btrfs: fix race between quota disable and quota assign ioctls
[platform/kernel/linux-rpi.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49         WARN_ON_ONCE(err >= 0);
50         /* sk->sk_err should contain a positive error code. */
51         sk->sk_err = -err;
52         sk_error_report(sk);
53 }
54
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78
79                 WARN_ON(start > offset + len);
80
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98
99                         WARN_ON(start > offset + len);
100
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130
131 static int padding_length(struct tls_sw_context_rx *ctx,
132                           struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134         struct strp_msg *rxm = strp_msg(skb);
135         int sub = 0;
136
137         /* Determine zero-padding length */
138         if (prot->version == TLS_1_3_VERSION) {
139                 char content_type = 0;
140                 int err;
141                 int back = 17;
142
143                 while (content_type == 0) {
144                         if (back > rxm->full_len - prot->prepend_size)
145                                 return -EBADMSG;
146                         err = skb_copy_bits(skb,
147                                             rxm->offset + rxm->full_len - back,
148                                             &content_type, 1);
149                         if (err)
150                                 return err;
151                         if (content_type)
152                                 break;
153                         sub++;
154                         back++;
155                 }
156                 ctx->control = content_type;
157         }
158         return sub;
159 }
160
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163         struct aead_request *aead_req = (struct aead_request *)req;
164         struct scatterlist *sgout = aead_req->dst;
165         struct scatterlist *sgin = aead_req->src;
166         struct tls_sw_context_rx *ctx;
167         struct tls_context *tls_ctx;
168         struct tls_prot_info *prot;
169         struct scatterlist *sg;
170         struct sk_buff *skb;
171         unsigned int pages;
172         int pending;
173
174         skb = (struct sk_buff *)req->data;
175         tls_ctx = tls_get_ctx(skb->sk);
176         ctx = tls_sw_ctx_rx(tls_ctx);
177         prot = &tls_ctx->prot_info;
178
179         /* Propagate if there was an err */
180         if (err) {
181                 if (err == -EBADMSG)
182                         TLS_INC_STATS(sock_net(skb->sk),
183                                       LINUX_MIB_TLSDECRYPTERROR);
184                 ctx->async_wait.err = err;
185                 tls_err_abort(skb->sk, err);
186         } else {
187                 struct strp_msg *rxm = strp_msg(skb);
188                 int pad;
189
190                 pad = padding_length(ctx, prot, skb);
191                 if (pad < 0) {
192                         ctx->async_wait.err = pad;
193                         tls_err_abort(skb->sk, pad);
194                 } else {
195                         rxm->full_len -= pad;
196                         rxm->offset += prot->prepend_size;
197                         rxm->full_len -= prot->overhead_size;
198                 }
199         }
200
201         /* After using skb->sk to propagate sk through crypto async callback
202          * we need to NULL it again.
203          */
204         skb->sk = NULL;
205
206
207         /* Free the destination pages if skb was not decrypted inplace */
208         if (sgout != sgin) {
209                 /* Skip the first S/G entry as it points to AAD */
210                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211                         if (!sg)
212                                 break;
213                         put_page(sg_page(sg));
214                 }
215         }
216
217         kfree(aead_req);
218
219         spin_lock_bh(&ctx->decrypt_compl_lock);
220         pending = atomic_dec_return(&ctx->decrypt_pending);
221
222         if (!pending && ctx->async_notify)
223                 complete(&ctx->async_wait.completion);
224         spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
227 static int tls_do_decryption(struct sock *sk,
228                              struct sk_buff *skb,
229                              struct scatterlist *sgin,
230                              struct scatterlist *sgout,
231                              char *iv_recv,
232                              size_t data_len,
233                              struct aead_request *aead_req,
234                              bool async)
235 {
236         struct tls_context *tls_ctx = tls_get_ctx(sk);
237         struct tls_prot_info *prot = &tls_ctx->prot_info;
238         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239         int ret;
240
241         aead_request_set_tfm(aead_req, ctx->aead_recv);
242         aead_request_set_ad(aead_req, prot->aad_size);
243         aead_request_set_crypt(aead_req, sgin, sgout,
244                                data_len + prot->tag_size,
245                                (u8 *)iv_recv);
246
247         if (async) {
248                 /* Using skb->sk to push sk through to crypto async callback
249                  * handler. This allows propagating errors up to the socket
250                  * if needed. It _must_ be cleared in the async handler
251                  * before consume_skb is called. We _know_ skb->sk is NULL
252                  * because it is a clone from strparser.
253                  */
254                 skb->sk = sk;
255                 aead_request_set_callback(aead_req,
256                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
257                                           tls_decrypt_done, skb);
258                 atomic_inc(&ctx->decrypt_pending);
259         } else {
260                 aead_request_set_callback(aead_req,
261                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
262                                           crypto_req_done, &ctx->async_wait);
263         }
264
265         ret = crypto_aead_decrypt(aead_req);
266         if (ret == -EINPROGRESS) {
267                 if (async)
268                         return ret;
269
270                 ret = crypto_wait_req(ret, &ctx->async_wait);
271         }
272
273         if (async)
274                 atomic_dec(&ctx->decrypt_pending);
275
276         return ret;
277 }
278
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281         struct tls_context *tls_ctx = tls_get_ctx(sk);
282         struct tls_prot_info *prot = &tls_ctx->prot_info;
283         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284         struct tls_rec *rec = ctx->open_rec;
285
286         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287         if (target_size > 0)
288                 target_size += prot->overhead_size;
289         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296         struct tls_rec *rec = ctx->open_rec;
297         struct sk_msg *msg_en = &rec->msg_encrypted;
298
299         return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_prot_info *prot = &tls_ctx->prot_info;
306         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307         struct tls_rec *rec = ctx->open_rec;
308         struct sk_msg *msg_pl = &rec->msg_plaintext;
309         struct sk_msg *msg_en = &rec->msg_encrypted;
310         int skip, len;
311
312         /* We add page references worth len bytes from encrypted sg
313          * at the end of plaintext sg. It is guaranteed that msg_en
314          * has enough required room (ensured by caller).
315          */
316         len = required - msg_pl->sg.size;
317
318         /* Skip initial bytes in msg_en's data to be able to use
319          * same offset of both plain and encrypted data.
320          */
321         skip = prot->prepend_size + msg_pl->sg.size;
322
323         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328         struct tls_context *tls_ctx = tls_get_ctx(sk);
329         struct tls_prot_info *prot = &tls_ctx->prot_info;
330         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331         struct sk_msg *msg_pl, *msg_en;
332         struct tls_rec *rec;
333         int mem_size;
334
335         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337         rec = kzalloc(mem_size, sk->sk_allocation);
338         if (!rec)
339                 return NULL;
340
341         msg_pl = &rec->msg_plaintext;
342         msg_en = &rec->msg_encrypted;
343
344         sk_msg_init(msg_pl);
345         sk_msg_init(msg_en);
346
347         sg_init_table(rec->sg_aead_in, 2);
348         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_in[1]);
350
351         sg_init_table(rec->sg_aead_out, 2);
352         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353         sg_unmark_end(&rec->sg_aead_out[1]);
354
355         return rec;
356 }
357
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360         sk_msg_free(sk, &rec->msg_encrypted);
361         sk_msg_free(sk, &rec->msg_plaintext);
362         kfree(rec);
363 }
364
365 static void tls_free_open_rec(struct sock *sk)
366 {
367         struct tls_context *tls_ctx = tls_get_ctx(sk);
368         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369         struct tls_rec *rec = ctx->open_rec;
370
371         if (rec) {
372                 tls_free_rec(sk, rec);
373                 ctx->open_rec = NULL;
374         }
375 }
376
377 int tls_tx_records(struct sock *sk, int flags)
378 {
379         struct tls_context *tls_ctx = tls_get_ctx(sk);
380         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381         struct tls_rec *rec, *tmp;
382         struct sk_msg *msg_en;
383         int tx_flags, rc = 0;
384
385         if (tls_is_partially_sent_record(tls_ctx)) {
386                 rec = list_first_entry(&ctx->tx_list,
387                                        struct tls_rec, list);
388
389                 if (flags == -1)
390                         tx_flags = rec->tx_flags;
391                 else
392                         tx_flags = flags;
393
394                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395                 if (rc)
396                         goto tx_err;
397
398                 /* Full record has been transmitted.
