Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 struct tls_decrypt_arg {
48         bool zc;
49         bool async;
50         u8 tail;
51 };
52
53 noinline void tls_err_abort(struct sock *sk, int err)
54 {
55         WARN_ON_ONCE(err >= 0);
56         /* sk->sk_err should contain a positive error code. */
57         sk->sk_err = -err;
58         sk_error_report(sk);
59 }
60
61 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
62                      unsigned int recursion_level)
63 {
64         int start = skb_headlen(skb);
65         int i, chunk = start - offset;
66         struct sk_buff *frag_iter;
67         int elt = 0;
68
69         if (unlikely(recursion_level >= 24))
70                 return -EMSGSIZE;
71
72         if (chunk > 0) {
73                 if (chunk > len)
74                         chunk = len;
75                 elt++;
76                 len -= chunk;
77                 if (len == 0)
78                         return elt;
79                 offset += chunk;
80         }
81
82         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
83                 int end;
84
85                 WARN_ON(start > offset + len);
86
87                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
88                 chunk = end - offset;
89                 if (chunk > 0) {
90                         if (chunk > len)
91                                 chunk = len;
92                         elt++;
93                         len -= chunk;
94                         if (len == 0)
95                                 return elt;
96                         offset += chunk;
97                 }
98                 start = end;
99         }
100
101         if (unlikely(skb_has_frag_list(skb))) {
102                 skb_walk_frags(skb, frag_iter) {
103                         int end, ret;
104
105                         WARN_ON(start > offset + len);
106
107                         end = start + frag_iter->len;
108                         chunk = end - offset;
109                         if (chunk > 0) {
110                                 if (chunk > len)
111                                         chunk = len;
112                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
113                                                 recursion_level + 1);
114                                 if (unlikely(ret < 0))
115                                         return ret;
116                                 elt += ret;
117                                 len -= chunk;
118                                 if (len == 0)
119                                         return elt;
120                                 offset += chunk;
121                         }
122                         start = end;
123                 }
124         }
125         BUG_ON(len);
126         return elt;
127 }
128
129 /* Return the number of scatterlist elements required to completely map the
130  * skb, or -EMSGSIZE if the recursion depth is exceeded.
131  */
132 static int skb_nsg(struct sk_buff *skb, int offset, int len)
133 {
134         return __skb_nsg(skb, offset, len, 0);
135 }
136
137 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
138                               struct tls_decrypt_arg *darg)
139 {
140         struct strp_msg *rxm = strp_msg(skb);
141         struct tls_msg *tlm = tls_msg(skb);
142         int sub = 0;
143
144         /* Determine zero-padding length */
145         if (prot->version == TLS_1_3_VERSION) {
146                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
147                 char content_type = darg->zc ? darg->tail : 0;
148                 int err;
149
150                 while (content_type == 0) {
151                         if (offset < prot->prepend_size)
152                                 return -EBADMSG;
153                         err = skb_copy_bits(skb, rxm->offset + offset,
154                                             &content_type, 1);
155                         if (err)
156                                 return err;
157                         if (content_type)
158                                 break;
159                         sub++;
160                         offset--;
161                 }
162                 tlm->control = content_type;
163         }
164         return sub;
165 }
166
167 static void tls_decrypt_done(struct crypto_async_request *req, int err)
168 {
169         struct aead_request *aead_req = (struct aead_request *)req;
170         struct scatterlist *sgout = aead_req->dst;
171         struct scatterlist *sgin = aead_req->src;
172         struct tls_sw_context_rx *ctx;
173         struct tls_context *tls_ctx;
174         struct tls_prot_info *prot;
175         struct scatterlist *sg;
176         struct sk_buff *skb;
177         unsigned int pages;
178
179         skb = (struct sk_buff *)req->data;
180         tls_ctx = tls_get_ctx(skb->sk);
181         ctx = tls_sw_ctx_rx(tls_ctx);
182         prot = &tls_ctx->prot_info;
183
184         /* Propagate if there was an err */
185         if (err) {
186                 if (err == -EBADMSG)
187                         TLS_INC_STATS(sock_net(skb->sk),
188                                       LINUX_MIB_TLSDECRYPTERROR);
189                 ctx->async_wait.err = err;
190                 tls_err_abort(skb->sk, err);
191         } else {
192                 struct strp_msg *rxm = strp_msg(skb);
193
194                 /* No TLS 1.3 support with async crypto */
195                 WARN_ON(prot->tail_size);
196
197                 rxm->offset += prot->prepend_size;
198                 rxm->full_len -= prot->overhead_size;
199         }
200
201         /* After using skb->sk to propagate sk through crypto async callback
202          * we need to NULL it again.
203          */
204         skb->sk = NULL;
205
206
207         /* Free the destination pages if skb was not decrypted inplace */
208         if (sgout != sgin) {
209                 /* Skip the first S/G entry as it points to AAD */
210                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211                         if (!sg)
212                                 break;
213                         put_page(sg_page(sg));
214                 }
215         }
216
217         kfree(aead_req);
218
219         spin_lock_bh(&ctx->decrypt_compl_lock);
220         if (!atomic_dec_return(&ctx->decrypt_pending))
221                 complete(&ctx->async_wait.completion);
222         spin_unlock_bh(&ctx->decrypt_compl_lock);
223 }
224
225 static int tls_do_decryption(struct sock *sk,
226                              struct sk_buff *skb,
227                              struct scatterlist *sgin,
228                              struct scatterlist *sgout,
229                              char *iv_recv,
230                              size_t data_len,
231                              struct aead_request *aead_req,
232                              struct tls_decrypt_arg *darg)
233 {
234         struct tls_context *tls_ctx = tls_get_ctx(sk);
235         struct tls_prot_info *prot = &tls_ctx->prot_info;
236         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
237         int ret;
238
239         aead_request_set_tfm(aead_req, ctx->aead_recv);
240         aead_request_set_ad(aead_req, prot->aad_size);
241         aead_request_set_crypt(aead_req, sgin, sgout,
242                                data_len + prot->tag_size,
243                                (u8 *)iv_recv);
244
245         if (darg->async) {
246                 /* Using skb->sk to push sk through to crypto async callback
247                  * handler. This allows propagating errors up to the socket
248                  * if needed. It _must_ be cleared in the async handler
249                  * before consume_skb is called. We _know_ skb->sk is NULL
250                  * because it is a clone from strparser.
251                  */
252                 skb->sk = sk;
253                 aead_request_set_callback(aead_req,
254                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
255                                           tls_decrypt_done, skb);
256                 atomic_inc(&ctx->decrypt_pending);
257         } else {
258                 aead_request_set_callback(aead_req,
259                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
260                                           crypto_req_done, &ctx->async_wait);
261         }
262
263         ret = crypto_aead_decrypt(aead_req);
264         if (ret == -EINPROGRESS) {
265                 if (darg->async)
266                         return 0;
267
268                 ret = crypto_wait_req(ret, &ctx->async_wait);
269         }
270         darg->async = false;
271
272         return ret;
273 }
274
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277         struct tls_context *tls_ctx = tls_get_ctx(sk);
278         struct tls_prot_info *prot = &tls_ctx->prot_info;
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281
282         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283         if (target_size > 0)
284                 target_size += prot->overhead_size;
285         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290         struct tls_context *tls_ctx = tls_get_ctx(sk);
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294
295         return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300         struct tls_context *tls_ctx = tls_get_ctx(sk);
301         struct tls_prot_info *prot = &tls_ctx->prot_info;
302         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303         struct tls_rec *rec = ctx->open_rec;
304         struct sk_msg *msg_pl = &rec->msg_plaintext;
305         struct sk_msg *msg_en = &rec->msg_encrypted;
306         int skip, len;
307
308         /* We add page references worth len bytes from encrypted sg
309          * at the end of plaintext sg. It is guaranteed that msg_en
310          * has enough required room (ensured by caller).
311          */
312         len = required - msg_pl->sg.size;
313
314         /* Skip initial bytes in msg_en's data to be able to use
315          * same offset of both plain and encrypted data.
316          */
317         skip = prot->prepend_size + msg_pl->sg.size;
318
319         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324         struct tls_context *tls_ctx = tls_get_ctx(sk);
325         struct tls_prot_info *prot = &tls_ctx->prot_info;
326         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327         struct sk_msg *msg_pl, *msg_en;
328         struct tls_rec *rec;
329         int mem_size;
330
331         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333         rec = kzalloc(mem_size, sk->sk_allocation);
334         if (!rec)
335                 return NULL;
336
337         msg_pl = &rec->msg_plaintext;
338         msg_en = &rec->msg_encrypted;
339
340         sk_msg_init(msg_pl);
341         sk_msg_init(msg_en);
342
343         sg_init_table(rec->sg_aead_in, 2);
344         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345         sg_unmark_end(&rec->sg_aead_in[1]);
346
347         sg_init_table(rec->sg_aead_out, 2);
348         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_out[1]);
350
351         return rec;
352 }
353
354 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
355 {
356         sk_msg_free(sk, &rec->msg_encrypted);
357         sk_msg_free(sk, &rec->msg_plaintext);
358         kfree(rec);
359 }
360
361 static void tls_free_open_rec(struct sock *sk)
362 {
363         struct tls_context *tls_ctx = tls_get_ctx(sk);
364         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365         struct tls_rec *rec = ctx->open_rec;
366
367         if (rec) {
368                 tls_free_rec(sk, rec);
369                 ctx->open_rec = NULL;
370         }
371 }
372
373 int tls_tx_records(struct sock *sk, int flags)
374 {
375         struct tls_context *tls_ctx = tls_get_ctx(sk);
376         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
377         struct tls_rec *rec, *tmp;
378         struct sk_msg *msg_en;
379         int tx_flags, rc = 0;
380
381         if (tls_is_partially_sent_record(tls_ctx)) {
382                 rec = list_first_entry(&ctx->tx_list,
383                                        struct tls_rec, list);
384
385                 if (flags == -1)
386                         tx_flags = rec->tx_flags;
387                 else
388                         tx_flags = flags;
389
390                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
391                 if (rc)
392                         goto tx_err;
393
394                 /* Full record has been transmitted.
