efi: libstub: check Shim mode using MokSBStateRT
[platform/kernel/linux-rpi.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 #include "tls.h"
48
49 struct tls_decrypt_arg {
50         struct_group(inargs,
51         bool zc;
52         bool async;
53         u8 tail;
54         );
55
56         struct sk_buff *skb;
57 };
58
59 struct tls_decrypt_ctx {
60         u8 iv[MAX_IV_SIZE];
61         u8 aad[TLS_MAX_AAD_SIZE];
62         u8 tail;
63         struct scatterlist sg[];
64 };
65
66 noinline void tls_err_abort(struct sock *sk, int err)
67 {
68         WARN_ON_ONCE(err >= 0);
69         /* sk->sk_err should contain a positive error code. */
70         sk->sk_err = -err;
71         sk_error_report(sk);
72 }
73
74 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75                      unsigned int recursion_level)
76 {
77         int start = skb_headlen(skb);
78         int i, chunk = start - offset;
79         struct sk_buff *frag_iter;
80         int elt = 0;
81
82         if (unlikely(recursion_level >= 24))
83                 return -EMSGSIZE;
84
85         if (chunk > 0) {
86                 if (chunk > len)
87                         chunk = len;
88                 elt++;
89                 len -= chunk;
90                 if (len == 0)
91                         return elt;
92                 offset += chunk;
93         }
94
95         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
96                 int end;
97
98                 WARN_ON(start > offset + len);
99
100                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101                 chunk = end - offset;
102                 if (chunk > 0) {
103                         if (chunk > len)
104                                 chunk = len;
105                         elt++;
106                         len -= chunk;
107                         if (len == 0)
108                                 return elt;
109                         offset += chunk;
110                 }
111                 start = end;
112         }
113
114         if (unlikely(skb_has_frag_list(skb))) {
115                 skb_walk_frags(skb, frag_iter) {
116                         int end, ret;
117
118                         WARN_ON(start > offset + len);
119
120                         end = start + frag_iter->len;
121                         chunk = end - offset;
122                         if (chunk > 0) {
123                                 if (chunk > len)
124                                         chunk = len;
125                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
126                                                 recursion_level + 1);
127                                 if (unlikely(ret < 0))
128                                         return ret;
129                                 elt += ret;
130                                 len -= chunk;
131                                 if (len == 0)
132                                         return elt;
133                                 offset += chunk;
134                         }
135                         start = end;
136                 }
137         }
138         BUG_ON(len);
139         return elt;
140 }
141
142 /* Return the number of scatterlist elements required to completely map the
143  * skb, or -EMSGSIZE if the recursion depth is exceeded.
144  */
145 static int skb_nsg(struct sk_buff *skb, int offset, int len)
146 {
147         return __skb_nsg(skb, offset, len, 0);
148 }
149
150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151                               struct tls_decrypt_arg *darg)
152 {
153         struct strp_msg *rxm = strp_msg(skb);
154         struct tls_msg *tlm = tls_msg(skb);
155         int sub = 0;
156
157         /* Determine zero-padding length */
158         if (prot->version == TLS_1_3_VERSION) {
159                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160                 char content_type = darg->zc ? darg->tail : 0;
161                 int err;
162
163                 while (content_type == 0) {
164                         if (offset < prot->prepend_size)
165                                 return -EBADMSG;
166                         err = skb_copy_bits(skb, rxm->offset + offset,
167                                             &content_type, 1);
168                         if (err)
169                                 return err;
170                         if (content_type)
171                                 break;
172                         sub++;
173                         offset--;
174                 }
175                 tlm->control = content_type;
176         }
177         return sub;
178 }
179
180 static void tls_decrypt_done(struct crypto_async_request *req, int err)
181 {
182         struct aead_request *aead_req = (struct aead_request *)req;
183         struct scatterlist *sgout = aead_req->dst;
184         struct scatterlist *sgin = aead_req->src;
185         struct tls_sw_context_rx *ctx;
186         struct tls_context *tls_ctx;
187         struct scatterlist *sg;
188         unsigned int pages;
189         struct sock *sk;
190
191         sk = (struct sock *)req->data;
192         tls_ctx = tls_get_ctx(sk);
193         ctx = tls_sw_ctx_rx(tls_ctx);
194
195         /* Propagate if there was an err */
196         if (err) {
197                 if (err == -EBADMSG)
198                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199                 ctx->async_wait.err = err;
200                 tls_err_abort(sk, err);
201         }
202
203         /* Free the destination pages if skb was not decrypted inplace */
204         if (sgout != sgin) {
205                 /* Skip the first S/G entry as it points to AAD */
206                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
207                         if (!sg)
208                                 break;
209                         put_page(sg_page(sg));
210                 }
211         }
212
213         kfree(aead_req);
214
215         spin_lock_bh(&ctx->decrypt_compl_lock);
216         if (!atomic_dec_return(&ctx->decrypt_pending))
217                 complete(&ctx->async_wait.completion);
218         spin_unlock_bh(&ctx->decrypt_compl_lock);
219 }
220
221 static int tls_do_decryption(struct sock *sk,
222                              struct scatterlist *sgin,
223                              struct scatterlist *sgout,
224                              char *iv_recv,
225                              size_t data_len,
226                              struct aead_request *aead_req,
227                              struct tls_decrypt_arg *darg)
228 {
229         struct tls_context *tls_ctx = tls_get_ctx(sk);
230         struct tls_prot_info *prot = &tls_ctx->prot_info;
231         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232         int ret;
233
234         aead_request_set_tfm(aead_req, ctx->aead_recv);
235         aead_request_set_ad(aead_req, prot->aad_size);
236         aead_request_set_crypt(aead_req, sgin, sgout,
237                                data_len + prot->tag_size,
238                                (u8 *)iv_recv);
239
240         if (darg->async) {
241                 aead_request_set_callback(aead_req,
242                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
243                                           tls_decrypt_done, sk);
244                 atomic_inc(&ctx->decrypt_pending);
245         } else {
246                 aead_request_set_callback(aead_req,
247                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
248                                           crypto_req_done, &ctx->async_wait);
249         }
250
251         ret = crypto_aead_decrypt(aead_req);
252         if (ret == -EINPROGRESS) {
253                 if (darg->async)
254                         return 0;
255
256                 ret = crypto_wait_req(ret, &ctx->async_wait);
257         }
258         darg->async = false;
259
260         return ret;
261 }
262
263 static void tls_trim_both_msgs(struct sock *sk, int target_size)
264 {
265         struct tls_context *tls_ctx = tls_get_ctx(sk);
266         struct tls_prot_info *prot = &tls_ctx->prot_info;
267         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268         struct tls_rec *rec = ctx->open_rec;
269
270         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
271         if (target_size > 0)
272                 target_size += prot->overhead_size;
273         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
274 }
275
276 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
277 {
278         struct tls_context *tls_ctx = tls_get_ctx(sk);
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281         struct sk_msg *msg_en = &rec->msg_encrypted;
282
283         return sk_msg_alloc(sk, msg_en, len, 0);
284 }
285
286 static int tls_clone_plaintext_msg(struct sock *sk, int required)
287 {
288         struct tls_context *tls_ctx = tls_get_ctx(sk);
289         struct tls_prot_info *prot = &tls_ctx->prot_info;
290         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291         struct tls_rec *rec = ctx->open_rec;
292         struct sk_msg *msg_pl = &rec->msg_plaintext;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294         int skip, len;
295
296         /* We add page references worth len bytes from encrypted sg
297          * at the end of plaintext sg. It is guaranteed that msg_en
298          * has enough required room (ensured by caller).
299          */
300         len = required - msg_pl->sg.size;
301
302         /* Skip initial bytes in msg_en's data to be able to use
303          * same offset of both plain and encrypted data.
304          */
305         skip = prot->prepend_size + msg_pl->sg.size;
306
307         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
308 }
309
310 static struct tls_rec *tls_get_rec(struct sock *sk)
311 {
312         struct tls_context *tls_ctx = tls_get_ctx(sk);
313         struct tls_prot_info *prot = &tls_ctx->prot_info;
314         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315         struct sk_msg *msg_pl, *msg_en;
316         struct tls_rec *rec;
317         int mem_size;
318
319         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
320
321         rec = kzalloc(mem_size, sk->sk_allocation);
322         if (!rec)
323                 return NULL;
324
325         msg_pl = &rec->msg_plaintext;
326         msg_en = &rec->msg_encrypted;
327
328         sk_msg_init(msg_pl);
329         sk_msg_init(msg_en);
330
331         sg_init_table(rec->sg_aead_in, 2);
332         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333         sg_unmark_end(&rec->sg_aead_in[1]);
334
335         sg_init_table(rec->sg_aead_out, 2);
336         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337         sg_unmark_end(&rec->sg_aead_out[1]);
338
339         return rec;
340 }
341
342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
343 {
344         sk_msg_free(sk, &rec->msg_encrypted);
345         sk_msg_free(sk, &rec->msg_plaintext);
346         kfree(rec);
347 }
348
349 static void tls_free_open_rec(struct sock *sk)
350 {
351         struct tls_context *tls_ctx = tls_get_ctx(sk);
352         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353         struct tls_rec *rec = ctx->open_rec;
354
355         if (rec) {
356                 tls_free_rec(sk, rec);
357                 ctx->open_rec = NULL;
358         }
359 }
360
361 int tls_tx_records(struct sock *sk, int flags)
362 {
363         struct tls_context *tls_ctx = tls_get_ctx(sk);
364         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365         struct tls_rec *rec, *tmp;
366         struct sk_msg *msg_en;
367         int tx_flags, rc = 0;
368
369         if (tls_is_partially_sent_record(tls_ctx)) {
370                 rec = list_first_entry(&ctx->tx_list,
371                                        struct tls_rec, list);
372
373                 if (flags == -1)
374                         tx_flags = rec->tx_flags;
375                 else
376                         tx_flags = flags;
377
378                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
379                 if (rc)
380                         goto tx_err;
381
382                 /* Full record has been transmitted.
