Merge tag 'libnvdimm-fixes-5.15-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49         WARN_ON_ONCE(err >= 0);
50         /* sk->sk_err should contain a positive error code. */
51         sk->sk_err = -err;
52         sk_error_report(sk);
53 }
54
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78
79                 WARN_ON(start > offset + len);
80
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98
99                         WARN_ON(start > offset + len);
100
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130
131 static int padding_length(struct tls_sw_context_rx *ctx,
132                           struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134         struct strp_msg *rxm = strp_msg(skb);
135         int sub = 0;
136
137         /* Determine zero-padding length */
138         if (prot->version == TLS_1_3_VERSION) {
139                 char content_type = 0;
140                 int err;
141                 int back = 17;
142
143                 while (content_type == 0) {
144                         if (back > rxm->full_len - prot->prepend_size)
145                                 return -EBADMSG;
146                         err = skb_copy_bits(skb,
147                                             rxm->offset + rxm->full_len - back,
148                                             &content_type, 1);
149                         if (err)
150                                 return err;
151                         if (content_type)
152                                 break;
153                         sub++;
154                         back++;
155                 }
156                 ctx->control = content_type;
157         }
158         return sub;
159 }
160
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163         struct aead_request *aead_req = (struct aead_request *)req;
164         struct scatterlist *sgout = aead_req->dst;
165         struct scatterlist *sgin = aead_req->src;
166         struct tls_sw_context_rx *ctx;
167         struct tls_context *tls_ctx;
168         struct tls_prot_info *prot;
169         struct scatterlist *sg;
170         struct sk_buff *skb;
171         unsigned int pages;
172         int pending;
173
174         skb = (struct sk_buff *)req->data;
175         tls_ctx = tls_get_ctx(skb->sk);
176         ctx = tls_sw_ctx_rx(tls_ctx);
177         prot = &tls_ctx->prot_info;
178
179         /* Propagate if there was an err */
180         if (err) {
181                 if (err == -EBADMSG)
182                         TLS_INC_STATS(sock_net(skb->sk),
183                                       LINUX_MIB_TLSDECRYPTERROR);
184                 ctx->async_wait.err = err;
185                 tls_err_abort(skb->sk, err);
186         } else {
187                 struct strp_msg *rxm = strp_msg(skb);
188                 int pad;
189
190                 pad = padding_length(ctx, prot, skb);
191                 if (pad < 0) {
192                         ctx->async_wait.err = pad;
193                         tls_err_abort(skb->sk, pad);
194                 } else {
195                         rxm->full_len -= pad;
196                         rxm->offset += prot->prepend_size;
197                         rxm->full_len -= prot->overhead_size;
198                 }
199         }
200
201         /* After using skb->sk to propagate sk through crypto async callback
202          * we need to NULL it again.
203          */
204         skb->sk = NULL;
205
206
207         /* Free the destination pages if skb was not decrypted inplace */
208         if (sgout != sgin) {
209                 /* Skip the first S/G entry as it points to AAD */
210                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211                         if (!sg)
212                                 break;
213                         put_page(sg_page(sg));
214                 }
215         }
216
217         kfree(aead_req);
218
219         spin_lock_bh(&ctx->decrypt_compl_lock);
220         pending = atomic_dec_return(&ctx->decrypt_pending);
221
222         if (!pending && ctx->async_notify)
223                 complete(&ctx->async_wait.completion);
224         spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
227 static int tls_do_decryption(struct sock *sk,
228                              struct sk_buff *skb,
229                              struct scatterlist *sgin,
230                              struct scatterlist *sgout,
231                              char *iv_recv,
232                              size_t data_len,
233                              struct aead_request *aead_req,
234                              bool async)
235 {
236         struct tls_context *tls_ctx = tls_get_ctx(sk);
237         struct tls_prot_info *prot = &tls_ctx->prot_info;
238         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239         int ret;
240
241         aead_request_set_tfm(aead_req, ctx->aead_recv);
242         aead_request_set_ad(aead_req, prot->aad_size);
243         aead_request_set_crypt(aead_req, sgin, sgout,
244                                data_len + prot->tag_size,
245                                (u8 *)iv_recv);
246
247         if (async) {
248                 /* Using skb->sk to push sk through to crypto async callback
249                  * handler. This allows propagating errors up to the socket
250                  * if needed. It _must_ be cleared in the async handler
251                  * before consume_skb is called. We _know_ skb->sk is NULL
252                  * because it is a clone from strparser.
253                  */
254                 skb->sk = sk;
255                 aead_request_set_callback(aead_req,
256                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
257                                           tls_decrypt_done, skb);
258                 atomic_inc(&ctx->decrypt_pending);
259         } else {
260                 aead_request_set_callback(aead_req,
261                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
262                                           crypto_req_done, &ctx->async_wait);
263         }
264
265         ret = crypto_aead_decrypt(aead_req);
266         if (ret == -EINPROGRESS) {
267                 if (async)
268                         return ret;
269
270                 ret = crypto_wait_req(ret, &ctx->async_wait);
271         }
272
273         if (async)
274                 atomic_dec(&ctx->decrypt_pending);
275
276         return ret;
277 }
278
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281         struct tls_context *tls_ctx = tls_get_ctx(sk);
282         struct tls_prot_info *prot = &tls_ctx->prot_info;
283         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284         struct tls_rec *rec = ctx->open_rec;
285
286         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287         if (target_size > 0)
288                 target_size += prot->overhead_size;
289         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296         struct tls_rec *rec = ctx->open_rec;
297         struct sk_msg *msg_en = &rec->msg_encrypted;
298
299         return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_prot_info *prot = &tls_ctx->prot_info;
306         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307         struct tls_rec *rec = ctx->open_rec;
308         struct sk_msg *msg_pl = &rec->msg_plaintext;
309         struct sk_msg *msg_en = &rec->msg_encrypted;
310         int skip, len;
311
312         /* We add page references worth len bytes from encrypted sg
313          * at the end of plaintext sg. It is guaranteed that msg_en
314          * has enough required room (ensured by caller).
