319f61590d2cff835a2b1df17d4d0ecd2b58f968
[platform/kernel/linux-starfive.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52         struct_group(inargs,
53         bool zc;
54         bool async;
55         u8 tail;
56         );
57
58         struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62         struct sock *sk;
63         u8 iv[MAX_IV_SIZE];
64         u8 aad[TLS_MAX_AAD_SIZE];
65         u8 tail;
66         struct scatterlist sg[];
67 };
68
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71         WARN_ON_ONCE(err >= 0);
72         /* sk->sk_err should contain a positive error code. */
73         WRITE_ONCE(sk->sk_err, -err);
74         /* Paired with smp_rmb() in tcp_poll() */
75         smp_wmb();
76         sk_error_report(sk);
77 }
78
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80                      unsigned int recursion_level)
81 {
82         int start = skb_headlen(skb);
83         int i, chunk = start - offset;
84         struct sk_buff *frag_iter;
85         int elt = 0;
86
87         if (unlikely(recursion_level >= 24))
88                 return -EMSGSIZE;
89
90         if (chunk > 0) {
91                 if (chunk > len)
92                         chunk = len;
93                 elt++;
94                 len -= chunk;
95                 if (len == 0)
96                         return elt;
97                 offset += chunk;
98         }
99
100         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101                 int end;
102
103                 WARN_ON(start > offset + len);
104
105                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106                 chunk = end - offset;
107                 if (chunk > 0) {
108                         if (chunk > len)
109                                 chunk = len;
110                         elt++;
111                         len -= chunk;
112                         if (len == 0)
113                                 return elt;
114                         offset += chunk;
115                 }
116                 start = end;
117         }
118
119         if (unlikely(skb_has_frag_list(skb))) {
120                 skb_walk_frags(skb, frag_iter) {
121                         int end, ret;
122
123                         WARN_ON(start > offset + len);
124
125                         end = start + frag_iter->len;
126                         chunk = end - offset;
127                         if (chunk > 0) {
128                                 if (chunk > len)
129                                         chunk = len;
130                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
131                                                 recursion_level + 1);
132                                 if (unlikely(ret < 0))
133                                         return ret;
134                                 elt += ret;
135                                 len -= chunk;
136                                 if (len == 0)
137                                         return elt;
138                                 offset += chunk;
139                         }
140                         start = end;
141                 }
142         }
143         BUG_ON(len);
144         return elt;
145 }
146
147 /* Return the number of scatterlist elements required to completely map the
148  * skb, or -EMSGSIZE if the recursion depth is exceeded.
149  */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152         return __skb_nsg(skb, offset, len, 0);
153 }
154
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156                               struct tls_decrypt_arg *darg)
157 {
158         struct strp_msg *rxm = strp_msg(skb);
159         struct tls_msg *tlm = tls_msg(skb);
160         int sub = 0;
161
162         /* Determine zero-padding length */
163         if (prot->version == TLS_1_3_VERSION) {
164                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165                 char content_type = darg->zc ? darg->tail : 0;
166                 int err;
167
168                 while (content_type == 0) {
169                         if (offset < prot->prepend_size)
170                                 return -EBADMSG;
171                         err = skb_copy_bits(skb, rxm->offset + offset,
172                                             &content_type, 1);
173                         if (err)
174                                 return err;
175                         if (content_type)
176                                 break;
177                         sub++;
178                         offset--;
179                 }
180                 tlm->control = content_type;
181         }
182         return sub;
183 }
184
185 static void tls_decrypt_done(void *data, int err)
186 {
187         struct aead_request *aead_req = data;
188         struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189         struct scatterlist *sgout = aead_req->dst;
190         struct scatterlist *sgin = aead_req->src;
191         struct tls_sw_context_rx *ctx;
192         struct tls_decrypt_ctx *dctx;
193         struct tls_context *tls_ctx;
194         struct scatterlist *sg;
195         unsigned int pages;
196         struct sock *sk;
197         int aead_size;
198
199         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200         aead_size = ALIGN(aead_size, __alignof__(*dctx));
201         dctx = (void *)((u8 *)aead_req + aead_size);
202
203         sk = dctx->sk;
204         tls_ctx = tls_get_ctx(sk);
205         ctx = tls_sw_ctx_rx(tls_ctx);
206
207         /* Propagate if there was an err */
208         if (err) {
209                 if (err == -EBADMSG)
210                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211                 ctx->async_wait.err = err;
212                 tls_err_abort(sk, err);
213         }
214
215         /* Free the destination pages if skb was not decrypted inplace */
216         if (sgout != sgin) {
217                 /* Skip the first S/G entry as it points to AAD */
218                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219                         if (!sg)
220                                 break;
221                         put_page(sg_page(sg));
222                 }
223         }
224
225         kfree(aead_req);
226
227         spin_lock_bh(&ctx->decrypt_compl_lock);
228         if (!atomic_dec_return(&ctx->decrypt_pending))
229                 complete(&ctx->async_wait.completion);
230         spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232
233 static int tls_do_decryption(struct sock *sk,
234                              struct scatterlist *sgin,
235                              struct scatterlist *sgout,
236                              char *iv_recv,
237                              size_t data_len,
238                              struct aead_request *aead_req,
239                              struct tls_decrypt_arg *darg)
240 {
241         struct tls_context *tls_ctx = tls_get_ctx(sk);
242         struct tls_prot_info *prot = &tls_ctx->prot_info;
243         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244         int ret;
245
246         aead_request_set_tfm(aead_req, ctx->aead_recv);
247         aead_request_set_ad(aead_req, prot->aad_size);
248         aead_request_set_crypt(aead_req, sgin, sgout,
249                                data_len + prot->tag_size,
250                                (u8 *)iv_recv);
251
252         if (darg->async) {
253                 aead_request_set_callback(aead_req,
254                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
255                                           tls_decrypt_done, aead_req);
256                 atomic_inc(&ctx->decrypt_pending);
257         } else {
258                 aead_request_set_callback(aead_req,
259                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
260                                           crypto_req_done, &ctx->async_wait);
261         }
262
263         ret = crypto_aead_decrypt(aead_req);
264         if (ret == -EINPROGRESS) {
265                 if (darg->async)
266                         return 0;
267
268                 ret = crypto_wait_req(ret, &ctx->async_wait);
269         }
270         darg->async = false;
271
272         return ret;
273 }
274
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277         struct tls_context *tls_ctx = tls_get_ctx(sk);
278         struct tls_prot_info *prot = &tls_ctx->prot_info;
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281
282         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283         if (target_size > 0)
284                 target_size += prot->overhead_size;
285         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290         struct tls_context *tls_ctx = tls_get_ctx(sk);
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294
295         return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300         struct tls_context *tls_ctx = tls_get_ctx(sk);
301         struct tls_prot_info *prot = &tls_ctx->prot_info;
302         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303         struct tls_rec *rec = ctx->open_rec;
304         struct sk_msg *msg_pl = &rec->msg_plaintext;
305         struct sk_msg *msg_en = &rec->msg_encrypted;
306         int skip, len;
307
308         /* We add page references worth len bytes from encrypted sg
309          * at the end of plaintext sg. It is guaranteed that msg_en
310          * has enough required room (ensured by caller).
311          */
312         len = required - msg_pl->sg.size;
313
314         /* Skip initial bytes in msg_en's data to be able to use
315          * same offset of both plain and encrypted data.
316          */
317         skip = prot->prepend_size + msg_pl->sg.size;
318
319         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324         struct tls_context *tls_ctx = tls_get_ctx(sk);
325         struct tls_prot_info *prot = &tls_ctx->prot_info;
326         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327         struct sk_msg *msg_pl, *msg_en;
328         struct tls_rec *rec;
329         int mem_size;
330
331         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333         rec = kzalloc(mem_size, sk->sk_allocation);
334         if (!rec)
335                 return NULL;
336
337         msg_pl = &rec->msg_plaintext;
338         msg_en = &rec->msg_encrypted;
339
340         sk_msg_init(msg_pl);
341         sk_msg_init(msg_en);
342
343         sg_init_table(rec->sg_aead_in, 2);
344         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345         sg_unmark_end(&rec->sg_aead_in[1]);
346
347         sg_init_table(rec->sg_aead_out, 2);
348         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_out[1]);
350
351         rec->sk = sk;
352
353         return rec;
354 }
355
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358         sk_msg_free(sk, &rec->msg_encrypted);
359         sk_msg_free(sk, &rec->msg_plaintext);
360         kfree(rec);
361 }
362
363 static void tls_free_open_rec(struct sock *sk)
364 {
365         struct tls_context *tls_ctx = tls_get_ctx(sk);
366         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367         struct tls_rec *rec = ctx->open_rec;
368
369         if (rec) {
370                 tls_free_rec(sk, rec);
371                 ctx->open_rec = NULL;
372         }
373 }
374
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377         struct tls_context *tls_ctx = tls_get_ctx(sk);
378         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379         struct tls_rec *rec, *tmp;
380         struct sk_msg *msg_en;
381         int tx_flags, rc = 0;
382
383         if (tls_is_partially_sent_record(tls_ctx)) {
384                 rec = list_first_entry(&ctx->tx_list,
385                                        struct tls_rec, list);
386
387                 if (flags == -1)
388                         tx_flags = rec->tx_flags;
389                 else
390                         tx_flags = flags;
391
392                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393                 if (rc)
394                         goto tx_err;
395
396                 /* Full record has been transmitted.