395                  * Remove the head of tx_list
396                  */
397                 list_del(&rec->list);
398                 sk_msg_free(sk, &rec->msg_plaintext);
399                 kfree(rec);
400         }
401
402         /* Tx all ready records */
403         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
404                 if (READ_ONCE(rec->tx_ready)) {
405                         if (flags == -1)
406                                 tx_flags = rec->tx_flags;
407                         else
408                                 tx_flags = flags;
409
410                         msg_en = &rec->msg_encrypted;
411                         rc = tls_push_sg(sk, tls_ctx,
412                                          &msg_en->sg.data[msg_en->sg.curr],
413                                          0, tx_flags);
414                         if (rc)
415                                 goto tx_err;
416
417                         list_del(&rec->list);
418                         sk_msg_free(sk, &rec->msg_plaintext);
419                         kfree(rec);
420                 } else {
421                         break;
422                 }
423         }
424
425 tx_err:
426         if (rc < 0 && rc != -EAGAIN)
427                 tls_err_abort(sk, -EBADMSG);
428
429         return rc;
430 }
431
432 static void tls_encrypt_done(struct crypto_async_request *req, int err)
433 {
434         struct aead_request *aead_req = (struct aead_request *)req;
435         struct sock *sk = req->data;
436         struct tls_context *tls_ctx = tls_get_ctx(sk);
437         struct tls_prot_info *prot = &tls_ctx->prot_info;
438         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
439         struct scatterlist *sge;
440         struct sk_msg *msg_en;
441         struct tls_rec *rec;
442         bool ready = false;
443         int pending;
444
445         rec = container_of(aead_req, struct tls_rec, aead_req);
446         msg_en = &rec->msg_encrypted;
447
448         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
449         sge->offset -= prot->prepend_size;
450         sge->length += prot->prepend_size;
451
452         /* Check if error is previously set on socket */
453         if (err || sk->sk_err) {
454                 rec = NULL;
455
456                 /* If err is already set on socket, return the same code */
457                 if (sk->sk_err) {
458                         ctx->async_wait.err = -sk->sk_err;
459                 } else {
460                         ctx->async_wait.err = err;
461                         tls_err_abort(sk, err);
462                 }
463         }
464
465         if (rec) {
466                 struct tls_rec *first_rec;
467
468                 /* Mark the record as ready for transmission */
469                 smp_store_mb(rec->tx_ready, true);
470
471                 /* If received record is at head of tx_list, schedule tx */
472                 first_rec = list_first_entry(&ctx->tx_list,
473                                              struct tls_rec, list);
474                 if (rec == first_rec)
475                         ready = true;
476         }
477
478         spin_lock_bh(&ctx->encrypt_compl_lock);
479         pending = atomic_dec_return(&ctx->encrypt_pending);
480
481         if (!pending && ctx->async_notify)
482                 complete(&ctx->async_wait.completion);
483         spin_unlock_bh(&ctx->encrypt_compl_lock);
484
485         if (!ready)
486                 return;
487
488         /* Schedule the transmission */
489         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
490                 schedule_delayed_work(&ctx->tx_work.work, 1);
491 }
492
493 static int tls_do_encryption(struct sock *sk,
494                              struct tls_context *tls_ctx,
495                              struct tls_sw_context_tx *ctx,
496                              struct aead_request *aead_req,
497                              size_t data_len, u32 start)
498 {
499         struct tls_prot_info *prot = &tls_ctx->prot_info;
500         struct tls_rec *rec = ctx->open_rec;
501         struct sk_msg *msg_en = &rec->msg_encrypted;
502         struct scatterlist *sge = sk_msg_elem(msg_en, start);
503         int rc, iv_offset = 0;
504
505         /* For CCM based ciphers, first byte of IV is a constant */
506         switch (prot->cipher_type) {
507         case TLS_CIPHER_AES_CCM_128:
508                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
509                 iv_offset = 1;
510                 break;
511         case TLS_CIPHER_SM4_CCM:
512                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
513                 iv_offset = 1;
514                 break;
515         }
516
517         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
518                prot->iv_size + prot->salt_size);
519
520         xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
521
522         sge->offset += prot->prepend_size;
523         sge->length -= prot->prepend_size;
524
525         msg_en->sg.curr = start;
526
527         aead_request_set_tfm(aead_req, ctx->aead_send);
528         aead_request_set_ad(aead_req, prot->aad_size);
529         aead_request_set_crypt(aead_req, rec->sg_aead_in,
530                                rec->sg_aead_out,
531                                data_len, rec->iv_data);
532
533         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
534                                   tls_encrypt_done, sk);
535
536         /* Add the record in tx_list */
537         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
538         atomic_inc(&ctx->encrypt_pending);
539
540         rc = crypto_aead_encrypt(aead_req);
541         if (!rc || rc != -EINPROGRESS) {
542                 atomic_dec(&ctx->encrypt_pending);
543                 sge->offset -= prot->prepend_size;
544                 sge->length += prot->prepend_size;
545         }
546
547         if (!rc) {
548                 WRITE_ONCE(rec->tx_ready, true);
549         } else if (rc != -EINPROGRESS) {
550                 list_del(&rec->list);
551                 return rc;
552         }
553
554         /* Unhook the record from context if encryption is not failure */
555         ctx->open_rec = NULL;
556         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
557         return rc;
558 }
559
560 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
561                                  struct tls_rec **to, struct sk_msg *msg_opl,
562                                  struct sk_msg *msg_oen, u32 split_point,
563                                  u32 tx_overhead_size, u32 *orig_end)
564 {
565         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
566         struct scatterlist *sge, *osge, *nsge;
567         u32 orig_size = msg_opl->sg.size;
568         struct scatterlist tmp = { };
569         struct sk_msg *msg_npl;
570         struct tls_rec *new;
571         int ret;
572
573         new = tls_get_rec(sk);
574         if (!new)
575                 return -ENOMEM;
576         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
577                            tx_overhead_size, 0);
578         if (ret < 0) {
579                 tls_free_rec(sk, new);
580                 return ret;
581         }
582
583         *orig_end = msg_opl->sg.end;
584         i = msg_opl->sg.start;
585         sge = sk_msg_elem(msg_opl, i);
586         while (apply && sge->length) {
587                 if (sge->length > apply) {
588                         u32 len = sge->length - apply;
589
590                         get_page(sg_page(sge));
591                         sg_set_page(&tmp, sg_page(sge), len,
592                                     sge->offset + apply);
593                         sge->length = apply;
594                         bytes += apply;
595                         apply = 0;
596                 } else {
597                         apply -= sge->length;
598                         bytes += sge->length;
599                 }
600
601                 sk_msg_iter_var_next(i);
602                 if (i == msg_opl->sg.end)
603                         break;
604                 sge = sk_msg_elem(msg_opl, i);
605         }
606
607         msg_opl->sg.end = i;
608         msg_opl->sg.curr = i;
609         msg_opl->sg.copybreak = 0;
610         msg_opl->apply_bytes = 0;
611         msg_opl->sg.size = bytes;
612
613         msg_npl = &new->msg_plaintext;
614         msg_npl->apply_bytes = apply;
615         msg_npl->sg.size = orig_size - bytes;
616
617         j = msg_npl->sg.start;
618         nsge = sk_msg_elem(msg_npl, j);
619         if (tmp.length) {
620                 memcpy(nsge, &tmp, sizeof(*nsge));
621                 sk_msg_iter_var_next(j);
622                 nsge = sk_msg_elem(msg_npl, j);
623         }
624
625         osge = sk_msg_elem(msg_opl, i);
626         while (osge->length) {
627                 memcpy(nsge, osge, sizeof(*nsge));
628                 sg_unmark_end(nsge);
629                 sk_msg_iter_var_next(i);
630                 sk_msg_iter_var_next(j);
631                 if (i == *orig_end)
632                         break;
633                 osge = sk_msg_elem(msg_opl, i);
634                 nsge = sk_msg_elem(msg_npl, j);
635         }
636
637         msg_npl->sg.end = j;
638         msg_npl->sg.curr = j;
639         msg_npl->sg.copybreak = 0;
640
641         *to = new;
642         return 0;
643 }
644
645 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
646                                   struct tls_rec *from, u32 orig_end)
647 {
648         struct sk_msg *msg_npl = &from->msg_plaintext;
649         struct sk_msg *msg_opl = &to->msg_plaintext;
650         struct scatterlist *osge, *nsge;
651         u32 i, j;
652
653         i = msg_opl->sg.end;
654         sk_msg_iter_var_prev(i);
655         j = msg_npl->sg.start;
656
657         osge = sk_msg_elem(msg_opl, i);
658         nsge = sk_msg_elem(msg_npl, j);
659
660         if (sg_page(osge) == sg_page(nsge) &&
661             osge->offset + osge->length == nsge->offset) {
662                 osge->length += nsge->length;
663                 put_page(sg_page(nsge));
664         }
665
666         msg_opl->sg.end = orig_end;
667         msg_opl->sg.curr = orig_end;
668         msg_opl->sg.copybreak = 0;
669         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
670         msg_opl->sg.size += msg_npl->sg.size;
671
672         sk_msg_free(sk, &to->msg_encrypted);
673         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
674
675         kfree(from);
676 }
677
678 static int tls_push_record(struct sock *sk, int flags,
679                            unsigned char record_type)
680 {
681         struct tls_context *tls_ctx = tls_get_ctx(sk);
682         struct tls_prot_info *prot = &tls_ctx->prot_info;
683         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
684         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
685         u32 i, split_point, orig_end;
686         struct sk_msg *msg_pl, *msg_en;
687         struct aead_request *req;
688         bool split;
689         int rc;
690
691         if (!rec)
692                 return 0;
693
694         msg_pl = &rec->msg_plaintext;
695         msg_en = &rec->msg_encrypted;
696
697         split_point = msg_pl->apply_bytes;
698         split = split_point && split_point < msg_pl->sg.size;
699         if (unlikely((!split &&
700                       msg_pl->sg.size +
701                       prot->overhead_size > msg_en->sg.size) ||
702                      (split &&
703                       split_point +
704                       prot->overhead_size > msg_en->sg.size))) {
705                 split = true;
706                 split_point = msg_en->sg.size;
707         }
708         if (split) {
709                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
710                                            split_point, prot->overhead_size,
711                                            &orig_end);
712                 if (rc < 0)
713                         return rc;
714                 /* This can happen if above tls_split_open_record allocates
715                  * a single large encryption buffer instead of two smaller
716                  * ones. In this case adjust pointers and continue without
717                  * split.
