Merge branch 'next' into for-linus
[platform/kernel/linux-starfive.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <linux/splice.h>
41 #include <crypto/aead.h>
42
43 #include <net/strparser.h>
44 #include <net/tls.h>
45
46 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
47                      unsigned int recursion_level)
48 {
49         int start = skb_headlen(skb);
50         int i, chunk = start - offset;
51         struct sk_buff *frag_iter;
52         int elt = 0;
53
54         if (unlikely(recursion_level >= 24))
55                 return -EMSGSIZE;
56
57         if (chunk > 0) {
58                 if (chunk > len)
59                         chunk = len;
60                 elt++;
61                 len -= chunk;
62                 if (len == 0)
63                         return elt;
64                 offset += chunk;
65         }
66
67         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
68                 int end;
69
70                 WARN_ON(start > offset + len);
71
72                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
73                 chunk = end - offset;
74                 if (chunk > 0) {
75                         if (chunk > len)
76                                 chunk = len;
77                         elt++;
78                         len -= chunk;
79                         if (len == 0)
80                                 return elt;
81                         offset += chunk;
82                 }
83                 start = end;
84         }
85
86         if (unlikely(skb_has_frag_list(skb))) {
87                 skb_walk_frags(skb, frag_iter) {
88                         int end, ret;
89
90                         WARN_ON(start > offset + len);
91
92                         end = start + frag_iter->len;
93                         chunk = end - offset;
94                         if (chunk > 0) {
95                                 if (chunk > len)
96                                         chunk = len;
97                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
98                                                 recursion_level + 1);
99                                 if (unlikely(ret < 0))
100                                         return ret;
101                                 elt += ret;
102                                 len -= chunk;
103                                 if (len == 0)
104                                         return elt;
105                                 offset += chunk;
106                         }
107                         start = end;
108                 }
109         }
110         BUG_ON(len);
111         return elt;
112 }
113
114 /* Return the number of scatterlist elements required to completely map the
115  * skb, or -EMSGSIZE if the recursion depth is exceeded.
116  */
117 static int skb_nsg(struct sk_buff *skb, int offset, int len)
118 {
119         return __skb_nsg(skb, offset, len, 0);
120 }
121
122 static int padding_length(struct tls_sw_context_rx *ctx,
123                           struct tls_prot_info *prot, struct sk_buff *skb)
124 {
125         struct strp_msg *rxm = strp_msg(skb);
126         int sub = 0;
127
128         /* Determine zero-padding length */
129         if (prot->version == TLS_1_3_VERSION) {
130                 char content_type = 0;
131                 int err;
132                 int back = 17;
133
134                 while (content_type == 0) {
135                         if (back > rxm->full_len - prot->prepend_size)
136                                 return -EBADMSG;
137                         err = skb_copy_bits(skb,
138                                             rxm->offset + rxm->full_len - back,
139                                             &content_type, 1);
140                         if (err)
141                                 return err;
142                         if (content_type)
143                                 break;
144                         sub++;
145                         back++;
146                 }
147                 ctx->control = content_type;
148         }
149         return sub;
150 }
151
152 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 {
154         struct aead_request *aead_req = (struct aead_request *)req;
155         struct scatterlist *sgout = aead_req->dst;
156         struct scatterlist *sgin = aead_req->src;
157         struct tls_sw_context_rx *ctx;
158         struct tls_context *tls_ctx;
159         struct tls_prot_info *prot;
160         struct scatterlist *sg;
161         struct sk_buff *skb;
162         unsigned int pages;
163         int pending;
164
165         skb = (struct sk_buff *)req->data;
166         tls_ctx = tls_get_ctx(skb->sk);
167         ctx = tls_sw_ctx_rx(tls_ctx);
168         prot = &tls_ctx->prot_info;
169
170         /* Propagate if there was an err */
171         if (err) {
172                 if (err == -EBADMSG)
173                         TLS_INC_STATS(sock_net(skb->sk),
174                                       LINUX_MIB_TLSDECRYPTERROR);
175                 ctx->async_wait.err = err;
176                 tls_err_abort(skb->sk, err);
177         } else {
178                 struct strp_msg *rxm = strp_msg(skb);
179                 int pad;
180
181                 pad = padding_length(ctx, prot, skb);
182                 if (pad < 0) {
183                         ctx->async_wait.err = pad;
184                         tls_err_abort(skb->sk, pad);
185                 } else {
186                         rxm->full_len -= pad;
187                         rxm->offset += prot->prepend_size;
188                         rxm->full_len -= prot->overhead_size;
189                 }
190         }
191
192         /* After using skb->sk to propagate sk through crypto async callback
193          * we need to NULL it again.
194          */
195         skb->sk = NULL;
196
197
198         /* Free the destination pages if skb was not decrypted inplace */
199         if (sgout != sgin) {
200                 /* Skip the first S/G entry as it points to AAD */
201                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
202                         if (!sg)
203                                 break;
204                         put_page(sg_page(sg));
205                 }
206         }
207
208         kfree(aead_req);
209
210         spin_lock_bh(&ctx->decrypt_compl_lock);
211         pending = atomic_dec_return(&ctx->decrypt_pending);
212
213         if (!pending && ctx->async_notify)
214                 complete(&ctx->async_wait.completion);
215         spin_unlock_bh(&ctx->decrypt_compl_lock);
216 }
217
218 static int tls_do_decryption(struct sock *sk,
219                              struct sk_buff *skb,
220                              struct scatterlist *sgin,
221                              struct scatterlist *sgout,
222                              char *iv_recv,
223                              size_t data_len,
224                              struct aead_request *aead_req,
225                              bool async)
226 {
227         struct tls_context *tls_ctx = tls_get_ctx(sk);
228         struct tls_prot_info *prot = &tls_ctx->prot_info;
229         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
230         int ret;
231
232         aead_request_set_tfm(aead_req, ctx->aead_recv);
233         aead_request_set_ad(aead_req, prot->aad_size);
234         aead_request_set_crypt(aead_req, sgin, sgout,
235                                data_len + prot->tag_size,
236                                (u8 *)iv_recv);
237
238         if (async) {
239                 /* Using skb->sk to push sk through to crypto async callback
240                  * handler. This allows propagating errors up to the socket
241                  * if needed. It _must_ be cleared in the async handler
242                  * before consume_skb is called. We _know_ skb->sk is NULL
243                  * because it is a clone from strparser.
244                  */
245                 skb->sk = sk;
246                 aead_request_set_callback(aead_req,
247                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
248                                           tls_decrypt_done, skb);
249                 atomic_inc(&ctx->decrypt_pending);
250         } else {
251                 aead_request_set_callback(aead_req,
252                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
253                                           crypto_req_done, &ctx->async_wait);
254         }
255
256         ret = crypto_aead_decrypt(aead_req);
257         if (ret == -EINPROGRESS) {
258                 if (async)
259                         return ret;
260
261                 ret = crypto_wait_req(ret, &ctx->async_wait);
262         }
263
264         if (async)
265                 atomic_dec(&ctx->decrypt_pending);
266
267         return ret;
268 }
269
270 static void tls_trim_both_msgs(struct sock *sk, int target_size)
271 {
272         struct tls_context *tls_ctx = tls_get_ctx(sk);
273         struct tls_prot_info *prot = &tls_ctx->prot_info;
274         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
275         struct tls_rec *rec = ctx->open_rec;
276
277         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
278         if (target_size > 0)
279                 target_size += prot->overhead_size;
280         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
281 }
282
283 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
284 {
285         struct tls_context *tls_ctx = tls_get_ctx(sk);
286         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
287         struct tls_rec *rec = ctx->open_rec;
288         struct sk_msg *msg_en = &rec->msg_encrypted;
289
290         return sk_msg_alloc(sk, msg_en, len, 0);
291 }
292
293 static int tls_clone_plaintext_msg(struct sock *sk, int required)
294 {
295         struct tls_context *tls_ctx = tls_get_ctx(sk);
296         struct tls_prot_info *prot = &tls_ctx->prot_info;
297         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
298         struct tls_rec *rec = ctx->open_rec;
299         struct sk_msg *msg_pl = &rec->msg_plaintext;
300         struct sk_msg *msg_en = &rec->msg_encrypted;
301         int skip, len;
302
303         /* We add page references worth len bytes from encrypted sg
304          * at the end of plaintext sg. It is guaranteed that msg_en
305          * has enough required room (ensured by caller).
306          */
307         len = required - msg_pl->sg.size;
308
309         /* Skip initial bytes in msg_en's data to be able to use
310          * same offset of both plain and encrypted data.