383                  * Remove the head of tx_list
384                  */
385                 list_del(&rec->list);
386                 sk_msg_free(sk, &rec->msg_plaintext);
387                 kfree(rec);
388         }
389
390         /* Tx all ready records */
391         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392                 if (READ_ONCE(rec->tx_ready)) {
393                         if (flags == -1)
394                                 tx_flags = rec->tx_flags;
395                         else
396                                 tx_flags = flags;
397
398                         msg_en = &rec->msg_encrypted;
399                         rc = tls_push_sg(sk, tls_ctx,
400                                          &msg_en->sg.data[msg_en->sg.curr],
401                                          0, tx_flags);
402                         if (rc)
403                                 goto tx_err;
404
405                         list_del(&rec->list);
406                         sk_msg_free(sk, &rec->msg_plaintext);
407                         kfree(rec);
408                 } else {
409                         break;
410                 }
411         }
412
413 tx_err:
414         if (rc < 0 && rc != -EAGAIN)
415                 tls_err_abort(sk, -EBADMSG);
416
417         return rc;
418 }
419
420 static void tls_encrypt_done(struct crypto_async_request *req, int err)
421 {
422         struct aead_request *aead_req = (struct aead_request *)req;
423         struct sock *sk = req->data;
424         struct tls_context *tls_ctx = tls_get_ctx(sk);
425         struct tls_prot_info *prot = &tls_ctx->prot_info;
426         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427         struct scatterlist *sge;
428         struct sk_msg *msg_en;
429         struct tls_rec *rec;
430         bool ready = false;
431         int pending;
432
433         rec = container_of(aead_req, struct tls_rec, aead_req);
434         msg_en = &rec->msg_encrypted;
435
436         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437         sge->offset -= prot->prepend_size;
438         sge->length += prot->prepend_size;
439
440         /* Check if error is previously set on socket */
441         if (err || sk->sk_err) {
442                 rec = NULL;
443
444                 /* If err is already set on socket, return the same code */
445                 if (sk->sk_err) {
446                         ctx->async_wait.err = -sk->sk_err;
447                 } else {
448                         ctx->async_wait.err = err;
449                         tls_err_abort(sk, err);
450                 }
451         }
452
453         if (rec) {
454                 struct tls_rec *first_rec;
455
456                 /* Mark the record as ready for transmission */
457                 smp_store_mb(rec->tx_ready, true);
458
459                 /* If received record is at head of tx_list, schedule tx */
460                 first_rec = list_first_entry(&ctx->tx_list,
461                                              struct tls_rec, list);
462                 if (rec == first_rec)
463                         ready = true;
464         }
465
466         spin_lock_bh(&ctx->encrypt_compl_lock);
467         pending = atomic_dec_return(&ctx->encrypt_pending);
468
469         if (!pending && ctx->async_notify)
470                 complete(&ctx->async_wait.completion);
471         spin_unlock_bh(&ctx->encrypt_compl_lock);
472
473         if (!ready)
474                 return;
475
476         /* Schedule the transmission */
477         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478                 schedule_delayed_work(&ctx->tx_work.work, 1);
479 }
480
481 static int tls_do_encryption(struct sock *sk,
482                              struct tls_context *tls_ctx,
483                              struct tls_sw_context_tx *ctx,
484                              struct aead_request *aead_req,
485                              size_t data_len, u32 start)
486 {
487         struct tls_prot_info *prot = &tls_ctx->prot_info;
488         struct tls_rec *rec = ctx->open_rec;
489         struct sk_msg *msg_en = &rec->msg_encrypted;
490         struct scatterlist *sge = sk_msg_elem(msg_en, start);
491         int rc, iv_offset = 0;
492
493         /* For CCM based ciphers, first byte of IV is a constant */
494         switch (prot->cipher_type) {
495         case TLS_CIPHER_AES_CCM_128:
496                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
497                 iv_offset = 1;
498                 break;
499         case TLS_CIPHER_SM4_CCM:
500                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
501                 iv_offset = 1;
502                 break;
503         }
504
505         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506                prot->iv_size + prot->salt_size);
507
508         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509                             tls_ctx->tx.rec_seq);
510
511         sge->offset += prot->prepend_size;
512         sge->length -= prot->prepend_size;
513
514         msg_en->sg.curr = start;
515
516         aead_request_set_tfm(aead_req, ctx->aead_send);
517         aead_request_set_ad(aead_req, prot->aad_size);
518         aead_request_set_crypt(aead_req, rec->sg_aead_in,
519                                rec->sg_aead_out,
520                                data_len, rec->iv_data);
521
522         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523                                   tls_encrypt_done, sk);
524
525         /* Add the record in tx_list */
526         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527         atomic_inc(&ctx->encrypt_pending);
528
529         rc = crypto_aead_encrypt(aead_req);
530         if (!rc || rc != -EINPROGRESS) {
531                 atomic_dec(&ctx->encrypt_pending);
532                 sge->offset -= prot->prepend_size;
533                 sge->length += prot->prepend_size;
534         }
535
536         if (!rc) {
537                 WRITE_ONCE(rec->tx_ready, true);
538         } else if (rc != -EINPROGRESS) {
539                 list_del(&rec->list);
540                 return rc;
541         }
542
543         /* Unhook the record from context if encryption is not failure */
544         ctx->open_rec = NULL;
545         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546         return rc;
547 }
548
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550                                  struct tls_rec **to, struct sk_msg *msg_opl,
551                                  struct sk_msg *msg_oen, u32 split_point,
552                                  u32 tx_overhead_size, u32 *orig_end)
553 {
554         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555         struct scatterlist *sge, *osge, *nsge;
556         u32 orig_size = msg_opl->sg.size;
557         struct scatterlist tmp = { };
558         struct sk_msg *msg_npl;
559         struct tls_rec *new;
560         int ret;
561
562         new = tls_get_rec(sk);
563         if (!new)
564                 return -ENOMEM;
565         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566                            tx_overhead_size, 0);
567         if (ret < 0) {
568                 tls_free_rec(sk, new);
569                 return ret;
570         }
571
572         *orig_end = msg_opl->sg.end;
573         i = msg_opl->sg.start;
574         sge = sk_msg_elem(msg_opl, i);
575         while (apply && sge->length) {
576                 if (sge->length > apply) {
577                         u32 len = sge->length - apply;
578
579                         get_page(sg_page(sge));
580                         sg_set_page(&tmp, sg_page(sge), len,
581                                     sge->offset + apply);
582                         sge->length = apply;
583                         bytes += apply;
584                         apply = 0;
585                 } else {
586                         apply -= sge->length;
587                         bytes += sge->length;
588                 }
589
590                 sk_msg_iter_var_next(i);
591                 if (i == msg_opl->sg.end)
592                         break;
593                 sge = sk_msg_elem(msg_opl, i);
594         }
595
596         msg_opl->sg.end = i;
597         msg_opl->sg.curr = i;
598         msg_opl->sg.copybreak = 0;
599         msg_opl->apply_bytes = 0;
600         msg_opl->sg.size = bytes;
601
602         msg_npl = &new->msg_plaintext;
603         msg_npl->apply_bytes = apply;
604         msg_npl->sg.size = orig_size - bytes;
605
606         j = msg_npl->sg.start;
607         nsge = sk_msg_elem(msg_npl, j);
608         if (tmp.length) {
609                 memcpy(nsge, &tmp, sizeof(*nsge));
610                 sk_msg_iter_var_next(j);
611                 nsge = sk_msg_elem(msg_npl, j);
612         }
613
614         osge = sk_msg_elem(msg_opl, i);
615         while (osge->length) {
616                 memcpy(nsge, osge, sizeof(*nsge));
617                 sg_unmark_end(nsge);
618                 sk_msg_iter_var_next(i);
619                 sk_msg_iter_var_next(j);
620                 if (i == *orig_end)
621                         break;
622                 osge = sk_msg_elem(msg_opl, i);
623                 nsge = sk_msg_elem(msg_npl, j);
624         }
625
626         msg_npl->sg.end = j;
627         msg_npl->sg.curr = j;
628         msg_npl->sg.copybreak = 0;
629
630         *to = new;
631         return 0;
632 }
633
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635                                   struct tls_rec *from, u32 orig_end)
636 {
637         struct sk_msg *msg_npl = &from->msg_plaintext;
638         struct sk_msg *msg_opl = &to->msg_plaintext;
639         struct scatterlist *osge, *nsge;
640         u32 i, j;
641
642         i = msg_opl->sg.end;
643         sk_msg_iter_var_prev(i);
644         j = msg_npl->sg.start;
645
646         osge = sk_msg_elem(msg_opl, i);
647         nsge = sk_msg_elem(msg_npl, j);
648
649         if (sg_page(osge) == sg_page(nsge) &&
650             osge->offset + osge->length == nsge->offset) {
651                 osge->length += nsge->length;
652                 put_page(sg_page(nsge));
653         }
654
655         msg_opl->sg.end = orig_end;
656         msg_opl->sg.curr = orig_end;
657         msg_opl->sg.copybreak = 0;
658         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659         msg_opl->sg.size += msg_npl->sg.size;
660
661         sk_msg_free(sk, &to->msg_encrypted);
662         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664         kfree(from);
665 }
666
667 static int tls_push_record(struct sock *sk, int flags,
668                            unsigned char record_type)
669 {
670         struct tls_context *tls_ctx = tls_get_ctx(sk);
671         struct tls_prot_info *prot = &tls_ctx->prot_info;
672         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674         u32 i, split_point, orig_end;
675         struct sk_msg *msg_pl, *msg_en;
676         struct aead_request *req;
677         bool split;
678         int rc;
679
680         if (!rec)
681                 return 0;
682
683         msg_pl = &rec->msg_plaintext;
684         msg_en = &rec->msg_encrypted;
685
686         split_point = msg_pl->apply_bytes;
687         split = split_point && split_point < msg_pl->sg.size;
688         if (unlikely((!split &&
689                       msg_pl->sg.size +
690                       prot->overhead_size > msg_en->sg.size) ||
691                      (split &&
692                       split_point +
693                       prot->overhead_size > msg_en->sg.size))) {
694                 split = true;
695                 split_point = msg_en->sg.size;
696         }
697         if (split) {
698                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699                                            split_point, prot->overhead_size,
700                                            &orig_end);
701                 if (rc < 0)
702                         return rc;
703                 /* This can happen if above tls_split_open_record allocates
704                  * a single large encryption buffer instead of two smaller
705                  * ones. In this case adjust pointers and continue without
706                  * split.