399                  * Remove the head of tx_list
400                  */
401                 list_del(&rec->list);
402                 sk_msg_free(sk, &rec->msg_plaintext);
403                 kfree(rec);
404         }
405
406         /* Tx all ready records */
407         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408                 if (READ_ONCE(rec->tx_ready)) {
409                         if (flags == -1)
410                                 tx_flags = rec->tx_flags;
411                         else
412                                 tx_flags = flags;
413
414                         msg_en = &rec->msg_encrypted;
415                         rc = tls_push_sg(sk, tls_ctx,
416                                          &msg_en->sg.data[msg_en->sg.curr],
417                                          0, tx_flags);
418                         if (rc)
419                                 goto tx_err;
420
421                         list_del(&rec->list);
422                         sk_msg_free(sk, &rec->msg_plaintext);
423                         kfree(rec);
424                 } else {
425                         break;
426                 }
427         }
428
429 tx_err:
430         if (rc < 0 && rc != -EAGAIN)
431                 tls_err_abort(sk, -EBADMSG);
432
433         return rc;
434 }
435
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438         struct aead_request *aead_req = (struct aead_request *)req;
439         struct sock *sk = req->data;
440         struct tls_context *tls_ctx = tls_get_ctx(sk);
441         struct tls_prot_info *prot = &tls_ctx->prot_info;
442         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443         struct scatterlist *sge;
444         struct sk_msg *msg_en;
445         struct tls_rec *rec;
446         bool ready = false;
447         int pending;
448
449         rec = container_of(aead_req, struct tls_rec, aead_req);
450         msg_en = &rec->msg_encrypted;
451
452         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453         sge->offset -= prot->prepend_size;
454         sge->length += prot->prepend_size;
455
456         /* Check if error is previously set on socket */
457         if (err || sk->sk_err) {
458                 rec = NULL;
459
460                 /* If err is already set on socket, return the same code */
461                 if (sk->sk_err) {
462                         ctx->async_wait.err = -sk->sk_err;
463                 } else {
464                         ctx->async_wait.err = err;
465                         tls_err_abort(sk, err);
466                 }
467         }
468
469         if (rec) {
470                 struct tls_rec *first_rec;
471
472                 /* Mark the record as ready for transmission */
473                 smp_store_mb(rec->tx_ready, true);
474
475                 /* If received record is at head of tx_list, schedule tx */
476                 first_rec = list_first_entry(&ctx->tx_list,
477                                              struct tls_rec, list);
478                 if (rec == first_rec)
479                         ready = true;
480         }
481
482         spin_lock_bh(&ctx->encrypt_compl_lock);
483         pending = atomic_dec_return(&ctx->encrypt_pending);
484
485         if (!pending && ctx->async_notify)
486                 complete(&ctx->async_wait.completion);
487         spin_unlock_bh(&ctx->encrypt_compl_lock);
488
489         if (!ready)
490                 return;
491
492         /* Schedule the transmission */
493         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494                 schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496
497 static int tls_do_encryption(struct sock *sk,
498                              struct tls_context *tls_ctx,
499                              struct tls_sw_context_tx *ctx,
500                              struct aead_request *aead_req,
501                              size_t data_len, u32 start)
502 {
503         struct tls_prot_info *prot = &tls_ctx->prot_info;
504         struct tls_rec *rec = ctx->open_rec;
505         struct sk_msg *msg_en = &rec->msg_encrypted;
506         struct scatterlist *sge = sk_msg_elem(msg_en, start);
507         int rc, iv_offset = 0;
508
509         /* For CCM based ciphers, first byte of IV is a constant */
510         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512                 iv_offset = 1;
513         }
514
515         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516                prot->iv_size + prot->salt_size);
517
518         xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
519
520         sge->offset += prot->prepend_size;
521         sge->length -= prot->prepend_size;
522
523         msg_en->sg.curr = start;
524
525         aead_request_set_tfm(aead_req, ctx->aead_send);
526         aead_request_set_ad(aead_req, prot->aad_size);
527         aead_request_set_crypt(aead_req, rec->sg_aead_in,
528                                rec->sg_aead_out,
529                                data_len, rec->iv_data);
530
531         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532                                   tls_encrypt_done, sk);
533
534         /* Add the record in tx_list */
535         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536         atomic_inc(&ctx->encrypt_pending);
537
538         rc = crypto_aead_encrypt(aead_req);
539         if (!rc || rc != -EINPROGRESS) {
540                 atomic_dec(&ctx->encrypt_pending);
541                 sge->offset -= prot->prepend_size;
542                 sge->length += prot->prepend_size;
543         }
544
545         if (!rc) {
546                 WRITE_ONCE(rec->tx_ready, true);
547         } else if (rc != -EINPROGRESS) {
548                 list_del(&rec->list);
549                 return rc;
550         }
551
552         /* Unhook the record from context if encryption is not failure */
553         ctx->open_rec = NULL;
554         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555         return rc;
556 }
557
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559                                  struct tls_rec **to, struct sk_msg *msg_opl,
560                                  struct sk_msg *msg_oen, u32 split_point,
561                                  u32 tx_overhead_size, u32 *orig_end)
562 {
563         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564         struct scatterlist *sge, *osge, *nsge;
565         u32 orig_size = msg_opl->sg.size;
566         struct scatterlist tmp = { };
567         struct sk_msg *msg_npl;
568         struct tls_rec *new;
569         int ret;
570
571         new = tls_get_rec(sk);
572         if (!new)
573                 return -ENOMEM;
574         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575                            tx_overhead_size, 0);
576         if (ret < 0) {
577                 tls_free_rec(sk, new);
578                 return ret;
579         }
580
581         *orig_end = msg_opl->sg.end;
582         i = msg_opl->sg.start;
583         sge = sk_msg_elem(msg_opl, i);
584         while (apply && sge->length) {
585                 if (sge->length > apply) {
586                         u32 len = sge->length - apply;
587
588                         get_page(sg_page(sge));
589                         sg_set_page(&tmp, sg_page(sge), len,
590                                     sge->offset + apply);
591                         sge->length = apply;
592                         bytes += apply;
593                         apply = 0;
594                 } else {
595                         apply -= sge->length;
596                         bytes += sge->length;
597                 }
598
599                 sk_msg_iter_var_next(i);
600                 if (i == msg_opl->sg.end)
601                         break;
602                 sge = sk_msg_elem(msg_opl, i);
603         }
604
605         msg_opl->sg.end = i;
606         msg_opl->sg.curr = i;
607         msg_opl->sg.copybreak = 0;
608         msg_opl->apply_bytes = 0;
609         msg_opl->sg.size = bytes;
610
611         msg_npl = &new->msg_plaintext;
612         msg_npl->apply_bytes = apply;
613         msg_npl->sg.size = orig_size - bytes;
614
615         j = msg_npl->sg.start;
616         nsge = sk_msg_elem(msg_npl, j);
617         if (tmp.length) {
618                 memcpy(nsge, &tmp, sizeof(*nsge));
619                 sk_msg_iter_var_next(j);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         osge = sk_msg_elem(msg_opl, i);
624         while (osge->length) {
625                 memcpy(nsge, osge, sizeof(*nsge));
626                 sg_unmark_end(nsge);
627                 sk_msg_iter_var_next(i);
628                 sk_msg_iter_var_next(j);
629                 if (i == *orig_end)
630                         break;
631                 osge = sk_msg_elem(msg_opl, i);
632                 nsge = sk_msg_elem(msg_npl, j);
633         }
634
635         msg_npl->sg.end = j;
636         msg_npl->sg.curr = j;
637         msg_npl->sg.copybreak = 0;
638
639         *to = new;
640         return 0;
641 }
642
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644                                   struct tls_rec *from, u32 orig_end)
645 {
646         struct sk_msg *msg_npl = &from->msg_plaintext;
647         struct sk_msg *msg_opl = &to->msg_plaintext;
648         struct scatterlist *osge, *nsge;
649         u32 i, j;
650
651         i = msg_opl->sg.end;
652         sk_msg_iter_var_prev(i);
653         j = msg_npl->sg.start;
654
655         osge = sk_msg_elem(msg_opl, i);
656         nsge = sk_msg_elem(msg_npl, j);
657
658         if (sg_page(osge) == sg_page(nsge) &&
659             osge->offset + osge->length == nsge->offset) {
660                 osge->length += nsge->length;
661                 put_page(sg_page(nsge));
662         }
663
664         msg_opl->sg.end = orig_end;
665         msg_opl->sg.curr = orig_end;
666         msg_opl->sg.copybreak = 0;
667         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668         msg_opl->sg.size += msg_npl->sg.size;
669
670         sk_msg_free(sk, &to->msg_encrypted);
671         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673         kfree(from);
674 }
675
676 static int tls_push_record(struct sock *sk, int flags,
677                            unsigned char record_type)
678 {
679         struct tls_context *tls_ctx = tls_get_ctx(sk);
680         struct tls_prot_info *prot = &tls_ctx->prot_info;
681         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683         u32 i, split_point, orig_end;
684         struct sk_msg *msg_pl, *msg_en;
685         struct aead_request *req;
686         bool split;
687         int rc;
688
689         if (!rec)
690                 return 0;
691
692         msg_pl = &rec->msg_plaintext;
693         msg_en = &rec->msg_encrypted;
694
695         split_point = msg_pl->apply_bytes;
696         split = split_point && split_point < msg_pl->sg.size;
697         if (unlikely((!split &&
698                       msg_pl->sg.size +
699                       prot->overhead_size > msg_en->sg.size) ||
700                      (split &&
701                       split_point +
702                       prot->overhead_size > msg_en->sg.size))) {
703                 split = true;
704                 split_point = msg_en->sg.size;
705         }
706         if (split) {
707                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708                                            split_point, prot->overhead_size,
709                                            &orig_end);
710                 if (rc < 0)
711                         return rc;
712                 /* This can happen if above tls_split_open_record allocates
713                  * a single large encryption buffer instead of two smaller
714                  * ones. In this case adjust pointers and continue without
715                  * split.