315          */
316         len = required - msg_pl->sg.size;
317
318         /* Skip initial bytes in msg_en's data to be able to use
319          * same offset of both plain and encrypted data.
320          */
321         skip = prot->prepend_size + msg_pl->sg.size;
322
323         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328         struct tls_context *tls_ctx = tls_get_ctx(sk);
329         struct tls_prot_info *prot = &tls_ctx->prot_info;
330         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331         struct sk_msg *msg_pl, *msg_en;
332         struct tls_rec *rec;
333         int mem_size;
334
335         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337         rec = kzalloc(mem_size, sk->sk_allocation);
338         if (!rec)
339                 return NULL;
340
341         msg_pl = &rec->msg_plaintext;
342         msg_en = &rec->msg_encrypted;
343
344         sk_msg_init(msg_pl);
345         sk_msg_init(msg_en);
346
347         sg_init_table(rec->sg_aead_in, 2);
348         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_in[1]);
350
351         sg_init_table(rec->sg_aead_out, 2);
352         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353         sg_unmark_end(&rec->sg_aead_out[1]);
354
355         return rec;
356 }
357
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360         sk_msg_free(sk, &rec->msg_encrypted);
361         sk_msg_free(sk, &rec->msg_plaintext);
362         kfree(rec);
363 }
364
365 static void tls_free_open_rec(struct sock *sk)
366 {
367         struct tls_context *tls_ctx = tls_get_ctx(sk);
368         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369         struct tls_rec *rec = ctx->open_rec;
370
371         if (rec) {
372                 tls_free_rec(sk, rec);
373                 ctx->open_rec = NULL;
374         }
375 }
376
377 int tls_tx_records(struct sock *sk, int flags)
378 {
379         struct tls_context *tls_ctx = tls_get_ctx(sk);
380         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381         struct tls_rec *rec, *tmp;
382         struct sk_msg *msg_en;
383         int tx_flags, rc = 0;
384
385         if (tls_is_partially_sent_record(tls_ctx)) {
386                 rec = list_first_entry(&ctx->tx_list,
387                                        struct tls_rec, list);
388
389                 if (flags == -1)
390                         tx_flags = rec->tx_flags;
391                 else
392                         tx_flags = flags;
393
394                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395                 if (rc)
396                         goto tx_err;
397
398                 /* Full record has been transmitted.
399                  * Remove the head of tx_list
400                  */
401                 list_del(&rec->list);
402                 sk_msg_free(sk, &rec->msg_plaintext);
403                 kfree(rec);
404         }
405
406         /* Tx all ready records */
407         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408                 if (READ_ONCE(rec->tx_ready)) {
409                         if (flags == -1)
410                                 tx_flags = rec->tx_flags;
411                         else
412                                 tx_flags = flags;
413
414                         msg_en = &rec->msg_encrypted;
415                         rc = tls_push_sg(sk, tls_ctx,
416                                          &msg_en->sg.data[msg_en->sg.curr],
417                                          0, tx_flags);
418                         if (rc)
419                                 goto tx_err;
420
421                         list_del(&rec->list);
422                         sk_msg_free(sk, &rec->msg_plaintext);
423                         kfree(rec);
424                 } else {
425                         break;
426                 }
427         }
428
429 tx_err:
430         if (rc < 0 && rc != -EAGAIN)
431                 tls_err_abort(sk, -EBADMSG);
432
433         return rc;
434 }
435
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438         struct aead_request *aead_req = (struct aead_request *)req;
439         struct sock *sk = req->data;
440         struct tls_context *tls_ctx = tls_get_ctx(sk);
441         struct tls_prot_info *prot = &tls_ctx->prot_info;
442         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443         struct scatterlist *sge;
444         struct sk_msg *msg_en;
445         struct tls_rec *rec;
446         bool ready = false;
447         int pending;
448
449         rec = container_of(aead_req, struct tls_rec, aead_req);
450         msg_en = &rec->msg_encrypted;
451
452         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453         sge->offset -= prot->prepend_size;
454         sge->length += prot->prepend_size;
455
456         /* Check if error is previously set on socket */
457         if (err || sk->sk_err) {
458                 rec = NULL;
459
460                 /* If err is already set on socket, return the same code */
461                 if (sk->sk_err) {
462                         ctx->async_wait.err = -sk->sk_err;
463                 } else {
464                         ctx->async_wait.err = err;
465                         tls_err_abort(sk, err);
466                 }
467         }
468
469         if (rec) {
470                 struct tls_rec *first_rec;
471
472                 /* Mark the record as ready for transmission */
473                 smp_store_mb(rec->tx_ready, true);
474
475                 /* If received record is at head of tx_list, schedule tx */
476                 first_rec = list_first_entry(&ctx->tx_list,
477                                              struct tls_rec, list);
478                 if (rec == first_rec)
479                         ready = true;
480         }
481
482         spin_lock_bh(&ctx->encrypt_compl_lock);
483         pending = atomic_dec_return(&ctx->encrypt_pending);
484
485         if (!pending && ctx->async_notify)
486                 complete(&ctx->async_wait.completion);
487         spin_unlock_bh(&ctx->encrypt_compl_lock);
488
489         if (!ready)
490                 return;
491
492         /* Schedule the transmission */
493         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494                 schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496
497 static int tls_do_encryption(struct sock *sk,
498                              struct tls_context *tls_ctx,
499                              struct tls_sw_context_tx *ctx,
500                              struct aead_request *aead_req,
501                              size_t data_len, u32 start)
502 {
503         struct tls_prot_info *prot = &tls_ctx->prot_info;