707                  */
708                 if (!msg_pl->sg.size) {
709                         tls_merge_open_record(sk, rec, tmp, orig_end);
710                         msg_pl = &rec->msg_plaintext;
711                         msg_en = &rec->msg_encrypted;
712                         split = false;
713                 }
714                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715                             prot->overhead_size);
716         }
717
718         rec->tx_flags = flags;
719         req = &rec->aead_req;
720
721         i = msg_pl->sg.end;
722         sk_msg_iter_var_prev(i);
723
724         rec->content_type = record_type;
725         if (prot->version == TLS_1_3_VERSION) {
726                 /* Add content type to end of message.  No padding added */
727                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728                 sg_mark_end(&rec->sg_content_type);
729                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730                          &rec->sg_content_type);
731         } else {
732                 sg_mark_end(sk_msg_elem(msg_pl, i));
733         }
734
735         if (msg_pl->sg.end < msg_pl->sg.start) {
736                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738                          msg_pl->sg.data);
739         }
740
741         i = msg_pl->sg.start;
742         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744         i = msg_en->sg.end;
745         sk_msg_iter_var_prev(i);
746         sg_mark_end(sk_msg_elem(msg_en, i));
747
748         i = msg_en->sg.start;
749         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752                      tls_ctx->tx.rec_seq, record_type, prot);
753
754         tls_fill_prepend(tls_ctx,
755                          page_address(sg_page(&msg_en->sg.data[i])) +
756                          msg_en->sg.data[i].offset,
757                          msg_pl->sg.size + prot->tail_size,
758                          record_type);
759
760         tls_ctx->pending_open_record_frags = false;
761
762         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763                                msg_pl->sg.size + prot->tail_size, i);
764         if (rc < 0) {
765                 if (rc != -EINPROGRESS) {
766                         tls_err_abort(sk, -EBADMSG);
767                         if (split) {
768                                 tls_ctx->pending_open_record_frags = true;
769                                 tls_merge_open_record(sk, rec, tmp, orig_end);
770                         }
771                 }
772                 ctx->async_capable = 1;
773                 return rc;
774         } else if (split) {
775                 msg_pl = &tmp->msg_plaintext;
776                 msg_en = &tmp->msg_encrypted;
777                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778                 tls_ctx->pending_open_record_frags = true;
779                 ctx->open_rec = tmp;
780         }
781
782         return tls_tx_records(sk, flags);
783 }
784
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786                                bool full_record, u8 record_type,
787                                ssize_t *copied, int flags)
788 {
789         struct tls_context *tls_ctx = tls_get_ctx(sk);
790         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791         struct sk_msg msg_redir = { };
792         struct sk_psock *psock;
793         struct sock *sk_redir;
794         struct tls_rec *rec;
795         bool enospc, policy;
796         int err = 0, send;
797         u32 delta = 0;
798
799         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800         psock = sk_psock_get(sk);
801         if (!psock || !policy) {
802                 err = tls_push_record(sk, flags, record_type);
803                 if (err && sk->sk_err == EBADMSG) {
804                         *copied -= sk_msg_free(sk, msg);
805                         tls_free_open_rec(sk);
806                         err = -sk->sk_err;
807                 }
808                 if (psock)
809                         sk_psock_put(sk, psock);
810                 return err;
811         }
812 more_data:
813         enospc = sk_msg_full(msg);
814         if (psock->eval == __SK_NONE) {
815                 delta = msg->sg.size;
816                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817                 delta -= msg->sg.size;
818         }
819         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820             !enospc && !full_record) {
821                 err = -ENOSPC;
822                 goto out_err;
823         }
824         msg->cork_bytes = 0;
825         send = msg->sg.size;
826         if (msg->apply_bytes && msg->apply_bytes < send)
827                 send = msg->apply_bytes;
828
829         switch (psock->eval) {
830         case __SK_PASS:
831                 err = tls_push_record(sk, flags, record_type);
832                 if (err && sk->sk_err == EBADMSG) {
833                         *copied -= sk_msg_free(sk, msg);
834                         tls_free_open_rec(sk);
835                         err = -sk->sk_err;
836                         goto out_err;
837                 }
838                 break;
839         case __SK_REDIRECT:
840                 sk_redir = psock->sk_redir;
841                 memcpy(&msg_redir, msg, sizeof(*msg));
842                 if (msg->apply_bytes < send)
843                         msg->apply_bytes = 0;
844                 else
845                         msg->apply_bytes -= send;
846                 sk_msg_return_zero(sk, msg, send);
847                 msg->sg.size -= send;
848                 release_sock(sk);
849                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850                 lock_sock(sk);
851                 if (err < 0) {
852                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853                         msg->sg.size = 0;
854                 }
855                 if (msg->sg.size == 0)
856                         tls_free_open_rec(sk);
857                 break;
858         case __SK_DROP:
859         default:
860                 sk_msg_free_partial(sk, msg, send);
861                 if (msg->apply_bytes < send)
862                         msg->apply_bytes = 0;
863                 else
864                         msg->apply_bytes -= send;
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 *copied -= (send + delta);
868                 err = -EACCES;
869         }
870
871         if (likely(!err)) {
872                 bool reset_eval = !ctx->open_rec;
873
874                 rec = ctx->open_rec;
875                 if (rec) {
876                         msg = &rec->msg_plaintext;
877                         if (!msg->apply_bytes)
878                                 reset_eval = true;
879                 }
880                 if (reset_eval) {
881                         psock->eval = __SK_NONE;
882                         if (psock->sk_redir) {
883                                 sock_put(psock->sk_redir);
884                                 psock->sk_redir = NULL;
885                         }
886                 }
887                 if (rec)
888                         goto more_data;
889         }
890  out_err:
891         sk_psock_put(sk, psock);
892         return err;
893 }
894
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897         struct tls_context *tls_ctx = tls_get_ctx(sk);
898         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899         struct tls_rec *rec = ctx->open_rec;
900         struct sk_msg *msg_pl;
901         size_t copied;
902
903         if (!rec)
904                 return 0;
905
906         msg_pl = &rec->msg_plaintext;
907         copied = msg_pl->sg.size;
908         if (!copied)
909                 return 0;
910
911         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912                                    &copied, flags);
913 }
914
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918         struct tls_context *tls_ctx = tls_get_ctx(sk);
919         struct tls_prot_info *prot = &tls_ctx->prot_info;
920         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921         bool async_capable = ctx->async_capable;
922         unsigned char record_type = TLS_RECORD_TYPE_DATA;
923         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924         bool eor = !(msg->msg_flags & MSG_MORE);
925         size_t try_to_copy;
926         ssize_t copied = 0;
927         struct sk_msg *msg_pl, *msg_en;
928         struct tls_rec *rec;
929         int required_size;
930         int num_async = 0;
931         bool full_record;
932         int record_room;
933         int num_zc = 0;
934         int orig_size;
935         int ret = 0;
936         int pending;
937
938         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939                                MSG_CMSG_COMPAT))
940                 return -EOPNOTSUPP;
941
942         mutex_lock(&tls_ctx->tx_lock);
943         lock_sock(sk);
944
945         if (unlikely(msg->msg_controllen)) {
946                 ret = tls_process_cmsg(sk, msg, &record_type);
947                 if (ret) {
948                         if (ret == -EINPROGRESS)
949                                 num_async++;
950                         else if (ret != -EAGAIN)
951                                 goto send_end;
952                 }
953         }
954
955         while (msg_data_left(msg)) {
956                 if (sk->sk_err) {
957                         ret = -sk->sk_err;
958                         goto send_end;
959                 }
960
961                 if (ctx->open_rec)
962                         rec = ctx->open_rec;
963                 else
964                         rec = ctx->open_rec = tls_get_rec(sk);
965                 if (!rec) {
966                         ret = -ENOMEM;
967                         goto send_end;
968                 }
969
970                 msg_pl = &rec->msg_plaintext;
971                 msg_en = &rec->msg_encrypted;
972
973                 orig_size = msg_pl->sg.size;
974                 full_record = false;
975                 try_to_copy = msg_data_left(msg);
976                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977                 if (try_to_copy >= record_room) {
978                         try_to_copy = record_room;
979                         full_record = true;
980                 }
981
982                 required_size = msg_pl->sg.size + try_to_copy +
983                                 prot->overhead_size;
984
985                 if (!sk_stream_memory_free(sk))
986                         goto wait_for_sndbuf;
987
988 alloc_encrypted:
989                 ret = tls_alloc_encrypted_msg(sk, required_size);
990                 if (ret) {
991                         if (ret != -ENOSPC)
992                                 goto wait_for_memory;
993
994                         /* Adjust try_to_copy according to the amount that was
995                          * actually allocated. The difference is due
996                          * to max sg elements limit
997                          */
998                         try_to_copy -= required_size - msg_en->sg.size;
999                         full_record = true;
1000                 }
1001
1002                 if (!is_kvec && (full_record || eor) && !async_capable) {
1003                         u32 first = msg_pl->sg.end;
1004
1005                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                         msg_pl, try_to_copy);
1007                         if (ret)
1008                                 goto fallback_to_reg_send;
1009
1010                         num_zc++;
1011                         copied += try_to_copy;
1012
1013                         sk_msg_sg_copy_set(msg_pl, first);
1014                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                   record_type, &copied,
1016                                                   msg->msg_flags);
1017                         if (ret) {
1018                                 if (ret == -EINPROGRESS)
1019                                         num_async++;
1020                                 else if (ret == -ENOMEM)
1021                                         goto wait_for_memory;
1022                                 else if (ctx->open_rec && ret == -ENOSPC)
1023                                         goto rollback_iter;
1024                                 else if (ret != -EAGAIN)
1025                                         goto send_end;
1026                         }
1027                         continue;
1028 rollback_iter:
1029                         copied -= try_to_copy;
1030                         sk_msg_sg_copy_clear(msg_pl, first);
1031                         iov_iter_revert(&msg->msg_iter,
1032                                         msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034                         sk_msg_trim(sk, msg_pl, orig_size);
1035                 }
1036
1037                 required_size = msg_pl->sg.size + try_to_copy;
1038
1039                 ret = tls_clone_plaintext_msg(sk, required_size);
1040                 if (ret) {
1041                         if (ret != -ENOSPC)
1042                                 goto send_end;
1043
1044                         /* Adjust try_to_copy according to the amount that was
1045                          * actually allocated. The difference is due
1046                          * to max sg elements limit
1047                          */
1048                         try_to_copy -= required_size - msg_pl->sg.size;
1049                         full_record = true;
1050                         sk_msg_trim(sk, msg_en,
1051                                     msg_pl->sg.size + prot->overhead_size);
1052                 }
1053
1054                 if (try_to_copy) {
1055                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                        msg_pl, try_to_copy);
1057                         if (ret < 0)
1058                                 goto trim_sgl;
1059                 }
1060
1061                 /* Open records defined only if successfully copied, otherwise
1062                  * we would trim the sg but not reset the open record frags.