716                  */
717                 if (!msg_pl->sg.size) {
718                         tls_merge_open_record(sk, rec, tmp, orig_end);
719                         msg_pl = &rec->msg_plaintext;
720                         msg_en = &rec->msg_encrypted;
721                         split = false;
722                 }
723                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724                             prot->overhead_size);
725         }
726
727         rec->tx_flags = flags;
728         req = &rec->aead_req;
729
730         i = msg_pl->sg.end;
731         sk_msg_iter_var_prev(i);
732
733         rec->content_type = record_type;
734         if (prot->version == TLS_1_3_VERSION) {
735                 /* Add content type to end of message.  No padding added */
736                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737                 sg_mark_end(&rec->sg_content_type);
738                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739                          &rec->sg_content_type);
740         } else {
741                 sg_mark_end(sk_msg_elem(msg_pl, i));
742         }
743
744         if (msg_pl->sg.end < msg_pl->sg.start) {
745                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747                          msg_pl->sg.data);
748         }
749
750         i = msg_pl->sg.start;
751         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753         i = msg_en->sg.end;
754         sk_msg_iter_var_prev(i);
755         sg_mark_end(sk_msg_elem(msg_en, i));
756
757         i = msg_en->sg.start;
758         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761                      tls_ctx->tx.rec_seq, record_type, prot);
762
763         tls_fill_prepend(tls_ctx,
764                          page_address(sg_page(&msg_en->sg.data[i])) +
765                          msg_en->sg.data[i].offset,
766                          msg_pl->sg.size + prot->tail_size,
767                          record_type);
768
769         tls_ctx->pending_open_record_frags = false;
770
771         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
772                                msg_pl->sg.size + prot->tail_size, i);
773         if (rc < 0) {
774                 if (rc != -EINPROGRESS) {
775                         tls_err_abort(sk, -EBADMSG);
776                         if (split) {
777                                 tls_ctx->pending_open_record_frags = true;
778                                 tls_merge_open_record(sk, rec, tmp, orig_end);
779                         }
780                 }
781                 ctx->async_capable = 1;
782                 return rc;
783         } else if (split) {
784                 msg_pl = &tmp->msg_plaintext;
785                 msg_en = &tmp->msg_encrypted;
786                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
787                 tls_ctx->pending_open_record_frags = true;
788                 ctx->open_rec = tmp;
789         }
790
791         return tls_tx_records(sk, flags);
792 }
793
794 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
795                                bool full_record, u8 record_type,
796                                ssize_t *copied, int flags)
797 {
798         struct tls_context *tls_ctx = tls_get_ctx(sk);
799         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
800         struct sk_msg msg_redir = { };
801         struct sk_psock *psock;
802         struct sock *sk_redir;
803         struct tls_rec *rec;
804         bool enospc, policy, redir_ingress;
805         int err = 0, send;
806         u32 delta = 0;
807
808         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
809         psock = sk_psock_get(sk);
810         if (!psock || !policy) {
811                 err = tls_push_record(sk, flags, record_type);
812                 if (err && sk->sk_err == EBADMSG) {
813                         *copied -= sk_msg_free(sk, msg);
814                         tls_free_open_rec(sk);
815                         err = -sk->sk_err;
816                 }
817                 if (psock)
818                         sk_psock_put(sk, psock);
819                 return err;
820         }
821 more_data:
822         enospc = sk_msg_full(msg);
823         if (psock->eval == __SK_NONE) {
824                 delta = msg->sg.size;
825                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
826                 delta -= msg->sg.size;
827         }
828         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
829             !enospc && !full_record) {
830                 err = -ENOSPC;
831                 goto out_err;
832         }
833         msg->cork_bytes = 0;
834         send = msg->sg.size;
835         if (msg->apply_bytes && msg->apply_bytes < send)
836                 send = msg->apply_bytes;
837
838         switch (psock->eval) {
839         case __SK_PASS:
840                 err = tls_push_record(sk, flags, record_type);
841                 if (err && sk->sk_err == EBADMSG) {
842                         *copied -= sk_msg_free(sk, msg);
843                         tls_free_open_rec(sk);
844                         err = -sk->sk_err;
845                         goto out_err;
846                 }
847                 break;
848         case __SK_REDIRECT:
849                 redir_ingress = psock->redir_ingress;
850                 sk_redir = psock->sk_redir;
851                 memcpy(&msg_redir, msg, sizeof(*msg));
852                 if (msg->apply_bytes < send)
853                         msg->apply_bytes = 0;
854                 else
855                         msg->apply_bytes -= send;
856                 sk_msg_return_zero(sk, msg, send);
857                 msg->sg.size -= send;
858                 release_sock(sk);
859                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
860                                             &msg_redir, send, flags);
861                 lock_sock(sk);
862                 if (err < 0) {
863                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
864                         msg->sg.size = 0;
865                 }
866                 if (msg->sg.size == 0)
867                         tls_free_open_rec(sk);
868                 break;
869         case __SK_DROP:
870         default:
871                 sk_msg_free_partial(sk, msg, send);
872                 if (msg->apply_bytes < send)
873                         msg->apply_bytes = 0;
874                 else
875                         msg->apply_bytes -= send;
876                 if (msg->sg.size == 0)
877                         tls_free_open_rec(sk);
878                 *copied -= (send + delta);
879                 err = -EACCES;
880         }
881
882         if (likely(!err)) {
883                 bool reset_eval = !ctx->open_rec;
884
885                 rec = ctx->open_rec;
886                 if (rec) {
887                         msg = &rec->msg_plaintext;
888                         if (!msg->apply_bytes)
889                                 reset_eval = true;
890                 }
891                 if (reset_eval) {
892                         psock->eval = __SK_NONE;
893                         if (psock->sk_redir) {
894                                 sock_put(psock->sk_redir);
895                                 psock->sk_redir = NULL;
896                         }
897                 }
898                 if (rec)
899                         goto more_data;
900         }
901  out_err:
902         sk_psock_put(sk, psock);
903         return err;
904 }
905
906 static int tls_sw_push_pending_record(struct sock *sk, int flags)
907 {
908         struct tls_context *tls_ctx = tls_get_ctx(sk);
909         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
910         struct tls_rec *rec = ctx->open_rec;
911         struct sk_msg *msg_pl;
912         size_t copied;
913
914         if (!rec)
915                 return 0;
916
917         msg_pl = &rec->msg_plaintext;
918         copied = msg_pl->sg.size;
919         if (!copied)
920                 return 0;
921
922         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
923                                    &copied, flags);
924 }
925
926 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
927 {
928         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
929         struct tls_context *tls_ctx = tls_get_ctx(sk);
930         struct tls_prot_info *prot = &tls_ctx->prot_info;
931         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
932         bool async_capable = ctx->async_capable;
933         unsigned char record_type = TLS_RECORD_TYPE_DATA;
934         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
935         bool eor = !(msg->msg_flags & MSG_MORE);
936         size_t try_to_copy;
937         ssize_t copied = 0;
938         struct sk_msg *msg_pl, *msg_en;
939         struct tls_rec *rec;
940         int required_size;
941         int num_async = 0;
942         bool full_record;
943         int record_room;
944         int num_zc = 0;
945         int orig_size;
946         int ret = 0;
947         int pending;
948
949         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
950                                MSG_CMSG_COMPAT))
951                 return -EOPNOTSUPP;
952
953         mutex_lock(&tls_ctx->tx_lock);
954         lock_sock(sk);
955
956         if (unlikely(msg->msg_controllen)) {
957                 ret = tls_proccess_cmsg(sk, msg, &record_type);
958                 if (ret) {
959                         if (ret == -EINPROGRESS)
960                                 num_async++;
961                         else if (ret != -EAGAIN)
962                                 goto send_end;
963                 }
964         }
965
966         while (msg_data_left(msg)) {
967                 if (sk->sk_err) {
968                         ret = -sk->sk_err;
969                         goto send_end;
970                 }
971
972                 if (ctx->open_rec)
973                         rec = ctx->open_rec;
974                 else
975                         rec = ctx->open_rec = tls_get_rec(sk);
976                 if (!rec) {
977                         ret = -ENOMEM;
978                         goto send_end;
979                 }
980
981                 msg_pl = &rec->msg_plaintext;
982                 msg_en = &rec->msg_encrypted;
983
984                 orig_size = msg_pl->sg.size;
985                 full_record = false;
986                 try_to_copy = msg_data_left(msg);
987                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
988                 if (try_to_copy >= record_room) {
989                         try_to_copy = record_room;
990                         full_record = true;
991                 }
992
993                 required_size = msg_pl->sg.size + try_to_copy +
994                                 prot->overhead_size;
995
996                 if (!sk_stream_memory_free(sk))
997                         goto wait_for_sndbuf;
998
999 alloc_encrypted:
1000                 ret = tls_alloc_encrypted_msg(sk, required_size);
1001                 if (ret) {
1002                         if (ret != -ENOSPC)
1003                                 goto wait_for_memory;
1004
1005                         /* Adjust try_to_copy according to the amount that was
1006                          * actually allocated. The difference is due
1007                          * to max sg elements limit
1008                          */
1009                         try_to_copy -= required_size - msg_en->sg.size;
1010                         full_record = true;
1011                 }
1012
1013                 if (!is_kvec && (full_record || eor) && !async_capable) {
1014                         u32 first = msg_pl->sg.end;
1015
1016                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1017                                                         msg_pl, try_to_copy);
1018                         if (ret)
1019                                 goto fallback_to_reg_send;
1020
1021                         num_zc++;
1022                         copied += try_to_copy;
1023
1024                         sk_msg_sg_copy_set(msg_pl, first);
1025                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1026                                                   record_type, &copied,
1027                                                   msg->msg_flags);
1028                         if (ret) {
1029                                 if (ret == -EINPROGRESS)
1030                                         num_async++;
1031                                 else if (ret == -ENOMEM)
1032                                         goto wait_for_memory;
1033                                 else if (ctx->open_rec && ret == -ENOSPC)
1034                                         goto rollback_iter;
1035                                 else if (ret != -EAGAIN)
1036                                         goto send_end;
1037                         }
1038                         continue;
1039 rollback_iter:
1040                         copied -= try_to_copy;
1041                         sk_msg_sg_copy_clear(msg_pl, first);
1042                         iov_iter_revert(&msg->msg_iter,
1043                                         msg_pl->sg.size - orig_size);
1044 fallback_to_reg_send:
1045                         sk_msg_trim(sk, msg_pl, orig_size);
1046                 }
1047
1048                 required_size = msg_pl->sg.size + try_to_copy;
1049
1050                 ret = tls_clone_plaintext_msg(sk, required_size);
1051                 if (ret) {
1052                         if (ret != -ENOSPC)
1053                                 goto send_end;
1054
1055                         /* Adjust try_to_copy according to the amount that was
1056                          * actually allocated. The difference is due
1057                          * to max sg elements limit
1058                          */
1059                         try_to_copy -= required_size - msg_pl->sg.size;
1060                         full_record = true;
1061                         sk_msg_trim(sk, msg_en,
1062                                     msg_pl->sg.size + prot->overhead_size);
1063                 }
1064
1065                 if (try_to_copy) {
1066                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1067                                                        msg_pl, try_to_copy);
1068                         if (ret < 0)
1069                                 goto trim_sgl;
1070                 }
1071
1072                 /* Open records defined only if successfully copied, otherwise
1073                  * we would trim the sg but not reset the open record frags.
