2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
44 #include <net/strparser.h>
47 noinline void tls_err_abort(struct sock *sk, int err)
49 WARN_ON_ONCE(err >= 0);
50 /* sk->sk_err should contain a positive error code. */
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56 unsigned int recursion_level)
58 int start = skb_headlen(skb);
59 int i, chunk = start - offset;
60 struct sk_buff *frag_iter;
63 if (unlikely(recursion_level >= 24))
76 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
79 WARN_ON(start > offset + len);
81 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
95 if (unlikely(skb_has_frag_list(skb))) {
96 skb_walk_frags(skb, frag_iter) {
99 WARN_ON(start > offset + len);
101 end = start + frag_iter->len;
102 chunk = end - offset;
106 ret = __skb_nsg(frag_iter, offset - start, chunk,
107 recursion_level + 1);
108 if (unlikely(ret < 0))
123 /* Return the number of scatterlist elements required to completely map the
124 * skb, or -EMSGSIZE if the recursion depth is exceeded.
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
128 return __skb_nsg(skb, offset, len, 0);
131 static int padding_length(struct tls_sw_context_rx *ctx,
132 struct tls_prot_info *prot, struct sk_buff *skb)
134 struct strp_msg *rxm = strp_msg(skb);
137 /* Determine zero-padding length */
138 if (prot->version == TLS_1_3_VERSION) {
139 char content_type = 0;
143 while (content_type == 0) {
144 if (back > rxm->full_len - prot->prepend_size)
146 err = skb_copy_bits(skb,
147 rxm->offset + rxm->full_len - back,
156 ctx->control = content_type;
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
163 struct aead_request *aead_req = (struct aead_request *)req;
164 struct scatterlist *sgout = aead_req->dst;
165 struct scatterlist *sgin = aead_req->src;
166 struct tls_sw_context_rx *ctx;
167 struct tls_context *tls_ctx;
168 struct tls_prot_info *prot;
169 struct scatterlist *sg;
174 skb = (struct sk_buff *)req->data;
175 tls_ctx = tls_get_ctx(skb->sk);
176 ctx = tls_sw_ctx_rx(tls_ctx);
177 prot = &tls_ctx->prot_info;
179 /* Propagate if there was an err */
182 TLS_INC_STATS(sock_net(skb->sk),
183 LINUX_MIB_TLSDECRYPTERROR);
184 ctx->async_wait.err = err;
185 tls_err_abort(skb->sk, err);
187 struct strp_msg *rxm = strp_msg(skb);
190 pad = padding_length(ctx, prot, skb);
192 ctx->async_wait.err = pad;
193 tls_err_abort(skb->sk, pad);
195 rxm->full_len -= pad;
196 rxm->offset += prot->prepend_size;
197 rxm->full_len -= prot->overhead_size;
201 /* After using skb->sk to propagate sk through crypto async callback
202 * we need to NULL it again.
207 /* Free the destination pages if skb was not decrypted inplace */
209 /* Skip the first S/G entry as it points to AAD */
210 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
213 put_page(sg_page(sg));
219 spin_lock_bh(&ctx->decrypt_compl_lock);
220 pending = atomic_dec_return(&ctx->decrypt_pending);
222 if (!pending && ctx->async_notify)
223 complete(&ctx->async_wait.completion);
224 spin_unlock_bh(&ctx->decrypt_compl_lock);
227 static int tls_do_decryption(struct sock *sk,
229 struct scatterlist *sgin,
230 struct scatterlist *sgout,
233 struct aead_request *aead_req,
236 struct tls_context *tls_ctx = tls_get_ctx(sk);
237 struct tls_prot_info *prot = &tls_ctx->prot_info;
238 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
241 aead_request_set_tfm(aead_req, ctx->aead_recv);
242 aead_request_set_ad(aead_req, prot->aad_size);
243 aead_request_set_crypt(aead_req, sgin, sgout,
244 data_len + prot->tag_size,
248 /* Using skb->sk to push sk through to crypto async callback
249 * handler. This allows propagating errors up to the socket
250 * if needed. It _must_ be cleared in the async handler
251 * before consume_skb is called. We _know_ skb->sk is NULL
252 * because it is a clone from strparser.
255 aead_request_set_callback(aead_req,
256 CRYPTO_TFM_REQ_MAY_BACKLOG,
257 tls_decrypt_done, skb);
258 atomic_inc(&ctx->decrypt_pending);
260 aead_request_set_callback(aead_req,
261 CRYPTO_TFM_REQ_MAY_BACKLOG,
262 crypto_req_done, &ctx->async_wait);
265 ret = crypto_aead_decrypt(aead_req);
266 if (ret == -EINPROGRESS) {
270 ret = crypto_wait_req(ret, &ctx->async_wait);
274 atomic_dec(&ctx->decrypt_pending);
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
282 struct tls_prot_info *prot = &tls_ctx->prot_info;
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
286 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
288 target_size += prot->overhead_size;
289 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
294 struct tls_context *tls_ctx = tls_get_ctx(sk);
295 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296 struct tls_rec *rec = ctx->open_rec;
297 struct sk_msg *msg_en = &rec->msg_encrypted;
299 return sk_msg_alloc(sk, msg_en, len, 0);
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
304 struct tls_context *tls_ctx = tls_get_ctx(sk);
305 struct tls_prot_info *prot = &tls_ctx->prot_info;
306 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307 struct tls_rec *rec = ctx->open_rec;
308 struct sk_msg *msg_pl = &rec->msg_plaintext;
309 struct sk_msg *msg_en = &rec->msg_encrypted;
312 /* We add page references worth len bytes from encrypted sg
313 * at the end of plaintext sg. It is guaranteed that msg_en
314 * has enough required room (ensured by caller).
316 len = required - msg_pl->sg.size;
318 /* Skip initial bytes in msg_en's data to be able to use
319 * same offset of both plain and encrypted data.