397                  * Remove the head of tx_list
398                  */
399                 list_del(&rec->list);
400                 sk_msg_free(sk, &rec->msg_plaintext);
401                 kfree(rec);
402         }
403
404         /* Tx all ready records */
405         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406                 if (READ_ONCE(rec->tx_ready)) {
407                         if (flags == -1)
408                                 tx_flags = rec->tx_flags;
409                         else
410                                 tx_flags = flags;
411
412                         msg_en = &rec->msg_encrypted;
413                         rc = tls_push_sg(sk, tls_ctx,
414                                          &msg_en->sg.data[msg_en->sg.curr],
415                                          0, tx_flags);
416                         if (rc)
417                                 goto tx_err;
418
419                         list_del(&rec->list);
420                         sk_msg_free(sk, &rec->msg_plaintext);
421                         kfree(rec);
422                 } else {
423                         break;
424                 }
425         }
426
427 tx_err:
428         if (rc < 0 && rc != -EAGAIN)
429                 tls_err_abort(sk, -EBADMSG);
430
431         return rc;
432 }
433
434 static void tls_encrypt_done(void *data, int err)
435 {
436         struct tls_sw_context_tx *ctx;
437         struct tls_context *tls_ctx;
438         struct tls_prot_info *prot;
439         struct tls_rec *rec = data;
440         struct scatterlist *sge;
441         struct sk_msg *msg_en;
442         bool ready = false;
443         struct sock *sk;
444         int pending;
445
446         msg_en = &rec->msg_encrypted;
447
448         sk = rec->sk;
449         tls_ctx = tls_get_ctx(sk);
450         prot = &tls_ctx->prot_info;
451         ctx = tls_sw_ctx_tx(tls_ctx);
452
453         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454         sge->offset -= prot->prepend_size;
455         sge->length += prot->prepend_size;
456
457         /* Check if error is previously set on socket */
458         if (err || sk->sk_err) {
459                 rec = NULL;
460
461                 /* If err is already set on socket, return the same code */
462                 if (sk->sk_err) {
463                         ctx->async_wait.err = -sk->sk_err;
464                 } else {
465                         ctx->async_wait.err = err;
466                         tls_err_abort(sk, err);
467                 }
468         }
469
470         if (rec) {
471                 struct tls_rec *first_rec;
472
473                 /* Mark the record as ready for transmission */
474                 smp_store_mb(rec->tx_ready, true);
475
476                 /* If received record is at head of tx_list, schedule tx */
477                 first_rec = list_first_entry(&ctx->tx_list,
478                                              struct tls_rec, list);
479                 if (rec == first_rec)
480                         ready = true;
481         }
482
483         spin_lock_bh(&ctx->encrypt_compl_lock);
484         pending = atomic_dec_return(&ctx->encrypt_pending);
485
486         if (!pending && ctx->async_notify)
487                 complete(&ctx->async_wait.completion);
488         spin_unlock_bh(&ctx->encrypt_compl_lock);
489
490         if (!ready)
491                 return;
492
493         /* Schedule the transmission */
494         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495                 schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497
498 static int tls_do_encryption(struct sock *sk,
499                              struct tls_context *tls_ctx,
500                              struct tls_sw_context_tx *ctx,
501                              struct aead_request *aead_req,
502                              size_t data_len, u32 start)
503 {
504         struct tls_prot_info *prot = &tls_ctx->prot_info;
505         struct tls_rec *rec = ctx->open_rec;
506         struct sk_msg *msg_en = &rec->msg_encrypted;
507         struct scatterlist *sge = sk_msg_elem(msg_en, start);
508         int rc, iv_offset = 0;
509
510         /* For CCM based ciphers, first byte of IV is a constant */
511         switch (prot->cipher_type) {
512         case TLS_CIPHER_AES_CCM_128:
513                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514                 iv_offset = 1;
515                 break;
516         case TLS_CIPHER_SM4_CCM:
517                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518                 iv_offset = 1;
519                 break;
520         }
521
522         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523                prot->iv_size + prot->salt_size);
524
525         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526                             tls_ctx->tx.rec_seq);
527
528         sge->offset += prot->prepend_size;
529         sge->length -= prot->prepend_size;
530
531         msg_en->sg.curr = start;
532
533         aead_request_set_tfm(aead_req, ctx->aead_send);
534         aead_request_set_ad(aead_req, prot->aad_size);
535         aead_request_set_crypt(aead_req, rec->sg_aead_in,
536                                rec->sg_aead_out,
537                                data_len, rec->iv_data);
538
539         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540                                   tls_encrypt_done, rec);
541
542         /* Add the record in tx_list */
543         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544         atomic_inc(&ctx->encrypt_pending);
545
546         rc = crypto_aead_encrypt(aead_req);
547         if (!rc || rc != -EINPROGRESS) {
548                 atomic_dec(&ctx->encrypt_pending);
549                 sge->offset -= prot->prepend_size;
550                 sge->length += prot->prepend_size;
551         }
552
553         if (!rc) {
554                 WRITE_ONCE(rec->tx_ready, true);
555         } else if (rc != -EINPROGRESS) {
556                 list_del(&rec->list);
557                 return rc;
558         }
559
560         /* Unhook the record from context if encryption is not failure */
561         ctx->open_rec = NULL;
562         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563         return rc;
564 }
565
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567                                  struct tls_rec **to, struct sk_msg *msg_opl,
568                                  struct sk_msg *msg_oen, u32 split_point,
569                                  u32 tx_overhead_size, u32 *orig_end)
570 {
571         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572         struct scatterlist *sge, *osge, *nsge;
573         u32 orig_size = msg_opl->sg.size;
574         struct scatterlist tmp = { };
575         struct sk_msg *msg_npl;
576         struct tls_rec *new;
577         int ret;
578
579         new = tls_get_rec(sk);
580         if (!new)
581                 return -ENOMEM;
582         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583                            tx_overhead_size, 0);
584         if (ret < 0) {
585                 tls_free_rec(sk, new);
586                 return ret;
587         }
588
589         *orig_end = msg_opl->sg.end;
590         i = msg_opl->sg.start;
591         sge = sk_msg_elem(msg_opl, i);
592         while (apply && sge->length) {
593                 if (sge->length > apply) {
594                         u32 len = sge->length - apply;
595
596                         get_page(sg_page(sge));
597                         sg_set_page(&tmp, sg_page(sge), len,
598                                     sge->offset + apply);
599                         sge->length = apply;
600                         bytes += apply;
601                         apply = 0;
602                 } else {
603                         apply -= sge->length;
604                         bytes += sge->length;
605                 }
606
607                 sk_msg_iter_var_next(i);
608                 if (i == msg_opl->sg.end)
609                         break;
610                 sge = sk_msg_elem(msg_opl, i);
611         }
612
613         msg_opl->sg.end = i;
614         msg_opl->sg.curr = i;
615         msg_opl->sg.copybreak = 0;
616         msg_opl->apply_bytes = 0;
617         msg_opl->sg.size = bytes;
618
619         msg_npl = &new->msg_plaintext;
620         msg_npl->apply_bytes = apply;
621         msg_npl->sg.size = orig_size - bytes;
622
623         j = msg_npl->sg.start;
624         nsge = sk_msg_elem(msg_npl, j);
625         if (tmp.length) {
626                 memcpy(nsge, &tmp, sizeof(*nsge));
627                 sk_msg_iter_var_next(j);
628                 nsge = sk_msg_elem(msg_npl, j);
629         }
630
631         osge = sk_msg_elem(msg_opl, i);
632         while (osge->length) {
633                 memcpy(nsge, osge, sizeof(*nsge));
634                 sg_unmark_end(nsge);
635                 sk_msg_iter_var_next(i);
636                 sk_msg_iter_var_next(j);
637                 if (i == *orig_end)
638                         break;
639                 osge = sk_msg_elem(msg_opl, i);
640                 nsge = sk_msg_elem(msg_npl, j);
641         }
642
643         msg_npl->sg.end = j;
644         msg_npl->sg.curr = j;
645         msg_npl->sg.copybreak = 0;
646
647         *to = new;
648         return 0;
649 }
650
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652                                   struct tls_rec *from, u32 orig_end)
653 {
654         struct sk_msg *msg_npl = &from->msg_plaintext;
655         struct sk_msg *msg_opl = &to->msg_plaintext;
656         struct scatterlist *osge, *nsge;
657         u32 i, j;
658
659         i = msg_opl->sg.end;
660         sk_msg_iter_var_prev(i);
661         j = msg_npl->sg.start;
662
663         osge = sk_msg_elem(msg_opl, i);
664         nsge = sk_msg_elem(msg_npl, j);
665
666         if (sg_page(osge) == sg_page(nsge) &&
667             osge->offset + osge->length == nsge->offset) {
668                 osge->length += nsge->length;
669                 put_page(sg_page(nsge));
670         }
671
672         msg_opl->sg.end = orig_end;
673         msg_opl->sg.curr = orig_end;
674         msg_opl->sg.copybreak = 0;
675         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676         msg_opl->sg.size += msg_npl->sg.size;
677
678         sk_msg_free(sk, &to->msg_encrypted);
679         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680
681         kfree(from);
682 }
683
684 static int tls_push_record(struct sock *sk, int flags,
685                            unsigned char record_type)
686 {
687         struct tls_context *tls_ctx = tls_get_ctx(sk);
688         struct tls_prot_info *prot = &tls_ctx->prot_info;
689         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691         u32 i, split_point, orig_end;
692         struct sk_msg *msg_pl, *msg_en;
693         struct aead_request *req;
694         bool split;
695         int rc;
696
697         if (!rec)
698                 return 0;
699
700         msg_pl = &rec->msg_plaintext;
701         msg_en = &rec->msg_encrypted;
702
703         split_point = msg_pl->apply_bytes;
704         split = split_point && split_point < msg_pl->sg.size;
705         if (unlikely((!split &&
706                       msg_pl->sg.size +
707                       prot->overhead_size > msg_en->sg.size) ||
708                      (split &&
709                       split_point +
710                       prot->overhead_size > msg_en->sg.size))) {
711                 split = true;
712                 split_point = msg_en->sg.size;
713         }
714         if (split) {
715                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716                                            split_point, prot->overhead_size,
717                                            &orig_end);
718                 if (rc < 0)
719                         return rc;
720                 /* This can happen if above tls_split_open_record allocates
721                  * a single large encryption buffer instead of two smaller
722                  * ones. In this case adjust pointers and continue without
723                  * split.