1074                  */
1075                 tls_ctx->pending_open_record_frags = true;
1076                 copied += try_to_copy;
1077                 if (full_record || eor) {
1078                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1079                                                   record_type, &copied,
1080                                                   msg->msg_flags);
1081                         if (ret) {
1082                                 if (ret == -EINPROGRESS)
1083                                         num_async++;
1084                                 else if (ret == -ENOMEM)
1085                                         goto wait_for_memory;
1086                                 else if (ret != -EAGAIN) {
1087                                         if (ret == -ENOSPC)
1088                                                 ret = 0;
1089                                         goto send_end;
1090                                 }
1091                         }
1092                 }
1093
1094                 continue;
1095
1096 wait_for_sndbuf:
1097                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1098 wait_for_memory:
1099                 ret = sk_stream_wait_memory(sk, &timeo);
1100                 if (ret) {
1101 trim_sgl:
1102                         if (ctx->open_rec)
1103                                 tls_trim_both_msgs(sk, orig_size);
1104                         goto send_end;
1105                 }
1106
1107                 if (ctx->open_rec && msg_en->sg.size < required_size)
1108                         goto alloc_encrypted;
1109         }
1110
1111         if (!num_async) {
1112                 goto send_end;
1113         } else if (num_zc) {
1114                 /* Wait for pending encryptions to get completed */
1115                 spin_lock_bh(&ctx->encrypt_compl_lock);
1116                 ctx->async_notify = true;
1117
1118                 pending = atomic_read(&ctx->encrypt_pending);
1119                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1120                 if (pending)
1121                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1122                 else
1123                         reinit_completion(&ctx->async_wait.completion);
1124
1125                 /* There can be no concurrent accesses, since we have no
1126                  * pending encrypt operations
1127                  */
1128                 WRITE_ONCE(ctx->async_notify, false);
1129
1130                 if (ctx->async_wait.err) {
1131                         ret = ctx->async_wait.err;
1132                         copied = 0;
1133                 }
1134         }
1135
1136         /* Transmit if any encryptions have completed */
1137         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1138                 cancel_delayed_work(&ctx->tx_work.work);
1139                 tls_tx_records(sk, msg->msg_flags);
1140         }
1141
1142 send_end:
1143         ret = sk_stream_error(sk, msg->msg_flags, ret);
1144
1145         release_sock(sk);
1146         mutex_unlock(&tls_ctx->tx_lock);
1147         return copied > 0 ? copied : ret;
1148 }
1149
1150 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1151                               int offset, size_t size, int flags)
1152 {
1153         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1154         struct tls_context *tls_ctx = tls_get_ctx(sk);
1155         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1156         struct tls_prot_info *prot = &tls_ctx->prot_info;
1157         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1158         struct sk_msg *msg_pl;
1159         struct tls_rec *rec;
1160         int num_async = 0;
1161         ssize_t copied = 0;
1162         bool full_record;
1163         int record_room;
1164         int ret = 0;
1165         bool eor;
1166
1167         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1168         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1169
1170         /* Call the sk_stream functions to manage the sndbuf mem. */
1171         while (size > 0) {
1172                 size_t copy, required_size;
1173
1174                 if (sk->sk_err) {
1175                         ret = -sk->sk_err;
1176                         goto sendpage_end;
1177                 }
1178
1179                 if (ctx->open_rec)
1180                         rec = ctx->open_rec;
1181                 else
1182                         rec = ctx->open_rec = tls_get_rec(sk);
1183                 if (!rec) {
1184                         ret = -ENOMEM;
1185                         goto sendpage_end;
1186                 }
1187
1188                 msg_pl = &rec->msg_plaintext;
1189
1190                 full_record = false;
1191                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1192                 copy = size;
1193                 if (copy >= record_room) {
1194                         copy = record_room;
1195                         full_record = true;
1196                 }
1197
1198                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1199
1200                 if (!sk_stream_memory_free(sk))
1201                         goto wait_for_sndbuf;
1202 alloc_payload:
1203                 ret = tls_alloc_encrypted_msg(sk, required_size);
1204                 if (ret) {
1205                         if (ret != -ENOSPC)
1206                                 goto wait_for_memory;
1207
1208                         /* Adjust copy according to the amount that was
1209                          * actually allocated. The difference is due
1210                          * to max sg elements limit
1211                          */
1212                         copy -= required_size - msg_pl->sg.size;
1213                         full_record = true;
1214                 }
1215
1216                 sk_msg_page_add(msg_pl, page, copy, offset);
1217                 sk_mem_charge(sk, copy);
1218
1219                 offset += copy;
1220                 size -= copy;
1221                 copied += copy;
1222
1223                 tls_ctx->pending_open_record_frags = true;
1224                 if (full_record || eor || sk_msg_full(msg_pl)) {
1225                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1226                                                   record_type, &copied, flags);
1227                         if (ret) {
1228                                 if (ret == -EINPROGRESS)
1229                                         num_async++;
1230                                 else if (ret == -ENOMEM)
1231                                         goto wait_for_memory;
1232                                 else if (ret != -EAGAIN) {
1233                                         if (ret == -ENOSPC)
1234                                                 ret = 0;
1235                                         goto sendpage_end;
1236                                 }
1237                         }
1238                 }
1239                 continue;
1240 wait_for_sndbuf:
1241                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1242 wait_for_memory:
1243                 ret = sk_stream_wait_memory(sk, &timeo);
1244                 if (ret) {
1245                         if (ctx->open_rec)
1246                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1247                         goto sendpage_end;
1248                 }
1249
1250                 if (ctx->open_rec)
1251                         goto alloc_payload;
1252         }
1253
1254         if (num_async) {
1255                 /* Transmit if any encryptions have completed */
1256                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1257                         cancel_delayed_work(&ctx->tx_work.work);
1258                         tls_tx_records(sk, flags);
1259                 }
1260         }
1261 sendpage_end:
1262         ret = sk_stream_error(sk, flags, ret);
1263         return copied > 0 ? copied : ret;
1264 }
1265
1266 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1267                            int offset, size_t size, int flags)
1268 {
1269         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1270                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1271                       MSG_NO_SHARED_FRAGS))
1272                 return -EOPNOTSUPP;
1273
1274         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1275 }
1276
1277 int tls_sw_sendpage(struct sock *sk, struct page *page,
1278                     int offset, size_t size, int flags)
1279 {
1280         struct tls_context *tls_ctx = tls_get_ctx(sk);
1281         int ret;
1282
1283         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1284                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1285                 return -EOPNOTSUPP;
1286
1287         mutex_lock(&tls_ctx->tx_lock);
1288         lock_sock(sk);
1289         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1290         release_sock(sk);
1291         mutex_unlock(&tls_ctx->tx_lock);
1292         return ret;
1293 }
1294
1295 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1296                                      bool nonblock, long timeo, int *err)
1297 {
1298         struct tls_context *tls_ctx = tls_get_ctx(sk);
1299         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1300         struct sk_buff *skb;
1301         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1302
1303         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1304                 if (sk->sk_err) {
1305                         *err = sock_error(sk);
1306                         return NULL;
1307                 }
1308
1309                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1310                         __strp_unpause(&ctx->strp);
1311                         if (ctx->recv_pkt)
1312                                 return ctx->recv_pkt;
1313                 }
1314
1315                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1316                         return NULL;
1317
1318                 if (sock_flag(sk, SOCK_DONE))
1319                         return NULL;
1320
1321                 if (nonblock || !timeo) {
1322                         *err = -EAGAIN;
1323                         return NULL;
1324                 }
1325
1326                 add_wait_queue(sk_sleep(sk), &wait);
1327                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328                 sk_wait_event(sk, &timeo,
1329                               ctx->recv_pkt != skb ||
1330                               !sk_psock_queue_empty(psock),
1331                               &wait);
1332                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1333                 remove_wait_queue(sk_sleep(sk), &wait);
1334
1335                 /* Handle signals */
1336                 if (signal_pending(current)) {
1337                         *err = sock_intr_errno(timeo);
1338                         return NULL;
1339                 }
1340         }
1341
1342         return skb;
1343 }
1344
1345 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1346                                int length, int *pages_used,
1347                                unsigned int *size_used,
1348                                struct scatterlist *to,
1349                                int to_max_pages)
1350 {
1351         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1352         struct page *pages[MAX_SKB_FRAGS];
1353         unsigned int size = *size_used;
1354         ssize_t copied, use;
1355         size_t offset;
1356
1357         while (length > 0) {
1358                 i = 0;
1359                 maxpages = to_max_pages - num_elem;
1360                 if (maxpages == 0) {
1361                         rc = -EFAULT;
1362                         goto out;
1363                 }
1364                 copied = iov_iter_get_pages(from, pages,
1365                                             length,
1366                                             maxpages, &offset);
1367                 if (copied <= 0) {
1368                         rc = -EFAULT;
1369                         goto out;
1370                 }
1371
1372                 iov_iter_advance(from, copied);
1373
1374                 length -= copied;
1375                 size += copied;
1376                 while (copied) {
1377                         use = min_t(int, copied, PAGE_SIZE - offset);
1378
1379                         sg_set_page(&to[num_elem],
1380                                     pages[i], use, offset);
1381                         sg_unmark_end(&to[num_elem]);
1382                         /* We do not uncharge memory from this API */
1383
1384                         offset = 0;
1385                         copied -= use;
1386
1387                         i++;
1388                         num_elem++;
1389                 }
1390         }
1391         /* Mark the end in the last sg entry if newly added */
1392         if (num_elem > *pages_used)
1393                 sg_mark_end(&to[num_elem - 1]);
1394 out:
1395         if (rc)
1396                 iov_iter_revert(from, size - *size_used);
1397         *size_used = size;
1398         *pages_used = num_elem;
1399
1400         return rc;
1401 }
1402
1403 /* This function decrypts the input skb into either out_iov or in out_sg
1404  * or in skb buffers itself. The input parameter 'zc' indicates if
1405  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1406  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1407  * NULL, then the decryption happens inside skb buffers itself, i.e.