311          */
312         skip = prot->prepend_size + msg_pl->sg.size;
313
314         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
315 }
316
317 static struct tls_rec *tls_get_rec(struct sock *sk)
318 {
319         struct tls_context *tls_ctx = tls_get_ctx(sk);
320         struct tls_prot_info *prot = &tls_ctx->prot_info;
321         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
322         struct sk_msg *msg_pl, *msg_en;
323         struct tls_rec *rec;
324         int mem_size;
325
326         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
327
328         rec = kzalloc(mem_size, sk->sk_allocation);
329         if (!rec)
330                 return NULL;
331
332         msg_pl = &rec->msg_plaintext;
333         msg_en = &rec->msg_encrypted;
334
335         sk_msg_init(msg_pl);
336         sk_msg_init(msg_en);
337
338         sg_init_table(rec->sg_aead_in, 2);
339         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
340         sg_unmark_end(&rec->sg_aead_in[1]);
341
342         sg_init_table(rec->sg_aead_out, 2);
343         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
344         sg_unmark_end(&rec->sg_aead_out[1]);
345
346         return rec;
347 }
348
349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
350 {
351         sk_msg_free(sk, &rec->msg_encrypted);
352         sk_msg_free(sk, &rec->msg_plaintext);
353         kfree(rec);
354 }
355
356 static void tls_free_open_rec(struct sock *sk)
357 {
358         struct tls_context *tls_ctx = tls_get_ctx(sk);
359         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
360         struct tls_rec *rec = ctx->open_rec;
361
362         if (rec) {
363                 tls_free_rec(sk, rec);
364                 ctx->open_rec = NULL;
365         }
366 }
367
368 int tls_tx_records(struct sock *sk, int flags)
369 {
370         struct tls_context *tls_ctx = tls_get_ctx(sk);
371         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
372         struct tls_rec *rec, *tmp;
373         struct sk_msg *msg_en;
374         int tx_flags, rc = 0;
375
376         if (tls_is_partially_sent_record(tls_ctx)) {
377                 rec = list_first_entry(&ctx->tx_list,
378                                        struct tls_rec, list);
379
380                 if (flags == -1)
381                         tx_flags = rec->tx_flags;
382                 else
383                         tx_flags = flags;
384
385                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
386                 if (rc)
387                         goto tx_err;
388
389                 /* Full record has been transmitted.
390                  * Remove the head of tx_list
391                  */
392                 list_del(&rec->list);
393                 sk_msg_free(sk, &rec->msg_plaintext);
394                 kfree(rec);
395         }
396
397         /* Tx all ready records */
398         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
399                 if (READ_ONCE(rec->tx_ready)) {
400                         if (flags == -1)
401                                 tx_flags = rec->tx_flags;
402                         else
403                                 tx_flags = flags;
404
405                         msg_en = &rec->msg_encrypted;
406                         rc = tls_push_sg(sk, tls_ctx,
407                                          &msg_en->sg.data[msg_en->sg.curr],
408                                          0, tx_flags);
409                         if (rc)
410                                 goto tx_err;
411
412                         list_del(&rec->list);
413                         sk_msg_free(sk, &rec->msg_plaintext);
414                         kfree(rec);
415                 } else {
416                         break;
417                 }
418         }
419
420 tx_err:
421         if (rc < 0 && rc != -EAGAIN)
422                 tls_err_abort(sk, EBADMSG);
423
424         return rc;
425 }
426
427 static void tls_encrypt_done(struct crypto_async_request *req, int err)
428 {
429         struct aead_request *aead_req = (struct aead_request *)req;
430         struct sock *sk = req->data;
431         struct tls_context *tls_ctx = tls_get_ctx(sk);
432         struct tls_prot_info *prot = &tls_ctx->prot_info;
433         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
434         struct scatterlist *sge;
435         struct sk_msg *msg_en;
436         struct tls_rec *rec;
437         bool ready = false;
438         int pending;
439
440         rec = container_of(aead_req, struct tls_rec, aead_req);
441         msg_en = &rec->msg_encrypted;
442
443         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
444         sge->offset -= prot->prepend_size;
445         sge->length += prot->prepend_size;
446
447         /* Check if error is previously set on socket */
448         if (err || sk->sk_err) {
449                 rec = NULL;
450
451                 /* If err is already set on socket, return the same code */
452                 if (sk->sk_err) {
453                         ctx->async_wait.err = sk->sk_err;
454                 } else {
455                         ctx->async_wait.err = err;
456                         tls_err_abort(sk, err);
457                 }
458         }
459
460         if (rec) {
461                 struct tls_rec *first_rec;
462
463                 /* Mark the record as ready for transmission */
464                 smp_store_mb(rec->tx_ready, true);
465
466                 /* If received record is at head of tx_list, schedule tx */
467                 first_rec = list_first_entry(&ctx->tx_list,
468                                              struct tls_rec, list);
469                 if (rec == first_rec)
470                         ready = true;
471         }
472
473         spin_lock_bh(&ctx->encrypt_compl_lock);
474         pending = atomic_dec_return(&ctx->encrypt_pending);
475
476         if (!pending && ctx->async_notify)
477                 complete(&ctx->async_wait.completion);
478         spin_unlock_bh(&ctx->encrypt_compl_lock);
479
480         if (!ready)
481                 return;
482
483         /* Schedule the transmission */
484         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
485                 schedule_delayed_work(&ctx->tx_work.work, 1);
486 }
487
488 static int tls_do_encryption(struct sock *sk,
489                              struct tls_context *tls_ctx,
490                              struct tls_sw_context_tx *ctx,
491                              struct aead_request *aead_req,
492                              size_t data_len, u32 start)
493 {
494         struct tls_prot_info *prot = &tls_ctx->prot_info;
495         struct tls_rec *rec = ctx->open_rec;
496         struct sk_msg *msg_en = &rec->msg_encrypted;
497         struct scatterlist *sge = sk_msg_elem(msg_en, start);
498         int rc, iv_offset = 0;
499
500         /* For CCM based ciphers, first byte of IV is a constant */
501         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
502                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
503                 iv_offset = 1;
504         }
505
506         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
507                prot->iv_size + prot->salt_size);
508
509         xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
510
511         sge->offset += prot->prepend_size;
512         sge->length -= prot->prepend_size;
513
514         msg_en->sg.curr = start;
515
516         aead_request_set_tfm(aead_req, ctx->aead_send);
517         aead_request_set_ad(aead_req, prot->aad_size);
518         aead_request_set_crypt(aead_req, rec->sg_aead_in,
519                                rec->sg_aead_out,
520                                data_len, rec->iv_data);
521
522         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523                                   tls_encrypt_done, sk);
524
525         /* Add the record in tx_list */
526         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527         atomic_inc(&ctx->encrypt_pending);
528
529         rc = crypto_aead_encrypt(aead_req);
530         if (!rc || rc != -EINPROGRESS) {
531                 atomic_dec(&ctx->encrypt_pending);
532                 sge->offset -= prot->prepend_size;
533                 sge->length += prot->prepend_size;
534         }
535
536         if (!rc) {
537                 WRITE_ONCE(rec->tx_ready, true);
538         } else if (rc != -EINPROGRESS) {
539                 list_del(&rec->list);
540                 return rc;
541         }
542
543         /* Unhook the record from context if encryption is not failure */
544         ctx->open_rec = NULL;
545         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546         return rc;
547 }
548
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550                                  struct tls_rec **to, struct sk_msg *msg_opl,
551                                  struct sk_msg *msg_oen, u32 split_point,
552                                  u32 tx_overhead_size, u32 *orig_end)
553 {
554         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555         struct scatterlist *sge, *osge, *nsge;
556         u32 orig_size = msg_opl->sg.size;
557         struct scatterlist tmp = { };
558         struct sk_msg *msg_npl;
559         struct tls_rec *new;
560         int ret;
561
562         new = tls_get_rec(sk);
563         if (!new)
564                 return -ENOMEM;
565         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566                            tx_overhead_size, 0);
567         if (ret < 0) {
568                 tls_free_rec(sk, new);
569                 return ret;
570         }
571
572         *orig_end = msg_opl->sg.end;
573         i = msg_opl->sg.start;
574         sge = sk_msg_elem(msg_opl, i);
575         while (apply && sge->length) {
576                 if (sge->length > apply) {
577                         u32 len = sge->length - apply;
578
579                         get_page(sg_page(sge));
580                         sg_set_page(&tmp, sg_page(sge), len,
581                                     sge->offset + apply);
582                         sge->length = apply;
583                         bytes += apply;
584                         apply = 0;
585                 } else {
586                         apply -= sge->length;
587                         bytes += sge->length;
588                 }
589
590                 sk_msg_iter_var_next(i);
591                 if (i == msg_opl->sg.end)
592                         break;
593                 sge = sk_msg_elem(msg_opl, i);
594         }
595
596         msg_opl->sg.end = i;
597         msg_opl->sg.curr = i;
598         msg_opl->sg.copybreak = 0;
599         msg_opl->apply_bytes = 0;
600         msg_opl->sg.size = bytes;
601
602         msg_npl = &new->msg_plaintext;
603         msg_npl->apply_bytes = apply;
604         msg_npl->sg.size = orig_size - bytes;
605
606         j = msg_npl->sg.start;
607         nsge = sk_msg_elem(msg_npl, j);
608         if (tmp.length) {
609                 memcpy(nsge, &tmp, sizeof(*nsge));
610                 sk_msg_iter_var_next(j);
611                 nsge = sk_msg_elem(msg_npl, j);
612         }
613
614         osge = sk_msg_elem(msg_opl, i);
615         while (osge->length) {
616                 memcpy(nsge, osge, sizeof(*nsge));
617                 sg_unmark_end(nsge);
618                 sk_msg_iter_var_next(i);
619                 sk_msg_iter_var_next(j);
620                 if (i == *orig_end)
621                         break;
622                 osge = sk_msg_elem(msg_opl, i);
623                 nsge = sk_msg_elem(msg_npl, j);
624         }
625
626         msg_npl->sg.end = j;
627         msg_npl->sg.curr = j;
628         msg_npl->sg.copybreak = 0;
629
630         *to = new;
631         return 0;
632 }
633
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635                                   struct tls_rec *from, u32 orig_end)
636 {
637         struct sk_msg *msg_npl = &from->msg_plaintext;
638         struct sk_msg *msg_opl = &to->msg_plaintext;
639         struct scatterlist *osge, *nsge;
640         u32 i, j;
641
642         i = msg_opl->sg.end;
643         sk_msg_iter_var_prev(i);
644         j = msg_npl->sg.start;
645
646         osge = sk_msg_elem(msg_opl, i);
647         nsge = sk_msg_elem(msg_npl, j);
648
649         if (sg_page(osge) == sg_page(nsge) &&
650             osge->offset + osge->length == nsge->offset) {
651                 osge->length += nsge->length;
652                 put_page(sg_page(nsge));
653         }
654
655         msg_opl->sg.end = orig_end;
656         msg_opl->sg.curr = orig_end;
657         msg_opl->sg.copybreak = 0;
658         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659         msg_opl->sg.size += msg_npl->sg.size;
660
661         sk_msg_free(sk, &to->msg_encrypted);
662         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664         kfree(from);
665 }
666
667 static int tls_push_record(struct sock *sk, int flags,
668                            unsigned char record_type)
669 {
670         struct tls_context *tls_ctx = tls_get_ctx(sk);
671         struct tls_prot_info *prot = &tls_ctx->prot_info;
672         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674         u32 i, split_point, orig_end;
675         struct sk_msg *msg_pl, *msg_en;
676         struct aead_request *req;
677         bool split;
678         int rc;
679
680         if (!rec)
681                 return 0;
682
683         msg_pl = &rec->msg_plaintext;
684         msg_en = &rec->msg_encrypted;
685
686         split_point = msg_pl->apply_bytes;
687         split = split_point && split_point < msg_pl->sg.size;
688         if (unlikely((!split &&
689                       msg_pl->sg.size +
690                       prot->overhead_size > msg_en->sg.size) ||
691                      (split &&
692                       split_point +
693                       prot->overhead_size > msg_en->sg.size))) {
694                 split = true;
695                 split_point = msg_en->sg.size;
696         }
697         if (split) {
698                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699                                            split_point, prot->overhead_size,
700                                            &orig_end);
701                 if (rc < 0)
702                         return rc;
703                 /* This can happen if above tls_split_open_record allocates
704                  * a single large encryption buffer instead of two smaller
705                  * ones. In this case adjust pointers and continue without
706                  * split.