724                  */
725                 if (!msg_pl->sg.size) {
726                         tls_merge_open_record(sk, rec, tmp, orig_end);
727                         msg_pl = &rec->msg_plaintext;
728                         msg_en = &rec->msg_encrypted;
729                         split = false;
730                 }
731                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732                             prot->overhead_size);
733         }
734
735         rec->tx_flags = flags;
736         req = &rec->aead_req;
737
738         i = msg_pl->sg.end;
739         sk_msg_iter_var_prev(i);
740
741         rec->content_type = record_type;
742         if (prot->version == TLS_1_3_VERSION) {
743                 /* Add content type to end of message.  No padding added */
744                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745                 sg_mark_end(&rec->sg_content_type);
746                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747                          &rec->sg_content_type);
748         } else {
749                 sg_mark_end(sk_msg_elem(msg_pl, i));
750         }
751
752         if (msg_pl->sg.end < msg_pl->sg.start) {
753                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755                          msg_pl->sg.data);
756         }
757
758         i = msg_pl->sg.start;
759         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760
761         i = msg_en->sg.end;
762         sk_msg_iter_var_prev(i);
763         sg_mark_end(sk_msg_elem(msg_en, i));
764
765         i = msg_en->sg.start;
766         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767
768         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769                      tls_ctx->tx.rec_seq, record_type, prot);
770
771         tls_fill_prepend(tls_ctx,
772                          page_address(sg_page(&msg_en->sg.data[i])) +
773                          msg_en->sg.data[i].offset,
774                          msg_pl->sg.size + prot->tail_size,
775                          record_type);
776
777         tls_ctx->pending_open_record_frags = false;
778
779         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780                                msg_pl->sg.size + prot->tail_size, i);
781         if (rc < 0) {
782                 if (rc != -EINPROGRESS) {
783                         tls_err_abort(sk, -EBADMSG);
784                         if (split) {
785                                 tls_ctx->pending_open_record_frags = true;
786                                 tls_merge_open_record(sk, rec, tmp, orig_end);
787                         }
788                 }
789                 ctx->async_capable = 1;
790                 return rc;
791         } else if (split) {
792                 msg_pl = &tmp->msg_plaintext;
793                 msg_en = &tmp->msg_encrypted;
794                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795                 tls_ctx->pending_open_record_frags = true;
796                 ctx->open_rec = tmp;
797         }
798
799         return tls_tx_records(sk, flags);
800 }
801
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803                                bool full_record, u8 record_type,
804                                ssize_t *copied, int flags)
805 {
806         struct tls_context *tls_ctx = tls_get_ctx(sk);
807         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808         struct sk_msg msg_redir = { };
809         struct sk_psock *psock;
810         struct sock *sk_redir;
811         struct tls_rec *rec;
812         bool enospc, policy, redir_ingress;
813         int err = 0, send;
814         u32 delta = 0;
815
816         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817         psock = sk_psock_get(sk);
818         if (!psock || !policy) {
819                 err = tls_push_record(sk, flags, record_type);
820                 if (err && sk->sk_err == EBADMSG) {
821                         *copied -= sk_msg_free(sk, msg);
822                         tls_free_open_rec(sk);
823                         err = -sk->sk_err;
824                 }
825                 if (psock)
826                         sk_psock_put(sk, psock);
827                 return err;
828         }
829 more_data:
830         enospc = sk_msg_full(msg);
831         if (psock->eval == __SK_NONE) {
832                 delta = msg->sg.size;
833                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834                 delta -= msg->sg.size;
835         }
836         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837             !enospc && !full_record) {
838                 err = -ENOSPC;
839                 goto out_err;
840         }
841         msg->cork_bytes = 0;
842         send = msg->sg.size;
843         if (msg->apply_bytes && msg->apply_bytes < send)
844                 send = msg->apply_bytes;
845
846         switch (psock->eval) {
847         case __SK_PASS:
848                 err = tls_push_record(sk, flags, record_type);
849                 if (err && sk->sk_err == EBADMSG) {
850                         *copied -= sk_msg_free(sk, msg);
851                         tls_free_open_rec(sk);
852                         err = -sk->sk_err;
853                         goto out_err;
854                 }
855                 break;
856         case __SK_REDIRECT:
857                 redir_ingress = psock->redir_ingress;
858                 sk_redir = psock->sk_redir;
859                 memcpy(&msg_redir, msg, sizeof(*msg));
860                 if (msg->apply_bytes < send)
861                         msg->apply_bytes = 0;
862                 else
863                         msg->apply_bytes -= send;
864                 sk_msg_return_zero(sk, msg, send);
865                 msg->sg.size -= send;
866                 release_sock(sk);
867                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868                                             &msg_redir, send, flags);
869                 lock_sock(sk);
870                 if (err < 0) {
871                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
872                         msg->sg.size = 0;
873                 }
874                 if (msg->sg.size == 0)
875                         tls_free_open_rec(sk);
876                 break;
877         case __SK_DROP:
878         default:
879                 sk_msg_free_partial(sk, msg, send);
880                 if (msg->apply_bytes < send)
881                         msg->apply_bytes = 0;
882                 else
883                         msg->apply_bytes -= send;
884                 if (msg->sg.size == 0)
885                         tls_free_open_rec(sk);
886                 *copied -= (send + delta);
887                 err = -EACCES;
888         }
889
890         if (likely(!err)) {
891                 bool reset_eval = !ctx->open_rec;
892
893                 rec = ctx->open_rec;
894                 if (rec) {
895                         msg = &rec->msg_plaintext;
896                         if (!msg->apply_bytes)
897                                 reset_eval = true;
898                 }
899                 if (reset_eval) {
900                         psock->eval = __SK_NONE;
901                         if (psock->sk_redir) {
902                                 sock_put(psock->sk_redir);
903                                 psock->sk_redir = NULL;
904                         }
905                 }
906                 if (rec)
907                         goto more_data;
908         }
909  out_err:
910         sk_psock_put(sk, psock);
911         return err;
912 }
913
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916         struct tls_context *tls_ctx = tls_get_ctx(sk);
917         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918         struct tls_rec *rec = ctx->open_rec;
919         struct sk_msg *msg_pl;
920         size_t copied;
921
922         if (!rec)
923                 return 0;
924
925         msg_pl = &rec->msg_plaintext;
926         copied = msg_pl->sg.size;
927         if (!copied)
928                 return 0;
929
930         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931                                    &copied, flags);
932 }
933
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935                                  struct sk_msg *msg_pl, size_t try_to_copy,
936                                  ssize_t *copied)
937 {
938         struct page *page = NULL, **pages = &page;
939
940         do {
941                 ssize_t part;
942                 size_t off;
943
944                 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945                                               try_to_copy, 1, 0, &off);
946                 if (part <= 0)
947                         return part ?: -EIO;
948
949                 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950                         iov_iter_revert(&msg->msg_iter, part);
951                         return -EIO;
952                 }
953
954                 sk_msg_page_add(msg_pl, page, part, off);
955                 sk_mem_charge(sk, part);
956                 *copied += part;
957                 try_to_copy -= part;
958         } while (try_to_copy && !sk_msg_full(msg_pl));
959
960         return 0;
961 }
962
963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
964                                  size_t size)
965 {
966         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
967         struct tls_context *tls_ctx = tls_get_ctx(sk);
968         struct tls_prot_info *prot = &tls_ctx->prot_info;
969         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
970         bool async_capable = ctx->async_capable;
971         unsigned char record_type = TLS_RECORD_TYPE_DATA;
972         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
973         bool eor = !(msg->msg_flags & MSG_MORE);
974         size_t try_to_copy;
975         ssize_t copied = 0;
976         struct sk_msg *msg_pl, *msg_en;
977         struct tls_rec *rec;
978         int required_size;
979         int num_async = 0;
980         bool full_record;
981         int record_room;
982         int num_zc = 0;
983         int orig_size;
984         int ret = 0;
985         int pending;
986
987         if (unlikely(msg->msg_controllen)) {
988                 ret = tls_process_cmsg(sk, msg, &record_type);
989                 if (ret) {
990                         if (ret == -EINPROGRESS)
991                                 num_async++;
992                         else if (ret != -EAGAIN)
993                                 goto send_end;
994                 }
995         }
996
997         while (msg_data_left(msg)) {
998                 if (sk->sk_err) {
999                         ret = -sk->sk_err;
1000                         goto send_end;
1001                 }
1002
1003                 if (ctx->open_rec)
1004                         rec = ctx->open_rec;
1005                 else
1006                         rec = ctx->open_rec = tls_get_rec(sk);
1007                 if (!rec) {
1008                         ret = -ENOMEM;
1009                         goto send_end;
1010                 }
1011
1012                 msg_pl = &rec->msg_plaintext;
1013                 msg_en = &rec->msg_encrypted;
1014
1015                 orig_size = msg_pl->sg.size;
1016                 full_record = false;
1017                 try_to_copy = msg_data_left(msg);
1018                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1019                 if (try_to_copy >= record_room) {
1020                         try_to_copy = record_room;
1021                         full_record = true;
1022                 }
1023
1024                 required_size = msg_pl->sg.size + try_to_copy +
1025                                 prot->overhead_size;
1026
1027                 if (!sk_stream_memory_free(sk))
1028                         goto wait_for_sndbuf;
1029
1030 alloc_encrypted:
1031                 ret = tls_alloc_encrypted_msg(sk, required_size);
1032                 if (ret) {
1033                         if (ret != -ENOSPC)
1034                                 goto wait_for_memory;
1035
1036                         /* Adjust try_to_copy according to the amount that was
1037                          * actually allocated. The difference is due
1038                          * to max sg elements limit
1039                          */
1040                         try_to_copy -= required_size - msg_en->sg.size;
1041                         full_record = true;
1042                 }
1043
1044                 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1045                         ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1046                                                     try_to_copy, &copied);
1047                         if (ret < 0)
1048                                 goto send_end;
1049                         tls_ctx->pending_open_record_frags = true;
1050                         if (full_record || eor || sk_msg_full(msg_pl))
1051                                 goto copied;
1052                         continue;
1053                 }
1054
1055                 if (!is_kvec && (full_record || eor) && !async_capable) {
1056                         u32 first = msg_pl->sg.end;
1057
1058                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1059                                                         msg_pl, try_to_copy);
1060                         if (ret)
1061                                 goto fallback_to_reg_send;
1062
1063                         num_zc++;
1064                         copied += try_to_copy;
1065
1066                         sk_msg_sg_copy_set(msg_pl, first);
1067                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                   record_type, &copied,
1069                                                   msg->msg_flags);
1070                         if (ret) {
1071                                 if (ret == -EINPROGRESS)
1072                                         num_async++;
1073                                 else if (ret == -ENOMEM)
1074                                         goto wait_for_memory;
1075                                 else if (ctx->open_rec && ret == -ENOSPC)
1076                                         goto rollback_iter;
1077                                 else if (ret != -EAGAIN)
1078                                         goto send_end;
1079                         }
1080                         continue;
1081 rollback_iter:
1082                         copied -= try_to_copy;
1083                         sk_msg_sg_copy_clear(msg_pl, first);
1084                         iov_iter_revert(&msg->msg_iter,
1085                                         msg_pl->sg.size - orig_size);
1086 fallback_to_reg_send:
1087                         sk_msg_trim(sk, msg_pl, orig_size);
1088                 }
1089
1090                 required_size = msg_pl->sg.size + try_to_copy;
1091
1092                 ret = tls_clone_plaintext_msg(sk, required_size);
1093                 if (ret) {
1094                         if (ret != -ENOSPC)
1095                                 goto send_end;
1096
1097                         /* Adjust try_to_copy according to the amount that was
1098                          * actually allocated. The difference is due
1099                          * to max sg elements limit
1100                          */
1101                         try_to_copy -= required_size - msg_pl->sg.size;
1102                         full_record = true;
1103                         sk_msg_trim(sk, msg_en,
1104                                     msg_pl->sg.size + prot->overhead_size);
1105                 }
1106
1107                 if (try_to_copy) {
1108                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1109                                                        msg_pl, try_to_copy);
1110                         if (ret < 0)
1111                                 goto trim_sgl;
1112                 }
1113
1114                 /* Open records defined only if successfully copied, otherwise
1115                  * we would trim the sg but not reset the open record frags.