718                  */
719                 if (!msg_pl->sg.size) {
720                         tls_merge_open_record(sk, rec, tmp, orig_end);
721                         msg_pl = &rec->msg_plaintext;
722                         msg_en = &rec->msg_encrypted;
723                         split = false;
724                 }
725                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
726                             prot->overhead_size);
727         }
728
729         rec->tx_flags = flags;
730         req = &rec->aead_req;
731
732         i = msg_pl->sg.end;
733         sk_msg_iter_var_prev(i);
734
735         rec->content_type = record_type;
736         if (prot->version == TLS_1_3_VERSION) {
737                 /* Add content type to end of message.  No padding added */
738                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
739                 sg_mark_end(&rec->sg_content_type);
740                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
741                          &rec->sg_content_type);
742         } else {
743                 sg_mark_end(sk_msg_elem(msg_pl, i));
744         }
745
746         if (msg_pl->sg.end < msg_pl->sg.start) {
747                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
748                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
749                          msg_pl->sg.data);
750         }
751
752         i = msg_pl->sg.start;
753         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
754
755         i = msg_en->sg.end;
756         sk_msg_iter_var_prev(i);
757         sg_mark_end(sk_msg_elem(msg_en, i));
758
759         i = msg_en->sg.start;
760         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
761
762         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
763                      tls_ctx->tx.rec_seq, record_type, prot);
764
765         tls_fill_prepend(tls_ctx,
766                          page_address(sg_page(&msg_en->sg.data[i])) +
767                          msg_en->sg.data[i].offset,
768                          msg_pl->sg.size + prot->tail_size,
769                          record_type);
770
771         tls_ctx->pending_open_record_frags = false;
772
773         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
774                                msg_pl->sg.size + prot->tail_size, i);
775         if (rc < 0) {
776                 if (rc != -EINPROGRESS) {
777                         tls_err_abort(sk, -EBADMSG);
778                         if (split) {
779                                 tls_ctx->pending_open_record_frags = true;
780                                 tls_merge_open_record(sk, rec, tmp, orig_end);
781                         }
782                 }
783                 ctx->async_capable = 1;
784                 return rc;
785         } else if (split) {
786                 msg_pl = &tmp->msg_plaintext;
787                 msg_en = &tmp->msg_encrypted;
788                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
789                 tls_ctx->pending_open_record_frags = true;
790                 ctx->open_rec = tmp;
791         }
792
793         return tls_tx_records(sk, flags);
794 }
795
796 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
797                                bool full_record, u8 record_type,
798                                ssize_t *copied, int flags)
799 {
800         struct tls_context *tls_ctx = tls_get_ctx(sk);
801         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
802         struct sk_msg msg_redir = { };
803         struct sk_psock *psock;
804         struct sock *sk_redir;
805         struct tls_rec *rec;
806         bool enospc, policy;
807         int err = 0, send;
808         u32 delta = 0;
809
810         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
811         psock = sk_psock_get(sk);
812         if (!psock || !policy) {
813                 err = tls_push_record(sk, flags, record_type);
814                 if (err && sk->sk_err == EBADMSG) {
815                         *copied -= sk_msg_free(sk, msg);
816                         tls_free_open_rec(sk);
817                         err = -sk->sk_err;
818                 }
819                 if (psock)
820                         sk_psock_put(sk, psock);
821                 return err;
822         }
823 more_data:
824         enospc = sk_msg_full(msg);
825         if (psock->eval == __SK_NONE) {
826                 delta = msg->sg.size;
827                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
828                 delta -= msg->sg.size;
829         }
830         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
831             !enospc && !full_record) {
832                 err = -ENOSPC;
833                 goto out_err;
834         }
835         msg->cork_bytes = 0;
836         send = msg->sg.size;
837         if (msg->apply_bytes && msg->apply_bytes < send)
838                 send = msg->apply_bytes;
839
840         switch (psock->eval) {
841         case __SK_PASS:
842                 err = tls_push_record(sk, flags, record_type);
843                 if (err && sk->sk_err == EBADMSG) {
844                         *copied -= sk_msg_free(sk, msg);
845                         tls_free_open_rec(sk);
846                         err = -sk->sk_err;
847                         goto out_err;
848                 }
849                 break;
850         case __SK_REDIRECT:
851                 sk_redir = psock->sk_redir;
852                 memcpy(&msg_redir, msg, sizeof(*msg));
853                 if (msg->apply_bytes < send)
854                         msg->apply_bytes = 0;
855                 else
856                         msg->apply_bytes -= send;
857                 sk_msg_return_zero(sk, msg, send);
858                 msg->sg.size -= send;
859                 release_sock(sk);
860                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
861                 lock_sock(sk);
862                 if (err < 0) {
863                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
864                         msg->sg.size = 0;
865                 }
866                 if (msg->sg.size == 0)
867                         tls_free_open_rec(sk);
868                 break;
869         case __SK_DROP:
870         default:
871                 sk_msg_free_partial(sk, msg, send);
872                 if (msg->apply_bytes < send)
873                         msg->apply_bytes = 0;
874                 else
875                         msg->apply_bytes -= send;
876                 if (msg->sg.size == 0)
877                         tls_free_open_rec(sk);
878                 *copied -= (send + delta);
879                 err = -EACCES;
880         }
881
882         if (likely(!err)) {
883                 bool reset_eval = !ctx->open_rec;
884
885                 rec = ctx->open_rec;
886                 if (rec) {
887                         msg = &rec->msg_plaintext;
888                         if (!msg->apply_bytes)
889                                 reset_eval = true;
890                 }
891                 if (reset_eval) {
892                         psock->eval = __SK_NONE;
893                         if (psock->sk_redir) {
894                                 sock_put(psock->sk_redir);
895                                 psock->sk_redir = NULL;
896                         }
897                 }
898                 if (rec)
899                         goto more_data;
900         }
901  out_err:
902         sk_psock_put(sk, psock);
903         return err;
904 }
905
906 static int tls_sw_push_pending_record(struct sock *sk, int flags)
907 {
908         struct tls_context *tls_ctx = tls_get_ctx(sk);
909         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
910         struct tls_rec *rec = ctx->open_rec;
911         struct sk_msg *msg_pl;
912         size_t copied;
913
914         if (!rec)
915                 return 0;
916
917         msg_pl = &rec->msg_plaintext;
918         copied = msg_pl->sg.size;
919         if (!copied)
920                 return 0;
921
922         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
923                                    &copied, flags);
924 }
925
926 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
927 {
928         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
929         struct tls_context *tls_ctx = tls_get_ctx(sk);
930         struct tls_prot_info *prot = &tls_ctx->prot_info;
931         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
932         bool async_capable = ctx->async_capable;
933         unsigned char record_type = TLS_RECORD_TYPE_DATA;
934         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
935         bool eor = !(msg->msg_flags & MSG_MORE);
936         size_t try_to_copy;
937         ssize_t copied = 0;
938         struct sk_msg *msg_pl, *msg_en;
939         struct tls_rec *rec;
940         int required_size;
941         int num_async = 0;
942         bool full_record;
943         int record_room;
944         int num_zc = 0;
945         int orig_size;
946         int ret = 0;
947         int pending;
948
949         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
950                                MSG_CMSG_COMPAT))
951                 return -EOPNOTSUPP;
952
953         mutex_lock(&tls_ctx->tx_lock);
954         lock_sock(sk);
955
956         if (unlikely(msg->msg_controllen)) {
957                 ret = tls_proccess_cmsg(sk, msg, &record_type);
958                 if (ret) {
959                         if (ret == -EINPROGRESS)
960                                 num_async++;
961                         else if (ret != -EAGAIN)
962                                 goto send_end;
963                 }
964         }
965
966         while (msg_data_left(msg)) {
967                 if (sk->sk_err) {
968                         ret = -sk->sk_err;
969                         goto send_end;
970                 }
971
972                 if (ctx->open_rec)
973                         rec = ctx->open_rec;
974                 else
975                         rec = ctx->open_rec = tls_get_rec(sk);
976                 if (!rec) {
977                         ret = -ENOMEM;
978                         goto send_end;
979                 }
980
981                 msg_pl = &rec->msg_plaintext;
982                 msg_en = &rec->msg_encrypted;
983
984                 orig_size = msg_pl->sg.size;
985                 full_record = false;
986                 try_to_copy = msg_data_left(msg);
987                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
988                 if (try_to_copy >= record_room) {
989                         try_to_copy = record_room;
990                         full_record = true;
991                 }
992
993                 required_size = msg_pl->sg.size + try_to_copy +
994                                 prot->overhead_size;
995
996                 if (!sk_stream_memory_free(sk))
997                         goto wait_for_sndbuf;
998
999 alloc_encrypted:
1000                 ret = tls_alloc_encrypted_msg(sk, required_size);
1001                 if (ret) {
1002                         if (ret != -ENOSPC)
1003                                 goto wait_for_memory;
1004
1005                         /* Adjust try_to_copy according to the amount that was
1006                          * actually allocated. The difference is due
1007                          * to max sg elements limit
1008                          */
1009                         try_to_copy -= required_size - msg_en->sg.size;
1010                         full_record = true;
1011                 }
1012
1013                 if (!is_kvec && (full_record || eor) && !async_capable) {
1014                         u32 first = msg_pl->sg.end;
1015
1016                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1017                                                         msg_pl, try_to_copy);
1018                         if (ret)
1019                                 goto fallback_to_reg_send;
1020
1021                         num_zc++;
1022                         copied += try_to_copy;
1023
1024                         sk_msg_sg_copy_set(msg_pl, first);
1025                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1026                                                   record_type, &copied,
1027                                                   msg->msg_flags);
1028                         if (ret) {
1029                                 if (ret == -EINPROGRESS)
1030                                         num_async++;
1031                                 else if (ret == -ENOMEM)
1032                                         goto wait_for_memory;
1033                                 else if (ctx->open_rec && ret == -ENOSPC)
1034                                         goto rollback_iter;
1035                                 else if (ret != -EAGAIN)
1036                                         goto send_end;
1037                         }
1038                         continue;
1039 rollback_iter:
1040                         copied -= try_to_copy;
1041                         sk_msg_sg_copy_clear(msg_pl, first);
1042                         iov_iter_revert(&msg->msg_iter,
1043                                         msg_pl->sg.size - orig_size);
1044 fallback_to_reg_send:
1045                         sk_msg_trim(sk, msg_pl, orig_size);
1046                 }
1047
1048                 required_size = msg_pl->sg.size + try_to_copy;
1049
1050                 ret = tls_clone_plaintext_msg(sk, required_size);
1051                 if (ret) {
1052                         if (ret != -ENOSPC)
1053                                 goto send_end;
1054
1055                         /* Adjust try_to_copy according to the amount that was
1056                          * actually allocated. The difference is due
1057                          * to max sg elements limit
1058                          */
1059                         try_to_copy -= required_size - msg_pl->sg.size;
1060                         full_record = true;
1061                         sk_msg_trim(sk, msg_en,
1062                                     msg_pl->sg.size + prot->overhead_size);
1063                 }
1064
1065                 if (try_to_copy) {
1066                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1067                                                        msg_pl, try_to_copy);
1068                         if (ret < 0)
1069                                 goto trim_sgl;
1070                 }
1071
1072                 /* Open records defined only if successfully copied, otherwise
1073                  * we would trim the sg but not reset the open record frags.