707                  */
708                 if (!msg_pl->sg.size) {
709                         tls_merge_open_record(sk, rec, tmp, orig_end);
710                         msg_pl = &rec->msg_plaintext;
711                         msg_en = &rec->msg_encrypted;
712                         split = false;
713                 }
714                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715                             prot->overhead_size);
716         }
717
718         rec->tx_flags = flags;
719         req = &rec->aead_req;
720
721         i = msg_pl->sg.end;
722         sk_msg_iter_var_prev(i);
723
724         rec->content_type = record_type;
725         if (prot->version == TLS_1_3_VERSION) {
726                 /* Add content type to end of message.  No padding added */
727                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728                 sg_mark_end(&rec->sg_content_type);
729                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730                          &rec->sg_content_type);
731         } else {
732                 sg_mark_end(sk_msg_elem(msg_pl, i));
733         }
734
735         if (msg_pl->sg.end < msg_pl->sg.start) {
736                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738                          msg_pl->sg.data);
739         }
740
741         i = msg_pl->sg.start;
742         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744         i = msg_en->sg.end;
745         sk_msg_iter_var_prev(i);
746         sg_mark_end(sk_msg_elem(msg_en, i));
747
748         i = msg_en->sg.start;
749         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752                      tls_ctx->tx.rec_seq, record_type, prot);
753
754         tls_fill_prepend(tls_ctx,
755                          page_address(sg_page(&msg_en->sg.data[i])) +
756                          msg_en->sg.data[i].offset,
757                          msg_pl->sg.size + prot->tail_size,
758                          record_type);
759
760         tls_ctx->pending_open_record_frags = false;
761
762         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763                                msg_pl->sg.size + prot->tail_size, i);
764         if (rc < 0) {
765                 if (rc != -EINPROGRESS) {
766                         tls_err_abort(sk, EBADMSG);
767                         if (split) {
768                                 tls_ctx->pending_open_record_frags = true;
769                                 tls_merge_open_record(sk, rec, tmp, orig_end);
770                         }
771                 }
772                 ctx->async_capable = 1;
773                 return rc;
774         } else if (split) {
775                 msg_pl = &tmp->msg_plaintext;
776                 msg_en = &tmp->msg_encrypted;
777                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778                 tls_ctx->pending_open_record_frags = true;
779                 ctx->open_rec = tmp;
780         }
781
782         return tls_tx_records(sk, flags);
783 }
784
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786                                bool full_record, u8 record_type,
787                                ssize_t *copied, int flags)
788 {
789         struct tls_context *tls_ctx = tls_get_ctx(sk);
790         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791         struct sk_msg msg_redir = { };
792         struct sk_psock *psock;
793         struct sock *sk_redir;
794         struct tls_rec *rec;
795         bool enospc, policy;
796         int err = 0, send;
797         u32 delta = 0;
798
799         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800         psock = sk_psock_get(sk);
801         if (!psock || !policy) {
802                 err = tls_push_record(sk, flags, record_type);
803                 if (err && sk->sk_err == EBADMSG) {
804                         *copied -= sk_msg_free(sk, msg);
805                         tls_free_open_rec(sk);
806                         err = -sk->sk_err;
807                 }
808                 if (psock)
809                         sk_psock_put(sk, psock);
810                 return err;
811         }
812 more_data:
813         enospc = sk_msg_full(msg);
814         if (psock->eval == __SK_NONE) {
815                 delta = msg->sg.size;
816                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817                 delta -= msg->sg.size;
818         }
819         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820             !enospc && !full_record) {
821                 err = -ENOSPC;
822                 goto out_err;
823         }
824         msg->cork_bytes = 0;
825         send = msg->sg.size;
826         if (msg->apply_bytes && msg->apply_bytes < send)
827                 send = msg->apply_bytes;
828
829         switch (psock->eval) {
830         case __SK_PASS:
831                 err = tls_push_record(sk, flags, record_type);
832                 if (err && sk->sk_err == EBADMSG) {
833                         *copied -= sk_msg_free(sk, msg);
834                         tls_free_open_rec(sk);
835                         err = -sk->sk_err;
836                         goto out_err;
837                 }
838                 break;
839         case __SK_REDIRECT:
840                 sk_redir = psock->sk_redir;
841                 memcpy(&msg_redir, msg, sizeof(*msg));
842                 if (msg->apply_bytes < send)
843                         msg->apply_bytes = 0;
844                 else
845                         msg->apply_bytes -= send;
846                 sk_msg_return_zero(sk, msg, send);
847                 msg->sg.size -= send;
848                 release_sock(sk);
849                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850                 lock_sock(sk);
851                 if (err < 0) {
852                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853                         msg->sg.size = 0;
854                 }
855                 if (msg->sg.size == 0)
856                         tls_free_open_rec(sk);
857                 break;
858         case __SK_DROP:
859         default:
860                 sk_msg_free_partial(sk, msg, send);
861                 if (msg->apply_bytes < send)
862                         msg->apply_bytes = 0;
863                 else
864                         msg->apply_bytes -= send;
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 *copied -= (send + delta);
868                 err = -EACCES;
869         }
870
871         if (likely(!err)) {
872                 bool reset_eval = !ctx->open_rec;
873
874                 rec = ctx->open_rec;
875                 if (rec) {
876                         msg = &rec->msg_plaintext;
877                         if (!msg->apply_bytes)
878                                 reset_eval = true;
879                 }
880                 if (reset_eval) {
881                         psock->eval = __SK_NONE;
882                         if (psock->sk_redir) {
883                                 sock_put(psock->sk_redir);
884                                 psock->sk_redir = NULL;
885                         }
886                 }
887                 if (rec)
888                         goto more_data;
889         }
890  out_err:
891         sk_psock_put(sk, psock);
892         return err;
893 }
894
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897         struct tls_context *tls_ctx = tls_get_ctx(sk);
898         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899         struct tls_rec *rec = ctx->open_rec;
900         struct sk_msg *msg_pl;
901         size_t copied;
902
903         if (!rec)
904                 return 0;
905
906         msg_pl = &rec->msg_plaintext;
907         copied = msg_pl->sg.size;
908         if (!copied)
909                 return 0;
910
911         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912                                    &copied, flags);
913 }
914
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918         struct tls_context *tls_ctx = tls_get_ctx(sk);
919         struct tls_prot_info *prot = &tls_ctx->prot_info;
920         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921         bool async_capable = ctx->async_capable;
922         unsigned char record_type = TLS_RECORD_TYPE_DATA;
923         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924         bool eor = !(msg->msg_flags & MSG_MORE);
925         size_t try_to_copy;
926         ssize_t copied = 0;
927         struct sk_msg *msg_pl, *msg_en;
928         struct tls_rec *rec;
929         int required_size;
930         int num_async = 0;
931         bool full_record;
932         int record_room;
933         int num_zc = 0;
934         int orig_size;
935         int ret = 0;
936         int pending;
937
938         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939                                MSG_CMSG_COMPAT))
940                 return -EOPNOTSUPP;
941
942         mutex_lock(&tls_ctx->tx_lock);
943         lock_sock(sk);
944
945         if (unlikely(msg->msg_controllen)) {
946                 ret = tls_proccess_cmsg(sk, msg, &record_type);
947                 if (ret) {
948                         if (ret == -EINPROGRESS)
949                                 num_async++;
950                         else if (ret != -EAGAIN)
951                                 goto send_end;
952                 }
953         }
954
955         while (msg_data_left(msg)) {
956                 if (sk->sk_err) {
957                         ret = -sk->sk_err;
958                         goto send_end;
959                 }
960
961                 if (ctx->open_rec)
962                         rec = ctx->open_rec;
963                 else
964                         rec = ctx->open_rec = tls_get_rec(sk);
965                 if (!rec) {
966                         ret = -ENOMEM;
967                         goto send_end;
968                 }
969
970                 msg_pl = &rec->msg_plaintext;
971                 msg_en = &rec->msg_encrypted;
972
973                 orig_size = msg_pl->sg.size;
974                 full_record = false;
975                 try_to_copy = msg_data_left(msg);
976                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977                 if (try_to_copy >= record_room) {
978                         try_to_copy = record_room;
979                         full_record = true;
980                 }
981
982                 required_size = msg_pl->sg.size + try_to_copy +
983                                 prot->overhead_size;
984
985                 if (!sk_stream_memory_free(sk))
986                         goto wait_for_sndbuf;
987
988 alloc_encrypted:
989                 ret = tls_alloc_encrypted_msg(sk, required_size);
990                 if (ret) {
991                         if (ret != -ENOSPC)
992                                 goto wait_for_memory;
993
994                         /* Adjust try_to_copy according to the amount that was
995                          * actually allocated. The difference is due
996                          * to max sg elements limit
997                          */
998                         try_to_copy -= required_size - msg_en->sg.size;
999                         full_record = true;
1000                 }
1001
1002                 if (!is_kvec && (full_record || eor) && !async_capable) {
1003                         u32 first = msg_pl->sg.end;
1004
1005                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                         msg_pl, try_to_copy);
1007                         if (ret)
1008                                 goto fallback_to_reg_send;
1009
1010                         num_zc++;
1011                         copied += try_to_copy;
1012
1013                         sk_msg_sg_copy_set(msg_pl, first);
1014                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                   record_type, &copied,
1016                                                   msg->msg_flags);
1017                         if (ret) {
1018                                 if (ret == -EINPROGRESS)
1019                                         num_async++;
1020                                 else if (ret == -ENOMEM)