504         struct tls_rec *rec = ctx->open_rec;
505         struct sk_msg *msg_en = &rec->msg_encrypted;
506         struct scatterlist *sge = sk_msg_elem(msg_en, start);
507         int rc, iv_offset = 0;
508
509         /* For CCM based ciphers, first byte of IV is a constant */
510         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512                 iv_offset = 1;
513         }
514
515         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516                prot->iv_size + prot->salt_size);
517
518         xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
519
520         sge->offset += prot->prepend_size;
521         sge->length -= prot->prepend_size;
522
523         msg_en->sg.curr = start;
524
525         aead_request_set_tfm(aead_req, ctx->aead_send);
526         aead_request_set_ad(aead_req, prot->aad_size);
527         aead_request_set_crypt(aead_req, rec->sg_aead_in,
528                                rec->sg_aead_out,
529                                data_len, rec->iv_data);
530
531         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532                                   tls_encrypt_done, sk);
533
534         /* Add the record in tx_list */
535         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536         atomic_inc(&ctx->encrypt_pending);
537
538         rc = crypto_aead_encrypt(aead_req);
539         if (!rc || rc != -EINPROGRESS) {
540                 atomic_dec(&ctx->encrypt_pending);
541                 sge->offset -= prot->prepend_size;
542                 sge->length += prot->prepend_size;
543         }
544
545         if (!rc) {
546                 WRITE_ONCE(rec->tx_ready, true);
547         } else if (rc != -EINPROGRESS) {
548                 list_del(&rec->list);
549                 return rc;
550         }
551
552         /* Unhook the record from context if encryption is not failure */
553         ctx->open_rec = NULL;
554         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555         return rc;
556 }
557
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559                                  struct tls_rec **to, struct sk_msg *msg_opl,
560                                  struct sk_msg *msg_oen, u32 split_point,
561                                  u32 tx_overhead_size, u32 *orig_end)
562 {
563         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564         struct scatterlist *sge, *osge, *nsge;
565         u32 orig_size = msg_opl->sg.size;
566         struct scatterlist tmp = { };
567         struct sk_msg *msg_npl;
568         struct tls_rec *new;
569         int ret;
570
571         new = tls_get_rec(sk);
572         if (!new)
573                 return -ENOMEM;
574         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575                            tx_overhead_size, 0);
576         if (ret < 0) {
577                 tls_free_rec(sk, new);
578                 return ret;
579         }
580
581         *orig_end = msg_opl->sg.end;
582         i = msg_opl->sg.start;
583         sge = sk_msg_elem(msg_opl, i);
584         while (apply && sge->length) {
585                 if (sge->length > apply) {
586                         u32 len = sge->length - apply;
587
588                         get_page(sg_page(sge));
589                         sg_set_page(&tmp, sg_page(sge), len,
590                                     sge->offset + apply);
591                         sge->length = apply;
592                         bytes += apply;
593                         apply = 0;
594                 } else {
595                         apply -= sge->length;
596                         bytes += sge->length;
597                 }
598
599                 sk_msg_iter_var_next(i);
600                 if (i == msg_opl->sg.end)
601                         break;
602                 sge = sk_msg_elem(msg_opl, i);
603         }
604
605         msg_opl->sg.end = i;
606         msg_opl->sg.curr = i;
607         msg_opl->sg.copybreak = 0;
608         msg_opl->apply_bytes = 0;
609         msg_opl->sg.size = bytes;
610
611         msg_npl = &new->msg_plaintext;
612         msg_npl->apply_bytes = apply;
613         msg_npl->sg.size = orig_size - bytes;
614
615         j = msg_npl->sg.start;
616         nsge = sk_msg_elem(msg_npl, j);
617         if (tmp.length) {
618                 memcpy(nsge, &tmp, sizeof(*nsge));
619                 sk_msg_iter_var_next(j);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         osge = sk_msg_elem(msg_opl, i);
624         while (osge->length) {
625                 memcpy(nsge, osge, sizeof(*nsge));
626                 sg_unmark_end(nsge);
627                 sk_msg_iter_var_next(i);
628                 sk_msg_iter_var_next(j);
629                 if (i == *orig_end)
630                         break;
631                 osge = sk_msg_elem(msg_opl, i);
632                 nsge = sk_msg_elem(msg_npl, j);
633         }
634
635         msg_npl->sg.end = j;
636         msg_npl->sg.curr = j;
637         msg_npl->sg.copybreak = 0;
638
639         *to = new;
640         return 0;
641 }
642
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644                                   struct tls_rec *from, u32 orig_end)
645 {
646         struct sk_msg *msg_npl = &from->msg_plaintext;
647         struct sk_msg *msg_opl = &to->msg_plaintext;
648         struct scatterlist *osge, *nsge;
649         u32 i, j;
650
651         i = msg_opl->sg.end;
652         sk_msg_iter_var_prev(i);
653         j = msg_npl->sg.start;
654
655         osge = sk_msg_elem(msg_opl, i);
656         nsge = sk_msg_elem(msg_npl, j);
657
658         if (sg_page(osge) == sg_page(nsge) &&
659             osge->offset + osge->length == nsge->offset) {
660                 osge->length += nsge->length;
661                 put_page(sg_page(nsge));
662         }
663
664         msg_opl->sg.end = orig_end;
665         msg_opl->sg.curr = orig_end;
666         msg_opl->sg.copybreak = 0;
667         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668         msg_opl->sg.size += msg_npl->sg.size;
669
670         sk_msg_free(sk, &to->msg_encrypted);
671         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673         kfree(from);
674 }
675
676 static int tls_push_record(struct sock *sk, int flags,
677                            unsigned char record_type)
678 {
679         struct tls_context *tls_ctx = tls_get_ctx(sk);
680         struct tls_prot_info *prot = &tls_ctx->prot_info;
681         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683         u32 i, split_point, orig_end;
684         struct sk_msg *msg_pl, *msg_en;
685         struct aead_request *req;
686         bool split;