1074                  */
1075                 tls_ctx->pending_open_record_frags = true;
1076                 copied += try_to_copy;
1077                 if (full_record || eor) {
1078                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1079                                                   record_type, &copied,
1080                                                   msg->msg_flags);
1081                         if (ret) {
1082                                 if (ret == -EINPROGRESS)
1083                                         num_async++;
1084                                 else if (ret == -ENOMEM)
1085                                         goto wait_for_memory;
1086                                 else if (ret != -EAGAIN) {
1087                                         if (ret == -ENOSPC)
1088                                                 ret = 0;
1089                                         goto send_end;
1090                                 }
1091                         }
1092                 }
1093
1094                 continue;
1095
1096 wait_for_sndbuf:
1097                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1098 wait_for_memory:
1099                 ret = sk_stream_wait_memory(sk, &timeo);
1100                 if (ret) {
1101 trim_sgl:
1102                         if (ctx->open_rec)
1103                                 tls_trim_both_msgs(sk, orig_size);
1104                         goto send_end;
1105                 }
1106
1107                 if (ctx->open_rec && msg_en->sg.size < required_size)
1108                         goto alloc_encrypted;
1109         }
1110
1111         if (!num_async) {
1112                 goto send_end;
1113         } else if (num_zc) {
1114                 /* Wait for pending encryptions to get completed */
1115                 spin_lock_bh(&ctx->encrypt_compl_lock);
1116                 ctx->async_notify = true;
1117
1118                 pending = atomic_read(&ctx->encrypt_pending);
1119                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1120                 if (pending)
1121                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1122                 else
1123                         reinit_completion(&ctx->async_wait.completion);
1124
1125                 /* There can be no concurrent accesses, since we have no
1126                  * pending encrypt operations
1127                  */
1128                 WRITE_ONCE(ctx->async_notify, false);
1129
1130                 if (ctx->async_wait.err) {
1131                         ret = ctx->async_wait.err;
1132                         copied = 0;
1133                 }
1134         }
1135
1136         /* Transmit if any encryptions have completed */
1137         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1138                 cancel_delayed_work(&ctx->tx_work.work);
1139                 tls_tx_records(sk, msg->msg_flags);
1140         }
1141
1142 send_end:
1143         ret = sk_stream_error(sk, msg->msg_flags, ret);
1144
1145         release_sock(sk);
1146         mutex_unlock(&tls_ctx->tx_lock);
1147         return copied > 0 ? copied : ret;
1148 }
1149
1150 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1151                               int offset, size_t size, int flags)
1152 {
1153         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1154         struct tls_context *tls_ctx = tls_get_ctx(sk);
1155         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1156         struct tls_prot_info *prot = &tls_ctx->prot_info;
1157         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1158         struct sk_msg *msg_pl;
1159         struct tls_rec *rec;
1160         int num_async = 0;
1161         ssize_t copied = 0;
1162         bool full_record;
1163         int record_room;
1164         int ret = 0;
1165         bool eor;
1166
1167         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1168         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1169
1170         /* Call the sk_stream functions to manage the sndbuf mem. */
1171         while (size > 0) {
1172                 size_t copy, required_size;
1173
1174                 if (sk->sk_err) {
1175                         ret = -sk->sk_err;
1176                         goto sendpage_end;
1177                 }
1178
1179                 if (ctx->open_rec)
1180                         rec = ctx->open_rec;
1181                 else
1182                         rec = ctx->open_rec = tls_get_rec(sk);
1183                 if (!rec) {
1184                         ret = -ENOMEM;
1185                         goto sendpage_end;
1186                 }
1187
1188                 msg_pl = &rec->msg_plaintext;
1189
1190                 full_record = false;
1191                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1192                 copy = size;
1193                 if (copy >= record_room) {
1194                         copy = record_room;
1195                         full_record = true;
1196                 }
1197
1198                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1199
1200                 if (!sk_stream_memory_free(sk))
1201                         goto wait_for_sndbuf;
1202 alloc_payload:
1203                 ret = tls_alloc_encrypted_msg(sk, required_size);
1204                 if (ret) {
1205                         if (ret != -ENOSPC)
1206                                 goto wait_for_memory;
1207
1208                         /* Adjust copy according to the amount that was
1209                          * actually allocated. The difference is due
1210                          * to max sg elements limit
1211                          */
1212                         copy -= required_size - msg_pl->sg.size;
1213                         full_record = true;
1214                 }
1215
1216                 sk_msg_page_add(msg_pl, page, copy, offset);
1217                 sk_mem_charge(sk, copy);
1218
1219                 offset += copy;
1220                 size -= copy;
1221                 copied += copy;
1222
1223                 tls_ctx->pending_open_record_frags = true;
1224                 if (full_record || eor || sk_msg_full(msg_pl)) {
1225                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1226                                                   record_type, &copied, flags);
1227                         if (ret) {
1228                                 if (ret == -EINPROGRESS)
1229                                         num_async++;
1230                                 else if (ret == -ENOMEM)
1231                                         goto wait_for_memory;
1232                                 else if (ret != -EAGAIN) {
1233                                         if (ret == -ENOSPC)
1234                                                 ret = 0;
1235                                         goto sendpage_end;
1236                                 }
1237                         }
1238                 }
1239                 continue;
1240 wait_for_sndbuf:
1241                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1242 wait_for_memory:
1243                 ret = sk_stream_wait_memory(sk, &timeo);
1244                 if (ret) {
1245                         if (ctx->open_rec)
1246                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1247                         goto sendpage_end;
1248                 }
1249
1250                 if (ctx->open_rec)
1251                         goto alloc_payload;
1252         }
1253
1254         if (num_async) {
1255                 /* Transmit if any encryptions have completed */
1256                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1257                         cancel_delayed_work(&ctx->tx_work.work);
1258                         tls_tx_records(sk, flags);
1259                 }
1260         }
1261 sendpage_end:
1262         ret = sk_stream_error(sk, flags, ret);
1263         return copied > 0 ? copied : ret;
1264 }
1265
1266 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1267                            int offset, size_t size, int flags)
1268 {
1269         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1270                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1271                       MSG_NO_SHARED_FRAGS))
1272                 return -EOPNOTSUPP;
1273
1274         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1275 }
1276
1277 int tls_sw_sendpage(struct sock *sk, struct page *page,
1278                     int offset, size_t size, int flags)
1279 {
1280         struct tls_context *tls_ctx = tls_get_ctx(sk);
1281         int ret;
1282
1283         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1284                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1285                 return -EOPNOTSUPP;
1286
1287         mutex_lock(&tls_ctx->tx_lock);
1288         lock_sock(sk);
1289         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1290         release_sock(sk);
1291         mutex_unlock(&tls_ctx->tx_lock);
1292         return ret;
1293 }
1294
1295 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1296                                      bool nonblock, long timeo, int *err)
1297 {
1298         struct tls_context *tls_ctx = tls_get_ctx(sk);
1299         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1300         struct sk_buff *skb;
1301         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1302
1303         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1304                 if (sk->sk_err) {
1305                         *err = sock_error(sk);
1306                         return NULL;
1307                 }
1308
1309                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1310                         __strp_unpause(&ctx->strp);
1311                         if (ctx->recv_pkt)
1312                                 return ctx->recv_pkt;
1313                 }
1314
1315                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1316                         return NULL;
1317
1318                 if (sock_flag(sk, SOCK_DONE))
1319                         return NULL;
1320
1321                 if (nonblock || !timeo) {
1322                         *err = -EAGAIN;
1323                         return NULL;
1324                 }
1325
1326                 add_wait_queue(sk_sleep(sk), &wait);
1327                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328                 sk_wait_event(sk, &timeo,
1329                               ctx->recv_pkt != skb ||
1330                               !sk_psock_queue_empty(psock),
1331                               &wait);
1332                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1333                 remove_wait_queue(sk_sleep(sk), &wait);
1334
1335                 /* Handle signals */
1336                 if (signal_pending(current)) {
1337                         *err = sock_intr_errno(timeo);
1338                         return NULL;
1339                 }
1340         }
1341
1342         return skb;
1343 }
1344
1345 static int tls_setup_from_iter(struct iov_iter *from,
1346                                int length, int *pages_used,
1347                                struct scatterlist *to,
1348                                int to_max_pages)
1349 {
1350         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1351         struct page *pages[MAX_SKB_FRAGS];
1352         unsigned int size = 0;
1353         ssize_t copied, use;
1354         size_t offset;
1355
1356         while (length > 0) {
1357                 i = 0;
1358                 maxpages = to_max_pages - num_elem;
1359                 if (maxpages == 0) {
1360                         rc = -EFAULT;
1361                         goto out;
1362                 }