1021                                         goto wait_for_memory;
1022                                 else if (ctx->open_rec && ret == -ENOSPC)
1023                                         goto rollback_iter;
1024                                 else if (ret != -EAGAIN)
1025                                         goto send_end;
1026                         }
1027                         continue;
1028 rollback_iter:
1029                         copied -= try_to_copy;
1030                         sk_msg_sg_copy_clear(msg_pl, first);
1031                         iov_iter_revert(&msg->msg_iter,
1032                                         msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034                         sk_msg_trim(sk, msg_pl, orig_size);
1035                 }
1036
1037                 required_size = msg_pl->sg.size + try_to_copy;
1038
1039                 ret = tls_clone_plaintext_msg(sk, required_size);
1040                 if (ret) {
1041                         if (ret != -ENOSPC)
1042                                 goto send_end;
1043
1044                         /* Adjust try_to_copy according to the amount that was
1045                          * actually allocated. The difference is due
1046                          * to max sg elements limit
1047                          */
1048                         try_to_copy -= required_size - msg_pl->sg.size;
1049                         full_record = true;
1050                         sk_msg_trim(sk, msg_en,
1051                                     msg_pl->sg.size + prot->overhead_size);
1052                 }
1053
1054                 if (try_to_copy) {
1055                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                        msg_pl, try_to_copy);
1057                         if (ret < 0)
1058                                 goto trim_sgl;
1059                 }
1060
1061                 /* Open records defined only if successfully copied, otherwise
1062                  * we would trim the sg but not reset the open record frags.
1063                  */
1064                 tls_ctx->pending_open_record_frags = true;
1065                 copied += try_to_copy;
1066                 if (full_record || eor) {
1067                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                   record_type, &copied,
1069                                                   msg->msg_flags);
1070                         if (ret) {
1071                                 if (ret == -EINPROGRESS)
1072                                         num_async++;
1073                                 else if (ret == -ENOMEM)
1074                                         goto wait_for_memory;
1075                                 else if (ret != -EAGAIN) {
1076                                         if (ret == -ENOSPC)
1077                                                 ret = 0;
1078                                         goto send_end;
1079                                 }
1080                         }
1081                 }
1082
1083                 continue;
1084
1085 wait_for_sndbuf:
1086                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088                 ret = sk_stream_wait_memory(sk, &timeo);
1089                 if (ret) {
1090 trim_sgl:
1091                         if (ctx->open_rec)
1092                                 tls_trim_both_msgs(sk, orig_size);
1093                         goto send_end;
1094                 }
1095
1096                 if (ctx->open_rec && msg_en->sg.size < required_size)
1097                         goto alloc_encrypted;
1098         }
1099
1100         if (!num_async) {
1101                 goto send_end;
1102         } else if (num_zc) {
1103                 /* Wait for pending encryptions to get completed */
1104                 spin_lock_bh(&ctx->encrypt_compl_lock);
1105                 ctx->async_notify = true;
1106
1107                 pending = atomic_read(&ctx->encrypt_pending);
1108                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                 if (pending)
1110                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                 else
1112                         reinit_completion(&ctx->async_wait.completion);
1113
1114                 /* There can be no concurrent accesses, since we have no
1115                  * pending encrypt operations
1116                  */
1117                 WRITE_ONCE(ctx->async_notify, false);
1118
1119                 if (ctx->async_wait.err) {
1120                         ret = ctx->async_wait.err;
1121                         copied = 0;
1122                 }
1123         }
1124
1125         /* Transmit if any encryptions have completed */
1126         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                 cancel_delayed_work(&ctx->tx_work.work);
1128                 tls_tx_records(sk, msg->msg_flags);
1129         }
1130
1131 send_end:
1132         ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134         release_sock(sk);
1135         mutex_unlock(&tls_ctx->tx_lock);
1136         return copied > 0 ? copied : ret;
1137 }
1138
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                               int offset, size_t size, int flags)
1141 {
1142         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143         struct tls_context *tls_ctx = tls_get_ctx(sk);
1144         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145         struct tls_prot_info *prot = &tls_ctx->prot_info;
1146         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147         struct sk_msg *msg_pl;
1148         struct tls_rec *rec;
1149         int num_async = 0;
1150         ssize_t copied = 0;
1151         bool full_record;
1152         int record_room;
1153         int ret = 0;
1154         bool eor;
1155
1156         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1157         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159         /* Call the sk_stream functions to manage the sndbuf mem. */
1160         while (size > 0) {
1161                 size_t copy, required_size;
1162
1163                 if (sk->sk_err) {
1164                         ret = -sk->sk_err;
1165                         goto sendpage_end;
1166                 }
1167
1168                 if (ctx->open_rec)
1169                         rec = ctx->open_rec;
1170                 else
1171                         rec = ctx->open_rec = tls_get_rec(sk);
1172                 if (!rec) {
1173                         ret = -ENOMEM;
1174                         goto sendpage_end;
1175                 }
1176
1177                 msg_pl = &rec->msg_plaintext;
1178
1179                 full_record = false;
1180                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                 copy = size;
1182                 if (copy >= record_room) {
1183                         copy = record_room;
1184                         full_record = true;
1185                 }
1186
1187                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                 if (!sk_stream_memory_free(sk))
1190                         goto wait_for_sndbuf;
1191 alloc_payload:
1192                 ret = tls_alloc_encrypted_msg(sk, required_size);
1193                 if (ret) {
1194                         if (ret != -ENOSPC)
1195                                 goto wait_for_memory;
1196
1197                         /* Adjust copy according to the amount that was
1198                          * actually allocated. The difference is due
1199                          * to max sg elements limit
1200                          */
1201                         copy -= required_size - msg_pl->sg.size;
1202                         full_record = true;
1203                 }
1204
1205                 sk_msg_page_add(msg_pl, page, copy, offset);
1206                 sk_mem_charge(sk, copy);
1207
1208                 offset += copy;
1209                 size -= copy;
1210                 copied += copy;
1211
1212                 tls_ctx->pending_open_record_frags = true;
1213                 if (full_record || eor || sk_msg_full(msg_pl)) {
1214                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                   record_type, &copied, flags);
1216                         if (ret) {
1217                                 if (ret == -EINPROGRESS)
1218                                         num_async++;
1219                                 else if (ret == -ENOMEM)
1220                                         goto wait_for_memory;
1221                                 else if (ret != -EAGAIN) {
1222                                         if (ret == -ENOSPC)
1223                                                 ret = 0;
1224                                         goto sendpage_end;
1225                                 }
1226                         }
1227                 }
1228                 continue;
1229 wait_for_sndbuf:
1230                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232                 ret = sk_stream_wait_memory(sk, &timeo);
1233                 if (ret) {
1234                         if (ctx->open_rec)
1235                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                         goto sendpage_end;
1237                 }
1238
1239                 if (ctx->open_rec)
1240                         goto alloc_payload;
1241         }
1242
1243         if (num_async) {
1244                 /* Transmit if any encryptions have completed */
1245                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                         cancel_delayed_work(&ctx->tx_work.work);
1247                         tls_tx_records(sk, flags);
1248                 }
1249         }
1250 sendpage_end:
1251         ret = sk_stream_error(sk, flags, ret);
1252         return copied > 0 ? copied : ret;
1253 }
1254
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                            int offset, size_t size, int flags)
1257 {
1258         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                       MSG_NO_SHARED_FRAGS))
1261                 return -EOPNOTSUPP;
1262
1263         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                     int offset, size_t size, int flags)
1268 {
1269         struct tls_context *tls_ctx = tls_get_ctx(sk);
1270         int ret;
1271
1272         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                 return -EOPNOTSUPP;
1275
1276         mutex_lock(&tls_ctx->tx_lock);
1277         lock_sock(sk);
1278         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279         release_sock(sk);
1280         mutex_unlock(&tls_ctx->tx_lock);
1281         return ret;
1282 }
1283
1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285                                      bool nonblock, long timeo, int *err)
1286 {
1287         struct tls_context *tls_ctx = tls_get_ctx(sk);
1288         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289         struct sk_buff *skb;
1290         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293                 if (sk->sk_err) {
1294                         *err = sock_error(sk);
1295                         return NULL;
1296                 }
1297
1298                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1299                         __strp_unpause(&ctx->strp);
1300                         if (ctx->recv_pkt)
1301                                 return ctx->recv_pkt;
1302                 }
1303
1304                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1305                         return NULL;
1306
1307                 if (sock_flag(sk, SOCK_DONE))
1308                         return NULL;
1309
1310                 if (nonblock || !timeo) {
1311                         *err = -EAGAIN;
1312                         return NULL;
1313                 }
1314
1315                 add_wait_queue(sk_sleep(sk), &wait);
1316                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1317                 sk_wait_event(sk, &timeo,
1318                               ctx->recv_pkt != skb ||
1319                               !sk_psock_queue_empty(psock),
1320                               &wait);