1063                  */
1064                 tls_ctx->pending_open_record_frags = true;
1065                 copied += try_to_copy;
1066                 if (full_record || eor) {
1067                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                   record_type, &copied,
1069                                                   msg->msg_flags);
1070                         if (ret) {
1071                                 if (ret == -EINPROGRESS)
1072                                         num_async++;
1073                                 else if (ret == -ENOMEM)
1074                                         goto wait_for_memory;
1075                                 else if (ret != -EAGAIN) {
1076                                         if (ret == -ENOSPC)
1077                                                 ret = 0;
1078                                         goto send_end;
1079                                 }
1080                         }
1081                 }
1082
1083                 continue;
1084
1085 wait_for_sndbuf:
1086                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088                 ret = sk_stream_wait_memory(sk, &timeo);
1089                 if (ret) {
1090 trim_sgl:
1091                         if (ctx->open_rec)
1092                                 tls_trim_both_msgs(sk, orig_size);
1093                         goto send_end;
1094                 }
1095
1096                 if (ctx->open_rec && msg_en->sg.size < required_size)
1097                         goto alloc_encrypted;
1098         }
1099
1100         if (!num_async) {
1101                 goto send_end;
1102         } else if (num_zc) {
1103                 /* Wait for pending encryptions to get completed */
1104                 spin_lock_bh(&ctx->encrypt_compl_lock);
1105                 ctx->async_notify = true;
1106
1107                 pending = atomic_read(&ctx->encrypt_pending);
1108                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                 if (pending)
1110                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                 else
1112                         reinit_completion(&ctx->async_wait.completion);
1113
1114                 /* There can be no concurrent accesses, since we have no
1115                  * pending encrypt operations
1116                  */
1117                 WRITE_ONCE(ctx->async_notify, false);
1118
1119                 if (ctx->async_wait.err) {
1120                         ret = ctx->async_wait.err;
1121                         copied = 0;
1122                 }
1123         }
1124
1125         /* Transmit if any encryptions have completed */
1126         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                 cancel_delayed_work(&ctx->tx_work.work);
1128                 tls_tx_records(sk, msg->msg_flags);
1129         }
1130
1131 send_end:
1132         ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134         release_sock(sk);
1135         mutex_unlock(&tls_ctx->tx_lock);
1136         return copied > 0 ? copied : ret;
1137 }
1138
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                               int offset, size_t size, int flags)
1141 {
1142         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143         struct tls_context *tls_ctx = tls_get_ctx(sk);
1144         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145         struct tls_prot_info *prot = &tls_ctx->prot_info;
1146         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147         struct sk_msg *msg_pl;
1148         struct tls_rec *rec;
1149         int num_async = 0;
1150         ssize_t copied = 0;
1151         bool full_record;
1152         int record_room;
1153         int ret = 0;
1154         bool eor;
1155
1156         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159         /* Call the sk_stream functions to manage the sndbuf mem. */
1160         while (size > 0) {
1161                 size_t copy, required_size;
1162
1163                 if (sk->sk_err) {
1164                         ret = -sk->sk_err;
1165                         goto sendpage_end;
1166                 }
1167
1168                 if (ctx->open_rec)
1169                         rec = ctx->open_rec;
1170                 else
1171                         rec = ctx->open_rec = tls_get_rec(sk);
1172                 if (!rec) {
1173                         ret = -ENOMEM;
1174                         goto sendpage_end;
1175                 }
1176
1177                 msg_pl = &rec->msg_plaintext;
1178
1179                 full_record = false;
1180                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                 copy = size;
1182                 if (copy >= record_room) {
1183                         copy = record_room;
1184                         full_record = true;
1185                 }
1186
1187                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                 if (!sk_stream_memory_free(sk))
1190                         goto wait_for_sndbuf;
1191 alloc_payload:
1192                 ret = tls_alloc_encrypted_msg(sk, required_size);
1193                 if (ret) {
1194                         if (ret != -ENOSPC)
1195                                 goto wait_for_memory;
1196
1197                         /* Adjust copy according to the amount that was
1198                          * actually allocated. The difference is due
1199                          * to max sg elements limit
1200                          */
1201                         copy -= required_size - msg_pl->sg.size;
1202                         full_record = true;
1203                 }
1204
1205                 sk_msg_page_add(msg_pl, page, copy, offset);
1206                 sk_mem_charge(sk, copy);
1207
1208                 offset += copy;
1209                 size -= copy;
1210                 copied += copy;
1211
1212                 tls_ctx->pending_open_record_frags = true;
1213                 if (full_record || eor || sk_msg_full(msg_pl)) {
1214                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                   record_type, &copied, flags);
1216                         if (ret) {
1217                                 if (ret == -EINPROGRESS)
1218                                         num_async++;
1219                                 else if (ret == -ENOMEM)
1220                                         goto wait_for_memory;
1221                                 else if (ret != -EAGAIN) {
1222                                         if (ret == -ENOSPC)
1223                                                 ret = 0;
1224                                         goto sendpage_end;
1225                                 }
1226                         }
1227                 }
1228                 continue;
1229 wait_for_sndbuf:
1230                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232                 ret = sk_stream_wait_memory(sk, &timeo);
1233                 if (ret) {
1234                         if (ctx->open_rec)
1235                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                         goto sendpage_end;
1237                 }
1238
1239                 if (ctx->open_rec)
1240                         goto alloc_payload;
1241         }
1242
1243         if (num_async) {
1244                 /* Transmit if any encryptions have completed */
1245                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                         cancel_delayed_work(&ctx->tx_work.work);
1247                         tls_tx_records(sk, flags);
1248                 }
1249         }
1250 sendpage_end:
1251         ret = sk_stream_error(sk, flags, ret);
1252         return copied > 0 ? copied : ret;
1253 }
1254
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                            int offset, size_t size, int flags)
1257 {
1258         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                       MSG_NO_SHARED_FRAGS))
1261                 return -EOPNOTSUPP;
1262
1263         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                     int offset, size_t size, int flags)
1268 {
1269         struct tls_context *tls_ctx = tls_get_ctx(sk);
1270         int ret;
1271
1272         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                 return -EOPNOTSUPP;
1275
1276         mutex_lock(&tls_ctx->tx_lock);
1277         lock_sock(sk);
1278         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279         release_sock(sk);
1280         mutex_unlock(&tls_ctx->tx_lock);
1281         return ret;
1282 }
1283
1284 static int
1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1286                 bool released)
1287 {
1288         struct tls_context *tls_ctx = tls_get_ctx(sk);
1289         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291         long timeo;
1292
1293         timeo = sock_rcvtimeo(sk, nonblock);
1294
1295         while (!tls_strp_msg_ready(ctx)) {
1296                 if (!sk_psock_queue_empty(psock))
1297                         return 0;
1298
1299                 if (sk->sk_err)
1300                         return sock_error(sk);
1301
1302                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1303                         tls_strp_check_rcv(&ctx->strp);
1304                         if (tls_strp_msg_ready(ctx))
1305                                 break;
1306                 }
1307
1308                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1309                         return 0;
1310
1311                 if (sock_flag(sk, SOCK_DONE))
1312                         return 0;
1313
1314                 if (!timeo)
1315                         return -EAGAIN;
1316
1317                 released = true;
1318                 add_wait_queue(sk_sleep(sk), &wait);
1319                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1320                 sk_wait_event(sk, &timeo,
1321                               tls_strp_msg_ready(ctx) ||
1322                               !sk_psock_queue_empty(psock),
1323                               &wait);
1324                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1325                 remove_wait_queue(sk_sleep(sk), &wait);
1326
1327                 /* Handle signals */
1328                 if (signal_pending(current))
1329                         return sock_intr_errno(timeo);
1330         }
1331
1332         tls_strp_msg_load(&ctx->strp, released);
1333
1334         return 1;
1335 }
1336
1337 static int tls_setup_from_iter(struct iov_iter *from,
1338                                int length, int *pages_used,
1339                                struct scatterlist *to,
1340                                int to_max_pages)
1341 {
1342         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1343         struct page *pages[MAX_SKB_FRAGS];
1344         unsigned int size = 0;
1345         ssize_t copied, use;
1346         size_t offset;
1347
1348         while (length > 0) {
1349                 i = 0;
1350                 maxpages = to_max_pages - num_elem;
1351                 if (maxpages == 0) {
1352                         rc = -EFAULT;
1353                         goto out;
1354                 }
1355                 copied = iov_iter_get_pages2(from, pages,
1356                                             length,
1357                                             maxpages, &offset);
1358                 if (copied <= 0) {
1359                         rc = -EFAULT;
1360                         goto out;
1361                 }
1362
1363                 length -= copied;
1364                 size += copied;
1365                 while (copied) {
1366                         use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368                         sg_set_page(&to[num_elem],
1369                                     pages[i], use, offset);
1370                         sg_unmark_end(&to[num_elem]);
1371                         /* We do not uncharge memory from this API */
1372
1373                         offset = 0;
1374                         copied -= use;
1375
1376                         i++;
1377                         num_elem++;
1378                 }
1379         }
1380         /* Mark the end in the last sg entry if newly added */
1381         if (num_elem > *pages_used)
1382                 sg_mark_end(&to[num_elem - 1]);
1383 out:
1384         if (rc)
1385                 iov_iter_revert(from, size);
1386         *pages_used = num_elem;
1387
1388         return rc;
1389 }
1390
1391 static struct sk_buff *
1392 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1393                      unsigned int full_len)
1394 {
1395         struct strp_msg *clr_rxm;
1396         struct sk_buff *clr_skb;
1397         int err;
1398
1399         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1400                                        &err, sk->sk_allocation);
1401         if (!clr_skb)
1402                 return NULL;
1403
1404         skb_copy_header(clr_skb, skb);
1405         clr_skb->len = full_len;
1406         clr_skb->data_len = full_len;
1407
1408         clr_rxm = strp_msg(clr_skb);
1409         clr_rxm->offset = 0;
1410
1411         return clr_skb;
1412 }
1413
1414 /* Decrypt handlers
1415  *
1416  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1417  * They must transform the darg in/out argument are as follows:
1418  *       |          Input            |         Output
1419  * -------------------------------------------------------------------
1420  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1421  * async | Async decrypt allowed     | Async crypto used / in progress
1422  *   skb |            *              | Output skb
1423  *
1424  * If ZC decryption was performed darg.skb will point to the input skb.