1363                 copied = iov_iter_get_pages(from, pages,
1364                                             length,
1365                                             maxpages, &offset);
1366                 if (copied <= 0) {
1367                         rc = -EFAULT;
1368                         goto out;
1369                 }
1370
1371                 iov_iter_advance(from, copied);
1372
1373                 length -= copied;
1374                 size += copied;
1375                 while (copied) {
1376                         use = min_t(int, copied, PAGE_SIZE - offset);
1377
1378                         sg_set_page(&to[num_elem],
1379                                     pages[i], use, offset);
1380                         sg_unmark_end(&to[num_elem]);
1381                         /* We do not uncharge memory from this API */
1382
1383                         offset = 0;
1384                         copied -= use;
1385
1386                         i++;
1387                         num_elem++;
1388                 }
1389         }
1390         /* Mark the end in the last sg entry if newly added */
1391         if (num_elem > *pages_used)
1392                 sg_mark_end(&to[num_elem - 1]);
1393 out:
1394         if (rc)
1395                 iov_iter_revert(from, size);
1396         *pages_used = num_elem;
1397
1398         return rc;
1399 }
1400
1401 /* This function decrypts the input skb into either out_iov or in out_sg
1402  * or in skb buffers itself. The input parameter 'zc' indicates if
1403  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405  * NULL, then the decryption happens inside skb buffers itself, i.e.
1406  * zero-copy gets disabled and 'zc' is updated.
1407  */
1408
1409 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410                             struct iov_iter *out_iov,
1411                             struct scatterlist *out_sg,
1412                             struct tls_decrypt_arg *darg)
1413 {
1414         struct tls_context *tls_ctx = tls_get_ctx(sk);
1415         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416         struct tls_prot_info *prot = &tls_ctx->prot_info;
1417         struct strp_msg *rxm = strp_msg(skb);
1418         struct tls_msg *tlm = tls_msg(skb);
1419         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1420         u8 *aad, *iv, *tail, *mem = NULL;
1421         struct aead_request *aead_req;
1422         struct sk_buff *unused;
1423         struct scatterlist *sgin = NULL;
1424         struct scatterlist *sgout = NULL;
1425         const int data_len = rxm->full_len - prot->overhead_size;
1426         int tail_pages = !!prot->tail_size;
1427         int iv_offset = 0;
1428
1429         if (darg->zc && (out_iov || out_sg)) {
1430                 if (out_iov)
1431                         n_sgout = 1 + tail_pages +
1432                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1433                 else
1434                         n_sgout = sg_nents(out_sg);
1435                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1436                                  rxm->full_len - prot->prepend_size);
1437         } else {
1438                 n_sgout = 0;
1439                 darg->zc = false;
1440                 n_sgin = skb_cow_data(skb, 0, &unused);
1441         }
1442
1443         if (n_sgin < 1)
1444                 return -EBADMSG;
1445
1446         /* Increment to accommodate AAD */
1447         n_sgin = n_sgin + 1;
1448
1449         nsg = n_sgin + n_sgout;
1450
1451         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1452         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1453         mem_size = mem_size + prot->aad_size;
1454         mem_size = mem_size + MAX_IV_SIZE;
1455         mem_size = mem_size + prot->tail_size;
1456
1457         /* Allocate a single block of memory which contains
1458          * aead_req || sgin[] || sgout[] || aad || iv || tail.
1459          * This order achieves correct alignment for aead_req, sgin, sgout.
1460          */
1461         mem = kmalloc(mem_size, sk->sk_allocation);
1462         if (!mem)
1463                 return -ENOMEM;
1464
1465         /* Segment the allocated memory */
1466         aead_req = (struct aead_request *)mem;
1467         sgin = (struct scatterlist *)(mem + aead_size);
1468         sgout = sgin + n_sgin;
1469         aad = (u8 *)(sgout + n_sgout);
1470         iv = aad + prot->aad_size;
1471         tail = iv + MAX_IV_SIZE;
1472
1473         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1474         switch (prot->cipher_type) {
1475         case TLS_CIPHER_AES_CCM_128:
1476                 iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1477                 iv_offset = 1;
1478                 break;
1479         case TLS_CIPHER_SM4_CCM:
1480                 iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1481                 iv_offset = 1;
1482                 break;
1483         }
1484
1485         /* Prepare IV */
1486         if (prot->version == TLS_1_3_VERSION ||
1487             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1488                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1489                        prot->iv_size + prot->salt_size);
1490         } else {
1491                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1492                                     iv + iv_offset + prot->salt_size,
1493                                     prot->iv_size);
1494                 if (err < 0) {
1495                         kfree(mem);
1496                         return err;
1497                 }
1498                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1499         }
1500         xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1501
1502         /* Prepare AAD */
1503         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1504                      prot->tail_size,
1505                      tls_ctx->rx.rec_seq, tlm->control, prot);
1506
1507         /* Prepare sgin */
1508         sg_init_table(sgin, n_sgin);
1509         sg_set_buf(&sgin[0], aad, prot->aad_size);
1510         err = skb_to_sgvec(skb, &sgin[1],
1511                            rxm->offset + prot->prepend_size,
1512                            rxm->full_len - prot->prepend_size);
1513         if (err < 0) {
1514                 kfree(mem);
1515                 return err;
1516         }
1517
1518         if (n_sgout) {
1519                 if (out_iov) {
1520                         sg_init_table(sgout, n_sgout);
1521                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1522
1523                         err = tls_setup_from_iter(out_iov, data_len,
1524                                                   &pages, &sgout[1],
1525                                                   (n_sgout - 1 - tail_pages));
1526                         if (err < 0)
1527                                 goto fallback_to_reg_recv;
1528
1529                         if (prot->tail_size) {
1530                                 sg_unmark_end(&sgout[pages]);
1531                                 sg_set_buf(&sgout[pages + 1], tail,
1532                                            prot->tail_size);
1533                                 sg_mark_end(&sgout[pages + 1]);
1534                         }
1535                 } else if (out_sg) {
1536                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1537                 } else {
1538                         goto fallback_to_reg_recv;
1539                 }
1540         } else {
1541 fallback_to_reg_recv:
1542                 sgout = sgin;
1543                 pages = 0;
1544                 darg->zc = false;
1545         }
1546
1547         /* Prepare and submit AEAD request */
1548         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1549                                 data_len + prot->tail_size, aead_req, darg);
1550         if (darg->async)
1551                 return 0;
1552
1553         if (prot->tail_size)
1554                 darg->tail = *tail;
1555
1556         /* Release the pages in case iov was mapped to pages */
1557         for (; pages > 0; pages--)
1558                 put_page(sg_page(&sgout[pages]));
1559
1560         kfree(mem);
1561         return err;
1562 }
1563
1564 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1565                               struct iov_iter *dest,
1566                               struct tls_decrypt_arg *darg)
1567 {
1568         struct tls_context *tls_ctx = tls_get_ctx(sk);
1569         struct tls_prot_info *prot = &tls_ctx->prot_info;
1570         struct strp_msg *rxm = strp_msg(skb);
1571         struct tls_msg *tlm = tls_msg(skb);
1572         int pad, err;
1573
1574         if (tlm->decrypted) {
1575                 darg->zc = false;
1576                 darg->async = false;
1577                 return 0;
1578         }
1579
1580         if (tls_ctx->rx_conf == TLS_HW) {
1581                 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1582                 if (err < 0)
1583                         return err;
1584                 if (err > 0) {
1585                         tlm->decrypted = 1;
1586                         darg->zc = false;
1587                         darg->async = false;
1588                         goto decrypt_done;
1589                 }
1590         }
1591
1592         err = decrypt_internal(sk, skb, dest, NULL, darg);
1593         if (err < 0) {
1594                 if (err == -EBADMSG)
1595                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1596                 return err;
1597         }
1598         if (darg->async)
1599                 goto decrypt_next;
1600         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1601         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1602                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1603                 darg->zc = false;
1604                 TLS_INC_STATS(sock_net(sk), LINUX_MIN_TLSDECRYPTRETRY);
1605                 return decrypt_skb_update(sk, skb, dest, darg);
1606         }
1607
1608 decrypt_done:
1609         pad = tls_padding_length(prot, skb, darg);
1610         if (pad < 0)
1611                 return pad;
1612
1613         rxm->full_len -= pad;
1614         rxm->offset += prot->prepend_size;
1615         rxm->full_len -= prot->overhead_size;
1616         tlm->decrypted = 1;
1617 decrypt_next:
1618         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1619
1620         return 0;
1621 }
1622
1623 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1624                 struct scatterlist *sgout)
1625 {
1626         struct tls_decrypt_arg darg = { .zc = true, };
1627
1628         return decrypt_internal(sk, skb, NULL, sgout, &darg);
1629 }
1630
1631 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1632                                    u8 *control)
1633 {
1634         int err;
1635
1636         if (!*control) {
1637                 *control = tlm->control;
1638                 if (!*control)
1639                         return -EBADMSG;
1640
1641                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1642                                sizeof(*control), control);
1643                 if (*control != TLS_RECORD_TYPE_DATA) {
1644                         if (err || msg->msg_flags & MSG_CTRUNC)
1645                                 return -EIO;
1646                 }
1647         } else if (*control != tlm->control) {
1648                 return 0;
1649         }
1650
1651         return 1;
1652 }
1653
1654 /* This function traverses the rx_list in tls receive context to copies the
1655  * decrypted records into the buffer provided by caller zero copy is not
1656  * true. Further, the records are removed from the rx_list if it is not a peek
1657  * case and the record has been consumed completely.