1321                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322                 remove_wait_queue(sk_sleep(sk), &wait);
1323
1324                 /* Handle signals */
1325                 if (signal_pending(current)) {
1326                         *err = sock_intr_errno(timeo);
1327                         return NULL;
1328                 }
1329         }
1330
1331         return skb;
1332 }
1333
1334 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1335                                int length, int *pages_used,
1336                                unsigned int *size_used,
1337                                struct scatterlist *to,
1338                                int to_max_pages)
1339 {
1340         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1341         struct page *pages[MAX_SKB_FRAGS];
1342         unsigned int size = *size_used;
1343         ssize_t copied, use;
1344         size_t offset;
1345
1346         while (length > 0) {
1347                 i = 0;
1348                 maxpages = to_max_pages - num_elem;
1349                 if (maxpages == 0) {
1350                         rc = -EFAULT;
1351                         goto out;
1352                 }
1353                 copied = iov_iter_get_pages(from, pages,
1354                                             length,
1355                                             maxpages, &offset);
1356                 if (copied <= 0) {
1357                         rc = -EFAULT;
1358                         goto out;
1359                 }
1360
1361                 iov_iter_advance(from, copied);
1362
1363                 length -= copied;
1364                 size += copied;
1365                 while (copied) {
1366                         use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368                         sg_set_page(&to[num_elem],
1369                                     pages[i], use, offset);
1370                         sg_unmark_end(&to[num_elem]);
1371                         /* We do not uncharge memory from this API */
1372
1373                         offset = 0;
1374                         copied -= use;
1375
1376                         i++;
1377                         num_elem++;
1378                 }
1379         }
1380         /* Mark the end in the last sg entry if newly added */
1381         if (num_elem > *pages_used)
1382                 sg_mark_end(&to[num_elem - 1]);
1383 out:
1384         if (rc)
1385                 iov_iter_revert(from, size - *size_used);
1386         *size_used = size;
1387         *pages_used = num_elem;
1388
1389         return rc;
1390 }
1391
1392 /* This function decrypts the input skb into either out_iov or in out_sg
1393  * or in skb buffers itself. The input parameter 'zc' indicates if
1394  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1395  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1396  * NULL, then the decryption happens inside skb buffers itself, i.e.
1397  * zero-copy gets disabled and 'zc' is updated.
1398  */
1399
1400 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1401                             struct iov_iter *out_iov,
1402                             struct scatterlist *out_sg,
1403                             int *chunk, bool *zc, bool async)
1404 {
1405         struct tls_context *tls_ctx = tls_get_ctx(sk);
1406         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1407         struct tls_prot_info *prot = &tls_ctx->prot_info;
1408         struct strp_msg *rxm = strp_msg(skb);
1409         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1410         struct aead_request *aead_req;
1411         struct sk_buff *unused;
1412         u8 *aad, *iv, *mem = NULL;
1413         struct scatterlist *sgin = NULL;
1414         struct scatterlist *sgout = NULL;
1415         const int data_len = rxm->full_len - prot->overhead_size +
1416                              prot->tail_size;
1417         int iv_offset = 0;
1418
1419         if (*zc && (out_iov || out_sg)) {
1420                 if (out_iov)
1421                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1422                 else
1423                         n_sgout = sg_nents(out_sg);
1424                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1425                                  rxm->full_len - prot->prepend_size);
1426         } else {
1427                 n_sgout = 0;
1428                 *zc = false;
1429                 n_sgin = skb_cow_data(skb, 0, &unused);
1430         }
1431
1432         if (n_sgin < 1)
1433                 return -EBADMSG;
1434
1435         /* Increment to accommodate AAD */
1436         n_sgin = n_sgin + 1;
1437
1438         nsg = n_sgin + n_sgout;
1439
1440         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1441         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1442         mem_size = mem_size + prot->aad_size;
1443         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1444
1445         /* Allocate a single block of memory which contains
1446          * aead_req || sgin[] || sgout[] || aad || iv.
1447          * This order achieves correct alignment for aead_req, sgin, sgout.
1448          */
1449         mem = kmalloc(mem_size, sk->sk_allocation);
1450         if (!mem)
1451                 return -ENOMEM;
1452
1453         /* Segment the allocated memory */
1454         aead_req = (struct aead_request *)mem;
1455         sgin = (struct scatterlist *)(mem + aead_size);
1456         sgout = sgin + n_sgin;
1457         aad = (u8 *)(sgout + n_sgout);
1458         iv = aad + prot->aad_size;
1459
1460         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1461         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1462                 iv[0] = 2;
1463                 iv_offset = 1;
1464         }
1465
1466         /* Prepare IV */
1467         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1468                             iv + iv_offset + prot->salt_size,
1469                             prot->iv_size);
1470         if (err < 0) {
1471                 kfree(mem);
1472                 return err;
1473         }
1474         if (prot->version == TLS_1_3_VERSION ||
1475             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1476                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1477                        crypto_aead_ivsize(ctx->aead_recv));
1478         else
1479                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1480
1481         xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1482
1483         /* Prepare AAD */
1484         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1485                      prot->tail_size,
1486                      tls_ctx->rx.rec_seq, ctx->control, prot);
1487
1488         /* Prepare sgin */
1489         sg_init_table(sgin, n_sgin);
1490         sg_set_buf(&sgin[0], aad, prot->aad_size);
1491         err = skb_to_sgvec(skb, &sgin[1],
1492                            rxm->offset + prot->prepend_size,
1493                            rxm->full_len - prot->prepend_size);
1494         if (err < 0) {
1495                 kfree(mem);
1496                 return err;
1497         }
1498
1499         if (n_sgout) {
1500                 if (out_iov) {
1501                         sg_init_table(sgout, n_sgout);
1502                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1503
1504                         *chunk = 0;
1505                         err = tls_setup_from_iter(sk, out_iov, data_len,
1506                                                   &pages, chunk, &sgout[1],
1507                                                   (n_sgout - 1));
1508                         if (err < 0)
1509                                 goto fallback_to_reg_recv;
1510                 } else if (out_sg) {
1511                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1512                 } else {
1513                         goto fallback_to_reg_recv;
1514                 }
1515         } else {
1516 fallback_to_reg_recv:
1517                 sgout = sgin;
1518                 pages = 0;
1519                 *chunk = data_len;
1520                 *zc = false;
1521         }
1522
1523         /* Prepare and submit AEAD request */
1524         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1525                                 data_len, aead_req, async);
1526         if (err == -EINPROGRESS)
1527                 return err;
1528
1529         /* Release the pages in case iov was mapped to pages */
1530         for (; pages > 0; pages--)
1531                 put_page(sg_page(&sgout[pages]));
1532
1533         kfree(mem);
1534         return err;
1535 }
1536
1537 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1538                               struct iov_iter *dest, int *chunk, bool *zc,
1539                               bool async)
1540 {
1541         struct tls_context *tls_ctx = tls_get_ctx(sk);
1542         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1543         struct tls_prot_info *prot = &tls_ctx->prot_info;
1544         struct strp_msg *rxm = strp_msg(skb);
1545         int pad, err = 0;
1546
1547         if (!ctx->decrypted) {
1548                 if (tls_ctx->rx_conf == TLS_HW) {
1549                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1550                         if (err < 0)
1551                                 return err;
1552                 }
1553
1554                 /* Still not decrypted after tls_device */
1555                 if (!ctx->decrypted) {
1556                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1557                                                async);
1558                         if (err < 0) {
1559                                 if (err == -EINPROGRESS)
1560                                         tls_advance_record_sn(sk, prot,
1561                                                               &tls_ctx->rx);
1562                                 else if (err == -EBADMSG)
1563                                         TLS_INC_STATS(sock_net(sk),
1564                                                       LINUX_MIB_TLSDECRYPTERROR);
1565                                 return err;
1566                         }
1567                 } else {
1568                         *zc = false;
1569                 }
1570
1571                 pad = padding_length(ctx, prot, skb);
1572                 if (pad < 0)
1573                         return pad;
1574
1575                 rxm->full_len -= pad;
1576                 rxm->offset += prot->prepend_size;
1577                 rxm->full_len -= prot->overhead_size;
1578                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1579                 ctx->decrypted = 1;
1580                 ctx->saved_data_ready(sk);
1581         } else {
1582                 *zc = false;
1583         }
1584
1585         return err;
1586 }
1587
1588 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1589                 struct scatterlist *sgout)
1590 {
1591         bool zc = true;
1592         int chunk;
1593
1594         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1595 }
1596
1597 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1598                                unsigned int len)
1599 {
1600         struct tls_context *tls_ctx = tls_get_ctx(sk);
1601         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602
1603         if (skb) {
1604                 struct strp_msg *rxm = strp_msg(skb);
1605
1606                 if (len < rxm->full_len) {
1607                         rxm->offset += len;
1608                         rxm->full_len -= len;
1609                         return false;
1610                 }
1611                 consume_skb(skb);
1612         }
1613
1614         /* Finished with message */
1615         ctx->recv_pkt = NULL;
1616         __strp_unpause(&ctx->strp);
1617
1618         return true;
1619 }
1620
1621 /* This function traverses the rx_list in tls receive context to copies the
1622  * decrypted records into the buffer provided by caller zero copy is not
1623  * true. Further, the records are removed from the rx_list if it is not a peek
1624  * case and the record has been consumed completely.