321 skip = prot->prepend_size + msg_pl->sg.size;
323 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
326 static struct tls_rec *tls_get_rec(struct sock *sk)
328 struct tls_context *tls_ctx = tls_get_ctx(sk);
329 struct tls_prot_info *prot = &tls_ctx->prot_info;
330 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331 struct sk_msg *msg_pl, *msg_en;
335 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
337 rec = kzalloc(mem_size, sk->sk_allocation);
341 msg_pl = &rec->msg_plaintext;
342 msg_en = &rec->msg_encrypted;
347 sg_init_table(rec->sg_aead_in, 2);
348 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_in[1]);
351 sg_init_table(rec->sg_aead_out, 2);
352 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353 sg_unmark_end(&rec->sg_aead_out[1]);
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
360 sk_msg_free(sk, &rec->msg_encrypted);
361 sk_msg_free(sk, &rec->msg_plaintext);
365 static void tls_free_open_rec(struct sock *sk)
367 struct tls_context *tls_ctx = tls_get_ctx(sk);
368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 struct tls_rec *rec = ctx->open_rec;
372 tls_free_rec(sk, rec);
373 ctx->open_rec = NULL;
377 int tls_tx_records(struct sock *sk, int flags)
379 struct tls_context *tls_ctx = tls_get_ctx(sk);
380 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381 struct tls_rec *rec, *tmp;
382 struct sk_msg *msg_en;
383 int tx_flags, rc = 0;
385 if (tls_is_partially_sent_record(tls_ctx)) {
386 rec = list_first_entry(&ctx->tx_list,
387 struct tls_rec, list);
390 tx_flags = rec->tx_flags;
394 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
398 /* Full record has been transmitted.
399 * Remove the head of tx_list
401 list_del(&rec->list);
402 sk_msg_free(sk, &rec->msg_plaintext);
406 /* Tx all ready records */
407 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408 if (READ_ONCE(rec->tx_ready)) {
410 tx_flags = rec->tx_flags;
414 msg_en = &rec->msg_encrypted;
415 rc = tls_push_sg(sk, tls_ctx,
416 &msg_en->sg.data[msg_en->sg.curr],
421 list_del(&rec->list);
422 sk_msg_free(sk, &rec->msg_plaintext);
430 if (rc < 0 && rc != -EAGAIN)
431 tls_err_abort(sk, -EBADMSG);
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
438 struct aead_request *aead_req = (struct aead_request *)req;
439 struct sock *sk = req->data;
440 struct tls_context *tls_ctx = tls_get_ctx(sk);
441 struct tls_prot_info *prot = &tls_ctx->prot_info;
442 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443 struct scatterlist *sge;
444 struct sk_msg *msg_en;
449 rec = container_of(aead_req, struct tls_rec, aead_req);
450 msg_en = &rec->msg_encrypted;
452 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453 sge->offset -= prot->prepend_size;
454 sge->length += prot->prepend_size;
456 /* Check if error is previously set on socket */
457 if (err || sk->sk_err) {
460 /* If err is already set on socket, return the same code */
462 ctx->async_wait.err = -sk->sk_err;
464 ctx->async_wait.err = err;
465 tls_err_abort(sk, err);
470 struct tls_rec *first_rec;
472 /* Mark the record as ready for transmission */
473 smp_store_mb(rec->tx_ready, true);
475 /* If received record is at head of tx_list, schedule tx */
476 first_rec = list_first_entry(&ctx->tx_list,
477 struct tls_rec, list);
478 if (rec == first_rec)
482 spin_lock_bh(&ctx->encrypt_compl_lock);
483 pending = atomic_dec_return(&ctx->encrypt_pending);
485 if (!pending && ctx->async_notify)
486 complete(&ctx->async_wait.completion);
487 spin_unlock_bh(&ctx->encrypt_compl_lock);
492 /* Schedule the transmission */
493 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494 schedule_delayed_work(&ctx->tx_work.work, 1);
497 static int tls_do_encryption(struct sock *sk,
498 struct tls_context *tls_ctx,
499 struct tls_sw_context_tx *ctx,
500 struct aead_request *aead_req,
501 size_t data_len, u32 start)
503 struct tls_prot_info *prot = &tls_ctx->prot_info;
504 struct tls_rec *rec = ctx->open_rec;
505 struct sk_msg *msg_en = &rec->msg_encrypted;
506 struct scatterlist *sge = sk_msg_elem(msg_en, start);
507 int rc, iv_offset = 0;
509 /* For CCM based ciphers, first byte of IV is a constant */
510 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
515 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516 prot->iv_size + prot->salt_size);
518 xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
520 sge->offset += prot->prepend_size;
521 sge->length -= prot->prepend_size;
523 msg_en->sg.curr = start;
525 aead_request_set_tfm(aead_req, ctx->aead_send);
526 aead_request_set_ad(aead_req, prot->aad_size);
527 aead_request_set_crypt(aead_req, rec->sg_aead_in,
529 data_len, rec->iv_data);
531 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532 tls_encrypt_done, sk);
534 /* Add the record in tx_list */
535 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536 atomic_inc(&ctx->encrypt_pending);
538 rc = crypto_aead_encrypt(aead_req);
539 if (!rc || rc != -EINPROGRESS) {
540 atomic_dec(&ctx->encrypt_pending);
541 sge->offset -= prot->prepend_size;
542 sge->length += prot->prepend_size;
546 WRITE_ONCE(rec->tx_ready, true);
547 } else if (rc != -EINPROGRESS) {
548 list_del(&rec->list);
552 /* Unhook the record from context if encryption is not failure */
553 ctx->open_rec = NULL;
554 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559 struct tls_rec **to, struct sk_msg *msg_opl,
560 struct sk_msg *msg_oen, u32 split_point,
561 u32 tx_overhead_size, u32 *orig_end)
563 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564 struct scatterlist *sge, *osge, *nsge;
565 u32 orig_size = msg_opl->sg.size;
566 struct scatterlist tmp = { };
567 struct sk_msg *msg_npl;
571 new = tls_get_rec(sk);
574 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575 tx_overhead_size, 0);
577 tls_free_rec(sk, new);
581 *orig_end = msg_opl->sg.end;
582 i = msg_opl->sg.start;
583 sge = sk_msg_elem(msg_opl, i);
584 while (apply && sge->length) {
585 if (sge->length > apply) {
586 u32 len = sge->length - apply;
588 get_page(sg_page(sge));
589 sg_set_page(&tmp, sg_page(sge), len,
590 sge->offset + apply);
595 apply -= sge->length;
596 bytes += sge->length;
599 sk_msg_iter_var_next(i);
600 if (i == msg_opl->sg.end)
602 sge = sk_msg_elem(msg_opl, i);
606 msg_opl->sg.curr = i;
607 msg_opl->sg.copybreak = 0;
608 msg_opl->apply_bytes = 0;
609 msg_opl->sg.size = bytes;
611 msg_npl = &new->msg_plaintext;
612 msg_npl->apply_bytes = apply;
613 msg_npl->sg.size = orig_size - bytes;
615 j = msg_npl->sg.start;
616 nsge = sk_msg_elem(msg_npl, j);
618 memcpy(nsge, &tmp, sizeof(*nsge));
619 sk_msg_iter_var_next(j);
620 nsge = sk_msg_elem(msg_npl, j);
623 osge = sk_msg_elem(msg_opl, i);
624 while (osge->length) {
625 memcpy(nsge, osge, sizeof(*nsge));
627 sk_msg_iter_var_next(i);
628 sk_msg_iter_var_next(j);