1116                  */
1117                 tls_ctx->pending_open_record_frags = true;
1118                 copied += try_to_copy;
1119 copied:
1120                 if (full_record || eor) {
1121                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1122                                                   record_type, &copied,
1123                                                   msg->msg_flags);
1124                         if (ret) {
1125                                 if (ret == -EINPROGRESS)
1126                                         num_async++;
1127                                 else if (ret == -ENOMEM)
1128                                         goto wait_for_memory;
1129                                 else if (ret != -EAGAIN) {
1130                                         if (ret == -ENOSPC)
1131                                                 ret = 0;
1132                                         goto send_end;
1133                                 }
1134                         }
1135                 }
1136
1137                 continue;
1138
1139 wait_for_sndbuf:
1140                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1141 wait_for_memory:
1142                 ret = sk_stream_wait_memory(sk, &timeo);
1143                 if (ret) {
1144 trim_sgl:
1145                         if (ctx->open_rec)
1146                                 tls_trim_both_msgs(sk, orig_size);
1147                         goto send_end;
1148                 }
1149
1150                 if (ctx->open_rec && msg_en->sg.size < required_size)
1151                         goto alloc_encrypted;
1152         }
1153
1154         if (!num_async) {
1155                 goto send_end;
1156         } else if (num_zc) {
1157                 /* Wait for pending encryptions to get completed */
1158                 spin_lock_bh(&ctx->encrypt_compl_lock);
1159                 ctx->async_notify = true;
1160
1161                 pending = atomic_read(&ctx->encrypt_pending);
1162                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1163                 if (pending)
1164                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1165                 else
1166                         reinit_completion(&ctx->async_wait.completion);
1167
1168                 /* There can be no concurrent accesses, since we have no
1169                  * pending encrypt operations
1170                  */
1171                 WRITE_ONCE(ctx->async_notify, false);
1172
1173                 if (ctx->async_wait.err) {
1174                         ret = ctx->async_wait.err;
1175                         copied = 0;
1176                 }
1177         }
1178
1179         /* Transmit if any encryptions have completed */
1180         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1181                 cancel_delayed_work(&ctx->tx_work.work);
1182                 tls_tx_records(sk, msg->msg_flags);
1183         }
1184
1185 send_end:
1186         ret = sk_stream_error(sk, msg->msg_flags, ret);
1187         return copied > 0 ? copied : ret;
1188 }
1189
1190 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1191 {
1192         struct tls_context *tls_ctx = tls_get_ctx(sk);
1193         int ret;
1194
1195         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1196                                MSG_CMSG_COMPAT | MSG_SPLICE_PAGES |
1197                                MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1198                 return -EOPNOTSUPP;
1199
1200         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1201         if (ret)
1202                 return ret;
1203         lock_sock(sk);
1204         ret = tls_sw_sendmsg_locked(sk, msg, size);
1205         release_sock(sk);
1206         mutex_unlock(&tls_ctx->tx_lock);
1207         return ret;
1208 }
1209
1210 /*
1211  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1212  */
1213 void tls_sw_splice_eof(struct socket *sock)
1214 {
1215         struct sock *sk = sock->sk;
1216         struct tls_context *tls_ctx = tls_get_ctx(sk);
1217         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1218         struct tls_rec *rec;
1219         struct sk_msg *msg_pl;
1220         ssize_t copied = 0;
1221         bool retrying = false;
1222         int ret = 0;
1223         int pending;
1224
1225         if (!ctx->open_rec)
1226                 return;
1227
1228         mutex_lock(&tls_ctx->tx_lock);
1229         lock_sock(sk);
1230
1231 retry:
1232         rec = ctx->open_rec;
1233         if (!rec)
1234                 goto unlock;
1235
1236         msg_pl = &rec->msg_plaintext;
1237
1238         /* Check the BPF advisor and perform transmission. */
1239         ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1240                                   &copied, 0);
1241         switch (ret) {
1242         case 0:
1243         case -EAGAIN:
1244                 if (retrying)
1245                         goto unlock;
1246                 retrying = true;
1247                 goto retry;
1248         case -EINPROGRESS:
1249                 break;
1250         default:
1251                 goto unlock;
1252         }
1253
1254         /* Wait for pending encryptions to get completed */
1255         spin_lock_bh(&ctx->encrypt_compl_lock);
1256         ctx->async_notify = true;
1257
1258         pending = atomic_read(&ctx->encrypt_pending);
1259         spin_unlock_bh(&ctx->encrypt_compl_lock);
1260         if (pending)
1261                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1262         else
1263                 reinit_completion(&ctx->async_wait.completion);
1264
1265         /* There can be no concurrent accesses, since we have no pending
1266          * encrypt operations
1267          */
1268         WRITE_ONCE(ctx->async_notify, false);
1269
1270         if (ctx->async_wait.err)
1271                 goto unlock;
1272
1273         /* Transmit if any encryptions have completed */
1274         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1275                 cancel_delayed_work(&ctx->tx_work.work);
1276                 tls_tx_records(sk, 0);
1277         }
1278
1279 unlock:
1280         release_sock(sk);
1281         mutex_unlock(&tls_ctx->tx_lock);
1282 }
1283
1284 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1285                            int offset, size_t size, int flags)
1286 {
1287         struct bio_vec bvec;
1288         struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, };
1289
1290         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1291                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1292                       MSG_NO_SHARED_FRAGS))
1293                 return -EOPNOTSUPP;
1294         if (flags & MSG_SENDPAGE_NOTLAST)
1295                 msg.msg_flags |= MSG_MORE;
1296
1297         bvec_set_page(&bvec, page, size, offset);
1298         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1299         return tls_sw_sendmsg_locked(sk, &msg, size);
1300 }
1301
1302 int tls_sw_sendpage(struct sock *sk, struct page *page,
1303                     int offset, size_t size, int flags)
1304 {
1305         struct bio_vec bvec;
1306         struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, };
1307
1308         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1309                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1310                 return -EOPNOTSUPP;
1311         if (flags & MSG_SENDPAGE_NOTLAST)
1312                 msg.msg_flags |= MSG_MORE;
1313
1314         bvec_set_page(&bvec, page, size, offset);
1315         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1316         return tls_sw_sendmsg(sk, &msg, size);
1317 }
1318
1319 static int
1320 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1321                 bool released)
1322 {
1323         struct tls_context *tls_ctx = tls_get_ctx(sk);
1324         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1325         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1326         long timeo;
1327
1328         timeo = sock_rcvtimeo(sk, nonblock);
1329
1330         while (!tls_strp_msg_ready(ctx)) {
1331                 if (!sk_psock_queue_empty(psock))
1332                         return 0;
1333
1334                 if (sk->sk_err)
1335                         return sock_error(sk);
1336
1337                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1338                         tls_strp_check_rcv(&ctx->strp);
1339                         if (tls_strp_msg_ready(ctx))
1340                                 break;
1341                 }
1342
1343                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1344                         return 0;
1345
1346                 if (sock_flag(sk, SOCK_DONE))
1347                         return 0;
1348
1349                 if (!timeo)
1350                         return -EAGAIN;
1351
1352                 released = true;
1353                 add_wait_queue(sk_sleep(sk), &wait);
1354                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1355                 sk_wait_event(sk, &timeo,
1356                               tls_strp_msg_ready(ctx) ||
1357                               !sk_psock_queue_empty(psock),
1358                               &wait);
1359                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1360                 remove_wait_queue(sk_sleep(sk), &wait);
1361
1362                 /* Handle signals */
1363                 if (signal_pending(current))
1364                         return sock_intr_errno(timeo);
1365         }
1366
1367         tls_strp_msg_load(&ctx->strp, released);
1368
1369         return 1;
1370 }
1371
1372 static int tls_setup_from_iter(struct iov_iter *from,
1373                                int length, int *pages_used,
1374                                struct scatterlist *to,
1375                                int to_max_pages)
1376 {
1377         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1378         struct page *pages[MAX_SKB_FRAGS];
1379         unsigned int size = 0;
1380         ssize_t copied, use;
1381         size_t offset;
1382
1383         while (length > 0) {
1384                 i = 0;
1385                 maxpages = to_max_pages - num_elem;
1386                 if (maxpages == 0) {
1387                         rc = -EFAULT;
1388                         goto out;
1389                 }
1390                 copied = iov_iter_get_pages2(from, pages,
1391                                             length,
1392                                             maxpages, &offset);
1393                 if (copied <= 0) {
1394                         rc = -EFAULT;
1395                         goto out;
1396                 }
1397
1398                 length -= copied;
1399                 size += copied;
1400                 while (copied) {
1401                         use = min_t(int, copied, PAGE_SIZE - offset);
1402
1403                         sg_set_page(&to[num_elem],
1404                                     pages[i], use, offset);
1405                         sg_unmark_end(&to[num_elem]);
1406                         /* We do not uncharge memory from this API */
1407
1408                         offset = 0;
1409                         copied -= use;
1410
1411                         i++;
1412                         num_elem++;
1413                 }
1414         }
1415         /* Mark the end in the last sg entry if newly added */
1416         if (num_elem > *pages_used)
1417                 sg_mark_end(&to[num_elem - 1]);
1418 out:
1419         if (rc)
1420                 iov_iter_revert(from, size);
1421         *pages_used = num_elem;
1422
1423         return rc;
1424 }
1425
1426 static struct sk_buff *
1427 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1428                      unsigned int full_len)
1429 {
1430         struct strp_msg *clr_rxm;
1431         struct sk_buff *clr_skb;
1432         int err;
1433
1434         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1435                                        &err, sk->sk_allocation);
1436         if (!clr_skb)
1437                 return NULL;
1438
1439         skb_copy_header(clr_skb, skb);
1440         clr_skb->len = full_len;
1441         clr_skb->data_len = full_len;
1442
1443         clr_rxm = strp_msg(clr_skb);
1444         clr_rxm->offset = 0;
1445
1446         return clr_skb;
1447 }
1448
1449 /* Decrypt handlers
1450  *
1451  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1452  * They must transform the darg in/out argument are as follows:
1453  *       |          Input            |         Output
1454  * -------------------------------------------------------------------
1455  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1456  * async | Async decrypt allowed     | Async crypto used / in progress
1457  *   skb |            *              | Output skb
1458  *
1459  * If ZC decryption was performed darg.skb will point to the input skb.