1625  */
1626 static int process_rx_list(struct tls_sw_context_rx *ctx,
1627                            struct msghdr *msg,
1628                            u8 *control,
1629                            bool *cmsg,
1630                            size_t skip,
1631                            size_t len,
1632                            bool zc,
1633                            bool is_peek)
1634 {
1635         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1636         u8 ctrl = *control;
1637         u8 msgc = *cmsg;
1638         struct tls_msg *tlm;
1639         ssize_t copied = 0;
1640
1641         /* Set the record type in 'control' if caller didn't pass it */
1642         if (!ctrl && skb) {
1643                 tlm = tls_msg(skb);
1644                 ctrl = tlm->control;
1645         }
1646
1647         while (skip && skb) {
1648                 struct strp_msg *rxm = strp_msg(skb);
1649                 tlm = tls_msg(skb);
1650
1651                 /* Cannot process a record of different type */
1652                 if (ctrl != tlm->control)
1653                         return 0;
1654
1655                 if (skip < rxm->full_len)
1656                         break;
1657
1658                 skip = skip - rxm->full_len;
1659                 skb = skb_peek_next(skb, &ctx->rx_list);
1660         }
1661
1662         while (len && skb) {
1663                 struct sk_buff *next_skb;
1664                 struct strp_msg *rxm = strp_msg(skb);
1665                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1666
1667                 tlm = tls_msg(skb);
1668
1669                 /* Cannot process a record of different type */
1670                 if (ctrl != tlm->control)
1671                         return 0;
1672
1673                 /* Set record type if not already done. For a non-data record,
1674                  * do not proceed if record type could not be copied.
1675                  */
1676                 if (!msgc) {
1677                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1678                                             sizeof(ctrl), &ctrl);
1679                         msgc = true;
1680                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1681                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1682                                         return -EIO;
1683
1684                                 *cmsg = msgc;
1685                         }
1686                 }
1687
1688                 if (!zc || (rxm->full_len - skip) > len) {
1689                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690                                                     msg, chunk);
1691                         if (err < 0)
1692                                 return err;
1693                 }
1694
1695                 len = len - chunk;
1696                 copied = copied + chunk;
1697
1698                 /* Consume the data from record if it is non-peek case*/
1699                 if (!is_peek) {
1700                         rxm->offset = rxm->offset + chunk;
1701                         rxm->full_len = rxm->full_len - chunk;
1702
1703                         /* Return if there is unconsumed data in the record */
1704                         if (rxm->full_len - skip)
1705                                 break;
1706                 }
1707
1708                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1709                  * So from the 2nd record, 'skip' should be 0.
1710                  */
1711                 skip = 0;
1712
1713                 if (msg)
1714                         msg->msg_flags |= MSG_EOR;
1715
1716                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1717
1718                 if (!is_peek) {
1719                         skb_unlink(skb, &ctx->rx_list);
1720                         consume_skb(skb);
1721                 }
1722
1723                 skb = next_skb;
1724         }
1725
1726         *control = ctrl;
1727         return copied;
1728 }
1729
1730 int tls_sw_recvmsg(struct sock *sk,
1731                    struct msghdr *msg,
1732                    size_t len,
1733                    int nonblock,
1734                    int flags,
1735                    int *addr_len)
1736 {
1737         struct tls_context *tls_ctx = tls_get_ctx(sk);
1738         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1739         struct tls_prot_info *prot = &tls_ctx->prot_info;
1740         struct sk_psock *psock;
1741         unsigned char control = 0;
1742         ssize_t decrypted = 0;
1743         struct strp_msg *rxm;
1744         struct tls_msg *tlm;
1745         struct sk_buff *skb;
1746         ssize_t copied = 0;
1747         bool cmsg = false;
1748         int target, err = 0;
1749         long timeo;
1750         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1751         bool is_peek = flags & MSG_PEEK;
1752         bool bpf_strp_enabled;
1753         int num_async = 0;
1754         int pending;
1755
1756         flags |= nonblock;
1757
1758         if (unlikely(flags & MSG_ERRQUEUE))
1759                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1760
1761         psock = sk_psock_get(sk);
1762         lock_sock(sk);
1763         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1764
1765         /* Process pending decrypted records. It must be non-zero-copy */
1766         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1767                               is_peek);
1768         if (err < 0) {
1769                 tls_err_abort(sk, err);
1770                 goto end;
1771         } else {
1772                 copied = err;
1773         }
1774
1775         if (len <= copied)
1776                 goto recv_end;
1777
1778         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1779         len = len - copied;
1780         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1781
1782         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1783                 bool retain_skb = false;
1784                 bool zc = false;
1785                 int to_decrypt;
1786                 int chunk = 0;
1787                 bool async_capable;
1788                 bool async = false;
1789
1790                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1791                 if (!skb) {
1792                         if (psock) {
1793                                 int ret = sk_msg_recvmsg(sk, psock, msg, len,
1794                                                          flags);
1795
1796                                 if (ret > 0) {
1797                                         decrypted += ret;
1798                                         len -= ret;
1799                                         continue;
1800                                 }
1801                         }
1802                         goto recv_end;
1803                 } else {
1804                         tlm = tls_msg(skb);
1805                         if (prot->version == TLS_1_3_VERSION)
1806                                 tlm->control = 0;
1807                         else
1808                                 tlm->control = ctx->control;
1809                 }
1810
1811                 rxm = strp_msg(skb);
1812
1813                 to_decrypt = rxm->full_len - prot->overhead_size;
1814
1815                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1816                     ctx->control == TLS_RECORD_TYPE_DATA &&
1817                     prot->version != TLS_1_3_VERSION &&
1818                     !bpf_strp_enabled)
1819                         zc = true;
1820
1821                 /* Do not use async mode if record is non-data */
1822                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1823                         async_capable = ctx->async_capable;
1824                 else
1825                         async_capable = false;
1826
1827                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1828                                          &chunk, &zc, async_capable);
1829                 if (err < 0 && err != -EINPROGRESS) {
1830                         tls_err_abort(sk, EBADMSG);
1831                         goto recv_end;
1832                 }
1833
1834                 if (err == -EINPROGRESS) {
1835                         async = true;
1836                         num_async++;
1837                 } else if (prot->version == TLS_1_3_VERSION) {
1838                         tlm->control = ctx->control;
1839                 }
1840
1841                 /* If the type of records being processed is not known yet,
1842                  * set it to record type just dequeued. If it is already known,
1843                  * but does not match the record type just dequeued, go to end.
1844                  * We always get record type here since for tls1.2, record type
1845                  * is known just after record is dequeued from stream parser.
1846                  * For tls1.3, we disable async.
