1283         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1284                listener->sk_err == 0) {
1285                 release_sock(listener);
1286                 timeout = schedule_timeout(timeout);
1287                 finish_wait(sk_sleep(listener), &wait);
1288                 lock_sock(listener);
1289
1290                 if (signal_pending(current)) {
1291                         err = sock_intr_errno(timeout);
1292                         goto out;
1293                 } else if (timeout == 0) {
1294                         err = -EAGAIN;
1295                         goto out;
1296                 }
1297
1298                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1299         }
1300         finish_wait(sk_sleep(listener), &wait);
1301
1302         if (listener->sk_err)
1303                 err = -listener->sk_err;
1304
1305         if (connected) {
1306                 listener->sk_ack_backlog--;
1307
1308                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1309                 vconnected = vsock_sk(connected);
1310
1311                 /* If the listener socket has received an error, then we should
1312                  * reject this socket and return.  Note that we simply mark the
1313                  * socket rejected, drop our reference, and let the cleanup
1314                  * function handle the cleanup; the fact that we found it in
1315                  * the listener's accept queue guarantees that the cleanup
1316                  * function hasn't run yet.
1317                  */
1318                 if (err) {
1319                         vconnected->rejected = true;
1320                 } else {
1321                         newsock->state = SS_CONNECTED;
1322                         sock_graft(connected, newsock);
1323                 }
1324
1325                 release_sock(connected);
1326                 sock_put(connected);
1327         }
1328
1329 out:
1330         release_sock(listener);
1331         return err;
1332 }
1333
1334 static int vsock_listen(struct socket *sock, int backlog)
1335 {
1336         int err;
1337         struct sock *sk;
1338         struct vsock_sock *vsk;
1339
1340         sk = sock->sk;
1341
1342         lock_sock(sk);
1343
1344         if (sock->type != SOCK_STREAM) {
1345                 err = -EOPNOTSUPP;
1346                 goto out;
1347         }
1348
1349         if (sock->state != SS_UNCONNECTED) {
1350                 err = -EINVAL;
1351                 goto out;
1352         }
1353
1354         vsk = vsock_sk(sk);
1355
1356         if (!vsock_addr_bound(&vsk->local_addr)) {
1357                 err = -EINVAL;
1358                 goto out;
1359         }
1360
1361         sk->sk_max_ack_backlog = backlog;
1362         sk->sk_state = VSOCK_SS_LISTEN;
1363
1364         err = 0;
1365
1366 out:
1367         release_sock(sk);
1368         return err;
1369 }
1370
1371 static int vsock_stream_setsockopt(struct socket *sock,
1372                                    int level,
1373                                    int optname,
1374                                    char __user *optval,
1375                                    unsigned int optlen)
1376 {
1377         int err;
1378         struct sock *sk;
1379         struct vsock_sock *vsk;
1380         u64 val;
1381
1382         if (level != AF_VSOCK)
1383                 return -ENOPROTOOPT;
1384
1385 #define COPY_IN(_v)                                       \
1386         do {                                              \
1387                 if (optlen < sizeof(_v)) {                \
1388                         err = -EINVAL;                    \
1389                         goto exit;                        \
1390                 }                                         \
1391                 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1392                         err = -EFAULT;                                  \
1393                         goto exit;                                      \
1394                 }                                                       \
1395         } while (0)
1396
1397         err = 0;
1398         sk = sock->sk;
1399         vsk = vsock_sk(sk);
1400
1401         lock_sock(sk);
1402
1403         switch (optname) {
1404         case SO_VM_SOCKETS_BUFFER_SIZE:
1405                 COPY_IN(val);
1406                 transport->set_buffer_size(vsk, val);
1407                 break;
1408
1409         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1410                 COPY_IN(val);
1411                 transport->set_max_buffer_size(vsk, val);
1412                 break;
1413
1414         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1415                 COPY_IN(val);
1416                 transport->set_min_buffer_size(vsk, val);
1417                 break;
1418
1419         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1420                 struct timeval tv;
1421                 COPY_IN(tv);
1422                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1423                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1424                         vsk->connect_timeout = tv.tv_sec * HZ +
1425                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1426                         if (vsk->connect_timeout == 0)
1427                                 vsk->connect_timeout =
1428                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1429
1430                 } else {
1431                         err = -ERANGE;
1432                 }
1433                 break;
1434         }
1435
1436         default:
1437                 err = -ENOPROTOOPT;
1438                 break;
1439         }
1440
1441 #undef COPY_IN
1442
1443 exit:
1444         release_sock(sk);
1445         return err;
1446 }
1447
1448 static int vsock_stream_getsockopt(struct socket *sock,
1449                                    int level, int optname,
1450                                    char __user *optval,
1451                                    int __user *optlen)
1452 {
1453         int err;