1460  */
1461
1462 /* This function decrypts the input skb into either out_iov or in out_sg
1463  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1464  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1465  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1466  * NULL, then the decryption happens inside skb buffers itself, i.e.
1467  * zero-copy gets disabled and 'darg->zc' is updated.
1468  */
1469 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1470                           struct scatterlist *out_sg,
1471                           struct tls_decrypt_arg *darg)
1472 {
1473         struct tls_context *tls_ctx = tls_get_ctx(sk);
1474         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1475         struct tls_prot_info *prot = &tls_ctx->prot_info;
1476         int n_sgin, n_sgout, aead_size, err, pages = 0;
1477         struct sk_buff *skb = tls_strp_msg(ctx);
1478         const struct strp_msg *rxm = strp_msg(skb);
1479         const struct tls_msg *tlm = tls_msg(skb);
1480         struct aead_request *aead_req;
1481         struct scatterlist *sgin = NULL;
1482         struct scatterlist *sgout = NULL;
1483         const int data_len = rxm->full_len - prot->overhead_size;
1484         int tail_pages = !!prot->tail_size;
1485         struct tls_decrypt_ctx *dctx;
1486         struct sk_buff *clear_skb;
1487         int iv_offset = 0;
1488         u8 *mem;
1489
1490         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1491                          rxm->full_len - prot->prepend_size);
1492         if (n_sgin < 1)
1493                 return n_sgin ?: -EBADMSG;
1494
1495         if (darg->zc && (out_iov || out_sg)) {
1496                 clear_skb = NULL;
1497
1498                 if (out_iov)
1499                         n_sgout = 1 + tail_pages +
1500                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1501                 else
1502                         n_sgout = sg_nents(out_sg);
1503         } else {
1504                 darg->zc = false;
1505
1506                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1507                 if (!clear_skb)
1508                         return -ENOMEM;
1509
1510                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1511         }
1512
1513         /* Increment to accommodate AAD */
1514         n_sgin = n_sgin + 1;
1515
1516         /* Allocate a single block of memory which contains
1517          *   aead_req || tls_decrypt_ctx.
1518          * Both structs are variable length.
1519          */
1520         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1521         aead_size = ALIGN(aead_size, __alignof__(*dctx));
1522         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1523                       sk->sk_allocation);
1524         if (!mem) {
1525                 err = -ENOMEM;
1526                 goto exit_free_skb;
1527         }
1528
1529         /* Segment the allocated memory */
1530         aead_req = (struct aead_request *)mem;
1531         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1532         dctx->sk = sk;
1533         sgin = &dctx->sg[0];
1534         sgout = &dctx->sg[n_sgin];
1535
1536         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1537         switch (prot->cipher_type) {
1538         case TLS_CIPHER_AES_CCM_128:
1539                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1540                 iv_offset = 1;
1541                 break;
1542         case TLS_CIPHER_SM4_CCM:
1543                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1544                 iv_offset = 1;
1545                 break;
1546         }
1547
1548         /* Prepare IV */
1549         if (prot->version == TLS_1_3_VERSION ||
1550             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1551                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1552                        prot->iv_size + prot->salt_size);
1553         } else {
1554                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1555                                     &dctx->iv[iv_offset] + prot->salt_size,
1556                                     prot->iv_size);
1557                 if (err < 0)
1558                         goto exit_free;
1559                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1560         }
1561         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1562
1563         /* Prepare AAD */
1564         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1565                      prot->tail_size,
1566                      tls_ctx->rx.rec_seq, tlm->control, prot);
1567
1568         /* Prepare sgin */
1569         sg_init_table(sgin, n_sgin);
1570         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1571         err = skb_to_sgvec(skb, &sgin[1],
1572                            rxm->offset + prot->prepend_size,
1573                            rxm->full_len - prot->prepend_size);
1574         if (err < 0)
1575                 goto exit_free;
1576
1577         if (clear_skb) {
1578                 sg_init_table(sgout, n_sgout);
1579                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1580
1581                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1582                                    data_len + prot->tail_size);
1583                 if (err < 0)
1584                         goto exit_free;
1585         } else if (out_iov) {
1586                 sg_init_table(sgout, n_sgout);
1587                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1588
1589                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1590                                           (n_sgout - 1 - tail_pages));
1591                 if (err < 0)
1592                         goto exit_free_pages;
1593
1594                 if (prot->tail_size) {
1595                         sg_unmark_end(&sgout[pages]);
1596                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1597                                    prot->tail_size);
1598                         sg_mark_end(&sgout[pages + 1]);
1599                 }
1600         } else if (out_sg) {
1601                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1602         }
1603
1604         /* Prepare and submit AEAD request */
1605         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1606                                 data_len + prot->tail_size, aead_req, darg);
1607         if (err)
1608                 goto exit_free_pages;
1609
1610         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1611         clear_skb = NULL;
1612
1613         if (unlikely(darg->async)) {
1614                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1615                 if (err)
1616                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1617                 return err;
1618         }
1619
1620         if (prot->tail_size)
1621                 darg->tail = dctx->tail;
1622
1623 exit_free_pages:
1624         /* Release the pages in case iov was mapped to pages */
1625         for (; pages > 0; pages--)
1626                 put_page(sg_page(&sgout[pages]));
1627 exit_free:
1628         kfree(mem);
1629 exit_free_skb:
1630         consume_skb(clear_skb);
1631         return err;
1632 }
1633
1634 static int
1635 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1636                struct msghdr *msg, struct tls_decrypt_arg *darg)
1637 {
1638         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1639         struct tls_prot_info *prot = &tls_ctx->prot_info;
1640         struct strp_msg *rxm;
1641         int pad, err;
1642
1643         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1644         if (err < 0) {
1645                 if (err == -EBADMSG)
1646                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1647                 return err;
1648         }
1649         /* keep going even for ->async, the code below is TLS 1.3 */
1650
1651         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1652         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1653                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1654                 darg->zc = false;
1655                 if (!darg->tail)
1656                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1657                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1658                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1659         }
1660
1661         pad = tls_padding_length(prot, darg->skb, darg);
1662         if (pad < 0) {
1663                 if (darg->skb != tls_strp_msg(ctx))
1664                         consume_skb(darg->skb);
1665                 return pad;
1666         }
1667
1668         rxm = strp_msg(darg->skb);
1669         rxm->full_len -= pad;
1670
1671         return 0;
1672 }
1673
1674 static int
1675 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1676                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1677 {
1678         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1679         struct tls_prot_info *prot = &tls_ctx->prot_info;
1680         struct strp_msg *rxm;
1681         int pad, err;
1682
1683         if (tls_ctx->rx_conf != TLS_HW)
1684                 return 0;
1685
1686         err = tls_device_decrypted(sk, tls_ctx);
1687         if (err <= 0)
1688                 return err;
1689
1690         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1691         if (pad < 0)
1692                 return pad;
1693
1694         darg->async = false;
1695         darg->skb = tls_strp_msg(ctx);
1696         /* ->zc downgrade check, in case TLS 1.3 gets here */
1697         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1698                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1699
1700         rxm = strp_msg(darg->skb);
1701         rxm->full_len -= pad;
1702
1703         if (!darg->zc) {
1704                 /* Non-ZC case needs a real skb */
1705                 darg->skb = tls_strp_msg_detach(ctx);
1706                 if (!darg->skb)
1707                         return -ENOMEM;
1708         } else {
1709                 unsigned int off, len;
1710
1711                 /* In ZC case nobody cares about the output skb.
1712                  * Just copy the data here. Note the skb is not fully trimmed.
1713                  */
1714                 off = rxm->offset + prot->prepend_size;
1715                 len = rxm->full_len - prot->overhead_size;
1716
1717                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1718                 if (err)
1719                         return err;
1720         }
1721         return 1;
1722 }
1723
1724 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1725                              struct tls_decrypt_arg *darg)
1726 {
1727         struct tls_context *tls_ctx = tls_get_ctx(sk);
1728         struct tls_prot_info *prot = &tls_ctx->prot_info;
1729         struct strp_msg *rxm;
1730         int err;
1731
1732         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1733         if (!err)
1734                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1735         if (err < 0)
1736                 return err;
1737
1738         rxm = strp_msg(darg->skb);
1739         rxm->offset += prot->prepend_size;
1740         rxm->full_len -= prot->overhead_size;
1741         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1742
1743         return 0;
1744 }
1745
1746 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1747 {
1748         struct tls_decrypt_arg darg = { .zc = true, };
1749
1750         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1751 }
1752
1753 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1754                                    u8 *control)
1755 {
1756         int err;
1757
1758         if (!*control) {
1759                 *control = tlm->control;
1760                 if (!*control)
1761                         return -EBADMSG;
1762
1763                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1764                                sizeof(*control), control);
1765                 if (*control != TLS_RECORD_TYPE_DATA) {
1766                         if (err || msg->msg_flags & MSG_CTRUNC)
1767                                 return -EIO;
1768                 }
1769         } else if (*control != tlm->control) {
1770                 return 0;
1771         }
1772
1773         return 1;
1774 }
1775
1776 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1777 {
1778         tls_strp_msg_done(&ctx->strp);
1779 }
1780
1781 /* This function traverses the rx_list in tls receive context to copies the
1782  * decrypted records into the buffer provided by caller zero copy is not
1783  * true. Further, the records are removed from the rx_list if it is not a peek
1784  * case and the record has been consumed completely.