1408  * zero-copy gets disabled and 'zc' is updated.
1409  */
1410
1411 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1412                             struct iov_iter *out_iov,
1413                             struct scatterlist *out_sg,
1414                             int *chunk, bool *zc, bool async)
1415 {
1416         struct tls_context *tls_ctx = tls_get_ctx(sk);
1417         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1418         struct tls_prot_info *prot = &tls_ctx->prot_info;
1419         struct strp_msg *rxm = strp_msg(skb);
1420         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1421         struct aead_request *aead_req;
1422         struct sk_buff *unused;
1423         u8 *aad, *iv, *mem = NULL;
1424         struct scatterlist *sgin = NULL;
1425         struct scatterlist *sgout = NULL;
1426         const int data_len = rxm->full_len - prot->overhead_size +
1427                              prot->tail_size;
1428         int iv_offset = 0;
1429
1430         if (*zc && (out_iov || out_sg)) {
1431                 if (out_iov)
1432                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1433                 else
1434                         n_sgout = sg_nents(out_sg);
1435                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1436                                  rxm->full_len - prot->prepend_size);
1437         } else {
1438                 n_sgout = 0;
1439                 *zc = false;
1440                 n_sgin = skb_cow_data(skb, 0, &unused);
1441         }
1442
1443         if (n_sgin < 1)
1444                 return -EBADMSG;
1445
1446         /* Increment to accommodate AAD */
1447         n_sgin = n_sgin + 1;
1448
1449         nsg = n_sgin + n_sgout;
1450
1451         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1452         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1453         mem_size = mem_size + prot->aad_size;
1454         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1455
1456         /* Allocate a single block of memory which contains
1457          * aead_req || sgin[] || sgout[] || aad || iv.
1458          * This order achieves correct alignment for aead_req, sgin, sgout.
1459          */
1460         mem = kmalloc(mem_size, sk->sk_allocation);
1461         if (!mem)
1462                 return -ENOMEM;
1463
1464         /* Segment the allocated memory */
1465         aead_req = (struct aead_request *)mem;
1466         sgin = (struct scatterlist *)(mem + aead_size);
1467         sgout = sgin + n_sgin;
1468         aad = (u8 *)(sgout + n_sgout);
1469         iv = aad + prot->aad_size;
1470
1471         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1472         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1473                 iv[0] = 2;
1474                 iv_offset = 1;
1475         }
1476
1477         /* Prepare IV */
1478         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1479                             iv + iv_offset + prot->salt_size,
1480                             prot->iv_size);
1481         if (err < 0) {
1482                 kfree(mem);
1483                 return err;
1484         }
1485         if (prot->version == TLS_1_3_VERSION ||
1486             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1487                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1488                        prot->iv_size + prot->salt_size);
1489         else
1490                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1491
1492         xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1493
1494         /* Prepare AAD */
1495         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1496                      prot->tail_size,
1497                      tls_ctx->rx.rec_seq, ctx->control, prot);
1498
1499         /* Prepare sgin */
1500         sg_init_table(sgin, n_sgin);
1501         sg_set_buf(&sgin[0], aad, prot->aad_size);
1502         err = skb_to_sgvec(skb, &sgin[1],
1503                            rxm->offset + prot->prepend_size,
1504                            rxm->full_len - prot->prepend_size);
1505         if (err < 0) {
1506                 kfree(mem);
1507                 return err;
1508         }
1509
1510         if (n_sgout) {
1511                 if (out_iov) {
1512                         sg_init_table(sgout, n_sgout);
1513                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1514
1515                         *chunk = 0;
1516                         err = tls_setup_from_iter(sk, out_iov, data_len,
1517                                                   &pages, chunk, &sgout[1],
1518                                                   (n_sgout - 1));
1519                         if (err < 0)
1520                                 goto fallback_to_reg_recv;
1521                 } else if (out_sg) {
1522                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1523                 } else {
1524                         goto fallback_to_reg_recv;
1525                 }
1526         } else {
1527 fallback_to_reg_recv:
1528                 sgout = sgin;
1529                 pages = 0;
1530                 *chunk = data_len;
1531                 *zc = false;
1532         }
1533
1534         /* Prepare and submit AEAD request */
1535         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1536                                 data_len, aead_req, async);
1537         if (err == -EINPROGRESS)
1538                 return err;
1539
1540         /* Release the pages in case iov was mapped to pages */
1541         for (; pages > 0; pages--)
1542                 put_page(sg_page(&sgout[pages]));
1543
1544         kfree(mem);
1545         return err;
1546 }
1547
1548 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1549                               struct iov_iter *dest, int *chunk, bool *zc,
1550                               bool async)
1551 {
1552         struct tls_context *tls_ctx = tls_get_ctx(sk);
1553         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1554         struct tls_prot_info *prot = &tls_ctx->prot_info;
1555         struct strp_msg *rxm = strp_msg(skb);
1556         int pad, err = 0;
1557
1558         if (!ctx->decrypted) {
1559                 if (tls_ctx->rx_conf == TLS_HW) {
1560                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1561                         if (err < 0)
1562                                 return err;
1563                 }
1564
1565                 /* Still not decrypted after tls_device */
1566                 if (!ctx->decrypted) {
1567                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1568                                                async);
1569                         if (err < 0) {
1570                                 if (err == -EINPROGRESS)
1571                                         tls_advance_record_sn(sk, prot,
1572                                                               &tls_ctx->rx);
1573                                 else if (err == -EBADMSG)
1574                                         TLS_INC_STATS(sock_net(sk),
1575                                                       LINUX_MIB_TLSDECRYPTERROR);
1576                                 return err;
1577                         }
1578                 } else {
1579                         *zc = false;
1580                 }
1581
1582                 pad = padding_length(ctx, prot, skb);
1583                 if (pad < 0)
1584                         return pad;
1585
1586                 rxm->full_len -= pad;
1587                 rxm->offset += prot->prepend_size;
1588                 rxm->full_len -= prot->overhead_size;
1589                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1590                 ctx->decrypted = 1;
1591                 ctx->saved_data_ready(sk);
1592         } else {
1593                 *zc = false;
1594         }
1595
1596         return err;
1597 }
1598
1599 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1600                 struct scatterlist *sgout)
1601 {
1602         bool zc = true;
1603         int chunk;
1604
1605         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1606 }
1607
1608 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1609                                unsigned int len)
1610 {
1611         struct tls_context *tls_ctx = tls_get_ctx(sk);
1612         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1613
1614         if (skb) {
1615                 struct strp_msg *rxm = strp_msg(skb);
1616
1617                 if (len < rxm->full_len) {
1618                         rxm->offset += len;
1619                         rxm->full_len -= len;
1620                         return false;
1621                 }
1622                 consume_skb(skb);
1623         }
1624
1625         /* Finished with message */
1626         ctx->recv_pkt = NULL;
1627         __strp_unpause(&ctx->strp);
1628
1629         return true;
1630 }
1631
1632 /* This function traverses the rx_list in tls receive context to copies the
1633  * decrypted records into the buffer provided by caller zero copy is not
1634  * true. Further, the records are removed from the rx_list if it is not a peek
1635  * case and the record has been consumed completely.