1425  */
1426
1427 /* This function decrypts the input skb into either out_iov or in out_sg
1428  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1429  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1430  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1431  * NULL, then the decryption happens inside skb buffers itself, i.e.
1432  * zero-copy gets disabled and 'darg->zc' is updated.
1433  */
1434 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1435                           struct scatterlist *out_sg,
1436                           struct tls_decrypt_arg *darg)
1437 {
1438         struct tls_context *tls_ctx = tls_get_ctx(sk);
1439         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1440         struct tls_prot_info *prot = &tls_ctx->prot_info;
1441         int n_sgin, n_sgout, aead_size, err, pages = 0;
1442         struct sk_buff *skb = tls_strp_msg(ctx);
1443         const struct strp_msg *rxm = strp_msg(skb);
1444         const struct tls_msg *tlm = tls_msg(skb);
1445         struct aead_request *aead_req;
1446         struct scatterlist *sgin = NULL;
1447         struct scatterlist *sgout = NULL;
1448         const int data_len = rxm->full_len - prot->overhead_size;
1449         int tail_pages = !!prot->tail_size;
1450         struct tls_decrypt_ctx *dctx;
1451         struct sk_buff *clear_skb;
1452         int iv_offset = 0;
1453         u8 *mem;
1454
1455         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1456                          rxm->full_len - prot->prepend_size);
1457         if (n_sgin < 1)
1458                 return n_sgin ?: -EBADMSG;
1459
1460         if (darg->zc && (out_iov || out_sg)) {
1461                 clear_skb = NULL;
1462
1463                 if (out_iov)
1464                         n_sgout = 1 + tail_pages +
1465                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1466                 else
1467                         n_sgout = sg_nents(out_sg);
1468         } else {
1469                 darg->zc = false;
1470
1471                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1472                 if (!clear_skb)
1473                         return -ENOMEM;
1474
1475                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1476         }
1477
1478         /* Increment to accommodate AAD */
1479         n_sgin = n_sgin + 1;
1480
1481         /* Allocate a single block of memory which contains
1482          *   aead_req || tls_decrypt_ctx.
1483          * Both structs are variable length.
1484          */
1485         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1486         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1487                       sk->sk_allocation);
1488         if (!mem) {
1489                 err = -ENOMEM;
1490                 goto exit_free_skb;
1491         }
1492
1493         /* Segment the allocated memory */
1494         aead_req = (struct aead_request *)mem;
1495         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1496         sgin = &dctx->sg[0];
1497         sgout = &dctx->sg[n_sgin];
1498
1499         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1500         switch (prot->cipher_type) {
1501         case TLS_CIPHER_AES_CCM_128:
1502                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1503                 iv_offset = 1;
1504                 break;
1505         case TLS_CIPHER_SM4_CCM:
1506                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1507                 iv_offset = 1;
1508                 break;
1509         }
1510
1511         /* Prepare IV */
1512         if (prot->version == TLS_1_3_VERSION ||
1513             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1514                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1515                        prot->iv_size + prot->salt_size);
1516         } else {
1517                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1518                                     &dctx->iv[iv_offset] + prot->salt_size,
1519                                     prot->iv_size);
1520                 if (err < 0)
1521                         goto exit_free;
1522                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1523         }
1524         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1525
1526         /* Prepare AAD */
1527         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1528                      prot->tail_size,
1529                      tls_ctx->rx.rec_seq, tlm->control, prot);
1530
1531         /* Prepare sgin */
1532         sg_init_table(sgin, n_sgin);
1533         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1534         err = skb_to_sgvec(skb, &sgin[1],
1535                            rxm->offset + prot->prepend_size,
1536                            rxm->full_len - prot->prepend_size);
1537         if (err < 0)
1538                 goto exit_free;
1539
1540         if (clear_skb) {
1541                 sg_init_table(sgout, n_sgout);
1542                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1543
1544                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1545                                    data_len + prot->tail_size);
1546                 if (err < 0)
1547                         goto exit_free;
1548         } else if (out_iov) {
1549                 sg_init_table(sgout, n_sgout);
1550                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1551
1552                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1553                                           (n_sgout - 1 - tail_pages));
1554                 if (err < 0)
1555                         goto exit_free_pages;
1556
1557                 if (prot->tail_size) {
1558                         sg_unmark_end(&sgout[pages]);
1559                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1560                                    prot->tail_size);
1561                         sg_mark_end(&sgout[pages + 1]);
1562                 }
1563         } else if (out_sg) {
1564                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1565         }
1566
1567         /* Prepare and submit AEAD request */
1568         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1569                                 data_len + prot->tail_size, aead_req, darg);
1570         if (err)
1571                 goto exit_free_pages;
1572
1573         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1574         clear_skb = NULL;
1575
1576         if (unlikely(darg->async)) {
1577                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1578                 if (err)
1579                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1580                 return err;
1581         }
1582
1583         if (prot->tail_size)
1584                 darg->tail = dctx->tail;
1585
1586 exit_free_pages:
1587         /* Release the pages in case iov was mapped to pages */
1588         for (; pages > 0; pages--)
1589                 put_page(sg_page(&sgout[pages]));
1590 exit_free:
1591         kfree(mem);
1592 exit_free_skb:
1593         consume_skb(clear_skb);
1594         return err;
1595 }
1596
1597 static int
1598 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1599                struct msghdr *msg, struct tls_decrypt_arg *darg)
1600 {
1601         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602         struct tls_prot_info *prot = &tls_ctx->prot_info;
1603         struct strp_msg *rxm;
1604         int pad, err;
1605
1606         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1607         if (err < 0) {
1608                 if (err == -EBADMSG)
1609                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1610                 return err;
1611         }
1612         /* keep going even for ->async, the code below is TLS 1.3 */
1613
1614         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1615         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1616                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1617                 darg->zc = false;
1618                 if (!darg->tail)
1619                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1620                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1621                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1622         }
1623
1624         pad = tls_padding_length(prot, darg->skb, darg);
1625         if (pad < 0) {
1626                 if (darg->skb != tls_strp_msg(ctx))
1627                         consume_skb(darg->skb);
1628                 return pad;
1629         }
1630
1631         rxm = strp_msg(darg->skb);
1632         rxm->full_len -= pad;
1633
1634         return 0;
1635 }
1636
1637 static int
1638 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1639                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1640 {
1641         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1642         struct tls_prot_info *prot = &tls_ctx->prot_info;
1643         struct strp_msg *rxm;
1644         int pad, err;
1645
1646         if (tls_ctx->rx_conf != TLS_HW)
1647                 return 0;
1648
1649         err = tls_device_decrypted(sk, tls_ctx);
1650         if (err <= 0)
1651                 return err;
1652
1653         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1654         if (pad < 0)
1655                 return pad;
1656
1657         darg->async = false;
1658         darg->skb = tls_strp_msg(ctx);
1659         /* ->zc downgrade check, in case TLS 1.3 gets here */
1660         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1661                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1662
1663         rxm = strp_msg(darg->skb);
1664         rxm->full_len -= pad;
1665
1666         if (!darg->zc) {
1667                 /* Non-ZC case needs a real skb */
1668                 darg->skb = tls_strp_msg_detach(ctx);
1669                 if (!darg->skb)
1670                         return -ENOMEM;
1671         } else {
1672                 unsigned int off, len;
1673
1674                 /* In ZC case nobody cares about the output skb.
1675                  * Just copy the data here. Note the skb is not fully trimmed.