687         int rc;
688
689         if (!rec)
690                 return 0;
691
692         msg_pl = &rec->msg_plaintext;
693         msg_en = &rec->msg_encrypted;
694
695         split_point = msg_pl->apply_bytes;
696         split = split_point && split_point < msg_pl->sg.size;
697         if (unlikely((!split &&
698                       msg_pl->sg.size +
699                       prot->overhead_size > msg_en->sg.size) ||
700                      (split &&
701                       split_point +
702                       prot->overhead_size > msg_en->sg.size))) {
703                 split = true;
704                 split_point = msg_en->sg.size;
705         }
706         if (split) {
707                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708                                            split_point, prot->overhead_size,
709                                            &orig_end);
710                 if (rc < 0)
711                         return rc;
712                 /* This can happen if above tls_split_open_record allocates
713                  * a single large encryption buffer instead of two smaller
714                  * ones. In this case adjust pointers and continue without
715                  * split.
716                  */
717                 if (!msg_pl->sg.size) {
718                         tls_merge_open_record(sk, rec, tmp, orig_end);
719                         msg_pl = &rec->msg_plaintext;
720                         msg_en = &rec->msg_encrypted;
721                         split = false;
722                 }
723                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724                             prot->overhead_size);
725         }
726
727         rec->tx_flags = flags;
728         req = &rec->aead_req;
729
730         i = msg_pl->sg.end;
731         sk_msg_iter_var_prev(i);
732
733         rec->content_type = record_type;
734         if (prot->version == TLS_1_3_VERSION) {
735                 /* Add content type to end of message.  No padding added */
736                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737                 sg_mark_end(&rec->sg_content_type);
738                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739                          &rec->sg_content_type);
740         } else {
741                 sg_mark_end(sk_msg_elem(msg_pl, i));
742         }
743
744         if (msg_pl->sg.end < msg_pl->sg.start) {
745                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747                          msg_pl->sg.data);
748         }
749
750         i = msg_pl->sg.start;
751         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753         i = msg_en->sg.end;
754         sk_msg_iter_var_prev(i);
755         sg_mark_end(sk_msg_elem(msg_en, i));
756
757         i = msg_en->sg.start;
758         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761                      tls_ctx->tx.rec_seq, record_type, prot);
762
763         tls_fill_prepend(tls_ctx,
764                          page_address(sg_page(&msg_en->sg.data[i])) +
765                          msg_en->sg.data[i].offset,
766                          msg_pl->sg.size + prot->tail_size,
767                          record_type);
768
769         tls_ctx->pending_open_record_frags = false;
770
771         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
772                                msg_pl->sg.size + prot->tail_size, i);
773         if (rc < 0) {
774                 if (rc != -EINPROGRESS) {
775                         tls_err_abort(sk, -EBADMSG);
776                         if (split) {
777                                 tls_ctx->pending_open_record_frags = true;
778                                 tls_merge_open_record(sk, rec, tmp, orig_end);
779                         }
780                 }
781                 ctx->async_capable = 1;
782                 return rc;
783         } else if (split) {
784                 msg_pl = &tmp->msg_plaintext;
785                 msg_en = &tmp->msg_encrypted;
786                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
787                 tls_ctx->pending_open_record_frags = true;
788                 ctx->open_rec = tmp;
789         }
790
791         return tls_tx_records(sk, flags);
792 }
793
794 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
795                                bool full_record, u8 record_type,
796                                ssize_t *copied, int flags)
797 {
798         struct tls_context *tls_ctx = tls_get_ctx(sk);
799         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
800         struct sk_msg msg_redir = { };
801         struct sk_psock *psock;
802         struct sock *sk_redir;
803         struct tls_rec *rec;
804         bool enospc, policy;
805         int err = 0, send;
806         u32 delta = 0;
807
808         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
809         psock = sk_psock_get(sk);
810         if (!psock || !policy) {
811                 err = tls_push_record(sk, flags, record_type);
812                 if (err && sk->sk_err == EBADMSG) {
813                         *copied -= sk_msg_free(sk, msg);
814                         tls_free_open_rec(sk);
815                         err = -sk->sk_err;
816                 }
817                 if (psock)
818                         sk_psock_put(sk, psock);
819                 return err;
820         }
821 more_data:
822         enospc = sk_msg_full(msg);
823         if (psock->eval == __SK_NONE) {
824                 delta = msg->sg.size;
825                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
826                 delta -= msg->sg.size;
827         }
828         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
829             !enospc && !full_record) {
830                 err = -ENOSPC;
831                 goto out_err;
832         }
833         msg->cork_bytes = 0;
834         send = msg->sg.size;
835         if (msg->apply_bytes && msg->apply_bytes < send)
836                 send = msg->apply_bytes;
837
838         switch (psock->eval) {
839         case __SK_PASS:
840                 err = tls_push_record(sk, flags, record_type);
841                 if (err && sk->sk_err == EBADMSG) {
842                         *copied -= sk_msg_free(sk, msg);
843                         tls_free_open_rec(sk);
844                         err = -sk->sk_err;
845                         goto out_err;
846                 }
847                 break;
848         case __SK_REDIRECT:
849                 sk_redir = psock->sk_redir;
850                 memcpy(&msg_redir, msg, sizeof(*msg));
851                 if (msg->apply_bytes < send)