1658  */
1659 static int process_rx_list(struct tls_sw_context_rx *ctx,
1660                            struct msghdr *msg,
1661                            u8 *control,
1662                            size_t skip,
1663                            size_t len,
1664                            bool zc,
1665                            bool is_peek)
1666 {
1667         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1668         struct tls_msg *tlm;
1669         ssize_t copied = 0;
1670         int err;
1671
1672         while (skip && skb) {
1673                 struct strp_msg *rxm = strp_msg(skb);
1674                 tlm = tls_msg(skb);
1675
1676                 err = tls_record_content_type(msg, tlm, control);
1677                 if (err <= 0)
1678                         goto out;
1679
1680                 if (skip < rxm->full_len)
1681                         break;
1682
1683                 skip = skip - rxm->full_len;
1684                 skb = skb_peek_next(skb, &ctx->rx_list);
1685         }
1686
1687         while (len && skb) {
1688                 struct sk_buff *next_skb;
1689                 struct strp_msg *rxm = strp_msg(skb);
1690                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1691
1692                 tlm = tls_msg(skb);
1693
1694                 err = tls_record_content_type(msg, tlm, control);
1695                 if (err <= 0)
1696                         goto out;
1697
1698                 if (!zc || (rxm->full_len - skip) > len) {
1699                         err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1700                                                     msg, chunk);
1701                         if (err < 0)
1702                                 goto out;
1703                 }
1704
1705                 len = len - chunk;
1706                 copied = copied + chunk;
1707
1708                 /* Consume the data from record if it is non-peek case*/
1709                 if (!is_peek) {
1710                         rxm->offset = rxm->offset + chunk;
1711                         rxm->full_len = rxm->full_len - chunk;
1712
1713                         /* Return if there is unconsumed data in the record */
1714                         if (rxm->full_len - skip)
1715                                 break;
1716                 }
1717
1718                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1719                  * So from the 2nd record, 'skip' should be 0.
1720                  */
1721                 skip = 0;
1722
1723                 if (msg)
1724                         msg->msg_flags |= MSG_EOR;
1725
1726                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1727
1728                 if (!is_peek) {
1729                         __skb_unlink(skb, &ctx->rx_list);
1730                         consume_skb(skb);
1731                 }
1732
1733                 skb = next_skb;
1734         }
1735         err = 0;
1736
1737 out:
1738         return copied ? : err;
1739 }
1740
1741 static void
1742 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1743                        size_t len_left, size_t decrypted, ssize_t done,
1744                        size_t *flushed_at)
1745 {
1746         size_t max_rec;
1747
1748         if (len_left <= decrypted)
1749                 return;
1750
1751         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1752         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1753                 return;
1754
1755         *flushed_at = done;
1756         sk_flush_backlog(sk);
1757 }
1758
1759 int tls_sw_recvmsg(struct sock *sk,
1760                    struct msghdr *msg,
1761                    size_t len,
1762                    int flags,
1763                    int *addr_len)
1764 {
1765         struct tls_context *tls_ctx = tls_get_ctx(sk);
1766         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1767         struct tls_prot_info *prot = &tls_ctx->prot_info;
1768         struct sk_psock *psock;
1769         unsigned char control = 0;
1770         ssize_t decrypted = 0;
1771         size_t flushed_at = 0;
1772         struct strp_msg *rxm;
1773         struct tls_msg *tlm;
1774         struct sk_buff *skb;
1775         ssize_t copied = 0;
1776         bool async = false;
1777         int target, err = 0;
1778         long timeo;
1779         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1780         bool is_peek = flags & MSG_PEEK;
1781         bool bpf_strp_enabled;
1782         bool zc_capable;
1783
1784         if (unlikely(flags & MSG_ERRQUEUE))
1785                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1786
1787         psock = sk_psock_get(sk);
1788         lock_sock(sk);
1789         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1790
1791         /* If crypto failed the connection is broken */
1792         err = ctx->async_wait.err;
1793         if (err)
1794                 goto end;
1795
1796         /* Process pending decrypted records. It must be non-zero-copy */
1797         err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
1798         if (err < 0)
1799                 goto end;
1800
1801         copied = err;
1802         if (len <= copied)
1803                 goto end;
1804
1805         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1806         len = len - copied;
1807         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1808
1809         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1810                 ctx->zc_capable;
1811         decrypted = 0;
1812         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1813                 struct tls_decrypt_arg darg = {};
1814                 int to_decrypt, chunk;
1815
1816                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1817                 if (!skb) {
1818                         if (psock) {
1819                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1820                                                        flags);
1821                                 if (chunk > 0)
1822                                         goto leave_on_list;
1823                         }
1824                         goto recv_end;
1825                 }
1826
1827                 rxm = strp_msg(skb);
1828                 tlm = tls_msg(skb);
1829
1830                 to_decrypt = rxm->full_len - prot->overhead_size;
1831
1832                 if (zc_capable && to_decrypt <= len &&
1833                     tlm->control == TLS_RECORD_TYPE_DATA)
1834                         darg.zc = true;
1835
1836                 /* Do not use async mode if record is non-data */
1837                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1838                         darg.async = ctx->async_capable;
1839                 else
1840                         darg.async = false;
1841
1842                 err = decrypt_skb_update(sk, skb, &msg->msg_iter, &darg);
1843                 if (err < 0) {
1844                         tls_err_abort(sk, -EBADMSG);
1845                         goto recv_end;
1846                 }
1847
1848                 async |= darg.async;
1849
1850                 /* If the type of records being processed is not known yet,
1851                  * set it to record type just dequeued. If it is already known,
1852                  * but does not match the record type just dequeued, go to end.
1853                  * We always get record type here since for tls1.2, record type
1854                  * is known just after record is dequeued from stream parser.
1855                  * For tls1.3, we disable async.