631 osge = sk_msg_elem(msg_opl, i);
632 nsge = sk_msg_elem(msg_npl, j);
636 msg_npl->sg.curr = j;
637 msg_npl->sg.copybreak = 0;
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644 struct tls_rec *from, u32 orig_end)
646 struct sk_msg *msg_npl = &from->msg_plaintext;
647 struct sk_msg *msg_opl = &to->msg_plaintext;
648 struct scatterlist *osge, *nsge;
652 sk_msg_iter_var_prev(i);
653 j = msg_npl->sg.start;
655 osge = sk_msg_elem(msg_opl, i);
656 nsge = sk_msg_elem(msg_npl, j);
658 if (sg_page(osge) == sg_page(nsge) &&
659 osge->offset + osge->length == nsge->offset) {
660 osge->length += nsge->length;
661 put_page(sg_page(nsge));
664 msg_opl->sg.end = orig_end;
665 msg_opl->sg.curr = orig_end;
666 msg_opl->sg.copybreak = 0;
667 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668 msg_opl->sg.size += msg_npl->sg.size;
670 sk_msg_free(sk, &to->msg_encrypted);
671 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
676 static int tls_push_record(struct sock *sk, int flags,
677 unsigned char record_type)
679 struct tls_context *tls_ctx = tls_get_ctx(sk);
680 struct tls_prot_info *prot = &tls_ctx->prot_info;
681 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683 u32 i, split_point, orig_end;
684 struct sk_msg *msg_pl, *msg_en;
685 struct aead_request *req;
692 msg_pl = &rec->msg_plaintext;
693 msg_en = &rec->msg_encrypted;
695 split_point = msg_pl->apply_bytes;
696 split = split_point && split_point < msg_pl->sg.size;
697 if (unlikely((!split &&
699 prot->overhead_size > msg_en->sg.size) ||
702 prot->overhead_size > msg_en->sg.size))) {
704 split_point = msg_en->sg.size;
707 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708 split_point, prot->overhead_size,
712 /* This can happen if above tls_split_open_record allocates
713 * a single large encryption buffer instead of two smaller
714 * ones. In this case adjust pointers and continue without
717 if (!msg_pl->sg.size) {
718 tls_merge_open_record(sk, rec, tmp, orig_end);
719 msg_pl = &rec->msg_plaintext;
720 msg_en = &rec->msg_encrypted;
723 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724 prot->overhead_size);
727 rec->tx_flags = flags;
728 req = &rec->aead_req;
731 sk_msg_iter_var_prev(i);
733 rec->content_type = record_type;
734 if (prot->version == TLS_1_3_VERSION) {
735 /* Add content type to end of message. No padding added */
736 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737 sg_mark_end(&rec->sg_content_type);
738 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739 &rec->sg_content_type);
741 sg_mark_end(sk_msg_elem(msg_pl, i));
744 if (msg_pl->sg.end < msg_pl->sg.start) {
745 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
750 i = msg_pl->sg.start;
751 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
754 sk_msg_iter_var_prev(i);
755 sg_mark_end(sk_msg_elem(msg_en, i));
757 i = msg_en->sg.start;
758 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
760 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761 tls_ctx->tx.rec_seq, record_type, prot);
763 tls_fill_prepend(tls_ctx,
764 page_address(sg_page(&msg_en->sg.data[i])) +
765 msg_en->sg.data[i].offset,
766 msg_pl->sg.size + prot->tail_size,
769 tls_ctx->pending_open_record_frags = false;
771 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
772 msg_pl->sg.size + prot->tail_size, i);
774 if (rc != -EINPROGRESS) {
775 tls_err_abort(sk, -EBADMSG);
777 tls_ctx->pending_open_record_frags = true;
778 tls_merge_open_record(sk, rec, tmp, orig_end);
781 ctx->async_capable = 1;
784 msg_pl = &tmp->msg_plaintext;
785 msg_en = &tmp->msg_encrypted;
786 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
787 tls_ctx->pending_open_record_frags = true;
791 return tls_tx_records(sk, flags);
794 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
795 bool full_record, u8 record_type,
796 ssize_t *copied, int flags)
798 struct tls_context *tls_ctx = tls_get_ctx(sk);
799 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
800 struct sk_msg msg_redir = { };
801 struct sk_psock *psock;
802 struct sock *sk_redir;
808 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
809 psock = sk_psock_get(sk);
810 if (!psock || !policy) {
811 err = tls_push_record(sk, flags, record_type);
812 if (err && sk->sk_err == EBADMSG) {
813 *copied -= sk_msg_free(sk, msg);
814 tls_free_open_rec(sk);
818 sk_psock_put(sk, psock);
822 enospc = sk_msg_full(msg);
823 if (psock->eval == __SK_NONE) {
824 delta = msg->sg.size;
825 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
826 delta -= msg->sg.size;
828 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
829 !enospc && !full_record) {
835 if (msg->apply_bytes && msg->apply_bytes < send)
836 send = msg->apply_bytes;
838 switch (psock->eval) {
840 err = tls_push_record(sk, flags, record_type);
841 if (err && sk->sk_err == EBADMSG) {
842 *copied -= sk_msg_free(sk, msg);
843 tls_free_open_rec(sk);
849 sk_redir = psock->sk_redir;
850 memcpy(&msg_redir, msg, sizeof(*msg));
851 if (msg->apply_bytes < send)
852 msg->apply_bytes = 0;
854 msg->apply_bytes -= send;
855 sk_msg_return_zero(sk, msg, send);
856 msg->sg.size -= send;
858 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
861 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
864 if (msg->sg.size == 0)
865 tls_free_open_rec(sk);
869 sk_msg_free_partial(sk, msg, send);
870 if (msg->apply_bytes < send)
871 msg->apply_bytes = 0;
873 msg->apply_bytes -= send;
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
876 *copied -= (send + delta);
881 bool reset_eval = !ctx->open_rec;
885 msg = &rec->msg_plaintext;
886 if (!msg->apply_bytes)
890 psock->eval = __SK_NONE;
891 if (psock->sk_redir) {
892 sock_put(psock->sk_redir);
893 psock->sk_redir = NULL;
900 sk_psock_put(sk, psock);
904 static int tls_sw_push_pending_record(struct sock *sk, int flags)
906 struct tls_context *tls_ctx = tls_get_ctx(sk);
907 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
908 struct tls_rec *rec = ctx->open_rec;
909 struct sk_msg *msg_pl;
915 msg_pl = &rec->msg_plaintext;
916 copied = msg_pl->sg.size;
920 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
924 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
926 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
927 struct tls_context *tls_ctx = tls_get_ctx(sk);
928 struct tls_prot_info *prot = &tls_ctx->prot_info;
929 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
930 bool async_capable = ctx->async_capable;
931 unsigned char record_type = TLS_RECORD_TYPE_DATA;
932 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
933 bool eor = !(msg->msg_flags & MSG_MORE);
936 struct sk_msg *msg_pl, *msg_en;
947 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
951 mutex_lock(&tls_ctx->tx_lock);
954 if (unlikely(msg->msg_controllen)) {