1847                  */
1848
1849                 if (!control)
1850                         control = tlm->control;
1851                 else if (control != tlm->control)
1852                         goto recv_end;
1853
1854                 if (!cmsg) {
1855                         int cerr;
1856
1857                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1858                                         sizeof(control), &control);
1859                         cmsg = true;
1860                         if (control != TLS_RECORD_TYPE_DATA) {
1861                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1862                                         err = -EIO;
1863                                         goto recv_end;
1864                                 }
1865                         }
1866                 }
1867
1868                 if (async)
1869                         goto pick_next_record;
1870
1871                 if (!zc) {
1872                         if (bpf_strp_enabled) {
1873                                 err = sk_psock_tls_strp_read(psock, skb);
1874                                 if (err != __SK_PASS) {
1875                                         rxm->offset = rxm->offset + rxm->full_len;
1876                                         rxm->full_len = 0;
1877                                         if (err == __SK_DROP)
1878                                                 consume_skb(skb);
1879                                         ctx->recv_pkt = NULL;
1880                                         __strp_unpause(&ctx->strp);
1881                                         continue;
1882                                 }
1883                         }
1884
1885                         if (rxm->full_len > len) {
1886                                 retain_skb = true;
1887                                 chunk = len;
1888                         } else {
1889                                 chunk = rxm->full_len;
1890                         }
1891
1892                         err = skb_copy_datagram_msg(skb, rxm->offset,
1893                                                     msg, chunk);
1894                         if (err < 0)
1895                                 goto recv_end;
1896
1897                         if (!is_peek) {
1898                                 rxm->offset = rxm->offset + chunk;
1899                                 rxm->full_len = rxm->full_len - chunk;
1900                         }
1901                 }
1902
1903 pick_next_record:
1904                 if (chunk > len)
1905                         chunk = len;
1906
1907                 decrypted += chunk;
1908                 len -= chunk;
1909
1910                 /* For async or peek case, queue the current skb */
1911                 if (async || is_peek || retain_skb) {
1912                         skb_queue_tail(&ctx->rx_list, skb);
1913                         skb = NULL;
1914                 }
1915
1916                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1917                         /* Return full control message to
1918                          * userspace before trying to parse
1919                          * another message type
1920                          */
1921                         msg->msg_flags |= MSG_EOR;
1922                         if (control != TLS_RECORD_TYPE_DATA)
1923                                 goto recv_end;
1924                 } else {
1925                         break;
1926                 }
1927         }
1928
1929 recv_end:
1930         if (num_async) {
1931                 /* Wait for all previously submitted records to be decrypted */
1932                 spin_lock_bh(&ctx->decrypt_compl_lock);
1933                 ctx->async_notify = true;
1934                 pending = atomic_read(&ctx->decrypt_pending);
1935                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1936                 if (pending) {
1937                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938                         if (err) {
1939                                 /* one of async decrypt failed */
1940                                 tls_err_abort(sk, err);
1941                                 copied = 0;
1942                                 decrypted = 0;
1943                                 goto end;
1944                         }
1945                 } else {
1946                         reinit_completion(&ctx->async_wait.completion);
1947                 }
1948
1949                 /* There can be no concurrent accesses, since we have no
1950                  * pending decrypt operations
1951                  */
1952                 WRITE_ONCE(ctx->async_notify, false);
1953
1954                 /* Drain records from the rx_list & copy if required */
1955                 if (is_peek || is_kvec)
1956                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1957                                               decrypted, false, is_peek);
1958                 else
1959                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1960                                               decrypted, true, is_peek);
1961                 if (err < 0) {
1962                         tls_err_abort(sk, err);
1963                         copied = 0;
1964                         goto end;
1965                 }
1966         }
1967
1968         copied += decrypted;
1969
1970 end:
1971         release_sock(sk);
1972         if (psock)
1973                 sk_psock_put(sk, psock);
1974         return copied ? : err;
1975 }
1976
1977 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1978                            struct pipe_inode_info *pipe,
1979                            size_t len, unsigned int flags)
1980 {
1981         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1982         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1983         struct strp_msg *rxm = NULL;
1984         struct sock *sk = sock->sk;
1985         struct sk_buff *skb;
1986         ssize_t copied = 0;
1987         int err = 0;
1988         long timeo;
1989         int chunk;
1990         bool zc = false;
1991
1992         lock_sock(sk);
1993
1994         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1995
1996         skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
1997         if (!skb)
1998                 goto splice_read_end;
1999
2000         if (!ctx->decrypted) {
2001                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2002
2003                 /* splice does not support reading control messages */
2004                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2005                         err = -EINVAL;
2006                         goto splice_read_end;
2007                 }
2008
2009                 if (err < 0) {
2010                         tls_err_abort(sk, EBADMSG);
2011                         goto splice_read_end;
2012                 }
2013                 ctx->decrypted = 1;
2014         }
2015         rxm = strp_msg(skb);
2016
2017         chunk = min_t(unsigned int, rxm->full_len, len);
2018         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2019         if (copied < 0)
2020                 goto splice_read_end;
2021
2022         if (likely(!(flags & MSG_PEEK)))
2023                 tls_sw_advance_skb(sk, skb, copied);
2024
2025 splice_read_end:
2026         release_sock(sk);
2027         return copied ? : err;
2028 }
2029
2030 bool tls_sw_stream_read(const struct sock *sk)
2031 {
2032         struct tls_context *tls_ctx = tls_get_ctx(sk);
2033         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2034         bool ingress_empty = true;
2035         struct sk_psock *psock;
2036
2037         rcu_read_lock();
2038         psock = sk_psock(sk);
2039         if (psock)
2040                 ingress_empty = list_empty(&psock->ingress_msg);
2041         rcu_read_unlock();
2042
2043         return !ingress_empty || ctx->recv_pkt ||
2044                 !skb_queue_empty(&ctx->rx_list);
2045 }
2046
2047 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2048 {
2049         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2050         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2051         struct tls_prot_info *prot = &tls_ctx->prot_info;
2052         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2053         struct strp_msg *rxm = strp_msg(skb);
2054         size_t cipher_overhead;
2055         size_t data_len = 0;
2056         int ret;
2057
2058         /* Verify that we have a full TLS header, or wait for more data */
2059         if (rxm->offset + prot->prepend_size > skb->len)
2060                 return 0;
2061
2062         /* Sanity-check size of on-stack buffer. */
2063         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2064                 ret = -EINVAL;
2065                 goto read_failure;
2066         }
2067
2068         /* Linearize header to local buffer */
2069         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2070
2071         if (ret < 0)
2072                 goto read_failure;
2073
2074         ctx->control = header[0];
2075
2076         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2077
2078         cipher_overhead = prot->tag_size;
2079         if (prot->version != TLS_1_3_VERSION &&
2080             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2081                 cipher_overhead += prot->iv_size;
2082
2083         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2084             prot->tail_size) {
2085                 ret = -EMSGSIZE;
2086                 goto read_failure;
2087         }
2088         if (data_len < cipher_overhead) {
2089                 ret = -EBADMSG;
2090                 goto read_failure;
2091         }
2092
2093         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2094         if (header[1] != TLS_1_2_VERSION_MINOR ||
2095             header[2] != TLS_1_2_VERSION_MAJOR) {
2096                 ret = -EINVAL;
2097                 goto read_failure;
2098         }
2099
2100         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2101                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2102         return data_len + TLS_HEADER_SIZE;
2103
2104 read_failure:
2105         tls_err_abort(strp->sk, ret);
2106
2107         return ret;
2108 }
2109
2110 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2111 {
2112         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2113         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2114
2115         ctx->decrypted = 0;
2116
2117         ctx->recv_pkt = skb;
2118         strp_pause(strp);
2119
2120         ctx->saved_data_ready(strp->sk);
2121 }
2122
2123 static void tls_data_ready(struct sock *sk)
2124 {
2125         struct tls_context *tls_ctx = tls_get_ctx(sk);
2126         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2127         struct sk_psock *psock;
2128
2129         strp_data_ready(&ctx->strp);
2130
2131         psock = sk_psock_get(sk);
2132         if (psock) {
2133                 if (!list_empty(&psock->ingress_msg))
2134                         ctx->saved_data_ready(sk);
2135                 sk_psock_put(sk, psock);
2136         }
2137 }
2138
2139 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2140 {
2141         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2142
2143         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2144         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2145         cancel_delayed_work_sync(&ctx->tx_work.work);
2146 }
2147
2148 void tls_sw_release_resources_tx(struct sock *sk)
2149 {
2150         struct tls_context *tls_ctx = tls_get_ctx(sk);
2151         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2152         struct tls_rec *rec, *tmp;
2153         int pending;
2154
2155         /* Wait for any pending async encryptions to complete */
2156         spin_lock_bh(&ctx->encrypt_compl_lock);
2157         ctx->async_notify = true;
2158         pending = atomic_read(&ctx->encrypt_pending);
2159         spin_unlock_bh(&ctx->encrypt_compl_lock);
2160
2161         if (pending)
2162                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2163
2164         tls_tx_records(sk, -1);
2165
2166         /* Free up un-sent records in tx_list. First, free
2167          * the partially sent record if any at head of tx_list.
2168          */
2169         if (tls_ctx->partially_sent_record) {
2170                 tls_free_partial_record(sk, tls_ctx);
2171                 rec = list_first_entry(&ctx->tx_list,
2172                                        struct tls_rec, list);
2173                 list_del(&rec->list);
2174                 sk_msg_free(sk, &rec->msg_plaintext);
2175                 kfree(rec);
2176         }
2177
2178         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2179                 list_del(&rec->list);
2180                 sk_msg_free(sk, &rec->msg_encrypted);
2181                 sk_msg_free(sk, &rec->msg_plaintext);
2182                 kfree(rec);
2183         }
2184
2185         crypto_free_aead(ctx->aead_send);
2186         tls_free_open_rec(sk);
2187 }
2188
2189 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2190 {
2191         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2192
2193         kfree(ctx);
2194 }
2195
2196 void tls_sw_release_resources_rx(struct sock *sk)
2197 {
2198         struct tls_context *tls_ctx = tls_get_ctx(sk);
2199         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2200
2201         kfree(tls_ctx->rx.rec_seq);
2202         kfree(tls_ctx->rx.iv);
2203
2204         if (ctx->aead_recv) {
2205                 kfree_skb(ctx->recv_pkt);
2206                 ctx->recv_pkt = NULL;
2207                 skb_queue_purge(&ctx->rx_list);
2208                 crypto_free_aead(ctx->aead_recv);
2209                 strp_stop(&ctx->strp);
2210                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2211                  * we still want to strp_stop(), but sk->sk_data_ready was
2212                  * never swapped.