1856                  */
1857                 err = tls_record_content_type(msg, tlm, &control);
1858                 if (err <= 0)
1859                         goto recv_end;
1860
1861                 /* periodically flush backlog, and feed strparser */
1862                 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1863                                        decrypted + copied, &flushed_at);
1864
1865                 ctx->recv_pkt = NULL;
1866                 __strp_unpause(&ctx->strp);
1867                 __skb_queue_tail(&ctx->rx_list, skb);
1868
1869                 if (async) {
1870                         /* TLS 1.2-only, to_decrypt must be text length */
1871                         chunk = min_t(int, to_decrypt, len);
1872 leave_on_list:
1873                         decrypted += chunk;
1874                         len -= chunk;
1875                         continue;
1876                 }
1877                 /* TLS 1.3 may have updated the length by more than overhead */
1878                 chunk = rxm->full_len;
1879
1880                 if (!darg.zc) {
1881                         bool partially_consumed = chunk > len;
1882
1883                         if (bpf_strp_enabled) {
1884                                 /* BPF may try to queue the skb */
1885                                 __skb_unlink(skb, &ctx->rx_list);
1886                                 err = sk_psock_tls_strp_read(psock, skb);
1887                                 if (err != __SK_PASS) {
1888                                         rxm->offset = rxm->offset + rxm->full_len;
1889                                         rxm->full_len = 0;
1890                                         if (err == __SK_DROP)
1891                                                 consume_skb(skb);
1892                                         continue;
1893                                 }
1894                                 __skb_queue_tail(&ctx->rx_list, skb);
1895                         }
1896
1897                         if (partially_consumed)
1898                                 chunk = len;
1899
1900                         err = skb_copy_datagram_msg(skb, rxm->offset,
1901                                                     msg, chunk);
1902                         if (err < 0)
1903                                 goto recv_end;
1904
1905                         if (is_peek)
1906                                 goto leave_on_list;
1907
1908                         if (partially_consumed) {
1909                                 rxm->offset += chunk;
1910                                 rxm->full_len -= chunk;
1911                                 goto leave_on_list;
1912                         }
1913                 }
1914
1915                 decrypted += chunk;
1916                 len -= chunk;
1917
1918                 __skb_unlink(skb, &ctx->rx_list);
1919                 consume_skb(skb);
1920
1921                 /* Return full control message to userspace before trying
1922                  * to parse another message type
1923                  */
1924                 msg->msg_flags |= MSG_EOR;
1925                 if (control != TLS_RECORD_TYPE_DATA)
1926                         break;
1927         }
1928
1929 recv_end:
1930         if (async) {
1931                 int ret, pending;
1932
1933                 /* Wait for all previously submitted records to be decrypted */
1934                 spin_lock_bh(&ctx->decrypt_compl_lock);
1935                 reinit_completion(&ctx->async_wait.completion);
1936                 pending = atomic_read(&ctx->decrypt_pending);
1937                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1938                 if (pending) {
1939                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1940                         if (ret) {
1941                                 if (err >= 0 || err == -EINPROGRESS)
1942                                         err = ret;
1943                                 decrypted = 0;
1944                                 goto end;
1945                         }
1946                 }
1947
1948                 /* Drain records from the rx_list & copy if required */
1949                 if (is_peek || is_kvec)
1950                         err = process_rx_list(ctx, msg, &control, copied,
1951                                               decrypted, false, is_peek);
1952                 else
1953                         err = process_rx_list(ctx, msg, &control, 0,
1954                                               decrypted, true, is_peek);
1955                 decrypted = max(err, 0);
1956         }
1957
1958         copied += decrypted;
1959
1960 end:
1961         release_sock(sk);
1962         if (psock)
1963                 sk_psock_put(sk, psock);
1964         return copied ? : err;
1965 }
1966
1967 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1968                            struct pipe_inode_info *pipe,
1969                            size_t len, unsigned int flags)
1970 {
1971         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1972         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1973         struct strp_msg *rxm = NULL;
1974         struct sock *sk = sock->sk;
1975         struct tls_msg *tlm;
1976         struct sk_buff *skb;
1977         ssize_t copied = 0;
1978         bool from_queue;
1979         int err = 0;
1980         long timeo;
1981         int chunk;
1982
1983         lock_sock(sk);
1984
1985         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1986
1987         from_queue = !skb_queue_empty(&ctx->rx_list);
1988         if (from_queue) {
1989                 skb = __skb_dequeue(&ctx->rx_list);
1990         } else {
1991                 struct tls_decrypt_arg darg = {};
1992
1993                 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
1994                                     &err);
1995                 if (!skb)
1996                         goto splice_read_end;
1997
1998                 err = decrypt_skb_update(sk, skb, NULL, &darg);
1999                 if (err < 0) {
2000                         tls_err_abort(sk, -EBADMSG);
2001                         goto splice_read_end;
2002                 }
2003         }
2004
2005         rxm = strp_msg(skb);
2006         tlm = tls_msg(skb);
2007
2008         /* splice does not support reading control messages */
2009         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2010                 err = -EINVAL;
2011                 goto splice_read_end;
2012         }
2013
2014         chunk = min_t(unsigned int, rxm->full_len, len);
2015         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2016         if (copied < 0)
2017                 goto splice_read_end;
2018
2019         if (!from_queue) {
2020                 ctx->recv_pkt = NULL;
2021                 __strp_unpause(&ctx->strp);
2022         }
2023         if (chunk < rxm->full_len) {
2024                 __skb_queue_head(&ctx->rx_list, skb);
2025                 rxm->offset += len;
2026                 rxm->full_len -= len;
2027         } else {
2028                 consume_skb(skb);
2029         }
2030
2031 splice_read_end:
2032         release_sock(sk);
2033         return copied ? : err;
2034 }
2035
2036 bool tls_sw_sock_is_readable(struct sock *sk)
2037 {
2038         struct tls_context *tls_ctx = tls_get_ctx(sk);
2039         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2040         bool ingress_empty = true;
2041         struct sk_psock *psock;
2042
2043         rcu_read_lock();
2044         psock = sk_psock(sk);
2045         if (psock)
2046                 ingress_empty = list_empty(&psock->ingress_msg);
2047         rcu_read_unlock();
2048
2049         return !ingress_empty || ctx->recv_pkt ||
2050                 !skb_queue_empty(&ctx->rx_list);
2051 }
2052
2053 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2054 {
2055         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2056         struct tls_prot_info *prot = &tls_ctx->prot_info;
2057         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2058         struct strp_msg *rxm = strp_msg(skb);
2059         struct tls_msg *tlm = tls_msg(skb);
2060         size_t cipher_overhead;
2061         size_t data_len = 0;
2062         int ret;
2063
2064         /* Verify that we have a full TLS header, or wait for more data */
2065         if (rxm->offset + prot->prepend_size > skb->len)
2066                 return 0;
2067
2068         /* Sanity-check size of on-stack buffer. */
2069         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2070                 ret = -EINVAL;
2071                 goto read_failure;
2072         }
2073
2074         /* Linearize header to local buffer */
2075         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2076         if (ret < 0)
2077                 goto read_failure;
2078
2079         tlm->decrypted = 0;
2080         tlm->control = header[0];
2081
2082         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2083
2084         cipher_overhead = prot->tag_size;
2085         if (prot->version != TLS_1_3_VERSION &&
2086             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2087                 cipher_overhead += prot->iv_size;
2088
2089         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2090             prot->tail_size) {
2091                 ret = -EMSGSIZE;
2092                 goto read_failure;
2093         }
2094         if (data_len < cipher_overhead) {
2095                 ret = -EBADMSG;
2096                 goto read_failure;
2097         }
2098
2099         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2100         if (header[1] != TLS_1_2_VERSION_MINOR ||
2101             header[2] != TLS_1_2_VERSION_MAJOR) {
2102                 ret = -EINVAL;
2103                 goto read_failure;
2104         }
2105
2106         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2107                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2108         return data_len + TLS_HEADER_SIZE;
2109
2110 read_failure:
2111         tls_err_abort(strp->sk, ret);
2112
2113         return ret;
2114 }
2115
2116 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2117 {
2118         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2119         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120
2121         ctx->recv_pkt = skb;
2122         strp_pause(strp);
2123
2124         ctx->saved_data_ready(strp->sk);
2125 }
2126
2127 static void tls_data_ready(struct sock *sk)
2128 {
2129         struct tls_context *tls_ctx = tls_get_ctx(sk);
2130         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131         struct sk_psock *psock;
2132
2133         strp_data_ready(&ctx->strp);
2134
2135         psock = sk_psock_get(sk);
2136         if (psock) {
2137                 if (!list_empty(&psock->ingress_msg))
2138                         ctx->saved_data_ready(sk);
2139                 sk_psock_put(sk, psock);
2140         }
2141 }
2142
2143 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2144 {
2145         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2146
2147         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2148         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2149         cancel_delayed_work_sync(&ctx->tx_work.work);
2150 }
2151
2152 void tls_sw_release_resources_tx(struct sock *sk)
2153 {
2154         struct tls_context *tls_ctx = tls_get_ctx(sk);
2155         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2156         struct tls_rec *rec, *tmp;
2157         int pending;
2158
2159         /* Wait for any pending async encryptions to complete */
2160         spin_lock_bh(&ctx->encrypt_compl_lock);
2161         ctx->async_notify = true;
2162         pending = atomic_read(&ctx->encrypt_pending);
2163         spin_unlock_bh(&ctx->encrypt_compl_lock);
2164
2165         if (pending)
2166                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2167
2168         tls_tx_records(sk, -1);
2169
2170         /* Free up un-sent records in tx_list. First, free
2171          * the partially sent record if any at head of tx_list.
2172          */
2173         if (tls_ctx->partially_sent_record) {
2174                 tls_free_partial_record(sk, tls_ctx);
2175                 rec = list_first_entry(&ctx->tx_list,
2176                                        struct tls_rec, list);
2177                 list_del(&rec->list);
2178                 sk_msg_free(sk, &rec->msg_plaintext);
2179                 kfree(rec);
2180         }
2181
2182         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2183                 list_del(&rec->list);
2184                 sk_msg_free(sk, &rec->msg_encrypted);
2185                 sk_msg_free(sk, &rec->msg_plaintext);
2186                 kfree(rec);
2187         }
2188
2189         crypto_free_aead(ctx->aead_send);
2190         tls_free_open_rec(sk);
2191 }
2192
2193 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2194 {
2195         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2196
2197         kfree(ctx);
2198 }
2199
2200 void tls_sw_release_resources_rx(struct sock *sk)
2201 {
2202         struct tls_context *tls_ctx = tls_get_ctx(sk);
2203         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2204
2205         kfree(tls_ctx->rx.rec_seq);
2206         kfree(tls_ctx->rx.iv);
2207
2208         if (ctx->aead_recv) {
2209                 kfree_skb(ctx->recv_pkt);
2210                 ctx->recv_pkt = NULL;
2211                 __skb_queue_purge(&ctx->rx_list);
2212                 crypto_free_aead(ctx->aead_recv);
2213                 strp_stop(&ctx->strp);
2214                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2215                  * we still want to strp_stop(), but sk->sk_data_ready was
2216                  * never swapped.