1676                  */
1677                 off = rxm->offset + prot->prepend_size;
1678                 len = rxm->full_len - prot->overhead_size;
1679
1680                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1681                 if (err)
1682                         return err;
1683         }
1684         return 1;
1685 }
1686
1687 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1688                              struct tls_decrypt_arg *darg)
1689 {
1690         struct tls_context *tls_ctx = tls_get_ctx(sk);
1691         struct tls_prot_info *prot = &tls_ctx->prot_info;
1692         struct strp_msg *rxm;
1693         int err;
1694
1695         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1696         if (!err)
1697                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1698         if (err < 0)
1699                 return err;
1700
1701         rxm = strp_msg(darg->skb);
1702         rxm->offset += prot->prepend_size;
1703         rxm->full_len -= prot->overhead_size;
1704         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1705
1706         return 0;
1707 }
1708
1709 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1710 {
1711         struct tls_decrypt_arg darg = { .zc = true, };
1712
1713         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1714 }
1715
1716 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1717                                    u8 *control)
1718 {
1719         int err;
1720
1721         if (!*control) {
1722                 *control = tlm->control;
1723                 if (!*control)
1724                         return -EBADMSG;
1725
1726                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1727                                sizeof(*control), control);
1728                 if (*control != TLS_RECORD_TYPE_DATA) {
1729                         if (err || msg->msg_flags & MSG_CTRUNC)
1730                                 return -EIO;
1731                 }
1732         } else if (*control != tlm->control) {
1733                 return 0;
1734         }
1735
1736         return 1;
1737 }
1738
1739 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1740 {
1741         tls_strp_msg_done(&ctx->strp);
1742 }
1743
1744 /* This function traverses the rx_list in tls receive context to copies the
1745  * decrypted records into the buffer provided by caller zero copy is not
1746  * true. Further, the records are removed from the rx_list if it is not a peek
1747  * case and the record has been consumed completely.
1748  */
1749 static int process_rx_list(struct tls_sw_context_rx *ctx,
1750                            struct msghdr *msg,
1751                            u8 *control,
1752                            size_t skip,
1753                            size_t len,
1754                            bool is_peek)
1755 {
1756         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1757         struct tls_msg *tlm;
1758         ssize_t copied = 0;
1759         int err;
1760
1761         while (skip && skb) {
1762                 struct strp_msg *rxm = strp_msg(skb);
1763                 tlm = tls_msg(skb);
1764
1765                 err = tls_record_content_type(msg, tlm, control);
1766                 if (err <= 0)
1767                         goto out;
1768
1769                 if (skip < rxm->full_len)
1770                         break;
1771
1772                 skip = skip - rxm->full_len;
1773                 skb = skb_peek_next(skb, &ctx->rx_list);
1774         }
1775
1776         while (len && skb) {
1777                 struct sk_buff *next_skb;
1778                 struct strp_msg *rxm = strp_msg(skb);
1779                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1780
1781                 tlm = tls_msg(skb);
1782
1783                 err = tls_record_content_type(msg, tlm, control);
1784                 if (err <= 0)
1785                         goto out;
1786
1787                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1788                                             msg, chunk);
1789                 if (err < 0)
1790                         goto out;
1791
1792                 len = len - chunk;
1793                 copied = copied + chunk;
1794
1795                 /* Consume the data from record if it is non-peek case*/
1796                 if (!is_peek) {
1797                         rxm->offset = rxm->offset + chunk;
1798                         rxm->full_len = rxm->full_len - chunk;
1799
1800                         /* Return if there is unconsumed data in the record */
1801                         if (rxm->full_len - skip)
1802                                 break;
1803                 }
1804
1805                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1806                  * So from the 2nd record, 'skip' should be 0.
1807                  */
1808                 skip = 0;
1809
1810                 if (msg)
1811                         msg->msg_flags |= MSG_EOR;
1812
1813                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1814
1815                 if (!is_peek) {
1816                         __skb_unlink(skb, &ctx->rx_list);
1817                         consume_skb(skb);
1818                 }
1819
1820                 skb = next_skb;
1821         }
1822         err = 0;
1823
1824 out:
1825         return copied ? : err;
1826 }
1827
1828 static bool
1829 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1830                        size_t len_left, size_t decrypted, ssize_t done,
1831                        size_t *flushed_at)
1832 {
1833         size_t max_rec;
1834
1835         if (len_left <= decrypted)
1836                 return false;
1837
1838         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1839         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1840                 return false;
1841
1842         *flushed_at = done;
1843         return sk_flush_backlog(sk);
1844 }
1845
1846 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1847                               bool nonblock)
1848 {
1849         long timeo;
1850         int err;
1851
1852         lock_sock(sk);
1853
1854         timeo = sock_rcvtimeo(sk, nonblock);
1855
1856         while (unlikely(ctx->reader_present)) {
1857                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1858
1859                 ctx->reader_contended = 1;
1860
1861                 add_wait_queue(&ctx->wq, &wait);
1862                 sk_wait_event(sk, &timeo,
1863                               !READ_ONCE(ctx->reader_present), &wait);
1864                 remove_wait_queue(&ctx->wq, &wait);
1865
1866                 if (timeo <= 0) {
1867                         err = -EAGAIN;
1868                         goto err_unlock;
1869                 }
1870                 if (signal_pending(current)) {
1871                         err = sock_intr_errno(timeo);
1872                         goto err_unlock;
1873                 }
1874         }
1875
1876         WRITE_ONCE(ctx->reader_present, 1);
1877
1878         return 0;
1879
1880 err_unlock:
1881         release_sock(sk);
1882         return err;
1883 }
1884
1885 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1886 {
1887         if (unlikely(ctx->reader_contended)) {
1888                 if (wq_has_sleeper(&ctx->wq))
1889                         wake_up(&ctx->wq);
1890                 else
1891                         ctx->reader_contended = 0;
1892
1893                 WARN_ON_ONCE(!ctx->reader_present);
1894         }
1895
1896         WRITE_ONCE(ctx->reader_present, 0);
1897         release_sock(sk);
1898 }
1899
1900 int tls_sw_recvmsg(struct sock *sk,
1901                    struct msghdr *msg,
1902                    size_t len,
1903                    int flags,
1904                    int *addr_len)
1905 {
1906         struct tls_context *tls_ctx = tls_get_ctx(sk);
1907         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1908         struct tls_prot_info *prot = &tls_ctx->prot_info;
1909         ssize_t decrypted = 0, async_copy_bytes = 0;
1910         struct sk_psock *psock;
1911         unsigned char control = 0;
1912         size_t flushed_at = 0;
1913         struct strp_msg *rxm;
1914         struct tls_msg *tlm;
1915         ssize_t copied = 0;
1916         bool async = false;
1917         int target, err;
1918         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1919         bool is_peek = flags & MSG_PEEK;
1920         bool released = true;
1921         bool bpf_strp_enabled;
1922         bool zc_capable;
1923
1924         if (unlikely(flags & MSG_ERRQUEUE))
1925                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1926
1927         psock = sk_psock_get(sk);
1928         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1929         if (err < 0)
1930                 return err;
1931         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1932
1933         /* If crypto failed the connection is broken */
1934         err = ctx->async_wait.err;
1935         if (err)
1936                 goto end;
1937
1938         /* Process pending decrypted records. It must be non-zero-copy */
1939         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1940         if (err < 0)
1941                 goto end;
1942
1943         copied = err;
1944         if (len <= copied)
1945                 goto end;
1946
1947         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1948         len = len - copied;
1949
1950         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1951                 ctx->zc_capable;
1952         decrypted = 0;
1953         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1954                 struct tls_decrypt_arg darg;
1955                 int to_decrypt, chunk;
1956
1957                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1958                                       released);
1959                 if (err <= 0) {
1960                         if (psock) {
1961                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1962                                                        flags);
1963                                 if (chunk > 0) {
1964                                         decrypted += chunk;
1965                                         len -= chunk;
1966                                         continue;
1967                                 }
1968                         }
1969                         goto recv_end;
1970                 }
1971
1972                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1973
1974                 rxm = strp_msg(tls_strp_msg(ctx));
1975                 tlm = tls_msg(tls_strp_msg(ctx));
1976
1977                 to_decrypt = rxm->full_len - prot->overhead_size;
1978
1979                 if (zc_capable && to_decrypt <= len &&
1980                     tlm->control == TLS_RECORD_TYPE_DATA)
1981                         darg.zc = true;
1982
1983                 /* Do not use async mode if record is non-data */
1984                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1985                         darg.async = ctx->async_capable;
1986                 else
1987                         darg.async = false;
1988
1989                 err = tls_rx_one_record(sk, msg, &darg);
1990                 if (err < 0) {
1991                         tls_err_abort(sk, -EBADMSG);
1992                         goto recv_end;
1993                 }
1994
1995                 async |= darg.async;
1996
1997                 /* If the type of records being processed is not known yet,
1998                  * set it to record type just dequeued. If it is already known,
1999                  * but does not match the record type just dequeued, go to end.
2000                  * We always get record type here since for tls1.2, record type
2001                  * is known just after record is dequeued from stream parser.
2002                  * For tls1.3, we disable async.