2213                  */
2214                 if (ctx->saved_data_ready) {
2215                         write_lock_bh(&sk->sk_callback_lock);
2216                         sk->sk_data_ready = ctx->saved_data_ready;
2217                         write_unlock_bh(&sk->sk_callback_lock);
2218                 }
2219         }
2220 }
2221
2222 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2223 {
2224         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2225
2226         strp_done(&ctx->strp);
2227 }
2228
2229 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2230 {
2231         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2232
2233         kfree(ctx);
2234 }
2235
2236 void tls_sw_free_resources_rx(struct sock *sk)
2237 {
2238         struct tls_context *tls_ctx = tls_get_ctx(sk);
2239
2240         tls_sw_release_resources_rx(sk);
2241         tls_sw_free_ctx_rx(tls_ctx);
2242 }
2243
2244 /* The work handler to transmitt the encrypted records in tx_list */
2245 static void tx_work_handler(struct work_struct *work)
2246 {
2247         struct delayed_work *delayed_work = to_delayed_work(work);
2248         struct tx_work *tx_work = container_of(delayed_work,
2249                                                struct tx_work, work);
2250         struct sock *sk = tx_work->sk;
2251         struct tls_context *tls_ctx = tls_get_ctx(sk);
2252         struct tls_sw_context_tx *ctx;
2253
2254         if (unlikely(!tls_ctx))
2255                 return;
2256
2257         ctx = tls_sw_ctx_tx(tls_ctx);
2258         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2259                 return;
2260
2261         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2262                 return;
2263         mutex_lock(&tls_ctx->tx_lock);
2264         lock_sock(sk);
2265         tls_tx_records(sk, -1);
2266         release_sock(sk);
2267         mutex_unlock(&tls_ctx->tx_lock);
2268 }
2269
2270 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2271 {
2272         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2273
2274         /* Schedule the transmission if tx list is ready */
2275         if (is_tx_ready(tx_ctx) &&
2276             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2277                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2278 }
2279
2280 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2281 {
2282         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2283
2284         write_lock_bh(&sk->sk_callback_lock);
2285         rx_ctx->saved_data_ready = sk->sk_data_ready;
2286         sk->sk_data_ready = tls_data_ready;
2287         write_unlock_bh(&sk->sk_callback_lock);
2288
2289         strp_check_rcv(&rx_ctx->strp);
2290 }
2291
2292 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2293 {
2294         struct tls_context *tls_ctx = tls_get_ctx(sk);
2295         struct tls_prot_info *prot = &tls_ctx->prot_info;
2296         struct tls_crypto_info *crypto_info;
2297         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2298         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2299         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2300         struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2301         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2302         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2303         struct cipher_context *cctx;
2304         struct crypto_aead **aead;
2305         struct strp_callbacks cb;
2306         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2307         struct crypto_tfm *tfm;
2308         char *iv, *rec_seq, *key, *salt, *cipher_name;
2309         size_t keysize;
2310         int rc = 0;
2311
2312         if (!ctx) {
2313                 rc = -EINVAL;
2314                 goto out;
2315         }
2316
2317         if (tx) {
2318                 if (!ctx->priv_ctx_tx) {
2319                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2320                         if (!sw_ctx_tx) {
2321                                 rc = -ENOMEM;
2322                                 goto out;
2323                         }
2324                         ctx->priv_ctx_tx = sw_ctx_tx;
2325                 } else {
2326                         sw_ctx_tx =
2327                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2328                 }
2329         } else {
2330                 if (!ctx->priv_ctx_rx) {
2331                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2332                         if (!sw_ctx_rx) {
2333                                 rc = -ENOMEM;
2334                                 goto out;
2335                         }
2336                         ctx->priv_ctx_rx = sw_ctx_rx;
2337                 } else {
2338                         sw_ctx_rx =
2339                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2340                 }
2341         }
2342
2343         if (tx) {
2344                 crypto_init_wait(&sw_ctx_tx->async_wait);
2345                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2346                 crypto_info = &ctx->crypto_send.info;
2347                 cctx = &ctx->tx;
2348                 aead = &sw_ctx_tx->aead_send;
2349                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2350                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2351                 sw_ctx_tx->tx_work.sk = sk;
2352         } else {
2353                 crypto_init_wait(&sw_ctx_rx->async_wait);
2354                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2355                 crypto_info = &ctx->crypto_recv.info;
2356                 cctx = &ctx->rx;
2357                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2358                 aead = &sw_ctx_rx->aead_recv;
2359         }
2360
2361         switch (crypto_info->cipher_type) {
2362         case TLS_CIPHER_AES_GCM_128: {
2363                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2364                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2365                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2366                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2367                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2368                 rec_seq =
2369                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2370                 gcm_128_info =
2371                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2372                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2373                 key = gcm_128_info->key;
2374                 salt = gcm_128_info->salt;
2375                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2376                 cipher_name = "gcm(aes)";
2377                 break;
2378         }
2379         case TLS_CIPHER_AES_GCM_256: {
2380                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2381                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2382                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2383                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2384                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2385                 rec_seq =
2386                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2387                 gcm_256_info =
2388                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2389                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2390                 key = gcm_256_info->key;
2391                 salt = gcm_256_info->salt;
2392                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2393                 cipher_name = "gcm(aes)";
2394                 break;
2395         }
2396         case TLS_CIPHER_AES_CCM_128: {
2397                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2398                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2399                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2400                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2401                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2402                 rec_seq =
2403                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2404                 ccm_128_info =
2405                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2406                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2407                 key = ccm_128_info->key;
2408                 salt = ccm_128_info->salt;
2409                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2410                 cipher_name = "ccm(aes)";
2411                 break;
2412         }
2413         case TLS_CIPHER_CHACHA20_POLY1305: {
2414                 chacha20_poly1305_info = (void *)crypto_info;
2415                 nonce_size = 0;
2416                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2417                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2418                 iv = chacha20_poly1305_info->iv;
2419                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2420                 rec_seq = chacha20_poly1305_info->rec_seq;
2421                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2422                 key = chacha20_poly1305_info->key;
2423                 salt = chacha20_poly1305_info->salt;
2424                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2425                 cipher_name = "rfc7539(chacha20,poly1305)";
2426                 break;
2427         }
2428         default:
2429                 rc = -EINVAL;
2430                 goto free_priv;
2431         }
2432
2433         /* Sanity-check the sizes for stack allocations. */
2434         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2435             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2436                 rc = -EINVAL;
2437                 goto free_priv;
2438         }
2439
2440         if (crypto_info->version == TLS_1_3_VERSION) {
2441                 nonce_size = 0;
2442                 prot->aad_size = TLS_HEADER_SIZE;
2443                 prot->tail_size = 1;
2444         } else {
2445                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2446                 prot->tail_size = 0;
2447         }
2448
2449         prot->version = crypto_info->version;
2450         prot->cipher_type = crypto_info->cipher_type;
2451         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2452         prot->tag_size = tag_size;
2453         prot->overhead_size = prot->prepend_size +
2454                               prot->tag_size + prot->tail_size;
2455         prot->iv_size = iv_size;
2456         prot->salt_size = salt_size;
2457         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2458         if (!cctx->iv) {
2459                 rc = -ENOMEM;
2460                 goto free_priv;
2461         }
2462         /* Note: 128 & 256 bit salt are the same size */
2463         prot->rec_seq_size = rec_seq_size;
2464         memcpy(cctx->iv, salt, salt_size);
2465         memcpy(cctx->iv + salt_size, iv, iv_size);
2466         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2467         if (!cctx->rec_seq) {
2468                 rc = -ENOMEM;
2469                 goto free_iv;
2470         }
2471
2472         if (!*aead) {
2473                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2474                 if (IS_ERR(*aead)) {
2475                         rc = PTR_ERR(*aead);
2476                         *aead = NULL;
2477                         goto free_rec_seq;
2478                 }
2479         }
2480
2481         ctx->push_pending_record = tls_sw_push_pending_record;
2482
2483         rc = crypto_aead_setkey(*aead, key, keysize);
2484
2485         if (rc)
2486                 goto free_aead;
2487
2488         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2489         if (rc)
2490                 goto free_aead;
2491
2492         if (sw_ctx_rx) {
2493                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2494
2495                 if (crypto_info->version == TLS_1_3_VERSION)
2496                         sw_ctx_rx->async_capable = 0;
2497                 else
2498                         sw_ctx_rx->async_capable =
2499                                 !!(tfm->__crt_alg->cra_flags &
2500                                    CRYPTO_ALG_ASYNC);
2501
2502                 /* Set up strparser */
2503                 memset(&cb, 0, sizeof(cb));
2504                 cb.rcv_msg = tls_queue;
2505                 cb.parse_msg = tls_read_size;
2506
2507                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2508         }
2509
2510         goto out;
2511
2512 free_aead:
2513         crypto_free_aead(*aead);
2514         *aead = NULL;
2515 free_rec_seq:
2516         kfree(cctx->rec_seq);
2517         cctx->rec_seq = NULL;
2518 free_iv:
2519         kfree(cctx->iv);
2520         cctx->iv = NULL;
2521 free_priv:
2522         if (tx) {
2523                 kfree(ctx->priv_ctx_tx);
2524                 ctx->priv_ctx_tx = NULL;
2525         } else {
2526                 kfree(ctx->priv_ctx_rx);
2527                 ctx->priv_ctx_rx = NULL;
2528         }
2529 out:
2530         return rc;
2531 }