852                         msg->apply_bytes = 0;
853                 else
854                         msg->apply_bytes -= send;
855                 sk_msg_return_zero(sk, msg, send);
856                 msg->sg.size -= send;
857                 release_sock(sk);
858                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
859                 lock_sock(sk);
860                 if (err < 0) {
861                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
862                         msg->sg.size = 0;
863                 }
864                 if (msg->sg.size == 0)
865                         tls_free_open_rec(sk);
866                 break;
867         case __SK_DROP:
868         default:
869                 sk_msg_free_partial(sk, msg, send);
870                 if (msg->apply_bytes < send)
871                         msg->apply_bytes = 0;
872                 else
873                         msg->apply_bytes -= send;
874                 if (msg->sg.size == 0)
875                         tls_free_open_rec(sk);
876                 *copied -= (send + delta);
877                 err = -EACCES;
878         }
879
880         if (likely(!err)) {
881                 bool reset_eval = !ctx->open_rec;
882
883                 rec = ctx->open_rec;
884                 if (rec) {
885                         msg = &rec->msg_plaintext;
886                         if (!msg->apply_bytes)
887                                 reset_eval = true;
888                 }
889                 if (reset_eval) {
890                         psock->eval = __SK_NONE;
891                         if (psock->sk_redir) {
892                                 sock_put(psock->sk_redir);
893                                 psock->sk_redir = NULL;
894                         }
895                 }
896                 if (rec)
897                         goto more_data;
898         }
899  out_err:
900         sk_psock_put(sk, psock);
901         return err;
902 }
903
904 static int tls_sw_push_pending_record(struct sock *sk, int flags)
905 {
906         struct tls_context *tls_ctx = tls_get_ctx(sk);
907         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
908         struct tls_rec *rec = ctx->open_rec;
909         struct sk_msg *msg_pl;
910         size_t copied;
911
912         if (!rec)
913                 return 0;
914
915         msg_pl = &rec->msg_plaintext;
916         copied = msg_pl->sg.size;
917         if (!copied)
918                 return 0;
919
920         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
921                                    &copied, flags);
922 }
923
924 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
925 {
926         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
927         struct tls_context *tls_ctx = tls_get_ctx(sk);
928         struct tls_prot_info *prot = &tls_ctx->prot_info;
929         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
930         bool async_capable = ctx->async_capable;
931         unsigned char record_type = TLS_RECORD_TYPE_DATA;
932         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
933         bool eor = !(msg->msg_flags & MSG_MORE);
934         size_t try_to_copy;
935         ssize_t copied = 0;
936         struct sk_msg *msg_pl, *msg_en;
937         struct tls_rec *rec;
938         int required_size;
939         int num_async = 0;
940         bool full_record;
941         int record_room;
942         int num_zc = 0;
943         int orig_size;
944         int ret = 0;
945         int pending;
946
947         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
948                                MSG_CMSG_COMPAT))
949                 return -EOPNOTSUPP;
950
951         mutex_lock(&tls_ctx->tx_lock);
952         lock_sock(sk);
953
954         if (unlikely(msg->msg_controllen)) {
955                 ret = tls_proccess_cmsg(sk, msg, &record_type);
956                 if (ret) {
957                         if (ret == -EINPROGRESS)
958                                 num_async++;
959                         else if (ret != -EAGAIN)
960                                 goto send_end;
961                 }
962         }
963
964         while (msg_data_left(msg)) {
965                 if (sk->sk_err) {
966                         ret = -sk->sk_err;
967                         goto send_end;
968                 }
969
970                 if (ctx->open_rec)
971                         rec = ctx->open_rec;
972                 else
973                         rec = ctx->open_rec = tls_get_rec(sk);
974                 if (!rec) {
975                         ret = -ENOMEM;
976                         goto send_end;
977                 }
978
979                 msg_pl = &rec->msg_plaintext;
980                 msg_en = &rec->msg_encrypted;
981
982                 orig_size = msg_pl->sg.size;
983                 full_record = false;
984                 try_to_copy = msg_data_left(msg);
985                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
986                 if (try_to_copy >= record_room) {
987                         try_to_copy = record_room;
988                         full_record = true;
989                 }
990
991                 required_size = msg_pl->sg.size + try_to_copy +
992                                 prot->overhead_size;
993
994                 if (!sk_stream_memory_free(sk))
995                         goto wait_for_sndbuf;
996
997 alloc_encrypted:
998                 ret = tls_alloc_encrypted_msg(sk, required_size);
999                 if (ret) {
1000                         if (ret != -ENOSPC)
1001                                 goto wait_for_memory;
1002
1003                         /* Adjust try_to_copy according to the amount that was
1004                          * actually allocated. The difference is due
1005                          * to max sg elements limit
1006                          */
1007                         try_to_copy -= required_size - msg_en->sg.size;
1008                         full_record = true;
1009                 }
1010
1011                 if (!is_kvec && (full_record || eor) && !async_capable) {
1012                         u32 first = msg_pl->sg.end;
1013
1014                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1015                                                         msg_pl, try_to_copy);
1016                         if (ret)
1017                                 goto fallback_to_reg_send;
1018
1019                         num_zc++;
1020                         copied += try_to_copy;
1021
1022                         sk_msg_sg_copy_set(msg_pl, first);