1454         int len;
1455         struct sock *sk;
1456         struct vsock_sock *vsk;
1457         u64 val;
1458
1459         if (level != AF_VSOCK)
1460                 return -ENOPROTOOPT;
1461
1462         err = get_user(len, optlen);
1463         if (err != 0)
1464                 return err;
1465
1466 #define COPY_OUT(_v)                            \
1467         do {                                    \
1468                 if (len < sizeof(_v))           \
1469                         return -EINVAL;         \
1470                                                 \
1471                 len = sizeof(_v);               \
1472                 if (copy_to_user(optval, &_v, len) != 0)        \
1473                         return -EFAULT;                         \
1474                                                                 \
1475         } while (0)
1476
1477         err = 0;
1478         sk = sock->sk;
1479         vsk = vsock_sk(sk);
1480
1481         switch (optname) {
1482         case SO_VM_SOCKETS_BUFFER_SIZE:
1483                 val = transport->get_buffer_size(vsk);
1484                 COPY_OUT(val);
1485                 break;
1486
1487         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1488                 val = transport->get_max_buffer_size(vsk);
1489                 COPY_OUT(val);
1490                 break;
1491
1492         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1493                 val = transport->get_min_buffer_size(vsk);
1494                 COPY_OUT(val);
1495                 break;
1496
1497         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1498                 struct timeval tv;
1499                 tv.tv_sec = vsk->connect_timeout / HZ;
1500                 tv.tv_usec =
1501                     (vsk->connect_timeout -
1502                      tv.tv_sec * HZ) * (1000000 / HZ);
1503                 COPY_OUT(tv);
1504                 break;
1505         }
1506         default:
1507                 return -ENOPROTOOPT;
1508         }
1509
1510         err = put_user(len, optlen);
1511         if (err != 0)
1512                 return -EFAULT;
1513
1514 #undef COPY_OUT
1515
1516         return 0;
1517 }
1518
1519 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1520                                 size_t len)
1521 {
1522         struct sock *sk;
1523         struct vsock_sock *vsk;
1524         ssize_t total_written;
1525         long timeout;
1526         int err;
1527         struct vsock_transport_send_notify_data send_data;
1528
1529         DEFINE_WAIT(wait);
1530
1531         sk = sock->sk;
1532         vsk = vsock_sk(sk);
1533         total_written = 0;
1534         err = 0;
1535
1536         if (msg->msg_flags & MSG_OOB)
1537                 return -EOPNOTSUPP;
1538
1539         lock_sock(sk);
1540
1541         /* Callers should not provide a destination with stream sockets. */
1542         if (msg->msg_namelen) {
1543                 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1544                 goto out;
1545         }
1546
1547         /* Send data only if both sides are not shutdown in the direction. */
1548         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1549             vsk->peer_shutdown & RCV_SHUTDOWN) {
1550                 err = -EPIPE;
1551                 goto out;
1552         }
1553
1554         if (sk->sk_state != SS_CONNECTED ||
1555             !vsock_addr_bound(&vsk->local_addr)) {
1556                 err = -ENOTCONN;
1557                 goto out;
1558         }
1559
1560         if (!vsock_addr_bound(&vsk->remote_addr)) {
1561                 err = -EDESTADDRREQ;
1562                 goto out;
1563         }
1564
1565         /* Wait for room in the produce queue to enqueue our user's data. */
1566         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1567
1568         err = transport->notify_send_init(vsk, &send_data);
1569         if (err < 0)
1570                 goto out;
1571
1572
1573         while (total_written < len) {
1574                 ssize_t written;
1575
1576                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1577                 while (vsock_stream_has_space(vsk) == 0 &&
1578                        sk->sk_err == 0 &&
1579                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1580                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1581
1582                         /* Don't wait for non-blocking sockets. */
1583                         if (timeout == 0) {
1584                                 err = -EAGAIN;
1585                                 finish_wait(sk_sleep(sk), &wait);
1586                                 goto out_err;
1587                         }
1588
1589                         err = transport->notify_send_pre_block(vsk, &send_data);
1590                         if (err < 0) {
1591                                 finish_wait(sk_sleep(sk), &wait);
1592                                 goto out_err;
1593                         }
1594
1595                         release_sock(sk);
1596                         timeout = schedule_timeout(timeout);
1597                         lock_sock(sk);
1598                         if (signal_pending(current)) {
1599                                 err = sock_intr_errno(timeout);
1600                                 finish_wait(sk_sleep(sk), &wait);
1601                                 goto out_err;
1602                         } else if (timeout == 0) {
1603                                 err = -EAGAIN;
1604                                 finish_wait(sk_sleep(sk), &wait);
1605                                 goto out_err;
1606                         }
1607
1608                         prepare_to_wait(sk_sleep(sk), &wait,
1609                                         TASK_INTERRUPTIBLE);
1610                 }
1611                 finish_wait(sk_sleep(sk), &wait);
1612
1613                 /* These checks occur both as part of and after the loop
1614                  * conditional since we need to check before and after
1615                  * sleeping.