955 ret = tls_proccess_cmsg(sk, msg, &record_type);
957 if (ret == -EINPROGRESS)
959 else if (ret != -EAGAIN)
964 while (msg_data_left(msg)) {
973 rec = ctx->open_rec = tls_get_rec(sk);
979 msg_pl = &rec->msg_plaintext;
980 msg_en = &rec->msg_encrypted;
982 orig_size = msg_pl->sg.size;
984 try_to_copy = msg_data_left(msg);
985 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
986 if (try_to_copy >= record_room) {
987 try_to_copy = record_room;
991 required_size = msg_pl->sg.size + try_to_copy +
994 if (!sk_stream_memory_free(sk))
995 goto wait_for_sndbuf;
998 ret = tls_alloc_encrypted_msg(sk, required_size);
1001 goto wait_for_memory;
1003 /* Adjust try_to_copy according to the amount that was
1004 * actually allocated. The difference is due
1005 * to max sg elements limit
1007 try_to_copy -= required_size - msg_en->sg.size;
1011 if (!is_kvec && (full_record || eor) && !async_capable) {
1012 u32 first = msg_pl->sg.end;
1014 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1015 msg_pl, try_to_copy);
1017 goto fallback_to_reg_send;
1020 copied += try_to_copy;
1022 sk_msg_sg_copy_set(msg_pl, first);
1023 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024 record_type, &copied,
1027 if (ret == -EINPROGRESS)
1029 else if (ret == -ENOMEM)
1030 goto wait_for_memory;
1031 else if (ctx->open_rec && ret == -ENOSPC)
1033 else if (ret != -EAGAIN)
1038 copied -= try_to_copy;
1039 sk_msg_sg_copy_clear(msg_pl, first);
1040 iov_iter_revert(&msg->msg_iter,
1041 msg_pl->sg.size - orig_size);
1042 fallback_to_reg_send:
1043 sk_msg_trim(sk, msg_pl, orig_size);
1046 required_size = msg_pl->sg.size + try_to_copy;
1048 ret = tls_clone_plaintext_msg(sk, required_size);
1053 /* Adjust try_to_copy according to the amount that was
1054 * actually allocated. The difference is due
1055 * to max sg elements limit
1057 try_to_copy -= required_size - msg_pl->sg.size;
1059 sk_msg_trim(sk, msg_en,
1060 msg_pl->sg.size + prot->overhead_size);
1064 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1065 msg_pl, try_to_copy);
1070 /* Open records defined only if successfully copied, otherwise
1071 * we would trim the sg but not reset the open record frags.
1073 tls_ctx->pending_open_record_frags = true;
1074 copied += try_to_copy;
1075 if (full_record || eor) {
1076 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077 record_type, &copied,
1080 if (ret == -EINPROGRESS)
1082 else if (ret == -ENOMEM)
1083 goto wait_for_memory;
1084 else if (ret != -EAGAIN) {
1095 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1097 ret = sk_stream_wait_memory(sk, &timeo);
1101 tls_trim_both_msgs(sk, orig_size);
1105 if (ctx->open_rec && msg_en->sg.size < required_size)
1106 goto alloc_encrypted;
1111 } else if (num_zc) {
1112 /* Wait for pending encryptions to get completed */
1113 spin_lock_bh(&ctx->encrypt_compl_lock);
1114 ctx->async_notify = true;
1116 pending = atomic_read(&ctx->encrypt_pending);
1117 spin_unlock_bh(&ctx->encrypt_compl_lock);
1119 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1121 reinit_completion(&ctx->async_wait.completion);
1123 /* There can be no concurrent accesses, since we have no
1124 * pending encrypt operations
1126 WRITE_ONCE(ctx->async_notify, false);
1128 if (ctx->async_wait.err) {
1129 ret = ctx->async_wait.err;
1134 /* Transmit if any encryptions have completed */
1135 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1136 cancel_delayed_work(&ctx->tx_work.work);
1137 tls_tx_records(sk, msg->msg_flags);
1141 ret = sk_stream_error(sk, msg->msg_flags, ret);
1144 mutex_unlock(&tls_ctx->tx_lock);
1145 return copied > 0 ? copied : ret;
1148 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1149 int offset, size_t size, int flags)
1151 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152 struct tls_context *tls_ctx = tls_get_ctx(sk);
1153 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1154 struct tls_prot_info *prot = &tls_ctx->prot_info;
1155 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1156 struct sk_msg *msg_pl;
1157 struct tls_rec *rec;
1165 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1166 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1168 /* Call the sk_stream functions to manage the sndbuf mem. */
1170 size_t copy, required_size;
1178 rec = ctx->open_rec;
1180 rec = ctx->open_rec = tls_get_rec(sk);
1186 msg_pl = &rec->msg_plaintext;
1188 full_record = false;
1189 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1191 if (copy >= record_room) {
1196 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1198 if (!sk_stream_memory_free(sk))
1199 goto wait_for_sndbuf;
1201 ret = tls_alloc_encrypted_msg(sk, required_size);
1204 goto wait_for_memory;
1206 /* Adjust copy according to the amount that was
1207 * actually allocated. The difference is due
1208 * to max sg elements limit
1210 copy -= required_size - msg_pl->sg.size;
1214 sk_msg_page_add(msg_pl, page, copy, offset);
1215 sk_mem_charge(sk, copy);
1221 tls_ctx->pending_open_record_frags = true;
1222 if (full_record || eor || sk_msg_full(msg_pl)) {
1223 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1224 record_type, &copied, flags);
1226 if (ret == -EINPROGRESS)
1228 else if (ret == -ENOMEM)
1229 goto wait_for_memory;
1230 else if (ret != -EAGAIN) {
1239 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241 ret = sk_stream_wait_memory(sk, &timeo);
1244 tls_trim_both_msgs(sk, msg_pl->sg.size);
1253 /* Transmit if any encryptions have completed */
1254 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1255 cancel_delayed_work(&ctx->tx_work.work);
1256 tls_tx_records(sk, flags);
1260 ret = sk_stream_error(sk, flags, ret);
1261 return copied > 0 ? copied : ret;
1264 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1265 int offset, size_t size, int flags)
1267 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1268 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1269 MSG_NO_SHARED_FRAGS))
1272 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1275 int tls_sw_sendpage(struct sock *sk, struct page *page,
1276 int offset, size_t size, int flags)
1278 struct tls_context *tls_ctx = tls_get_ctx(sk);
1281 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1282 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1285 mutex_lock(&tls_ctx->tx_lock);
1287 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1289 mutex_unlock(&tls_ctx->tx_lock);
1293 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1294 bool nonblock, long timeo, int *err)
1296 struct tls_context *tls_ctx = tls_get_ctx(sk);
1297 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298 struct sk_buff *skb;
1299 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1301 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1303 *err = sock_error(sk);