1023                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024                                                   record_type, &copied,
1025                                                   msg->msg_flags);
1026                         if (ret) {
1027                                 if (ret == -EINPROGRESS)
1028                                         num_async++;
1029                                 else if (ret == -ENOMEM)
1030                                         goto wait_for_memory;
1031                                 else if (ctx->open_rec && ret == -ENOSPC)
1032                                         goto rollback_iter;
1033                                 else if (ret != -EAGAIN)
1034                                         goto send_end;
1035                         }
1036                         continue;
1037 rollback_iter:
1038                         copied -= try_to_copy;
1039                         sk_msg_sg_copy_clear(msg_pl, first);
1040                         iov_iter_revert(&msg->msg_iter,
1041                                         msg_pl->sg.size - orig_size);
1042 fallback_to_reg_send:
1043                         sk_msg_trim(sk, msg_pl, orig_size);
1044                 }
1045
1046                 required_size = msg_pl->sg.size + try_to_copy;
1047
1048                 ret = tls_clone_plaintext_msg(sk, required_size);
1049                 if (ret) {
1050                         if (ret != -ENOSPC)
1051                                 goto send_end;
1052
1053                         /* Adjust try_to_copy according to the amount that was
1054                          * actually allocated. The difference is due
1055                          * to max sg elements limit
1056                          */
1057                         try_to_copy -= required_size - msg_pl->sg.size;
1058                         full_record = true;
1059                         sk_msg_trim(sk, msg_en,
1060                                     msg_pl->sg.size + prot->overhead_size);
1061                 }
1062
1063                 if (try_to_copy) {
1064                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1065                                                        msg_pl, try_to_copy);
1066                         if (ret < 0)
1067                                 goto trim_sgl;
1068                 }
1069
1070                 /* Open records defined only if successfully copied, otherwise
1071                  * we would trim the sg but not reset the open record frags.
1072                  */
1073                 tls_ctx->pending_open_record_frags = true;
1074                 copied += try_to_copy;
1075                 if (full_record || eor) {
1076                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077                                                   record_type, &copied,
1078                                                   msg->msg_flags);
1079                         if (ret) {
1080                                 if (ret == -EINPROGRESS)
1081                                         num_async++;
1082                                 else if (ret == -ENOMEM)
1083                                         goto wait_for_memory;
1084                                 else if (ret != -EAGAIN) {
1085                                         if (ret == -ENOSPC)
1086                                                 ret = 0;
1087                                         goto send_end;
1088                                 }
1089                         }
1090                 }
1091
1092                 continue;
1093
1094 wait_for_sndbuf:
1095                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096 wait_for_memory:
1097                 ret = sk_stream_wait_memory(sk, &timeo);
1098                 if (ret) {
1099 trim_sgl:
1100                         if (ctx->open_rec)
1101                                 tls_trim_both_msgs(sk, orig_size);
1102                         goto send_end;
1103                 }
1104
1105                 if (ctx->open_rec && msg_en->sg.size < required_size)
1106                         goto alloc_encrypted;
1107         }
1108
1109         if (!num_async) {
1110                 goto send_end;
1111         } else if (num_zc) {
1112                 /* Wait for pending encryptions to get completed */
1113                 spin_lock_bh(&ctx->encrypt_compl_lock);
1114                 ctx->async_notify = true;
1115
1116                 pending = atomic_read(&ctx->encrypt_pending);
1117                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1118                 if (pending)
1119                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1120                 else
1121                         reinit_completion(&ctx->async_wait.completion);
1122
1123                 /* There can be no concurrent accesses, since we have no
1124                  * pending encrypt operations
1125                  */
1126                 WRITE_ONCE(ctx->async_notify, false);
1127
1128                 if (ctx->async_wait.err) {
1129                         ret = ctx->async_wait.err;
1130                         copied = 0;
1131                 }
1132         }
1133
1134         /* Transmit if any encryptions have completed */
1135         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1136                 cancel_delayed_work(&ctx->tx_work.work);
1137                 tls_tx_records(sk, msg->msg_flags);
1138         }
1139
1140 send_end:
1141         ret = sk_stream_error(sk, msg->msg_flags, ret);
1142
1143         release_sock(sk);
1144         mutex_unlock(&tls_ctx->tx_lock);
1145         return copied > 0 ? copied : ret;
1146 }
1147
1148 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1149                               int offset, size_t size, int flags)
1150 {
1151         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152         struct tls_context *tls_ctx = tls_get_ctx(sk);
1153         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1154         struct tls_prot_info *prot = &tls_ctx->prot_info;
1155         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1156         struct sk_msg *msg_pl;
1157         struct tls_rec *rec;
1158         int num_async = 0;
1159         ssize_t copied = 0;
1160         bool full_record;
1161         int record_room;
1162         int ret = 0;
1163         bool eor;
1164
1165         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1166         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167
1168         /* Call the sk_stream functions to manage the sndbuf mem. */
1169         while (size > 0) {
1170                 size_t copy, required_size;
1171
1172                 if (sk->sk_err) {