1616                  */
1617                 if (sk->sk_err) {
1618                         err = -sk->sk_err;
1619                         goto out_err;
1620                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1621                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1622                         err = -EPIPE;
1623                         goto out_err;
1624                 }
1625
1626                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1627                 if (err < 0)
1628                         goto out_err;
1629
1630                 /* Note that enqueue will only write as many bytes as are free
1631                  * in the produce queue, so we don't need to ensure len is
1632                  * smaller than the queue size.  It is the caller's
1633                  * responsibility to check how many bytes we were able to send.
1634                  */
1635
1636                 written = transport->stream_enqueue(
1637                                 vsk, msg,
1638                                 len - total_written);
1639                 if (written < 0) {
1640                         err = -ENOMEM;
1641                         goto out_err;
1642                 }
1643
1644                 total_written += written;
1645
1646                 err = transport->notify_send_post_enqueue(
1647                                 vsk, written, &send_data);
1648                 if (err < 0)
1649                         goto out_err;
1650
1651         }
1652
1653 out_err:
1654         if (total_written > 0)
1655                 err = total_written;
1656 out:
1657         release_sock(sk);
1658         return err;
1659 }
1660
1661
1662 static int
1663 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1664                      int flags)
1665 {
1666         struct sock *sk;
1667         struct vsock_sock *vsk;
1668         int err;
1669         size_t target;
1670         ssize_t copied;
1671         long timeout;
1672         struct vsock_transport_recv_notify_data recv_data;
1673
1674         DEFINE_WAIT(wait);
1675
1676         sk = sock->sk;
1677         vsk = vsock_sk(sk);
1678         err = 0;
1679
1680         lock_sock(sk);
1681
1682         if (sk->sk_state != SS_CONNECTED) {
1683                 /* Recvmsg is supposed to return 0 if a peer performs an
1684                  * orderly shutdown. Differentiate between that case and when a
1685                  * peer has not connected or a local shutdown occured with the
1686                  * SOCK_DONE flag.
1687                  */
1688                 if (sock_flag(sk, SOCK_DONE))
1689                         err = 0;
1690                 else
1691                         err = -ENOTCONN;
1692
1693                 goto out;
1694         }
1695
1696         if (flags & MSG_OOB) {
1697                 err = -EOPNOTSUPP;
1698                 goto out;
1699         }
1700
1701         /* We don't check peer_shutdown flag here since peer may actually shut
1702          * down, but there can be data in the queue that a local socket can
1703          * receive.
1704          */
1705         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1706                 err = 0;
1707                 goto out;
1708         }
1709
1710         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1711          * is not an error.  We may as well bail out now.
1712          */
1713         if (!len) {
1714                 err = 0;
1715                 goto out;
1716         }
1717
1718         /* We must not copy less than target bytes into the user's buffer
1719          * before returning successfully, so we wait for the consume queue to
1720          * have that much data to consume before dequeueing.  Note that this
1721          * makes it impossible to handle cases where target is greater than the
1722          * queue size.