2003                  */
2004                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2005                 if (err <= 0) {
2006                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2007                         tls_rx_rec_done(ctx);
2008 put_on_rx_list_err:
2009                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2010                         goto recv_end;
2011                 }
2012
2013                 /* periodically flush backlog, and feed strparser */
2014                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2015                                                   decrypted + copied,
2016                                                   &flushed_at);
2017
2018                 /* TLS 1.3 may have updated the length by more than overhead */
2019                 rxm = strp_msg(darg.skb);
2020                 chunk = rxm->full_len;
2021                 tls_rx_rec_done(ctx);
2022
2023                 if (!darg.zc) {
2024                         bool partially_consumed = chunk > len;
2025                         struct sk_buff *skb = darg.skb;
2026
2027                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2028
2029                         if (async) {
2030                                 /* TLS 1.2-only, to_decrypt must be text len */
2031                                 chunk = min_t(int, to_decrypt, len);
2032                                 async_copy_bytes += chunk;
2033 put_on_rx_list:
2034                                 decrypted += chunk;
2035                                 len -= chunk;
2036                                 __skb_queue_tail(&ctx->rx_list, skb);
2037                                 continue;
2038                         }
2039
2040                         if (bpf_strp_enabled) {
2041                                 released = true;
2042                                 err = sk_psock_tls_strp_read(psock, skb);
2043                                 if (err != __SK_PASS) {
2044                                         rxm->offset = rxm->offset + rxm->full_len;
2045                                         rxm->full_len = 0;
2046                                         if (err == __SK_DROP)
2047                                                 consume_skb(skb);
2048                                         continue;
2049                                 }
2050                         }
2051
2052                         if (partially_consumed)
2053                                 chunk = len;
2054
2055                         err = skb_copy_datagram_msg(skb, rxm->offset,
2056                                                     msg, chunk);
2057                         if (err < 0)
2058                                 goto put_on_rx_list_err;
2059
2060                         if (is_peek)
2061                                 goto put_on_rx_list;
2062
2063                         if (partially_consumed) {
2064                                 rxm->offset += chunk;
2065                                 rxm->full_len -= chunk;
2066                                 goto put_on_rx_list;
2067                         }
2068
2069                         consume_skb(skb);
2070                 }
2071
2072                 decrypted += chunk;
2073                 len -= chunk;
2074
2075                 /* Return full control message to userspace before trying
2076                  * to parse another message type
2077                  */
2078                 msg->msg_flags |= MSG_EOR;
2079                 if (control != TLS_RECORD_TYPE_DATA)
2080                         break;
2081         }
2082
2083 recv_end:
2084         if (async) {
2085                 int ret, pending;
2086
2087                 /* Wait for all previously submitted records to be decrypted */
2088                 spin_lock_bh(&ctx->decrypt_compl_lock);
2089                 reinit_completion(&ctx->async_wait.completion);
2090                 pending = atomic_read(&ctx->decrypt_pending);
2091                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2092                 ret = 0;
2093                 if (pending)
2094                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2095                 __skb_queue_purge(&ctx->async_hold);
2096
2097                 if (ret) {
2098                         if (err >= 0 || err == -EINPROGRESS)
2099                                 err = ret;
2100                         decrypted = 0;
2101                         goto end;
2102                 }
2103
2104                 /* Drain records from the rx_list & copy if required */
2105                 if (is_peek || is_kvec)
2106                         err = process_rx_list(ctx, msg, &control, copied,
2107                                               decrypted, is_peek);
2108                 else
2109                         err = process_rx_list(ctx, msg, &control, 0,
2110                                               async_copy_bytes, is_peek);
2111                 decrypted = max(err, 0);
2112         }
2113
2114         copied += decrypted;
2115
2116 end:
2117         tls_rx_reader_unlock(sk, ctx);
2118         if (psock)
2119                 sk_psock_put(sk, psock);
2120         return copied ? : err;
2121 }
2122
2123 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2124                            struct pipe_inode_info *pipe,
2125                            size_t len, unsigned int flags)
2126 {
2127         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2128         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2129         struct strp_msg *rxm = NULL;
2130         struct sock *sk = sock->sk;
2131         struct tls_msg *tlm;
2132         struct sk_buff *skb;
2133         ssize_t copied = 0;
2134         int chunk;
2135         int err;
2136
2137         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2138         if (err < 0)
2139                 return err;
2140
2141         if (!skb_queue_empty(&ctx->rx_list)) {
2142                 skb = __skb_dequeue(&ctx->rx_list);
2143         } else {
2144                 struct tls_decrypt_arg darg;
2145
2146                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2147                                       true);
2148                 if (err <= 0)
2149                         goto splice_read_end;
2150
2151                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2152
2153                 err = tls_rx_one_record(sk, NULL, &darg);
2154                 if (err < 0) {
2155                         tls_err_abort(sk, -EBADMSG);
2156                         goto splice_read_end;
2157                 }
2158
2159                 tls_rx_rec_done(ctx);
2160                 skb = darg.skb;
2161         }
2162
2163         rxm = strp_msg(skb);
2164         tlm = tls_msg(skb);
2165
2166         /* splice does not support reading control messages */
2167         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2168                 err = -EINVAL;
2169                 goto splice_requeue;
2170         }
2171
2172         chunk = min_t(unsigned int, rxm->full_len, len);
2173         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2174         if (copied < 0)
2175                 goto splice_requeue;
2176
2177         if (chunk < rxm->full_len) {
2178                 rxm->offset += len;
2179                 rxm->full_len -= len;
2180                 goto splice_requeue;
2181         }
2182
2183         consume_skb(skb);
2184
2185 splice_read_end:
2186         tls_rx_reader_unlock(sk, ctx);
2187         return copied ? : err;
2188
2189 splice_requeue:
2190         __skb_queue_head(&ctx->rx_list, skb);
2191         goto splice_read_end;
2192 }
2193
2194 bool tls_sw_sock_is_readable(struct sock *sk)
2195 {
2196         struct tls_context *tls_ctx = tls_get_ctx(sk);
2197         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2198         bool ingress_empty = true;
2199         struct sk_psock *psock;
2200
2201         rcu_read_lock();
2202         psock = sk_psock(sk);
2203         if (psock)
2204                 ingress_empty = list_empty(&psock->ingress_msg);
2205         rcu_read_unlock();
2206
2207         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2208                 !skb_queue_empty(&ctx->rx_list);
2209 }
2210
2211 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2212 {
2213         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2214         struct tls_prot_info *prot = &tls_ctx->prot_info;
2215         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2216         size_t cipher_overhead;
2217         size_t data_len = 0;
2218         int ret;
2219
2220         /* Verify that we have a full TLS header, or wait for more data */
2221         if (strp->stm.offset + prot->prepend_size > skb->len)
2222                 return 0;
2223
2224         /* Sanity-check size of on-stack buffer. */
2225         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2226                 ret = -EINVAL;
2227                 goto read_failure;
2228         }
2229
2230         /* Linearize header to local buffer */
2231         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2232         if (ret < 0)
2233                 goto read_failure;
2234
2235         strp->mark = header[0];
2236
2237         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2238
2239         cipher_overhead = prot->tag_size;
2240         if (prot->version != TLS_1_3_VERSION &&
2241             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2242                 cipher_overhead += prot->iv_size;
2243
2244         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2245             prot->tail_size) {
2246                 ret = -EMSGSIZE;
2247                 goto read_failure;
2248         }
2249         if (data_len < cipher_overhead) {
2250                 ret = -EBADMSG;
2251                 goto read_failure;
2252         }
2253
2254         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2255         if (header[1] != TLS_1_2_VERSION_MINOR ||
2256             header[2] != TLS_1_2_VERSION_MAJOR) {
2257                 ret = -EINVAL;
2258                 goto read_failure;
2259         }
2260
2261         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2262                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2263         return data_len + TLS_HEADER_SIZE;
2264
2265 read_failure:
2266         tls_err_abort(strp->sk, ret);
2267
2268         return ret;
2269 }
2270
2271 void tls_rx_msg_ready(struct tls_strparser *strp)
2272 {
2273         struct tls_sw_context_rx *ctx;
2274
2275         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2276         ctx->saved_data_ready(strp->sk);
2277 }
2278
2279 static void tls_data_ready(struct sock *sk)
2280 {
2281         struct tls_context *tls_ctx = tls_get_ctx(sk);
2282         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2283         struct sk_psock *psock;
2284
2285         tls_strp_data_ready(&ctx->strp);
2286
2287         psock = sk_psock_get(sk);
2288         if (psock) {
2289                 if (!list_empty(&psock->ingress_msg))
2290                         ctx->saved_data_ready(sk);
2291                 sk_psock_put(sk, psock);
2292         }
2293 }
2294
2295 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2296 {
2297         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2298
2299         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2300         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2301         cancel_delayed_work_sync(&ctx->tx_work.work);
2302 }
2303
2304 void tls_sw_release_resources_tx(struct sock *sk)
2305 {
2306         struct tls_context *tls_ctx = tls_get_ctx(sk);
2307         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2308         struct tls_rec *rec, *tmp;
2309         int pending;
2310
2311         /* Wait for any pending async encryptions to complete */
2312         spin_lock_bh(&ctx->encrypt_compl_lock);
2313         ctx->async_notify = true;
2314         pending = atomic_read(&ctx->encrypt_pending);
2315         spin_unlock_bh(&ctx->encrypt_compl_lock);
2316
2317         if (pending)
2318                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2319
2320         tls_tx_records(sk, -1);
2321
2322         /* Free up un-sent records in tx_list. First, free
2323          * the partially sent record if any at head of tx_list.
2324          */
2325         if (tls_ctx->partially_sent_record) {
2326                 tls_free_partial_record(sk, tls_ctx);
2327                 rec = list_first_entry(&ctx->tx_list,
2328                                        struct tls_rec, list);
2329                 list_del(&rec->list);
2330                 sk_msg_free(sk, &rec->msg_plaintext);
2331                 kfree(rec);
2332         }
2333
2334         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2335                 list_del(&rec->list);
2336                 sk_msg_free(sk, &rec->msg_encrypted);
2337                 sk_msg_free(sk, &rec->msg_plaintext);
2338                 kfree(rec);
2339         }
2340
2341         crypto_free_aead(ctx->aead_send);
2342         tls_free_open_rec(sk);
2343 }
2344
2345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2346 {
2347         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2348
2349         kfree(ctx);
2350 }
2351
2352 void tls_sw_release_resources_rx(struct sock *sk)
2353 {
2354         struct tls_context *tls_ctx = tls_get_ctx(sk);
2355         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2356
2357         kfree(tls_ctx->rx.rec_seq);
2358         kfree(tls_ctx->rx.iv);
2359
2360         if (ctx->aead_recv) {
2361                 __skb_queue_purge(&ctx->rx_list);
2362                 crypto_free_aead(ctx->aead_recv);
2363                 tls_strp_stop(&ctx->strp);
2364                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2365                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2366                  * never swapped.