1173                         ret = -sk->sk_err;
1174                         goto sendpage_end;
1175                 }
1176
1177                 if (ctx->open_rec)
1178                         rec = ctx->open_rec;
1179                 else
1180                         rec = ctx->open_rec = tls_get_rec(sk);
1181                 if (!rec) {
1182                         ret = -ENOMEM;
1183                         goto sendpage_end;
1184                 }
1185
1186                 msg_pl = &rec->msg_plaintext;
1187
1188                 full_record = false;
1189                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1190                 copy = size;
1191                 if (copy >= record_room) {
1192                         copy = record_room;
1193                         full_record = true;
1194                 }
1195
1196                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1197
1198                 if (!sk_stream_memory_free(sk))
1199                         goto wait_for_sndbuf;
1200 alloc_payload:
1201                 ret = tls_alloc_encrypted_msg(sk, required_size);
1202                 if (ret) {
1203                         if (ret != -ENOSPC)
1204                                 goto wait_for_memory;
1205
1206                         /* Adjust copy according to the amount that was
1207                          * actually allocated. The difference is due
1208                          * to max sg elements limit
1209                          */
1210                         copy -= required_size - msg_pl->sg.size;
1211                         full_record = true;
1212                 }
1213
1214                 sk_msg_page_add(msg_pl, page, copy, offset);
1215                 sk_mem_charge(sk, copy);
1216
1217                 offset += copy;
1218                 size -= copy;
1219                 copied += copy;
1220
1221                 tls_ctx->pending_open_record_frags = true;
1222                 if (full_record || eor || sk_msg_full(msg_pl)) {
1223                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1224                                                   record_type, &copied, flags);
1225                         if (ret) {
1226                                 if (ret == -EINPROGRESS)
1227                                         num_async++;
1228                                 else if (ret == -ENOMEM)
1229                                         goto wait_for_memory;
1230                                 else if (ret != -EAGAIN) {
1231                                         if (ret == -ENOSPC)
1232                                                 ret = 0;
1233                                         goto sendpage_end;
1234                                 }
1235                         }
1236                 }
1237                 continue;
1238 wait_for_sndbuf:
1239                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240 wait_for_memory:
1241                 ret = sk_stream_wait_memory(sk, &timeo);
1242                 if (ret) {
1243                         if (ctx->open_rec)
1244                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1245                         goto sendpage_end;
1246                 }
1247
1248                 if (ctx->open_rec)
1249                         goto alloc_payload;
1250         }
1251
1252         if (num_async) {
1253                 /* Transmit if any encryptions have completed */
1254                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1255                         cancel_delayed_work(&ctx->tx_work.work);
1256                         tls_tx_records(sk, flags);
1257                 }
1258         }
1259 sendpage_end:
1260         ret = sk_stream_error(sk, flags, ret);
1261         return copied > 0 ? copied : ret;
1262 }
1263
1264 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1265                            int offset, size_t size, int flags)
1266 {
1267         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1268                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1269                       MSG_NO_SHARED_FRAGS))
1270                 return -EOPNOTSUPP;
1271
1272         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1273 }
1274
1275 int tls_sw_sendpage(struct sock *sk, struct page *page,
1276                     int offset, size_t size, int flags)
1277 {
1278         struct tls_context *tls_ctx = tls_get_ctx(sk);
1279         int ret;
1280
1281         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1282                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1283                 return -EOPNOTSUPP;
1284
1285         mutex_lock(&tls_ctx->tx_lock);
1286         lock_sock(sk);
1287         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1288         release_sock(sk);
1289         mutex_unlock(&tls_ctx->tx_lock);
1290         return ret;
1291 }
1292
1293 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1294                                      bool nonblock, long timeo, int *err)
1295 {
1296         struct tls_context *tls_ctx = tls_get_ctx(sk);
1297         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298         struct sk_buff *skb;
1299         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1300
1301         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1302                 if (sk->sk_err) {
1303                         *err = sock_error(sk);
1304                         return NULL;
1305                 }
1306
1307                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1308                         __strp_unpause(&ctx->strp);
1309                         if (ctx->recv_pkt)
1310                                 return ctx->recv_pkt;
1311                 }
1312
1313                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1314                         return NULL;
1315
1316                 if (sock_flag(sk, SOCK_DONE))
1317                         return NULL;
1318
1319                 if (nonblock || !timeo) {
1320                         *err = -EAGAIN;
1321                         return NULL;
1322                 }
1323
1324                 add_wait_queue(sk_sleep(sk), &wait);
1325                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1326                 sk_wait_event(sk, &timeo,
1327                               ctx->recv_pkt != skb ||
1328                               !sk_psock_queue_empty(psock),
1329                               &wait);
1330                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331                 remove_wait_queue(sk_sleep(sk), &wait);
1332
1333                 /* Handle signals */