1723          */
1724         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1725         if (target >= transport->stream_rcvhiwat(vsk)) {
1726                 err = -ENOMEM;
1727                 goto out;
1728         }
1729         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1730         copied = 0;
1731
1732         err = transport->notify_recv_init(vsk, target, &recv_data);
1733         if (err < 0)
1734                 goto out;
1735
1736
1737         while (1) {
1738                 s64 ready;
1739
1740                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1741                 ready = vsock_stream_has_data(vsk);
1742
1743                 if (ready == 0) {
1744                         if (sk->sk_err != 0 ||
1745                             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1746                             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1747                                 finish_wait(sk_sleep(sk), &wait);
1748                                 break;
1749                         }
1750                         /* Don't wait for non-blocking sockets. */
1751                         if (timeout == 0) {
1752                                 err = -EAGAIN;
1753                                 finish_wait(sk_sleep(sk), &wait);
1754                                 break;
1755                         }
1756
1757                         err = transport->notify_recv_pre_block(
1758                                         vsk, target, &recv_data);
1759                         if (err < 0) {
1760                                 finish_wait(sk_sleep(sk), &wait);
1761                                 break;
1762                         }
1763                         release_sock(sk);
1764                         timeout = schedule_timeout(timeout);
1765                         lock_sock(sk);
1766
1767                         if (signal_pending(current)) {
1768                                 err = sock_intr_errno(timeout);
1769                                 finish_wait(sk_sleep(sk), &wait);
1770                                 break;
1771                         } else if (timeout == 0) {
1772                                 err = -EAGAIN;
1773                                 finish_wait(sk_sleep(sk), &wait);
1774                                 break;
1775                         }
1776                 } else {
1777                         ssize_t read;
1778
1779                         finish_wait(sk_sleep(sk), &wait);
1780
1781                         if (ready < 0) {
1782                                 /* Invalid queue pair content. XXX This should
1783                                 * be changed to a connection reset in a later
1784                                 * change.
1785                                 */
1786
1787                                 err = -ENOMEM;
1788                                 goto out;
1789                         }
1790
1791                         err = transport->notify_recv_pre_dequeue(
1792                                         vsk, target, &recv_data);
1793                         if (err < 0)
1794                                 break;
1795
1796                         read = transport->stream_dequeue(
1797                                         vsk, msg,
1798                                         len - copied, flags);
1799                         if (read < 0) {
1800                                 err = -ENOMEM;
1801                                 break;
1802                         }
1803
1804                         copied += read;
1805
1806                         err = transport->notify_recv_post_dequeue(
1807                                         vsk, target, read,
1808                                         !(flags & MSG_PEEK), &recv_data);
1809                         if (err < 0)
1810                                 goto out;
1811
1812                         if (read >= target || flags & MSG_PEEK)
1813                                 break;
1814
1815                         target -= read;
1816                 }
1817         }
1818
1819         if (sk->sk_err)
1820                 err = -sk->sk_err;
1821         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1822                 err = 0;
1823
1824         if (copied > 0)
1825                 err = copied;
1826
1827 out:
1828         release_sock(sk);
1829         return err;
1830 }
1831
1832 static const struct proto_ops vsock_stream_ops = {
1833         .family = PF_VSOCK,
1834         .owner = THIS_MODULE,
1835         .release = vsock_release,
1836         .bind = vsock_bind,
1837         .connect = vsock_stream_connect,
1838         .socketpair = sock_no_socketpair,
1839         .accept = vsock_accept,
1840         .getname = vsock_getname,
1841         .poll = vsock_poll,
1842         .ioctl = sock_no_ioctl,
1843         .listen = vsock_listen,
1844         .shutdown = vsock_shutdown,
1845         .setsockopt = vsock_stream_setsockopt,
1846         .getsockopt = vsock_stream_getsockopt,
1847         .sendmsg = vsock_stream_sendmsg,
1848         .recvmsg = vsock_stream_recvmsg,
1849         .mmap = sock_no_mmap,
1850         .sendpage = sock_no_sendpage,