1307 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1308 __strp_unpause(&ctx->strp);
1310 return ctx->recv_pkt;
1313 if (sk->sk_shutdown & RCV_SHUTDOWN)
1316 if (sock_flag(sk, SOCK_DONE))
1319 if (nonblock || !timeo) {
1324 add_wait_queue(sk_sleep(sk), &wait);
1325 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1326 sk_wait_event(sk, &timeo,
1327 ctx->recv_pkt != skb ||
1328 !sk_psock_queue_empty(psock),
1330 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331 remove_wait_queue(sk_sleep(sk), &wait);
1333 /* Handle signals */
1334 if (signal_pending(current)) {
1335 *err = sock_intr_errno(timeo);
1343 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1344 int length, int *pages_used,
1345 unsigned int *size_used,
1346 struct scatterlist *to,
1349 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350 struct page *pages[MAX_SKB_FRAGS];
1351 unsigned int size = *size_used;
1352 ssize_t copied, use;
1355 while (length > 0) {
1357 maxpages = to_max_pages - num_elem;
1358 if (maxpages == 0) {
1362 copied = iov_iter_get_pages(from, pages,
1370 iov_iter_advance(from, copied);
1375 use = min_t(int, copied, PAGE_SIZE - offset);
1377 sg_set_page(&to[num_elem],
1378 pages[i], use, offset);
1379 sg_unmark_end(&to[num_elem]);
1380 /* We do not uncharge memory from this API */
1389 /* Mark the end in the last sg entry if newly added */
1390 if (num_elem > *pages_used)
1391 sg_mark_end(&to[num_elem - 1]);
1394 iov_iter_revert(from, size - *size_used);
1396 *pages_used = num_elem;
1401 /* This function decrypts the input skb into either out_iov or in out_sg
1402 * or in skb buffers itself. The input parameter 'zc' indicates if
1403 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405 * NULL, then the decryption happens inside skb buffers itself, i.e.
1406 * zero-copy gets disabled and 'zc' is updated.
1409 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410 struct iov_iter *out_iov,
1411 struct scatterlist *out_sg,
1412 int *chunk, bool *zc, bool async)
1414 struct tls_context *tls_ctx = tls_get_ctx(sk);
1415 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416 struct tls_prot_info *prot = &tls_ctx->prot_info;
1417 struct strp_msg *rxm = strp_msg(skb);
1418 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1419 struct aead_request *aead_req;
1420 struct sk_buff *unused;
1421 u8 *aad, *iv, *mem = NULL;
1422 struct scatterlist *sgin = NULL;
1423 struct scatterlist *sgout = NULL;
1424 const int data_len = rxm->full_len - prot->overhead_size +
1428 if (*zc && (out_iov || out_sg)) {
1430 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1432 n_sgout = sg_nents(out_sg);
1433 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1434 rxm->full_len - prot->prepend_size);
1438 n_sgin = skb_cow_data(skb, 0, &unused);
1444 /* Increment to accommodate AAD */
1445 n_sgin = n_sgin + 1;
1447 nsg = n_sgin + n_sgout;
1449 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1451 mem_size = mem_size + prot->aad_size;
1452 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1454 /* Allocate a single block of memory which contains
1455 * aead_req || sgin[] || sgout[] || aad || iv.
1456 * This order achieves correct alignment for aead_req, sgin, sgout.
1458 mem = kmalloc(mem_size, sk->sk_allocation);
1462 /* Segment the allocated memory */
1463 aead_req = (struct aead_request *)mem;
1464 sgin = (struct scatterlist *)(mem + aead_size);
1465 sgout = sgin + n_sgin;
1466 aad = (u8 *)(sgout + n_sgout);
1467 iv = aad + prot->aad_size;
1469 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1470 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1476 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1477 iv + iv_offset + prot->salt_size,
1483 if (prot->version == TLS_1_3_VERSION ||
1484 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1485 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1486 prot->iv_size + prot->salt_size);
1488 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1490 xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1493 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1495 tls_ctx->rx.rec_seq, ctx->control, prot);
1498 sg_init_table(sgin, n_sgin);
1499 sg_set_buf(&sgin[0], aad, prot->aad_size);
1500 err = skb_to_sgvec(skb, &sgin[1],
1501 rxm->offset + prot->prepend_size,
1502 rxm->full_len - prot->prepend_size);
1510 sg_init_table(sgout, n_sgout);
1511 sg_set_buf(&sgout[0], aad, prot->aad_size);
1514 err = tls_setup_from_iter(sk, out_iov, data_len,
1515 &pages, chunk, &sgout[1],
1518 goto fallback_to_reg_recv;
1519 } else if (out_sg) {
1520 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1522 goto fallback_to_reg_recv;
1525 fallback_to_reg_recv:
1532 /* Prepare and submit AEAD request */
1533 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1534 data_len, aead_req, async);
1535 if (err == -EINPROGRESS)
1538 /* Release the pages in case iov was mapped to pages */
1539 for (; pages > 0; pages--)
1540 put_page(sg_page(&sgout[pages]));
1546 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1547 struct iov_iter *dest, int *chunk, bool *zc,
1550 struct tls_context *tls_ctx = tls_get_ctx(sk);
1551 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1552 struct tls_prot_info *prot = &tls_ctx->prot_info;
1553 struct strp_msg *rxm = strp_msg(skb);
1556 if (!ctx->decrypted) {
1557 if (tls_ctx->rx_conf == TLS_HW) {
1558 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1563 /* Still not decrypted after tls_device */
1564 if (!ctx->decrypted) {
1565 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1568 if (err == -EINPROGRESS)
1569 tls_advance_record_sn(sk, prot,
1571 else if (err == -EBADMSG)
1572 TLS_INC_STATS(sock_net(sk),
1573 LINUX_MIB_TLSDECRYPTERROR);
1580 pad = padding_length(ctx, prot, skb);
1584 rxm->full_len -= pad;
1585 rxm->offset += prot->prepend_size;
1586 rxm->full_len -= prot->overhead_size;
1587 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1589 ctx->saved_data_ready(sk);
1597 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1598 struct scatterlist *sgout)
1603 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1606 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1609 struct tls_context *tls_ctx = tls_get_ctx(sk);
1610 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1613 struct strp_msg *rxm = strp_msg(skb);
1615 if (len < rxm->full_len) {
1617 rxm->full_len -= len;
1623 /* Finished with message */
1624 ctx->recv_pkt = NULL;
1625 __strp_unpause(&ctx->strp);
1630 /* This function traverses the rx_list in tls receive context to copies the
1631 * decrypted records into the buffer provided by caller zero copy is not
1632 * true. Further, the records are removed from the rx_list if it is not a peek
1633 * case and the record has been consumed completely.