1785  */
1786 static int process_rx_list(struct tls_sw_context_rx *ctx,
1787                            struct msghdr *msg,
1788                            u8 *control,
1789                            size_t skip,
1790                            size_t len,
1791                            bool is_peek)
1792 {
1793         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1794         struct tls_msg *tlm;
1795         ssize_t copied = 0;
1796         int err;
1797
1798         while (skip && skb) {
1799                 struct strp_msg *rxm = strp_msg(skb);
1800                 tlm = tls_msg(skb);
1801
1802                 err = tls_record_content_type(msg, tlm, control);
1803                 if (err <= 0)
1804                         goto out;
1805
1806                 if (skip < rxm->full_len)
1807                         break;
1808
1809                 skip = skip - rxm->full_len;
1810                 skb = skb_peek_next(skb, &ctx->rx_list);
1811         }
1812
1813         while (len && skb) {
1814                 struct sk_buff *next_skb;
1815                 struct strp_msg *rxm = strp_msg(skb);
1816                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1817
1818                 tlm = tls_msg(skb);
1819
1820                 err = tls_record_content_type(msg, tlm, control);
1821                 if (err <= 0)
1822                         goto out;
1823
1824                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1825                                             msg, chunk);
1826                 if (err < 0)
1827                         goto out;
1828
1829                 len = len - chunk;
1830                 copied = copied + chunk;
1831
1832                 /* Consume the data from record if it is non-peek case*/
1833                 if (!is_peek) {
1834                         rxm->offset = rxm->offset + chunk;
1835                         rxm->full_len = rxm->full_len - chunk;
1836
1837                         /* Return if there is unconsumed data in the record */
1838                         if (rxm->full_len - skip)
1839                                 break;
1840                 }
1841
1842                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1843                  * So from the 2nd record, 'skip' should be 0.
1844                  */
1845                 skip = 0;
1846
1847                 if (msg)
1848                         msg->msg_flags |= MSG_EOR;
1849
1850                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1851
1852                 if (!is_peek) {
1853                         __skb_unlink(skb, &ctx->rx_list);
1854                         consume_skb(skb);
1855                 }
1856
1857                 skb = next_skb;
1858         }
1859         err = 0;
1860
1861 out:
1862         return copied ? : err;
1863 }
1864
1865 static bool
1866 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1867                        size_t len_left, size_t decrypted, ssize_t done,
1868                        size_t *flushed_at)
1869 {
1870         size_t max_rec;
1871
1872         if (len_left <= decrypted)
1873                 return false;
1874
1875         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1876         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1877                 return false;
1878
1879         *flushed_at = done;
1880         return sk_flush_backlog(sk);
1881 }
1882
1883 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1884                               bool nonblock)
1885 {
1886         long timeo;
1887         int err;
1888
1889         lock_sock(sk);
1890
1891         timeo = sock_rcvtimeo(sk, nonblock);
1892
1893         while (unlikely(ctx->reader_present)) {
1894                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1895
1896                 ctx->reader_contended = 1;
1897
1898                 add_wait_queue(&ctx->wq, &wait);
1899                 sk_wait_event(sk, &timeo,
1900                               !READ_ONCE(ctx->reader_present), &wait);
1901                 remove_wait_queue(&ctx->wq, &wait);
1902
1903                 if (timeo <= 0) {
1904                         err = -EAGAIN;
1905                         goto err_unlock;
1906                 }
1907                 if (signal_pending(current)) {
1908                         err = sock_intr_errno(timeo);
1909                         goto err_unlock;
1910                 }
1911         }
1912
1913         WRITE_ONCE(ctx->reader_present, 1);
1914
1915         return 0;
1916
1917 err_unlock:
1918         release_sock(sk);
1919         return err;
1920 }
1921
1922 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1923 {
1924         if (unlikely(ctx->reader_contended)) {
1925                 if (wq_has_sleeper(&ctx->wq))
1926                         wake_up(&ctx->wq);
1927                 else
1928                         ctx->reader_contended = 0;
1929
1930                 WARN_ON_ONCE(!ctx->reader_present);
1931         }
1932
1933         WRITE_ONCE(ctx->reader_present, 0);
1934         release_sock(sk);
1935 }
1936
1937 int tls_sw_recvmsg(struct sock *sk,
1938                    struct msghdr *msg,
1939                    size_t len,
1940                    int flags,
1941                    int *addr_len)
1942 {
1943         struct tls_context *tls_ctx = tls_get_ctx(sk);
1944         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1945         struct tls_prot_info *prot = &tls_ctx->prot_info;
1946         ssize_t decrypted = 0, async_copy_bytes = 0;
1947         struct sk_psock *psock;
1948         unsigned char control = 0;
1949         size_t flushed_at = 0;
1950         struct strp_msg *rxm;
1951         struct tls_msg *tlm;
1952         ssize_t copied = 0;
1953         bool async = false;
1954         int target, err;
1955         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1956         bool is_peek = flags & MSG_PEEK;
1957         bool released = true;
1958         bool bpf_strp_enabled;
1959         bool zc_capable;
1960
1961         if (unlikely(flags & MSG_ERRQUEUE))
1962                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1963
1964         psock = sk_psock_get(sk);
1965         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1966         if (err < 0)
1967                 return err;
1968         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1969
1970         /* If crypto failed the connection is broken */
1971         err = ctx->async_wait.err;
1972         if (err)
1973                 goto end;
1974
1975         /* Process pending decrypted records. It must be non-zero-copy */
1976         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1977         if (err < 0)
1978                 goto end;
1979
1980         copied = err;
1981         if (len <= copied)
1982                 goto end;
1983
1984         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1985         len = len - copied;
1986
1987         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1988                 ctx->zc_capable;
1989         decrypted = 0;
1990         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1991                 struct tls_decrypt_arg darg;
1992                 int to_decrypt, chunk;
1993
1994                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1995                                       released);
1996                 if (err <= 0) {
1997                         if (psock) {
1998                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1999                                                        flags);
2000                                 if (chunk > 0) {
2001                                         decrypted += chunk;
2002                                         len -= chunk;
2003                                         continue;
2004                                 }
2005                         }
2006                         goto recv_end;
2007                 }
2008
2009                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2010
2011                 rxm = strp_msg(tls_strp_msg(ctx));
2012                 tlm = tls_msg(tls_strp_msg(ctx));
2013
2014                 to_decrypt = rxm->full_len - prot->overhead_size;
2015
2016                 if (zc_capable && to_decrypt <= len &&
2017                     tlm->control == TLS_RECORD_TYPE_DATA)
2018                         darg.zc = true;
2019
2020                 /* Do not use async mode if record is non-data */
2021                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2022                         darg.async = ctx->async_capable;
2023                 else
2024                         darg.async = false;
2025
2026                 err = tls_rx_one_record(sk, msg, &darg);
2027                 if (err < 0) {
2028                         tls_err_abort(sk, -EBADMSG);
2029                         goto recv_end;
2030                 }
2031
2032                 async |= darg.async;
2033
2034                 /* If the type of records being processed is not known yet,
2035                  * set it to record type just dequeued. If it is already known,
2036                  * but does not match the record type just dequeued, go to end.
2037                  * We always get record type here since for tls1.2, record type
2038                  * is known just after record is dequeued from stream parser.
2039                  * For tls1.3, we disable async.