1851 };
1852
1853 static int vsock_create(struct net *net, struct socket *sock,
1854                         int protocol, int kern)
1855 {
1856         if (!sock)
1857                 return -EINVAL;
1858
1859         if (protocol && protocol != PF_VSOCK)
1860                 return -EPROTONOSUPPORT;
1861
1862         switch (sock->type) {
1863         case SOCK_DGRAM:
1864                 sock->ops = &vsock_dgram_ops;
1865                 break;
1866         case SOCK_STREAM:
1867                 sock->ops = &vsock_stream_ops;
1868                 break;
1869         default:
1870                 return -ESOCKTNOSUPPORT;
1871         }
1872
1873         sock->state = SS_UNCONNECTED;
1874
1875         return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1876 }
1877
1878 static const struct net_proto_family vsock_family_ops = {
1879         .family = AF_VSOCK,
1880         .create = vsock_create,
1881         .owner = THIS_MODULE,
1882 };
1883
1884 static long vsock_dev_do_ioctl(struct file *filp,
1885                                unsigned int cmd, void __user *ptr)
1886 {
1887         u32 __user *p = ptr;
1888         int retval = 0;
1889
1890         switch (cmd) {
1891         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1892                 if (put_user(transport->get_local_cid(), p) != 0)
1893                         retval = -EFAULT;
1894                 break;
1895
1896         default:
1897                 pr_err("Unknown ioctl %d\n", cmd);
1898                 retval = -EINVAL;
1899         }
1900
1901         return retval;
1902 }
1903
1904 static long vsock_dev_ioctl(struct file *filp,
1905                             unsigned int cmd, unsigned long arg)
1906 {
1907         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1908 }
1909
1910 #ifdef CONFIG_COMPAT
1911 static long vsock_dev_compat_ioctl(struct file *filp,
1912                                    unsigned int cmd, unsigned long arg)
1913 {
1914         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1915 }
1916 #endif
1917
1918 static const struct file_operations vsock_device_ops = {
1919         .owner          = THIS_MODULE,
1920         .unlocked_ioctl = vsock_dev_ioctl,
1921 #ifdef CONFIG_COMPAT
1922         .compat_ioctl   = vsock_dev_compat_ioctl,
1923 #endif
1924         .open           = nonseekable_open,
1925 };
1926
1927 static struct miscdevice vsock_device = {
1928         .name           = "vsock",
1929         .fops           = &vsock_device_ops,
1930 };
1931
1932 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1933 {
1934         int err = mutex_lock_interruptible(&vsock_register_mutex);
1935
1936         if (err)
1937                 return err;
1938
1939         if (transport) {
1940                 err = -EBUSY;
1941                 goto err_busy;
1942         }
1943
1944         /* Transport must be the owner of the protocol so that it can't
1945          * unload while there are open sockets.
1946          */
1947         vsock_proto.owner = owner;
1948         transport = t;
1949
1950         vsock_init_tables();
1951
1952         vsock_device.minor = MISC_DYNAMIC_MINOR;
1953         err = misc_register(&vsock_device);
1954         if (err) {
1955                 pr_err("Failed to register misc device\n");
1956                 goto err_reset_transport;
1957         }
1958
1959         err = proto_register(&vsock_proto, 1);  /* we want our slab */
1960         if (err) {
1961                 pr_err("Cannot register vsock protocol\n");
1962                 goto err_deregister_misc;
1963         }
1964
1965         err = sock_register(&vsock_family_ops);
1966         if (err) {
1967                 pr_err("could not register af_vsock (%d) address family: %d\n",
1968                        AF_VSOCK, err);
1969                 goto err_unregister_proto;
1970         }
1971
1972         mutex_unlock(&vsock_register_mutex);
1973         return 0;
1974
1975 err_unregister_proto:
1976         proto_unregister(&vsock_proto);
1977 err_deregister_misc:
1978         misc_deregister(&vsock_device);
1979 err_reset_transport:
1980         transport = NULL;
1981 err_busy:
1982         mutex_unlock(&vsock_register_mutex);
1983         return err;
1984 }
1985 EXPORT_SYMBOL_GPL(__vsock_core_init);
1986
1987 void vsock_core_exit(void)
1988 {
1989         mutex_lock(&vsock_register_mutex);
1990
1991         misc_deregister(&vsock_device);
1992         sock_unregister(AF_VSOCK);
1993         proto_unregister(&vsock_proto);
1994
1995         /* We do not want the assignment below re-ordered. */
1996         mb();
1997         transport = NULL;
1998
1999         mutex_unlock(&vsock_register_mutex);
2000 }
2001 EXPORT_SYMBOL_GPL(vsock_core_exit);
2002
2003 const struct vsock_transport *vsock_core_get_transport(void)
2004 {
2005         /* vsock_register_mutex not taken since only the transport uses this
2006          * function and only while registered.
2007          */
2008         return transport;
2009 }
2010 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2011
2012 MODULE_AUTHOR("VMware, Inc.");
2013 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2014 MODULE_VERSION("1.0.2.0-k");
2015 MODULE_LICENSE("GPL v2");