1635 static int process_rx_list(struct tls_sw_context_rx *ctx,
1644 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1647 struct tls_msg *tlm;
1650 /* Set the record type in 'control' if caller didn't pass it */
1653 ctrl = tlm->control;
1656 while (skip && skb) {
1657 struct strp_msg *rxm = strp_msg(skb);
1660 /* Cannot process a record of different type */
1661 if (ctrl != tlm->control)
1664 if (skip < rxm->full_len)
1667 skip = skip - rxm->full_len;
1668 skb = skb_peek_next(skb, &ctx->rx_list);
1671 while (len && skb) {
1672 struct sk_buff *next_skb;
1673 struct strp_msg *rxm = strp_msg(skb);
1674 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1678 /* Cannot process a record of different type */
1679 if (ctrl != tlm->control)
1682 /* Set record type if not already done. For a non-data record,
1683 * do not proceed if record type could not be copied.
1686 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1687 sizeof(ctrl), &ctrl);
1689 if (ctrl != TLS_RECORD_TYPE_DATA) {
1690 if (cerr || msg->msg_flags & MSG_CTRUNC)
1697 if (!zc || (rxm->full_len - skip) > len) {
1698 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1705 copied = copied + chunk;
1707 /* Consume the data from record if it is non-peek case*/
1709 rxm->offset = rxm->offset + chunk;
1710 rxm->full_len = rxm->full_len - chunk;
1712 /* Return if there is unconsumed data in the record */
1713 if (rxm->full_len - skip)
1717 /* The remaining skip-bytes must lie in 1st record in rx_list.
1718 * So from the 2nd record, 'skip' should be 0.
1723 msg->msg_flags |= MSG_EOR;
1725 next_skb = skb_peek_next(skb, &ctx->rx_list);
1728 skb_unlink(skb, &ctx->rx_list);
1739 int tls_sw_recvmsg(struct sock *sk,
1746 struct tls_context *tls_ctx = tls_get_ctx(sk);
1747 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1748 struct tls_prot_info *prot = &tls_ctx->prot_info;
1749 struct sk_psock *psock;
1750 unsigned char control = 0;
1751 ssize_t decrypted = 0;
1752 struct strp_msg *rxm;
1753 struct tls_msg *tlm;
1754 struct sk_buff *skb;
1757 int target, err = 0;
1759 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1760 bool is_peek = flags & MSG_PEEK;
1761 bool bpf_strp_enabled;
1767 if (unlikely(flags & MSG_ERRQUEUE))
1768 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1770 psock = sk_psock_get(sk);
1772 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1774 /* Process pending decrypted records. It must be non-zero-copy */
1775 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1778 tls_err_abort(sk, err);
1787 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1789 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1791 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1792 bool retain_skb = false;
1799 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1802 int ret = sk_msg_recvmsg(sk, psock, msg, len,
1814 if (prot->version == TLS_1_3_VERSION)
1817 tlm->control = ctx->control;
1820 rxm = strp_msg(skb);
1822 to_decrypt = rxm->full_len - prot->overhead_size;
1824 if (to_decrypt <= len && !is_kvec && !is_peek &&
1825 ctx->control == TLS_RECORD_TYPE_DATA &&
1826 prot->version != TLS_1_3_VERSION &&
1830 /* Do not use async mode if record is non-data */
1831 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1832 async_capable = ctx->async_capable;
1834 async_capable = false;
1836 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1837 &chunk, &zc, async_capable);
1838 if (err < 0 && err != -EINPROGRESS) {
1839 tls_err_abort(sk, -EBADMSG);
1843 if (err == -EINPROGRESS) {
1846 } else if (prot->version == TLS_1_3_VERSION) {
1847 tlm->control = ctx->control;
1850 /* If the type of records being processed is not known yet,
1851 * set it to record type just dequeued. If it is already known,
1852 * but does not match the record type just dequeued, go to end.
1853 * We always get record type here since for tls1.2, record type
1854 * is known just after record is dequeued from stream parser.
1855 * For tls1.3, we disable async.