2040                  */
2041                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2042                 if (err <= 0) {
2043                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2044                         tls_rx_rec_done(ctx);
2045 put_on_rx_list_err:
2046                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2047                         goto recv_end;
2048                 }
2049
2050                 /* periodically flush backlog, and feed strparser */
2051                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2052                                                   decrypted + copied,
2053                                                   &flushed_at);
2054
2055                 /* TLS 1.3 may have updated the length by more than overhead */
2056                 rxm = strp_msg(darg.skb);
2057                 chunk = rxm->full_len;
2058                 tls_rx_rec_done(ctx);
2059
2060                 if (!darg.zc) {
2061                         bool partially_consumed = chunk > len;
2062                         struct sk_buff *skb = darg.skb;
2063
2064                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2065
2066                         if (async) {
2067                                 /* TLS 1.2-only, to_decrypt must be text len */
2068                                 chunk = min_t(int, to_decrypt, len);
2069                                 async_copy_bytes += chunk;
2070 put_on_rx_list:
2071                                 decrypted += chunk;
2072                                 len -= chunk;
2073                                 __skb_queue_tail(&ctx->rx_list, skb);
2074                                 continue;
2075                         }
2076
2077                         if (bpf_strp_enabled) {
2078                                 released = true;
2079                                 err = sk_psock_tls_strp_read(psock, skb);
2080                                 if (err != __SK_PASS) {
2081                                         rxm->offset = rxm->offset + rxm->full_len;
2082                                         rxm->full_len = 0;
2083                                         if (err == __SK_DROP)
2084                                                 consume_skb(skb);
2085                                         continue;
2086                                 }
2087                         }
2088
2089                         if (partially_consumed)
2090                                 chunk = len;
2091
2092                         err = skb_copy_datagram_msg(skb, rxm->offset,
2093                                                     msg, chunk);
2094                         if (err < 0)
2095                                 goto put_on_rx_list_err;
2096
2097                         if (is_peek)
2098                                 goto put_on_rx_list;
2099
2100                         if (partially_consumed) {
2101                                 rxm->offset += chunk;
2102                                 rxm->full_len -= chunk;
2103                                 goto put_on_rx_list;
2104                         }
2105
2106                         consume_skb(skb);
2107                 }
2108
2109                 decrypted += chunk;
2110                 len -= chunk;
2111
2112                 /* Return full control message to userspace before trying
2113                  * to parse another message type
2114                  */
2115                 msg->msg_flags |= MSG_EOR;
2116                 if (control != TLS_RECORD_TYPE_DATA)
2117                         break;
2118         }
2119
2120 recv_end:
2121         if (async) {
2122                 int ret, pending;
2123
2124                 /* Wait for all previously submitted records to be decrypted */
2125                 spin_lock_bh(&ctx->decrypt_compl_lock);
2126                 reinit_completion(&ctx->async_wait.completion);
2127                 pending = atomic_read(&ctx->decrypt_pending);
2128                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2129                 ret = 0;
2130                 if (pending)
2131                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2132                 __skb_queue_purge(&ctx->async_hold);
2133
2134                 if (ret) {
2135                         if (err >= 0 || err == -EINPROGRESS)
2136                                 err = ret;
2137                         decrypted = 0;
2138                         goto end;
2139                 }
2140
2141                 /* Drain records from the rx_list & copy if required */
2142                 if (is_peek || is_kvec)
2143                         err = process_rx_list(ctx, msg, &control, copied,
2144                                               decrypted, is_peek);
2145                 else
2146                         err = process_rx_list(ctx, msg, &control, 0,
2147                                               async_copy_bytes, is_peek);
2148                 decrypted += max(err, 0);
2149         }
2150
2151         copied += decrypted;
2152
2153 end:
2154         tls_rx_reader_unlock(sk, ctx);
2155         if (psock)
2156                 sk_psock_put(sk, psock);
2157         return copied ? : err;
2158 }
2159
2160 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2161                            struct pipe_inode_info *pipe,
2162                            size_t len, unsigned int flags)
2163 {
2164         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2165         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2166         struct strp_msg *rxm = NULL;
2167         struct sock *sk = sock->sk;
2168         struct tls_msg *tlm;
2169         struct sk_buff *skb;
2170         ssize_t copied = 0;
2171         int chunk;
2172         int err;
2173
2174         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2175         if (err < 0)
2176                 return err;
2177
2178         if (!skb_queue_empty(&ctx->rx_list)) {
2179                 skb = __skb_dequeue(&ctx->rx_list);
2180         } else {
2181                 struct tls_decrypt_arg darg;
2182
2183                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2184                                       true);
2185                 if (err <= 0)
2186                         goto splice_read_end;
2187
2188                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2189
2190                 err = tls_rx_one_record(sk, NULL, &darg);
2191                 if (err < 0) {
2192                         tls_err_abort(sk, -EBADMSG);
2193                         goto splice_read_end;
2194                 }
2195
2196                 tls_rx_rec_done(ctx);
2197                 skb = darg.skb;
2198         }
2199
2200         rxm = strp_msg(skb);
2201         tlm = tls_msg(skb);
2202
2203         /* splice does not support reading control messages */
2204         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2205                 err = -EINVAL;
2206                 goto splice_requeue;
2207         }
2208
2209         chunk = min_t(unsigned int, rxm->full_len, len);
2210         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2211         if (copied < 0)
2212                 goto splice_requeue;
2213
2214         if (chunk < rxm->full_len) {
2215                 rxm->offset += len;
2216                 rxm->full_len -= len;
2217                 goto splice_requeue;
2218         }
2219
2220         consume_skb(skb);
2221
2222 splice_read_end:
2223         tls_rx_reader_unlock(sk, ctx);
2224         return copied ? : err;
2225
2226 splice_requeue:
2227         __skb_queue_head(&ctx->rx_list, skb);
2228         goto splice_read_end;
2229 }
2230
2231 bool tls_sw_sock_is_readable(struct sock *sk)
2232 {
2233         struct tls_context *tls_ctx = tls_get_ctx(sk);
2234         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2235         bool ingress_empty = true;
2236         struct sk_psock *psock;
2237
2238         rcu_read_lock();
2239         psock = sk_psock(sk);
2240         if (psock)
2241                 ingress_empty = list_empty(&psock->ingress_msg);
2242         rcu_read_unlock();
2243
2244         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2245                 !skb_queue_empty(&ctx->rx_list);
2246 }
2247
2248 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2249 {
2250         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2251         struct tls_prot_info *prot = &tls_ctx->prot_info;
2252         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2253         size_t cipher_overhead;
2254         size_t data_len = 0;
2255         int ret;
2256
2257         /* Verify that we have a full TLS header, or wait for more data */
2258         if (strp->stm.offset + prot->prepend_size > skb->len)
2259                 return 0;
2260
2261         /* Sanity-check size of on-stack buffer. */
2262         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2263                 ret = -EINVAL;
2264                 goto read_failure;
2265         }
2266
2267         /* Linearize header to local buffer */
2268         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2269         if (ret < 0)
2270                 goto read_failure;
2271
2272         strp->mark = header[0];
2273
2274         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2275
2276         cipher_overhead = prot->tag_size;
2277         if (prot->version != TLS_1_3_VERSION &&
2278             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2279                 cipher_overhead += prot->iv_size;
2280
2281         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2282             prot->tail_size) {
2283                 ret = -EMSGSIZE;
2284                 goto read_failure;
2285         }
2286         if (data_len < cipher_overhead) {
2287                 ret = -EBADMSG;
2288                 goto read_failure;
2289         }
2290
2291         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2292         if (header[1] != TLS_1_2_VERSION_MINOR ||
2293             header[2] != TLS_1_2_VERSION_MAJOR) {
2294                 ret = -EINVAL;
2295                 goto read_failure;
2296         }
2297
2298         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2299                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2300         return data_len + TLS_HEADER_SIZE;
2301
2302 read_failure:
2303         tls_err_abort(strp->sk, ret);
2304
2305         return ret;
2306 }
2307
2308 void tls_rx_msg_ready(struct tls_strparser *strp)
2309 {
2310         struct tls_sw_context_rx *ctx;
2311
2312         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2313         ctx->saved_data_ready(strp->sk);
2314 }
2315
2316 static void tls_data_ready(struct sock *sk)
2317 {
2318         struct tls_context *tls_ctx = tls_get_ctx(sk);
2319         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2320         struct sk_psock *psock;
2321         gfp_t alloc_save;
2322
2323         trace_sk_data_ready(sk);
2324
2325         alloc_save = sk->sk_allocation;
2326         sk->sk_allocation = GFP_ATOMIC;
2327         tls_strp_data_ready(&ctx->strp);
2328         sk->sk_allocation = alloc_save;
2329
2330         psock = sk_psock_get(sk);
2331         if (psock) {
2332                 if (!list_empty(&psock->ingress_msg))
2333                         ctx->saved_data_ready(sk);
2334                 sk_psock_put(sk, psock);
2335         }
2336 }
2337
2338 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2339 {
2340         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2341
2342         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2343         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2344         cancel_delayed_work_sync(&ctx->tx_work.work);
2345 }
2346
2347 void tls_sw_release_resources_tx(struct sock *sk)
2348 {
2349         struct tls_context *tls_ctx = tls_get_ctx(sk);
2350         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2351         struct tls_rec *rec, *tmp;
2352         int pending;
2353
2354         /* Wait for any pending async encryptions to complete */
2355         spin_lock_bh(&ctx->encrypt_compl_lock);
2356         ctx->async_notify = true;
2357         pending = atomic_read(&ctx->encrypt_pending);
2358         spin_unlock_bh(&ctx->encrypt_compl_lock);
2359
2360         if (pending)
2361                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2362
2363         tls_tx_records(sk, -1);
2364
2365         /* Free up un-sent records in tx_list. First, free
2366          * the partially sent record if any at head of tx_list.
2367          */
2368         if (tls_ctx->partially_sent_record) {
2369                 tls_free_partial_record(sk, tls_ctx);
2370                 rec = list_first_entry(&ctx->tx_list,
2371                                        struct tls_rec, list);
2372                 list_del(&rec->list);
2373                 sk_msg_free(sk, &rec->msg_plaintext);
2374                 kfree(rec);
2375         }
2376
2377         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2378                 list_del(&rec->list);
2379                 sk_msg_free(sk, &rec->msg_encrypted);
2380                 sk_msg_free(sk, &rec->msg_plaintext);
2381                 kfree(rec);
2382         }
2383
2384         crypto_free_aead(ctx->aead_send);
2385         tls_free_open_rec(sk);
2386 }
2387
2388 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2389 {
2390         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2391
2392         kfree(ctx);
2393 }
2394
2395 void tls_sw_release_resources_rx(struct sock *sk)
2396 {
2397         struct tls_context *tls_ctx = tls_get_ctx(sk);
2398         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2399
2400         kfree(tls_ctx->rx.rec_seq);
2401         kfree(tls_ctx->rx.iv);
2402
2403         if (ctx->aead_recv) {
2404                 __skb_queue_purge(&ctx->rx_list);
2405                 crypto_free_aead(ctx->aead_recv);
2406                 tls_strp_stop(&ctx->strp);
2407                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2408                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2409                  * never swapped.
2410                  */
2411                 if (ctx->saved_data_ready) {
2412                         write_lock_bh(&sk->sk_callback_lock);
2413                         sk->sk_data_ready = ctx->saved_data_ready;
2414                         write_unlock_bh(&sk->sk_callback_lock);
2415                 }
2416         }
2417 }
2418
2419 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2420 {
2421         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2422
2423         tls_strp_done(&ctx->strp);
2424 }
2425
2426 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2427 {
2428         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2429
2430         kfree(ctx);
2431 }
2432
2433 void tls_sw_free_resources_rx(struct sock *sk)
2434 {
2435         struct tls_context *tls_ctx = tls_get_ctx(sk);
2436
2437         tls_sw_release_resources_rx(sk);
2438         tls_sw_free_ctx_rx(tls_ctx);
2439 }
2440
2441 /* The work handler to transmitt the encrypted records in tx_list */
2442 static void tx_work_handler(struct work_struct *work)
2443 {
2444         struct delayed_work *delayed_work = to_delayed_work(work);
2445         struct tx_work *tx_work = container_of(delayed_work,
2446                                                struct tx_work, work);
2447         struct sock *sk = tx_work->sk;
2448         struct tls_context *tls_ctx = tls_get_ctx(sk);
2449         struct tls_sw_context_tx *ctx;
2450
2451         if (unlikely(!tls_ctx))
2452                 return;
2453
2454         ctx = tls_sw_ctx_tx(tls_ctx);
2455         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2456                 return;
2457
2458         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2459                 return;
2460
2461         if (mutex_trylock(&tls_ctx->tx_lock)) {
2462                 lock_sock(sk);
2463                 tls_tx_records(sk, -1);
2464                 release_sock(sk);
2465                 mutex_unlock(&tls_ctx->tx_lock);
2466         } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2467                 /* Someone is holding the tx_lock, they will likely run Tx
2468                  * and cancel the work on their way out of the lock section.