1636  */
1637 static int process_rx_list(struct tls_sw_context_rx *ctx,
1638                            struct msghdr *msg,
1639                            u8 *control,
1640                            bool *cmsg,
1641                            size_t skip,
1642                            size_t len,
1643                            bool zc,
1644                            bool is_peek)
1645 {
1646         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1647         u8 ctrl = *control;
1648         u8 msgc = *cmsg;
1649         struct tls_msg *tlm;
1650         ssize_t copied = 0;
1651
1652         /* Set the record type in 'control' if caller didn't pass it */
1653         if (!ctrl && skb) {
1654                 tlm = tls_msg(skb);
1655                 ctrl = tlm->control;
1656         }
1657
1658         while (skip && skb) {
1659                 struct strp_msg *rxm = strp_msg(skb);
1660                 tlm = tls_msg(skb);
1661
1662                 /* Cannot process a record of different type */
1663                 if (ctrl != tlm->control)
1664                         return 0;
1665
1666                 if (skip < rxm->full_len)
1667                         break;
1668
1669                 skip = skip - rxm->full_len;
1670                 skb = skb_peek_next(skb, &ctx->rx_list);
1671         }
1672
1673         while (len && skb) {
1674                 struct sk_buff *next_skb;
1675                 struct strp_msg *rxm = strp_msg(skb);
1676                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1677
1678                 tlm = tls_msg(skb);
1679
1680                 /* Cannot process a record of different type */
1681                 if (ctrl != tlm->control)
1682                         return 0;
1683
1684                 /* Set record type if not already done. For a non-data record,
1685                  * do not proceed if record type could not be copied.
1686                  */
1687                 if (!msgc) {
1688                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1689                                             sizeof(ctrl), &ctrl);
1690                         msgc = true;
1691                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1692                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1693                                         return -EIO;
1694
1695                                 *cmsg = msgc;
1696                         }
1697                 }
1698
1699                 if (!zc || (rxm->full_len - skip) > len) {
1700                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1701                                                     msg, chunk);
1702                         if (err < 0)
1703                                 return err;
1704                 }
1705
1706                 len = len - chunk;
1707                 copied = copied + chunk;
1708
1709                 /* Consume the data from record if it is non-peek case*/
1710                 if (!is_peek) {
1711                         rxm->offset = rxm->offset + chunk;
1712                         rxm->full_len = rxm->full_len - chunk;
1713
1714                         /* Return if there is unconsumed data in the record */
1715                         if (rxm->full_len - skip)
1716                                 break;
1717                 }
1718
1719                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1720                  * So from the 2nd record, 'skip' should be 0.
1721                  */
1722                 skip = 0;
1723
1724                 if (msg)
1725                         msg->msg_flags |= MSG_EOR;
1726
1727                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1728
1729                 if (!is_peek) {
1730                         skb_unlink(skb, &ctx->rx_list);
1731                         consume_skb(skb);
1732                 }
1733
1734                 skb = next_skb;
1735         }
1736
1737         *control = ctrl;
1738         return copied;
1739 }
1740
1741 int tls_sw_recvmsg(struct sock *sk,
1742                    struct msghdr *msg,
1743                    size_t len,
1744                    int nonblock,
1745                    int flags,
1746                    int *addr_len)
1747 {
1748         struct tls_context *tls_ctx = tls_get_ctx(sk);
1749         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1750         struct tls_prot_info *prot = &tls_ctx->prot_info;
1751         struct sk_psock *psock;
1752         unsigned char control = 0;
1753         ssize_t decrypted = 0;
1754         struct strp_msg *rxm;
1755         struct tls_msg *tlm;
1756         struct sk_buff *skb;
1757         ssize_t copied = 0;
1758         bool cmsg = false;
1759         int target, err = 0;
1760         long timeo;
1761         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1762         bool is_peek = flags & MSG_PEEK;
1763         bool bpf_strp_enabled;
1764         int num_async = 0;
1765         int pending;
1766
1767         flags |= nonblock;
1768
1769         if (unlikely(flags & MSG_ERRQUEUE))
1770                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1771
1772         psock = sk_psock_get(sk);
1773         lock_sock(sk);
1774         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1775
1776         /* Process pending decrypted records. It must be non-zero-copy */
1777         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1778                               is_peek);
1779         if (err < 0) {
1780                 tls_err_abort(sk, err);
1781                 goto end;
1782         } else {
1783                 copied = err;
1784         }
1785
1786         if (len <= copied)
1787                 goto recv_end;
1788
1789         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1790         len = len - copied;
1791         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1792
1793         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1794                 bool retain_skb = false;
1795                 bool zc = false;
1796                 int to_decrypt;
1797                 int chunk = 0;
1798                 bool async_capable;
1799                 bool async = false;
1800
1801                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1802                 if (!skb) {
1803                         if (psock) {
1804                                 int ret = sk_msg_recvmsg(sk, psock, msg, len,
1805                                                          flags);
1806
1807                                 if (ret > 0) {
1808                                         decrypted += ret;
1809                                         len -= ret;
1810                                         continue;
1811                                 }
1812                         }
1813                         goto recv_end;
1814                 } else {
1815                         tlm = tls_msg(skb);
1816                         if (prot->version == TLS_1_3_VERSION)
1817                                 tlm->control = 0;
1818                         else
1819                                 tlm->control = ctx->control;
1820                 }
1821
1822                 rxm = strp_msg(skb);
1823
1824                 to_decrypt = rxm->full_len - prot->overhead_size;
1825
1826                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1827                     ctx->control == TLS_RECORD_TYPE_DATA &&
1828                     prot->version != TLS_1_3_VERSION &&
1829                     !bpf_strp_enabled)
1830                         zc = true;
1831
1832                 /* Do not use async mode if record is non-data */
1833                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1834                         async_capable = ctx->async_capable;
1835                 else
1836                         async_capable = false;
1837
1838                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1839                                          &chunk, &zc, async_capable);
1840                 if (err < 0 && err != -EINPROGRESS) {
1841                         tls_err_abort(sk, -EBADMSG);
1842                         goto recv_end;
1843                 }
1844
1845                 if (err == -EINPROGRESS) {
1846                         async = true;
1847                         num_async++;
1848                 } else if (prot->version == TLS_1_3_VERSION) {
1849                         tlm->control = ctx->control;
1850                 }
1851
1852                 /* If the type of records being processed is not known yet,
1853                  * set it to record type just dequeued. If it is already known,
1854                  * but does not match the record type just dequeued, go to end.
1855                  * We always get record type here since for tls1.2, record type
1856                  * is known just after record is dequeued from stream parser.
1857                  * For tls1.3, we disable async.