2367                  */
2368                 if (ctx->saved_data_ready) {
2369                         write_lock_bh(&sk->sk_callback_lock);
2370                         sk->sk_data_ready = ctx->saved_data_ready;
2371                         write_unlock_bh(&sk->sk_callback_lock);
2372                 }
2373         }
2374 }
2375
2376 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2377 {
2378         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2379
2380         tls_strp_done(&ctx->strp);
2381 }
2382
2383 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2384 {
2385         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2386
2387         kfree(ctx);
2388 }
2389
2390 void tls_sw_free_resources_rx(struct sock *sk)
2391 {
2392         struct tls_context *tls_ctx = tls_get_ctx(sk);
2393
2394         tls_sw_release_resources_rx(sk);
2395         tls_sw_free_ctx_rx(tls_ctx);
2396 }
2397
2398 /* The work handler to transmitt the encrypted records in tx_list */
2399 static void tx_work_handler(struct work_struct *work)
2400 {
2401         struct delayed_work *delayed_work = to_delayed_work(work);
2402         struct tx_work *tx_work = container_of(delayed_work,
2403                                                struct tx_work, work);
2404         struct sock *sk = tx_work->sk;
2405         struct tls_context *tls_ctx = tls_get_ctx(sk);
2406         struct tls_sw_context_tx *ctx;
2407
2408         if (unlikely(!tls_ctx))
2409                 return;
2410
2411         ctx = tls_sw_ctx_tx(tls_ctx);
2412         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2413                 return;
2414
2415         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2416                 return;
2417         mutex_lock(&tls_ctx->tx_lock);
2418         lock_sock(sk);
2419         tls_tx_records(sk, -1);
2420         release_sock(sk);
2421         mutex_unlock(&tls_ctx->tx_lock);
2422 }
2423
2424 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2425 {
2426         struct tls_rec *rec;
2427
2428         rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2429         if (!rec)
2430                 return false;
2431
2432         return READ_ONCE(rec->tx_ready);
2433 }
2434
2435 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2436 {
2437         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2438
2439         /* Schedule the transmission if tx list is ready */
2440         if (tls_is_tx_ready(tx_ctx) &&
2441             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2442                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2443 }
2444
2445 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2446 {
2447         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2448
2449         write_lock_bh(&sk->sk_callback_lock);
2450         rx_ctx->saved_data_ready = sk->sk_data_ready;
2451         sk->sk_data_ready = tls_data_ready;
2452         write_unlock_bh(&sk->sk_callback_lock);
2453 }
2454
2455 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2456 {
2457         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2458
2459         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2460                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2461 }
2462
2463 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2464 {
2465         struct tls_context *tls_ctx = tls_get_ctx(sk);
2466         struct tls_prot_info *prot = &tls_ctx->prot_info;
2467         struct tls_crypto_info *crypto_info;
2468         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2469         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2470         struct cipher_context *cctx;
2471         struct crypto_aead **aead;
2472         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2473         struct crypto_tfm *tfm;
2474         char *iv, *rec_seq, *key, *salt, *cipher_name;
2475         size_t keysize;
2476         int rc = 0;
2477
2478         if (!ctx) {
2479                 rc = -EINVAL;
2480                 goto out;
2481         }
2482
2483         if (tx) {
2484                 if (!ctx->priv_ctx_tx) {
2485                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2486                         if (!sw_ctx_tx) {
2487                                 rc = -ENOMEM;
2488                                 goto out;
2489                         }
2490                         ctx->priv_ctx_tx = sw_ctx_tx;
2491                 } else {
2492                         sw_ctx_tx =
2493                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2494                 }
2495         } else {
2496                 if (!ctx->priv_ctx_rx) {
2497                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2498                         if (!sw_ctx_rx) {
2499                                 rc = -ENOMEM;
2500                                 goto out;
2501                         }
2502                         ctx->priv_ctx_rx = sw_ctx_rx;
2503                 } else {
2504                         sw_ctx_rx =
2505                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2506                 }
2507         }
2508
2509         if (tx) {
2510                 crypto_init_wait(&sw_ctx_tx->async_wait);
2511                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2512                 crypto_info = &ctx->crypto_send.info;
2513                 cctx = &ctx->tx;
2514                 aead = &sw_ctx_tx->aead_send;
2515                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2516                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2517                 sw_ctx_tx->tx_work.sk = sk;
2518         } else {
2519                 crypto_init_wait(&sw_ctx_rx->async_wait);
2520                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2521                 init_waitqueue_head(&sw_ctx_rx->wq);
2522                 crypto_info = &ctx->crypto_recv.info;
2523                 cctx = &ctx->rx;
2524                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2525                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2526                 aead = &sw_ctx_rx->aead_recv;
2527         }
2528
2529         switch (crypto_info->cipher_type) {
2530         case TLS_CIPHER_AES_GCM_128: {
2531                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2532
2533                 gcm_128_info = (void *)crypto_info;
2534                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2535                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2536                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2537                 iv = gcm_128_info->iv;
2538                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2539                 rec_seq = gcm_128_info->rec_seq;
2540                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2541                 key = gcm_128_info->key;
2542                 salt = gcm_128_info->salt;
2543                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2544                 cipher_name = "gcm(aes)";
2545                 break;
2546         }
2547         case TLS_CIPHER_AES_GCM_256: {
2548                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2549
2550                 gcm_256_info = (void *)crypto_info;
2551                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2552                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2553                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2554                 iv = gcm_256_info->iv;
2555                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2556                 rec_seq = gcm_256_info->rec_seq;
2557                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2558                 key = gcm_256_info->key;
2559                 salt = gcm_256_info->salt;
2560                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2561                 cipher_name = "gcm(aes)";
2562                 break;
2563         }
2564         case TLS_CIPHER_AES_CCM_128: {
2565                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2566
2567                 ccm_128_info = (void *)crypto_info;
2568                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2569                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2570                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2571                 iv = ccm_128_info->iv;
2572                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2573                 rec_seq = ccm_128_info->rec_seq;
2574                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2575                 key = ccm_128_info->key;
2576                 salt = ccm_128_info->salt;
2577                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2578                 cipher_name = "ccm(aes)";
2579                 break;
2580         }
2581         case TLS_CIPHER_CHACHA20_POLY1305: {
2582                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2583
2584                 chacha20_poly1305_info = (void *)crypto_info;
2585                 nonce_size = 0;
2586                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2587                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2588                 iv = chacha20_poly1305_info->iv;
2589                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2590                 rec_seq = chacha20_poly1305_info->rec_seq;
2591                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2592                 key = chacha20_poly1305_info->key;
2593                 salt = chacha20_poly1305_info->salt;
2594                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2595                 cipher_name = "rfc7539(chacha20,poly1305)";
2596                 break;
2597         }
2598         case TLS_CIPHER_SM4_GCM: {
2599                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2600
2601                 sm4_gcm_info = (void *)crypto_info;
2602                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2603                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2604                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2605                 iv = sm4_gcm_info->iv;
2606                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2607                 rec_seq = sm4_gcm_info->rec_seq;
2608                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2609                 key = sm4_gcm_info->key;
2610                 salt = sm4_gcm_info->salt;
2611                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2612                 cipher_name = "gcm(sm4)";
2613                 break;
2614         }
2615         case TLS_CIPHER_SM4_CCM: {
2616                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2617
2618                 sm4_ccm_info = (void *)crypto_info;
2619                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2620                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2621                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2622                 iv = sm4_ccm_info->iv;
2623                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2624                 rec_seq = sm4_ccm_info->rec_seq;
2625                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2626                 key = sm4_ccm_info->key;
2627                 salt = sm4_ccm_info->salt;
2628                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2629                 cipher_name = "ccm(sm4)";
2630                 break;
2631         }
2632         default:
2633                 rc = -EINVAL;
2634                 goto free_priv;
2635         }
2636
2637         if (crypto_info->version == TLS_1_3_VERSION) {
2638                 nonce_size = 0;
2639                 prot->aad_size = TLS_HEADER_SIZE;
2640                 prot->tail_size = 1;
2641         } else {
2642                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2643                 prot->tail_size = 0;
2644         }
2645
2646         /* Sanity-check the sizes for stack allocations. */
2647         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2648             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2649             prot->aad_size > TLS_MAX_AAD_SIZE) {
2650                 rc = -EINVAL;
2651                 goto free_priv;
2652         }
2653
2654         prot->version = crypto_info->version;
2655         prot->cipher_type = crypto_info->cipher_type;
2656         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2657         prot->tag_size = tag_size;
2658         prot->overhead_size = prot->prepend_size +
2659                               prot->tag_size + prot->tail_size;
2660         prot->iv_size = iv_size;
2661         prot->salt_size = salt_size;
2662         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2663         if (!cctx->iv) {
2664                 rc = -ENOMEM;
2665                 goto free_priv;
2666         }
2667         /* Note: 128 & 256 bit salt are the same size */
2668         prot->rec_seq_size = rec_seq_size;
2669         memcpy(cctx->iv, salt, salt_size);
2670         memcpy(cctx->iv + salt_size, iv, iv_size);
2671         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2672         if (!cctx->rec_seq) {
2673                 rc = -ENOMEM;
2674                 goto free_iv;
2675         }
2676
2677         if (!*aead) {
2678                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2679                 if (IS_ERR(*aead)) {
2680                         rc = PTR_ERR(*aead);
2681                         *aead = NULL;
2682                         goto free_rec_seq;
2683                 }
2684         }
2685
2686         ctx->push_pending_record = tls_sw_push_pending_record;
2687
2688         rc = crypto_aead_setkey(*aead, key, keysize);
2689
2690         if (rc)
2691                 goto free_aead;
2692
2693         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2694         if (rc)
2695                 goto free_aead;
2696
2697         if (sw_ctx_rx) {
2698                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2699
2700                 tls_update_rx_zc_capable(ctx);
2701                 sw_ctx_rx->async_capable =
2702                         crypto_info->version != TLS_1_3_VERSION &&
2703                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2704
2705                 tls_strp_init(&sw_ctx_rx->strp, sk);
2706         }
2707
2708         goto out;
2709
2710 free_aead:
2711         crypto_free_aead(*aead);
2712         *aead = NULL;
2713 free_rec_seq:
2714         kfree(cctx->rec_seq);
2715         cctx->rec_seq = NULL;
2716 free_iv:
2717         kfree(cctx->iv);
2718         cctx->iv = NULL;
2719 free_priv:
2720         if (tx) {
2721                 kfree(ctx->priv_ctx_tx);
2722                 ctx->priv_ctx_tx = NULL;
2723         } else {
2724                 kfree(ctx->priv_ctx_rx);
2725                 ctx->priv_ctx_rx = NULL;
2726         }
2727 out:
2728         return rc;
2729 }