1859 control = tlm->control;
1860 else if (control != tlm->control)
1866 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1867 sizeof(control), &control);
1869 if (control != TLS_RECORD_TYPE_DATA) {
1870 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1878 goto pick_next_record;
1881 if (bpf_strp_enabled) {
1882 err = sk_psock_tls_strp_read(psock, skb);
1883 if (err != __SK_PASS) {
1884 rxm->offset = rxm->offset + rxm->full_len;
1886 if (err == __SK_DROP)
1888 ctx->recv_pkt = NULL;
1889 __strp_unpause(&ctx->strp);
1894 if (rxm->full_len > len) {
1898 chunk = rxm->full_len;
1901 err = skb_copy_datagram_msg(skb, rxm->offset,
1907 rxm->offset = rxm->offset + chunk;
1908 rxm->full_len = rxm->full_len - chunk;
1919 /* For async or peek case, queue the current skb */
1920 if (async || is_peek || retain_skb) {
1921 skb_queue_tail(&ctx->rx_list, skb);
1925 if (tls_sw_advance_skb(sk, skb, chunk)) {
1926 /* Return full control message to
1927 * userspace before trying to parse
1928 * another message type
1930 msg->msg_flags |= MSG_EOR;
1931 if (control != TLS_RECORD_TYPE_DATA)
1940 /* Wait for all previously submitted records to be decrypted */
1941 spin_lock_bh(&ctx->decrypt_compl_lock);
1942 ctx->async_notify = true;
1943 pending = atomic_read(&ctx->decrypt_pending);
1944 spin_unlock_bh(&ctx->decrypt_compl_lock);
1946 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1948 /* one of async decrypt failed */
1949 tls_err_abort(sk, err);
1955 reinit_completion(&ctx->async_wait.completion);
1958 /* There can be no concurrent accesses, since we have no
1959 * pending decrypt operations
1961 WRITE_ONCE(ctx->async_notify, false);
1963 /* Drain records from the rx_list & copy if required */
1964 if (is_peek || is_kvec)
1965 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1966 decrypted, false, is_peek);
1968 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1969 decrypted, true, is_peek);
1971 tls_err_abort(sk, err);
1977 copied += decrypted;
1982 sk_psock_put(sk, psock);
1983 return copied ? : err;
1986 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1987 struct pipe_inode_info *pipe,
1988 size_t len, unsigned int flags)
1990 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1991 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992 struct strp_msg *rxm = NULL;
1993 struct sock *sk = sock->sk;
1994 struct sk_buff *skb;
2004 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2006 from_queue = !skb_queue_empty(&ctx->rx_list);
2008 skb = __skb_dequeue(&ctx->rx_list);
2010 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
2013 goto splice_read_end;
2015 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2017 tls_err_abort(sk, -EBADMSG);
2018 goto splice_read_end;
2022 /* splice does not support reading control messages */
2023 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2025 goto splice_read_end;
2028 rxm = strp_msg(skb);
2030 chunk = min_t(unsigned int, rxm->full_len, len);
2031 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2033 goto splice_read_end;
2036 ctx->recv_pkt = NULL;
2037 __strp_unpause(&ctx->strp);
2039 if (chunk < rxm->full_len) {
2040 __skb_queue_head(&ctx->rx_list, skb);
2042 rxm->full_len -= len;
2049 return copied ? : err;
2052 bool tls_sw_sock_is_readable(struct sock *sk)
2054 struct tls_context *tls_ctx = tls_get_ctx(sk);
2055 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2056 bool ingress_empty = true;
2057 struct sk_psock *psock;
2060 psock = sk_psock(sk);
2062 ingress_empty = list_empty(&psock->ingress_msg);
2065 return !ingress_empty || ctx->recv_pkt ||
2066 !skb_queue_empty(&ctx->rx_list);
2069 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2071 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2072 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2073 struct tls_prot_info *prot = &tls_ctx->prot_info;
2074 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2075 struct strp_msg *rxm = strp_msg(skb);
2076 size_t cipher_overhead;
2077 size_t data_len = 0;
2080 /* Verify that we have a full TLS header, or wait for more data */
2081 if (rxm->offset + prot->prepend_size > skb->len)
2084 /* Sanity-check size of on-stack buffer. */
2085 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2090 /* Linearize header to local buffer */
2091 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2096 ctx->control = header[0];
2098 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2100 cipher_overhead = prot->tag_size;
2101 if (prot->version != TLS_1_3_VERSION &&
2102 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2103 cipher_overhead += prot->iv_size;
2105 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2110 if (data_len < cipher_overhead) {
2115 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2116 if (header[1] != TLS_1_2_VERSION_MINOR ||
2117 header[2] != TLS_1_2_VERSION_MAJOR) {
2122 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2123 TCP_SKB_CB(skb)->seq + rxm->offset);
2124 return data_len + TLS_HEADER_SIZE;
2127 tls_err_abort(strp->sk, ret);
2132 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2134 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2135 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2139 ctx->recv_pkt = skb;
2142 ctx->saved_data_ready(strp->sk);
2145 static void tls_data_ready(struct sock *sk)
2147 struct tls_context *tls_ctx = tls_get_ctx(sk);
2148 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2149 struct sk_psock *psock;
2151 strp_data_ready(&ctx->strp);
2153 psock = sk_psock_get(sk);
2155 if (!list_empty(&psock->ingress_msg))
2156 ctx->saved_data_ready(sk);
2157 sk_psock_put(sk, psock);
2161 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2163 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2165 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2166 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2167 cancel_delayed_work_sync(&ctx->tx_work.work);
2170 void tls_sw_release_resources_tx(struct sock *sk)
2172 struct tls_context *tls_ctx = tls_get_ctx(sk);
2173 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2174 struct tls_rec *rec, *tmp;
2177 /* Wait for any pending async encryptions to complete */
2178 spin_lock_bh(&ctx->encrypt_compl_lock);
2179 ctx->async_notify = true;
2180 pending = atomic_read(&ctx->encrypt_pending);
2181 spin_unlock_bh(&ctx->encrypt_compl_lock);
2184 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2186 tls_tx_records(sk, -1);
2188 /* Free up un-sent records in tx_list. First, free
2189 * the partially sent record if any at head of tx_list.