1858                  */
1859
1860                 if (!control)
1861                         control = tlm->control;
1862                 else if (control != tlm->control)
1863                         goto recv_end;
1864
1865                 if (!cmsg) {
1866                         int cerr;
1867
1868                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1869                                         sizeof(control), &control);
1870                         cmsg = true;
1871                         if (control != TLS_RECORD_TYPE_DATA) {
1872                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1873                                         err = -EIO;
1874                                         goto recv_end;
1875                                 }
1876                         }
1877                 }
1878
1879                 if (async)
1880                         goto pick_next_record;
1881
1882                 if (!zc) {
1883                         if (bpf_strp_enabled) {
1884                                 err = sk_psock_tls_strp_read(psock, skb);
1885                                 if (err != __SK_PASS) {
1886                                         rxm->offset = rxm->offset + rxm->full_len;
1887                                         rxm->full_len = 0;
1888                                         if (err == __SK_DROP)
1889                                                 consume_skb(skb);
1890                                         ctx->recv_pkt = NULL;
1891                                         __strp_unpause(&ctx->strp);
1892                                         continue;
1893                                 }
1894                         }
1895
1896                         if (rxm->full_len > len) {
1897                                 retain_skb = true;
1898                                 chunk = len;
1899                         } else {
1900                                 chunk = rxm->full_len;
1901                         }
1902
1903                         err = skb_copy_datagram_msg(skb, rxm->offset,
1904                                                     msg, chunk);
1905                         if (err < 0)
1906                                 goto recv_end;
1907
1908                         if (!is_peek) {
1909                                 rxm->offset = rxm->offset + chunk;
1910                                 rxm->full_len = rxm->full_len - chunk;
1911                         }
1912                 }
1913
1914 pick_next_record:
1915                 if (chunk > len)
1916                         chunk = len;
1917
1918                 decrypted += chunk;
1919                 len -= chunk;
1920
1921                 /* For async or peek case, queue the current skb */
1922                 if (async || is_peek || retain_skb) {
1923                         skb_queue_tail(&ctx->rx_list, skb);
1924                         skb = NULL;
1925                 }
1926
1927                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1928                         /* Return full control message to
1929                          * userspace before trying to parse
1930                          * another message type
1931                          */
1932                         msg->msg_flags |= MSG_EOR;
1933                         if (control != TLS_RECORD_TYPE_DATA)
1934                                 goto recv_end;
1935                 } else {
1936                         break;
1937                 }
1938         }
1939
1940 recv_end:
1941         if (num_async) {
1942                 /* Wait for all previously submitted records to be decrypted */
1943                 spin_lock_bh(&ctx->decrypt_compl_lock);
1944                 ctx->async_notify = true;
1945                 pending = atomic_read(&ctx->decrypt_pending);
1946                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1947                 if (pending) {
1948                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1949                         if (err) {
1950                                 /* one of async decrypt failed */
1951                                 tls_err_abort(sk, err);
1952                                 copied = 0;
1953                                 decrypted = 0;
1954                                 goto end;
1955                         }
1956                 } else {
1957                         reinit_completion(&ctx->async_wait.completion);
1958                 }
1959
1960                 /* There can be no concurrent accesses, since we have no
1961                  * pending decrypt operations
1962                  */
1963                 WRITE_ONCE(ctx->async_notify, false);
1964
1965                 /* Drain records from the rx_list & copy if required */
1966                 if (is_peek || is_kvec)
1967                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1968                                               decrypted, false, is_peek);
1969                 else
1970                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1971                                               decrypted, true, is_peek);
1972                 if (err < 0) {
1973                         tls_err_abort(sk, err);
1974                         copied = 0;
1975                         goto end;
1976                 }
1977         }
1978
1979         copied += decrypted;
1980
1981 end:
1982         release_sock(sk);
1983         if (psock)
1984                 sk_psock_put(sk, psock);
1985         return copied ? : err;
1986 }
1987
1988 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1989                            struct pipe_inode_info *pipe,
1990                            size_t len, unsigned int flags)
1991 {
1992         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1993         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1994         struct strp_msg *rxm = NULL;
1995         struct sock *sk = sock->sk;
1996         struct sk_buff *skb;
1997         ssize_t copied = 0;
1998         bool from_queue;
1999         int err = 0;
2000         long timeo;
2001         int chunk;
2002         bool zc = false;
2003
2004         lock_sock(sk);
2005
2006         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2007
2008         from_queue = !skb_queue_empty(&ctx->rx_list);
2009         if (from_queue) {
2010                 skb = __skb_dequeue(&ctx->rx_list);
2011         } else {
2012                 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
2013                                     &err);
2014                 if (!skb)
2015                         goto splice_read_end;
2016
2017                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2018                 if (err < 0) {
2019                         tls_err_abort(sk, -EBADMSG);
2020                         goto splice_read_end;
2021                 }
2022         }
2023
2024         /* splice does not support reading control messages */
2025         if (ctx->control != TLS_RECORD_TYPE_DATA) {
2026                 err = -EINVAL;
2027                 goto splice_read_end;
2028         }
2029
2030         rxm = strp_msg(skb);
2031
2032         chunk = min_t(unsigned int, rxm->full_len, len);
2033         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2034         if (copied < 0)
2035                 goto splice_read_end;
2036
2037         if (!from_queue) {
2038                 ctx->recv_pkt = NULL;
2039                 __strp_unpause(&ctx->strp);
2040         }
2041         if (chunk < rxm->full_len) {
2042                 __skb_queue_head(&ctx->rx_list, skb);
2043                 rxm->offset += len;
2044                 rxm->full_len -= len;
2045         } else {
2046                 consume_skb(skb);
2047         }
2048
2049 splice_read_end:
2050         release_sock(sk);
2051         return copied ? : err;
2052 }
2053
2054 bool tls_sw_sock_is_readable(struct sock *sk)
2055 {
2056         struct tls_context *tls_ctx = tls_get_ctx(sk);
2057         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2058         bool ingress_empty = true;
2059         struct sk_psock *psock;
2060
2061         rcu_read_lock();
2062         psock = sk_psock(sk);
2063         if (psock)
2064                 ingress_empty = list_empty(&psock->ingress_msg);
2065         rcu_read_unlock();
2066
2067         return !ingress_empty || ctx->recv_pkt ||
2068                 !skb_queue_empty(&ctx->rx_list);
2069 }
2070
2071 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2072 {
2073         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2074         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2075         struct tls_prot_info *prot = &tls_ctx->prot_info;
2076         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2077         struct strp_msg *rxm = strp_msg(skb);
2078         size_t cipher_overhead;
2079         size_t data_len = 0;
2080         int ret;
2081
2082         /* Verify that we have a full TLS header, or wait for more data */
2083         if (rxm->offset + prot->prepend_size > skb->len)
2084                 return 0;
2085
2086         /* Sanity-check size of on-stack buffer. */
2087         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2088                 ret = -EINVAL;
2089                 goto read_failure;
2090         }
2091
2092         /* Linearize header to local buffer */
2093         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2094
2095         if (ret < 0)
2096                 goto read_failure;
2097
2098         ctx->control = header[0];
2099
2100         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2101
2102         cipher_overhead = prot->tag_size;
2103         if (prot->version != TLS_1_3_VERSION &&
2104             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2105                 cipher_overhead += prot->iv_size;
2106
2107         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2108             prot->tail_size) {
2109                 ret = -EMSGSIZE;
2110                 goto read_failure;
2111         }
2112         if (data_len < cipher_overhead) {
2113                 ret = -EBADMSG;
2114                 goto read_failure;
2115         }
2116
2117         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2118         if (header[1] != TLS_1_2_VERSION_MINOR ||
2119             header[2] != TLS_1_2_VERSION_MAJOR) {
2120                 ret = -EINVAL;
2121                 goto read_failure;
2122         }
2123
2124         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2125                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2126         return data_len + TLS_HEADER_SIZE;
2127
2128 read_failure:
2129         tls_err_abort(strp->sk, ret);
2130
2131         return ret;
2132 }
2133
2134 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2135 {
2136         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2137         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2138
2139         ctx->decrypted = 0;
2140
2141         ctx->recv_pkt = skb;
2142         strp_pause(strp);
2143
2144         ctx->saved_data_ready(strp->sk);
2145 }
2146
2147 static void tls_data_ready(struct sock *sk)
2148 {
2149         struct tls_context *tls_ctx = tls_get_ctx(sk);
2150         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2151         struct sk_psock *psock;
2152
2153         strp_data_ready(&ctx->strp);
2154
2155         psock = sk_psock_get(sk);
2156         if (psock) {
2157                 if (!list_empty(&psock->ingress_msg))
2158                         ctx->saved_data_ready(sk);
2159                 sk_psock_put(sk, psock);
2160         }
2161 }
2162
2163 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2164 {
2165         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2166
2167         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2168         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2169         cancel_delayed_work_sync(&ctx->tx_work.work);
2170 }
2171
2172 void tls_sw_release_resources_tx(struct sock *sk)
2173 {
2174         struct tls_context *tls_ctx = tls_get_ctx(sk);
2175         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2176         struct tls_rec *rec, *tmp;
2177         int pending;
2178
2179         /* Wait for any pending async encryptions to complete */
2180         spin_lock_bh(&ctx->encrypt_compl_lock);
2181         ctx->async_notify = true;
2182         pending = atomic_read(&ctx->encrypt_pending);
2183         spin_unlock_bh(&ctx->encrypt_compl_lock);
2184
2185         if (pending)
2186                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2187
2188         tls_tx_records(sk, -1);
2189
2190         /* Free up un-sent records in tx_list. First, free
2191          * the partially sent record if any at head of tx_list.
2192          */
2193         if (tls_ctx->partially_sent_record) {
2194                 tls_free_partial_record(sk, tls_ctx);
2195                 rec = list_first_entry(&ctx->tx_list,
2196                                        struct tls_rec, list);
2197                 list_del(&rec->list);
2198                 sk_msg_free(sk, &rec->msg_plaintext);
2199                 kfree(rec);
2200         }
2201
2202         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2203                 list_del(&rec->list);
2204                 sk_msg_free(sk, &rec->msg_encrypted);
2205                 sk_msg_free(sk, &rec->msg_plaintext);
2206                 kfree(rec);
2207         }
2208
2209         crypto_free_aead(ctx->aead_send);
2210         tls_free_open_rec(sk);
2211 }
2212
2213 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2214 {
2215         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2216
2217         kfree(ctx);
2218 }
2219
2220 void tls_sw_release_resources_rx(struct sock *sk)
2221 {
2222         struct tls_context *tls_ctx = tls_get_ctx(sk);
2223         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225         kfree(tls_ctx->rx.rec_seq);
2226         kfree(tls_ctx->rx.iv);
2227
2228         if (ctx->aead_recv) {
2229                 kfree_skb(ctx->recv_pkt);
2230                 ctx->recv_pkt = NULL;
2231                 skb_queue_purge(&ctx->rx_list);
2232                 crypto_free_aead(ctx->aead_recv);
2233                 strp_stop(&ctx->strp);
2234                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2235                  * we still want to strp_stop(), but sk->sk_data_ready was
2236                  * never swapped.