2469                  * Schedule a long delay just in case.
2470                  */
2471                 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2472         }
2473 }
2474
2475 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2476 {
2477         struct tls_rec *rec;
2478
2479         rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2480         if (!rec)
2481                 return false;
2482
2483         return READ_ONCE(rec->tx_ready);
2484 }
2485
2486 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2487 {
2488         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2489
2490         /* Schedule the transmission if tx list is ready */
2491         if (tls_is_tx_ready(tx_ctx) &&
2492             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2493                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2494 }
2495
2496 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2497 {
2498         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2499
2500         write_lock_bh(&sk->sk_callback_lock);
2501         rx_ctx->saved_data_ready = sk->sk_data_ready;
2502         sk->sk_data_ready = tls_data_ready;
2503         write_unlock_bh(&sk->sk_callback_lock);
2504 }
2505
2506 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2507 {
2508         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2509
2510         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2511                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2512 }
2513
2514 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2515 {
2516         struct tls_context *tls_ctx = tls_get_ctx(sk);
2517         struct tls_prot_info *prot = &tls_ctx->prot_info;
2518         struct tls_crypto_info *crypto_info;
2519         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2520         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2521         struct cipher_context *cctx;
2522         struct crypto_aead **aead;
2523         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2524         struct crypto_tfm *tfm;
2525         char *iv, *rec_seq, *key, *salt, *cipher_name;
2526         size_t keysize;
2527         int rc = 0;
2528
2529         if (!ctx) {
2530                 rc = -EINVAL;
2531                 goto out;
2532         }
2533
2534         if (tx) {
2535                 if (!ctx->priv_ctx_tx) {
2536                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2537                         if (!sw_ctx_tx) {
2538                                 rc = -ENOMEM;
2539                                 goto out;
2540                         }
2541                         ctx->priv_ctx_tx = sw_ctx_tx;
2542                 } else {
2543                         sw_ctx_tx =
2544                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2545                 }
2546         } else {
2547                 if (!ctx->priv_ctx_rx) {
2548                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2549                         if (!sw_ctx_rx) {
2550                                 rc = -ENOMEM;
2551                                 goto out;
2552                         }
2553                         ctx->priv_ctx_rx = sw_ctx_rx;
2554                 } else {
2555                         sw_ctx_rx =
2556                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2557                 }
2558         }
2559
2560         if (tx) {
2561                 crypto_init_wait(&sw_ctx_tx->async_wait);
2562                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2563                 crypto_info = &ctx->crypto_send.info;
2564                 cctx = &ctx->tx;
2565                 aead = &sw_ctx_tx->aead_send;
2566                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2567                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2568                 sw_ctx_tx->tx_work.sk = sk;
2569         } else {
2570                 crypto_init_wait(&sw_ctx_rx->async_wait);
2571                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2572                 init_waitqueue_head(&sw_ctx_rx->wq);
2573                 crypto_info = &ctx->crypto_recv.info;
2574                 cctx = &ctx->rx;
2575                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2576                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2577                 aead = &sw_ctx_rx->aead_recv;
2578         }
2579
2580         switch (crypto_info->cipher_type) {
2581         case TLS_CIPHER_AES_GCM_128: {
2582                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2583
2584                 gcm_128_info = (void *)crypto_info;
2585                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2586                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2587                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2588                 iv = gcm_128_info->iv;
2589                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2590                 rec_seq = gcm_128_info->rec_seq;
2591                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2592                 key = gcm_128_info->key;
2593                 salt = gcm_128_info->salt;
2594                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2595                 cipher_name = "gcm(aes)";
2596                 break;
2597         }
2598         case TLS_CIPHER_AES_GCM_256: {
2599                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2600
2601                 gcm_256_info = (void *)crypto_info;
2602                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2603                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2604                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2605                 iv = gcm_256_info->iv;
2606                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2607                 rec_seq = gcm_256_info->rec_seq;
2608                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2609                 key = gcm_256_info->key;
2610                 salt = gcm_256_info->salt;
2611                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2612                 cipher_name = "gcm(aes)";
2613                 break;
2614         }
2615         case TLS_CIPHER_AES_CCM_128: {
2616                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2617
2618                 ccm_128_info = (void *)crypto_info;
2619                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2620                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2621                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2622                 iv = ccm_128_info->iv;
2623                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2624                 rec_seq = ccm_128_info->rec_seq;
2625                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2626                 key = ccm_128_info->key;
2627                 salt = ccm_128_info->salt;
2628                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2629                 cipher_name = "ccm(aes)";
2630                 break;
2631         }
2632         case TLS_CIPHER_CHACHA20_POLY1305: {
2633                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2634
2635                 chacha20_poly1305_info = (void *)crypto_info;
2636                 nonce_size = 0;
2637                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2638                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2639                 iv = chacha20_poly1305_info->iv;
2640                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2641                 rec_seq = chacha20_poly1305_info->rec_seq;
2642                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2643                 key = chacha20_poly1305_info->key;
2644                 salt = chacha20_poly1305_info->salt;
2645                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2646                 cipher_name = "rfc7539(chacha20,poly1305)";
2647                 break;
2648         }
2649         case TLS_CIPHER_SM4_GCM: {
2650                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2651
2652                 sm4_gcm_info = (void *)crypto_info;
2653                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2654                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2655                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2656                 iv = sm4_gcm_info->iv;
2657                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2658                 rec_seq = sm4_gcm_info->rec_seq;
2659                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2660                 key = sm4_gcm_info->key;
2661                 salt = sm4_gcm_info->salt;
2662                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2663                 cipher_name = "gcm(sm4)";
2664                 break;
2665         }
2666         case TLS_CIPHER_SM4_CCM: {
2667                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2668
2669                 sm4_ccm_info = (void *)crypto_info;
2670                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2671                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2672                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2673                 iv = sm4_ccm_info->iv;
2674                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2675                 rec_seq = sm4_ccm_info->rec_seq;
2676                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2677                 key = sm4_ccm_info->key;
2678                 salt = sm4_ccm_info->salt;
2679                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2680                 cipher_name = "ccm(sm4)";
2681                 break;
2682         }
2683         case TLS_CIPHER_ARIA_GCM_128: {
2684                 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2685
2686                 aria_gcm_128_info = (void *)crypto_info;
2687                 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2688                 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2689                 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2690                 iv = aria_gcm_128_info->iv;
2691                 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2692                 rec_seq = aria_gcm_128_info->rec_seq;
2693                 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2694                 key = aria_gcm_128_info->key;
2695                 salt = aria_gcm_128_info->salt;
2696                 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2697                 cipher_name = "gcm(aria)";
2698                 break;
2699         }
2700         case TLS_CIPHER_ARIA_GCM_256: {
2701                 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2702
2703                 gcm_256_info = (void *)crypto_info;
2704                 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2705                 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2706                 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2707                 iv = gcm_256_info->iv;
2708                 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2709                 rec_seq = gcm_256_info->rec_seq;
2710                 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2711                 key = gcm_256_info->key;
2712                 salt = gcm_256_info->salt;
2713                 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2714                 cipher_name = "gcm(aria)";
2715                 break;
2716         }
2717         default:
2718                 rc = -EINVAL;
2719                 goto free_priv;
2720         }
2721
2722         if (crypto_info->version == TLS_1_3_VERSION) {
2723                 nonce_size = 0;
2724                 prot->aad_size = TLS_HEADER_SIZE;
2725                 prot->tail_size = 1;
2726         } else {
2727                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2728                 prot->tail_size = 0;
2729         }
2730
2731         /* Sanity-check the sizes for stack allocations. */
2732         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2733             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2734             prot->aad_size > TLS_MAX_AAD_SIZE) {
2735                 rc = -EINVAL;
2736                 goto free_priv;
2737         }
2738
2739         prot->version = crypto_info->version;
2740         prot->cipher_type = crypto_info->cipher_type;
2741         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2742         prot->tag_size = tag_size;
2743         prot->overhead_size = prot->prepend_size +
2744                               prot->tag_size + prot->tail_size;
2745         prot->iv_size = iv_size;
2746         prot->salt_size = salt_size;
2747         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2748         if (!cctx->iv) {
2749                 rc = -ENOMEM;
2750                 goto free_priv;
2751         }
2752         /* Note: 128 & 256 bit salt are the same size */
2753         prot->rec_seq_size = rec_seq_size;
2754         memcpy(cctx->iv, salt, salt_size);
2755         memcpy(cctx->iv + salt_size, iv, iv_size);
2756         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2757         if (!cctx->rec_seq) {
2758                 rc = -ENOMEM;
2759                 goto free_iv;
2760         }
2761
2762         if (!*aead) {
2763                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2764                 if (IS_ERR(*aead)) {
2765                         rc = PTR_ERR(*aead);
2766                         *aead = NULL;
2767                         goto free_rec_seq;
2768                 }
2769         }
2770
2771         ctx->push_pending_record = tls_sw_push_pending_record;
2772
2773         rc = crypto_aead_setkey(*aead, key, keysize);
2774
2775         if (rc)
2776                 goto free_aead;
2777
2778         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2779         if (rc)
2780                 goto free_aead;
2781
2782         if (sw_ctx_rx) {
2783                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2784
2785                 tls_update_rx_zc_capable(ctx);
2786                 sw_ctx_rx->async_capable =
2787                         crypto_info->version != TLS_1_3_VERSION &&
2788                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2789
2790                 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2791                 if (rc)
2792                         goto free_aead;
2793         }
2794
2795         goto out;
2796
2797 free_aead:
2798         crypto_free_aead(*aead);
2799         *aead = NULL;
2800 free_rec_seq:
2801         kfree(cctx->rec_seq);
2802         cctx->rec_seq = NULL;
2803 free_iv:
2804         kfree(cctx->iv);
2805         cctx->iv = NULL;
2806 free_priv:
2807         if (tx) {
2808                 kfree(ctx->priv_ctx_tx);
2809                 ctx->priv_ctx_tx = NULL;
2810         } else {
2811                 kfree(ctx->priv_ctx_rx);
2812                 ctx->priv_ctx_rx = NULL;
2813         }
2814 out:
2815         return rc;
2816 }