2191 if (tls_ctx->partially_sent_record) {
2192 tls_free_partial_record(sk, tls_ctx);
2193 rec = list_first_entry(&ctx->tx_list,
2194 struct tls_rec, list);
2195 list_del(&rec->list);
2196 sk_msg_free(sk, &rec->msg_plaintext);
2200 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2201 list_del(&rec->list);
2202 sk_msg_free(sk, &rec->msg_encrypted);
2203 sk_msg_free(sk, &rec->msg_plaintext);
2207 crypto_free_aead(ctx->aead_send);
2208 tls_free_open_rec(sk);
2211 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2213 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2218 void tls_sw_release_resources_rx(struct sock *sk)
2220 struct tls_context *tls_ctx = tls_get_ctx(sk);
2221 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2223 kfree(tls_ctx->rx.rec_seq);
2224 kfree(tls_ctx->rx.iv);
2226 if (ctx->aead_recv) {
2227 kfree_skb(ctx->recv_pkt);
2228 ctx->recv_pkt = NULL;
2229 skb_queue_purge(&ctx->rx_list);
2230 crypto_free_aead(ctx->aead_recv);
2231 strp_stop(&ctx->strp);
2232 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2233 * we still want to strp_stop(), but sk->sk_data_ready was
2236 if (ctx->saved_data_ready) {
2237 write_lock_bh(&sk->sk_callback_lock);
2238 sk->sk_data_ready = ctx->saved_data_ready;
2239 write_unlock_bh(&sk->sk_callback_lock);
2244 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2246 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2248 strp_done(&ctx->strp);
2251 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2253 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2258 void tls_sw_free_resources_rx(struct sock *sk)
2260 struct tls_context *tls_ctx = tls_get_ctx(sk);
2262 tls_sw_release_resources_rx(sk);
2263 tls_sw_free_ctx_rx(tls_ctx);
2266 /* The work handler to transmitt the encrypted records in tx_list */
2267 static void tx_work_handler(struct work_struct *work)
2269 struct delayed_work *delayed_work = to_delayed_work(work);
2270 struct tx_work *tx_work = container_of(delayed_work,
2271 struct tx_work, work);
2272 struct sock *sk = tx_work->sk;
2273 struct tls_context *tls_ctx = tls_get_ctx(sk);
2274 struct tls_sw_context_tx *ctx;
2276 if (unlikely(!tls_ctx))
2279 ctx = tls_sw_ctx_tx(tls_ctx);
2280 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2283 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2285 mutex_lock(&tls_ctx->tx_lock);
2287 tls_tx_records(sk, -1);
2289 mutex_unlock(&tls_ctx->tx_lock);
2292 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2294 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2296 /* Schedule the transmission if tx list is ready */
2297 if (is_tx_ready(tx_ctx) &&
2298 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2299 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2302 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2304 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2306 write_lock_bh(&sk->sk_callback_lock);
2307 rx_ctx->saved_data_ready = sk->sk_data_ready;
2308 sk->sk_data_ready = tls_data_ready;
2309 write_unlock_bh(&sk->sk_callback_lock);
2311 strp_check_rcv(&rx_ctx->strp);
2314 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2316 struct tls_context *tls_ctx = tls_get_ctx(sk);
2317 struct tls_prot_info *prot = &tls_ctx->prot_info;
2318 struct tls_crypto_info *crypto_info;
2319 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2320 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2321 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2322 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2323 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2324 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2325 struct cipher_context *cctx;
2326 struct crypto_aead **aead;
2327 struct strp_callbacks cb;
2328 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2329 struct crypto_tfm *tfm;
2330 char *iv, *rec_seq, *key, *salt, *cipher_name;
2340 if (!ctx->priv_ctx_tx) {
2341 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2346 ctx->priv_ctx_tx = sw_ctx_tx;
2349 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2352 if (!ctx->priv_ctx_rx) {
2353 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2358 ctx->priv_ctx_rx = sw_ctx_rx;
2361 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2366 crypto_init_wait(&sw_ctx_tx->async_wait);
2367 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2368 crypto_info = &ctx->crypto_send.info;
2370 aead = &sw_ctx_tx->aead_send;
2371 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2372 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2373 sw_ctx_tx->tx_work.sk = sk;
2375 crypto_init_wait(&sw_ctx_rx->async_wait);
2376 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2377 crypto_info = &ctx->crypto_recv.info;
2379 skb_queue_head_init(&sw_ctx_rx->rx_list);
2380 aead = &sw_ctx_rx->aead_recv;
2383 switch (crypto_info->cipher_type) {
2384 case TLS_CIPHER_AES_GCM_128: {
2385 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2386 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2387 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2388 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2389 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2391 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2393 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2394 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2395 key = gcm_128_info->key;
2396 salt = gcm_128_info->salt;
2397 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2398 cipher_name = "gcm(aes)";
2401 case TLS_CIPHER_AES_GCM_256: {
2402 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2403 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2404 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2405 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2406 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2408 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2410 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2411 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2412 key = gcm_256_info->key;
2413 salt = gcm_256_info->salt;
2414 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2415 cipher_name = "gcm(aes)";
2418 case TLS_CIPHER_AES_CCM_128: {
2419 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2420 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2421 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2422 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2423 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2425 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2427 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2428 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2429 key = ccm_128_info->key;
2430 salt = ccm_128_info->salt;
2431 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2432 cipher_name = "ccm(aes)";
2435 case TLS_CIPHER_CHACHA20_POLY1305: {
2436 chacha20_poly1305_info = (void *)crypto_info;
2438 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2439 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2440 iv = chacha20_poly1305_info->iv;
2441 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2442 rec_seq = chacha20_poly1305_info->rec_seq;
2443 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2444 key = chacha20_poly1305_info->key;
2445 salt = chacha20_poly1305_info->salt;
2446 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2447 cipher_name = "rfc7539(chacha20,poly1305)";
2455 /* Sanity-check the sizes for stack allocations. */
2456 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2457 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2462 if (crypto_info->version == TLS_1_3_VERSION) {
2464 prot->aad_size = TLS_HEADER_SIZE;
2465 prot->tail_size = 1;
2467 prot->aad_size = TLS_AAD_SPACE_SIZE;
2468 prot->tail_size = 0;
2471 prot->version = crypto_info->version;
2472 prot->cipher_type = crypto_info->cipher_type;
2473 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2474 prot->tag_size = tag_size;
2475 prot->overhead_size = prot->prepend_size +
2476 prot->tag_size + prot->tail_size;
2477 prot->iv_size = iv_size;
2478 prot->salt_size = salt_size;
2479 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2484 /* Note: 128 & 256 bit salt are the same size */
2485 prot->rec_seq_size = rec_seq_size;
2486 memcpy(cctx->iv, salt, salt_size);
2487 memcpy(cctx->iv + salt_size, iv, iv_size);
2488 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2489 if (!cctx->rec_seq) {
2495 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2496 if (IS_ERR(*aead)) {
2497 rc = PTR_ERR(*aead);
2503 ctx->push_pending_record = tls_sw_push_pending_record;
2505 rc = crypto_aead_setkey(*aead, key, keysize);
2510 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2515 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2517 if (crypto_info->version == TLS_1_3_VERSION)
2518 sw_ctx_rx->async_capable = 0;
2520 sw_ctx_rx->async_capable =
2521 !!(tfm->__crt_alg->cra_flags &
2524 /* Set up strparser */
2525 memset(&cb, 0, sizeof(cb));
2526 cb.rcv_msg = tls_queue;
2527 cb.parse_msg = tls_read_size;
2529 strp_init(&sw_ctx_rx->strp, sk, &cb);
2535 crypto_free_aead(*aead);
2538 kfree(cctx->rec_seq);
2539 cctx->rec_seq = NULL;
2545 kfree(ctx->priv_ctx_tx);
2546 ctx->priv_ctx_tx = NULL;
2548 kfree(ctx->priv_ctx_rx);
2549 ctx->priv_ctx_rx = NULL;