2237                  */
2238                 if (ctx->saved_data_ready) {
2239                         write_lock_bh(&sk->sk_callback_lock);
2240                         sk->sk_data_ready = ctx->saved_data_ready;
2241                         write_unlock_bh(&sk->sk_callback_lock);
2242                 }
2243         }
2244 }
2245
2246 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2247 {
2248         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2249
2250         strp_done(&ctx->strp);
2251 }
2252
2253 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2254 {
2255         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2256
2257         kfree(ctx);
2258 }
2259
2260 void tls_sw_free_resources_rx(struct sock *sk)
2261 {
2262         struct tls_context *tls_ctx = tls_get_ctx(sk);
2263
2264         tls_sw_release_resources_rx(sk);
2265         tls_sw_free_ctx_rx(tls_ctx);
2266 }
2267
2268 /* The work handler to transmitt the encrypted records in tx_list */
2269 static void tx_work_handler(struct work_struct *work)
2270 {
2271         struct delayed_work *delayed_work = to_delayed_work(work);
2272         struct tx_work *tx_work = container_of(delayed_work,
2273                                                struct tx_work, work);
2274         struct sock *sk = tx_work->sk;
2275         struct tls_context *tls_ctx = tls_get_ctx(sk);
2276         struct tls_sw_context_tx *ctx;
2277
2278         if (unlikely(!tls_ctx))
2279                 return;
2280
2281         ctx = tls_sw_ctx_tx(tls_ctx);
2282         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2283                 return;
2284
2285         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2286                 return;
2287         mutex_lock(&tls_ctx->tx_lock);
2288         lock_sock(sk);
2289         tls_tx_records(sk, -1);
2290         release_sock(sk);
2291         mutex_unlock(&tls_ctx->tx_lock);
2292 }
2293
2294 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2295 {
2296         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2297
2298         /* Schedule the transmission if tx list is ready */
2299         if (is_tx_ready(tx_ctx) &&
2300             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2301                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2302 }
2303
2304 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2305 {
2306         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2307
2308         write_lock_bh(&sk->sk_callback_lock);
2309         rx_ctx->saved_data_ready = sk->sk_data_ready;
2310         sk->sk_data_ready = tls_data_ready;
2311         write_unlock_bh(&sk->sk_callback_lock);
2312
2313         strp_check_rcv(&rx_ctx->strp);
2314 }
2315
2316 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2317 {
2318         struct tls_context *tls_ctx = tls_get_ctx(sk);
2319         struct tls_prot_info *prot = &tls_ctx->prot_info;
2320         struct tls_crypto_info *crypto_info;
2321         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2322         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2323         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2324         struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2325         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2326         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2327         struct cipher_context *cctx;
2328         struct crypto_aead **aead;
2329         struct strp_callbacks cb;
2330         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2331         struct crypto_tfm *tfm;
2332         char *iv, *rec_seq, *key, *salt, *cipher_name;
2333         size_t keysize;
2334         int rc = 0;
2335
2336         if (!ctx) {
2337                 rc = -EINVAL;
2338                 goto out;
2339         }
2340
2341         if (tx) {
2342                 if (!ctx->priv_ctx_tx) {
2343                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2344                         if (!sw_ctx_tx) {
2345                                 rc = -ENOMEM;
2346                                 goto out;
2347                         }
2348                         ctx->priv_ctx_tx = sw_ctx_tx;
2349                 } else {
2350                         sw_ctx_tx =
2351                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2352                 }
2353         } else {
2354                 if (!ctx->priv_ctx_rx) {
2355                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2356                         if (!sw_ctx_rx) {
2357                                 rc = -ENOMEM;
2358                                 goto out;
2359                         }
2360                         ctx->priv_ctx_rx = sw_ctx_rx;
2361                 } else {
2362                         sw_ctx_rx =
2363                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2364                 }
2365         }
2366
2367         if (tx) {
2368                 crypto_init_wait(&sw_ctx_tx->async_wait);
2369                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2370                 crypto_info = &ctx->crypto_send.info;
2371                 cctx = &ctx->tx;
2372                 aead = &sw_ctx_tx->aead_send;
2373                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2374                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2375                 sw_ctx_tx->tx_work.sk = sk;
2376         } else {
2377                 crypto_init_wait(&sw_ctx_rx->async_wait);
2378                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2379                 crypto_info = &ctx->crypto_recv.info;
2380                 cctx = &ctx->rx;
2381                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2382                 aead = &sw_ctx_rx->aead_recv;
2383         }
2384
2385         switch (crypto_info->cipher_type) {
2386         case TLS_CIPHER_AES_GCM_128: {
2387                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2388                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2389                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2390                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2391                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2392                 rec_seq =
2393                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2394                 gcm_128_info =
2395                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2396                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2397                 key = gcm_128_info->key;
2398                 salt = gcm_128_info->salt;
2399                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2400                 cipher_name = "gcm(aes)";
2401                 break;
2402         }
2403         case TLS_CIPHER_AES_GCM_256: {
2404                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2405                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2406                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2407                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2408                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2409                 rec_seq =
2410                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2411                 gcm_256_info =
2412                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2413                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2414                 key = gcm_256_info->key;
2415                 salt = gcm_256_info->salt;
2416                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2417                 cipher_name = "gcm(aes)";
2418                 break;
2419         }
2420         case TLS_CIPHER_AES_CCM_128: {
2421                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2422                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2423                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2424                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2425                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2426                 rec_seq =
2427                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2428                 ccm_128_info =
2429                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2430                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2431                 key = ccm_128_info->key;
2432                 salt = ccm_128_info->salt;
2433                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2434                 cipher_name = "ccm(aes)";
2435                 break;
2436         }
2437         case TLS_CIPHER_CHACHA20_POLY1305: {
2438                 chacha20_poly1305_info = (void *)crypto_info;
2439                 nonce_size = 0;
2440                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2441                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2442                 iv = chacha20_poly1305_info->iv;
2443                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2444                 rec_seq = chacha20_poly1305_info->rec_seq;
2445                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2446                 key = chacha20_poly1305_info->key;
2447                 salt = chacha20_poly1305_info->salt;
2448                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2449                 cipher_name = "rfc7539(chacha20,poly1305)";
2450                 break;
2451         }
2452         default:
2453                 rc = -EINVAL;
2454                 goto free_priv;
2455         }
2456
2457         /* Sanity-check the sizes for stack allocations. */
2458         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2459             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2460                 rc = -EINVAL;
2461                 goto free_priv;
2462         }
2463
2464         if (crypto_info->version == TLS_1_3_VERSION) {
2465                 nonce_size = 0;
2466                 prot->aad_size = TLS_HEADER_SIZE;
2467                 prot->tail_size = 1;
2468         } else {
2469                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2470                 prot->tail_size = 0;
2471         }
2472
2473         prot->version = crypto_info->version;
2474         prot->cipher_type = crypto_info->cipher_type;
2475         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2476         prot->tag_size = tag_size;
2477         prot->overhead_size = prot->prepend_size +
2478                               prot->tag_size + prot->tail_size;
2479         prot->iv_size = iv_size;
2480         prot->salt_size = salt_size;
2481         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2482         if (!cctx->iv) {
2483                 rc = -ENOMEM;
2484                 goto free_priv;
2485         }
2486         /* Note: 128 & 256 bit salt are the same size */
2487         prot->rec_seq_size = rec_seq_size;
2488         memcpy(cctx->iv, salt, salt_size);
2489         memcpy(cctx->iv + salt_size, iv, iv_size);
2490         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2491         if (!cctx->rec_seq) {
2492                 rc = -ENOMEM;
2493                 goto free_iv;
2494         }
2495
2496         if (!*aead) {
2497                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2498                 if (IS_ERR(*aead)) {
2499                         rc = PTR_ERR(*aead);
2500                         *aead = NULL;
2501                         goto free_rec_seq;
2502                 }
2503         }
2504
2505         ctx->push_pending_record = tls_sw_push_pending_record;
2506
2507         rc = crypto_aead_setkey(*aead, key, keysize);
2508
2509         if (rc)
2510                 goto free_aead;
2511
2512         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2513         if (rc)
2514                 goto free_aead;
2515
2516         if (sw_ctx_rx) {
2517                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2518
2519                 if (crypto_info->version == TLS_1_3_VERSION)
2520                         sw_ctx_rx->async_capable = 0;
2521                 else
2522                         sw_ctx_rx->async_capable =
2523                                 !!(tfm->__crt_alg->cra_flags &
2524                                    CRYPTO_ALG_ASYNC);
2525
2526                 /* Set up strparser */
2527                 memset(&cb, 0, sizeof(cb));
2528                 cb.rcv_msg = tls_queue;
2529                 cb.parse_msg = tls_read_size;
2530
2531                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2532         }
2533
2534         goto out;
2535
2536 free_aead:
2537         crypto_free_aead(*aead);
2538         *aead = NULL;
2539 free_rec_seq:
2540         kfree(cctx->rec_seq);
2541         cctx->rec_seq = NULL;
2542 free_iv:
2543         kfree(cctx->iv);
2544         cctx->iv = NULL;
2545 free_priv:
2546         if (tx) {
2547                 kfree(ctx->priv_ctx_tx);
2548                 ctx->priv_ctx_tx = NULL;
2549         } else {
2550                 kfree(ctx->priv_ctx_rx);
2551                 ctx->priv_ctx_rx = NULL;
2552         }
2553 out:
2554         return rc;
2555 }