2217                  */
2218                 if (ctx->saved_data_ready) {
2219                         write_lock_bh(&sk->sk_callback_lock);
2220                         sk->sk_data_ready = ctx->saved_data_ready;
2221                         write_unlock_bh(&sk->sk_callback_lock);
2222                 }
2223         }
2224 }
2225
2226 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2227 {
2228         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2229
2230         strp_done(&ctx->strp);
2231 }
2232
2233 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2234 {
2235         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2236
2237         kfree(ctx);
2238 }
2239
2240 void tls_sw_free_resources_rx(struct sock *sk)
2241 {
2242         struct tls_context *tls_ctx = tls_get_ctx(sk);
2243
2244         tls_sw_release_resources_rx(sk);
2245         tls_sw_free_ctx_rx(tls_ctx);
2246 }
2247
2248 /* The work handler to transmitt the encrypted records in tx_list */
2249 static void tx_work_handler(struct work_struct *work)
2250 {
2251         struct delayed_work *delayed_work = to_delayed_work(work);
2252         struct tx_work *tx_work = container_of(delayed_work,
2253                                                struct tx_work, work);
2254         struct sock *sk = tx_work->sk;
2255         struct tls_context *tls_ctx = tls_get_ctx(sk);
2256         struct tls_sw_context_tx *ctx;
2257
2258         if (unlikely(!tls_ctx))
2259                 return;
2260
2261         ctx = tls_sw_ctx_tx(tls_ctx);
2262         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2263                 return;
2264
2265         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2266                 return;
2267         mutex_lock(&tls_ctx->tx_lock);
2268         lock_sock(sk);
2269         tls_tx_records(sk, -1);
2270         release_sock(sk);
2271         mutex_unlock(&tls_ctx->tx_lock);
2272 }
2273
2274 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2275 {
2276         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2277
2278         /* Schedule the transmission if tx list is ready */
2279         if (is_tx_ready(tx_ctx) &&
2280             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2281                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2282 }
2283
2284 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2285 {
2286         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2287
2288         write_lock_bh(&sk->sk_callback_lock);
2289         rx_ctx->saved_data_ready = sk->sk_data_ready;
2290         sk->sk_data_ready = tls_data_ready;
2291         write_unlock_bh(&sk->sk_callback_lock);
2292
2293         strp_check_rcv(&rx_ctx->strp);
2294 }
2295
2296 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2297 {
2298         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2299
2300         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2301                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2302 }
2303
2304 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2305 {
2306         struct tls_context *tls_ctx = tls_get_ctx(sk);
2307         struct tls_prot_info *prot = &tls_ctx->prot_info;
2308         struct tls_crypto_info *crypto_info;
2309         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311         struct cipher_context *cctx;
2312         struct crypto_aead **aead;
2313         struct strp_callbacks cb;
2314         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315         struct crypto_tfm *tfm;
2316         char *iv, *rec_seq, *key, *salt, *cipher_name;
2317         size_t keysize;
2318         int rc = 0;
2319
2320         if (!ctx) {
2321                 rc = -EINVAL;
2322                 goto out;
2323         }
2324
2325         if (tx) {
2326                 if (!ctx->priv_ctx_tx) {
2327                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328                         if (!sw_ctx_tx) {
2329                                 rc = -ENOMEM;
2330                                 goto out;
2331                         }
2332                         ctx->priv_ctx_tx = sw_ctx_tx;
2333                 } else {
2334                         sw_ctx_tx =
2335                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336                 }
2337         } else {
2338                 if (!ctx->priv_ctx_rx) {
2339                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340                         if (!sw_ctx_rx) {
2341                                 rc = -ENOMEM;
2342                                 goto out;
2343                         }
2344                         ctx->priv_ctx_rx = sw_ctx_rx;
2345                 } else {
2346                         sw_ctx_rx =
2347                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348                 }
2349         }
2350
2351         if (tx) {
2352                 crypto_init_wait(&sw_ctx_tx->async_wait);
2353                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354                 crypto_info = &ctx->crypto_send.info;
2355                 cctx = &ctx->tx;
2356                 aead = &sw_ctx_tx->aead_send;
2357                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359                 sw_ctx_tx->tx_work.sk = sk;
2360         } else {
2361                 crypto_init_wait(&sw_ctx_rx->async_wait);
2362                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363                 crypto_info = &ctx->crypto_recv.info;
2364                 cctx = &ctx->rx;
2365                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2366                 aead = &sw_ctx_rx->aead_recv;
2367         }
2368
2369         switch (crypto_info->cipher_type) {
2370         case TLS_CIPHER_AES_GCM_128: {
2371                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2372
2373                 gcm_128_info = (void *)crypto_info;
2374                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2375                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2376                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2377                 iv = gcm_128_info->iv;
2378                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2379                 rec_seq = gcm_128_info->rec_seq;
2380                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381                 key = gcm_128_info->key;
2382                 salt = gcm_128_info->salt;
2383                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384                 cipher_name = "gcm(aes)";
2385                 break;
2386         }
2387         case TLS_CIPHER_AES_GCM_256: {
2388                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2389
2390                 gcm_256_info = (void *)crypto_info;
2391                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2392                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2393                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2394                 iv = gcm_256_info->iv;
2395                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2396                 rec_seq = gcm_256_info->rec_seq;
2397                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398                 key = gcm_256_info->key;
2399                 salt = gcm_256_info->salt;
2400                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401                 cipher_name = "gcm(aes)";
2402                 break;
2403         }
2404         case TLS_CIPHER_AES_CCM_128: {
2405                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2406
2407                 ccm_128_info = (void *)crypto_info;
2408                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2409                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2410                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2411                 iv = ccm_128_info->iv;
2412                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2413                 rec_seq = ccm_128_info->rec_seq;
2414                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415                 key = ccm_128_info->key;
2416                 salt = ccm_128_info->salt;
2417                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418                 cipher_name = "ccm(aes)";
2419                 break;
2420         }
2421         case TLS_CIPHER_CHACHA20_POLY1305: {
2422                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2423
2424                 chacha20_poly1305_info = (void *)crypto_info;
2425                 nonce_size = 0;
2426                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2427                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2428                 iv = chacha20_poly1305_info->iv;
2429                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2430                 rec_seq = chacha20_poly1305_info->rec_seq;
2431                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2432                 key = chacha20_poly1305_info->key;
2433                 salt = chacha20_poly1305_info->salt;
2434                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2435                 cipher_name = "rfc7539(chacha20,poly1305)";
2436                 break;
2437         }
2438         case TLS_CIPHER_SM4_GCM: {
2439                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2440
2441                 sm4_gcm_info = (void *)crypto_info;
2442                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2443                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2444                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2445                 iv = sm4_gcm_info->iv;
2446                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2447                 rec_seq = sm4_gcm_info->rec_seq;
2448                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2449                 key = sm4_gcm_info->key;
2450                 salt = sm4_gcm_info->salt;
2451                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2452                 cipher_name = "gcm(sm4)";
2453                 break;
2454         }
2455         case TLS_CIPHER_SM4_CCM: {
2456                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2457
2458                 sm4_ccm_info = (void *)crypto_info;
2459                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2460                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2461                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2462                 iv = sm4_ccm_info->iv;
2463                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2464                 rec_seq = sm4_ccm_info->rec_seq;
2465                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2466                 key = sm4_ccm_info->key;
2467                 salt = sm4_ccm_info->salt;
2468                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2469                 cipher_name = "ccm(sm4)";
2470                 break;
2471         }
2472         default:
2473                 rc = -EINVAL;
2474                 goto free_priv;
2475         }
2476
2477         /* Sanity-check the sizes for stack allocations. */
2478         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2479             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE) {
2480                 rc = -EINVAL;
2481                 goto free_priv;
2482         }
2483
2484         if (crypto_info->version == TLS_1_3_VERSION) {
2485                 nonce_size = 0;
2486                 prot->aad_size = TLS_HEADER_SIZE;
2487                 prot->tail_size = 1;
2488         } else {
2489                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2490                 prot->tail_size = 0;
2491         }
2492
2493         prot->version = crypto_info->version;
2494         prot->cipher_type = crypto_info->cipher_type;
2495         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2496         prot->tag_size = tag_size;
2497         prot->overhead_size = prot->prepend_size +
2498                               prot->tag_size + prot->tail_size;
2499         prot->iv_size = iv_size;
2500         prot->salt_size = salt_size;
2501         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2502         if (!cctx->iv) {
2503                 rc = -ENOMEM;
2504                 goto free_priv;
2505         }
2506         /* Note: 128 & 256 bit salt are the same size */
2507         prot->rec_seq_size = rec_seq_size;
2508         memcpy(cctx->iv, salt, salt_size);
2509         memcpy(cctx->iv + salt_size, iv, iv_size);
2510         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2511         if (!cctx->rec_seq) {
2512                 rc = -ENOMEM;
2513                 goto free_iv;
2514         }
2515
2516         if (!*aead) {
2517                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2518                 if (IS_ERR(*aead)) {
2519                         rc = PTR_ERR(*aead);
2520                         *aead = NULL;
2521                         goto free_rec_seq;
2522                 }
2523         }
2524
2525         ctx->push_pending_record = tls_sw_push_pending_record;
2526
2527         rc = crypto_aead_setkey(*aead, key, keysize);
2528
2529         if (rc)
2530                 goto free_aead;
2531
2532         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2533         if (rc)
2534                 goto free_aead;
2535
2536         if (sw_ctx_rx) {
2537                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2538
2539                 tls_update_rx_zc_capable(ctx);
2540                 sw_ctx_rx->async_capable =
2541                         crypto_info->version != TLS_1_3_VERSION &&
2542                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2543
2544                 /* Set up strparser */
2545                 memset(&cb, 0, sizeof(cb));
2546                 cb.rcv_msg = tls_queue;
2547                 cb.parse_msg = tls_read_size;
2548
2549                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2550         }
2551
2552         goto out;
2553
2554 free_aead:
2555         crypto_free_aead(*aead);
2556         *aead = NULL;
2557 free_rec_seq:
2558         kfree(cctx->rec_seq);
2559         cctx->rec_seq = NULL;
2560 free_iv:
2561         kfree(cctx->iv);
2562         cctx->iv = NULL;
2563 free_priv:
2564         if (tx) {
2565                 kfree(ctx->priv_ctx_tx);
2566                 ctx->priv_ctx_tx = NULL;
2567         } else {
2568                 kfree(ctx->priv_ctx_rx);
2569                 ctx->priv_ctx_rx = NULL;
2570         }
2571 out:
2572         return rc;
2573 }