1334                 if (signal_pending(current)) {
1335                         *err = sock_intr_errno(timeo);
1336                         return NULL;
1337                 }
1338         }
1339
1340         return skb;
1341 }
1342
1343 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1344                                int length, int *pages_used,
1345                                unsigned int *size_used,
1346                                struct scatterlist *to,
1347                                int to_max_pages)
1348 {
1349         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350         struct page *pages[MAX_SKB_FRAGS];
1351         unsigned int size = *size_used;
1352         ssize_t copied, use;
1353         size_t offset;
1354
1355         while (length > 0) {
1356                 i = 0;
1357                 maxpages = to_max_pages - num_elem;
1358                 if (maxpages == 0) {
1359                         rc = -EFAULT;
1360                         goto out;
1361                 }
1362                 copied = iov_iter_get_pages(from, pages,
1363                                             length,
1364                                             maxpages, &offset);
1365                 if (copied <= 0) {
1366                         rc = -EFAULT;
1367                         goto out;
1368                 }
1369
1370                 iov_iter_advance(from, copied);
1371
1372                 length -= copied;
1373                 size += copied;
1374                 while (copied) {
1375                         use = min_t(int, copied, PAGE_SIZE - offset);
1376
1377                         sg_set_page(&to[num_elem],
1378                                     pages[i], use, offset);
1379                         sg_unmark_end(&to[num_elem]);
1380                         /* We do not uncharge memory from this API */
1381
1382                         offset = 0;
1383                         copied -= use;
1384
1385                         i++;
1386                         num_elem++;
1387                 }
1388         }
1389         /* Mark the end in the last sg entry if newly added */
1390         if (num_elem > *pages_used)
1391                 sg_mark_end(&to[num_elem - 1]);
1392 out:
1393         if (rc)
1394                 iov_iter_revert(from, size - *size_used);
1395         *size_used = size;
1396         *pages_used = num_elem;
1397
1398         return rc;
1399 }
1400
1401 /* This function decrypts the input skb into either out_iov or in out_sg
1402  * or in skb buffers itself. The input parameter 'zc' indicates if
1403  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405  * NULL, then the decryption happens inside skb buffers itself, i.e.
1406  * zero-copy gets disabled and 'zc' is updated.
1407  */
1408
1409 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410                             struct iov_iter *out_iov,
1411                             struct scatterlist *out_sg,
1412                             int *chunk, bool *zc, bool async)
1413 {
1414         struct tls_context *tls_ctx = tls_get_ctx(sk);
1415         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416         struct tls_prot_info *prot = &tls_ctx->prot_info;
1417         struct strp_msg *rxm = strp_msg(skb);
1418         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1419         struct aead_request *aead_req;
1420         struct sk_buff *unused;
1421         u8 *aad, *iv, *mem = NULL;
1422         struct scatterlist *sgin = NULL;
1423         struct scatterlist *sgout = NULL;
1424         const int data_len = rxm->full_len - prot->overhead_size +
1425                              prot->tail_size;
1426         int iv_offset = 0;
1427
1428         if (*zc && (out_iov || out_sg)) {
1429                 if (out_iov)
1430                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1431                 else
1432                         n_sgout = sg_nents(out_sg);
1433                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1434                                  rxm->full_len - prot->prepend_size);
1435         } else {
1436                 n_sgout = 0;
1437                 *zc = false;
1438                 n_sgin = skb_cow_data(skb, 0, &unused);
1439         }
1440
1441         if (n_sgin < 1)
1442                 return -EBADMSG;
1443
1444         /* Increment to accommodate AAD */
1445         n_sgin = n_sgin + 1;
1446
1447         nsg = n_sgin + n_sgout;
1448
1449         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1451         mem_size = mem_size + prot->aad_size;
1452         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1453
1454         /* Allocate a single block of memory which contains
1455          * aead_req || sgin[] || sgout[] || aad || iv.
1456          * This order achieves correct alignment for aead_req, sgin, sgout.
1457          */
1458         mem = kmalloc(mem_size, sk->sk_allocation);
1459         if (!mem)
1460                 return -ENOMEM;
1461
1462         /* Segment the allocated memory */
1463         aead_req = (struct aead_request *)mem;
1464         sgin = (struct scatterlist *)(mem + aead_size);
1465         sgout = sgin + n_sgin;
1466         aad = (u8 *)(sgout + n_sgout);
1467         iv = aad + prot->aad_size;
1468
1469         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1470         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1471                 iv[0] = 2;
1472                 iv_offset = 1;
1473         }
1474
1475         /* Prepare IV */
1476         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1477                             iv + iv_offset + prot->salt_size,
1478                             prot->iv_size);
1479         if (err < 0) {
1480                 kfree(mem);
1481                 return err;
1482         }
1483         if (prot->version == TLS_1_3_VERSION ||
1484             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1485                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1486                        crypto_aead_ivsize(ctx->aead_recv));
1487         else
1488                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1489
1490         xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1491
1492         /* Prepare AAD */
1493         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1494                      prot->tail_size,
1495                      tls_ctx->rx.rec_seq, ctx->control, prot);
1496
1497         /* Prepare sgin */
1498         sg_init_table(sgin, n_sgin);
1499         sg_set_buf(&sgin[0], aad, prot->aad_size);
1500         err = skb_to_sgvec(skb, &sgin[1],
1501                            rxm->offset + prot->prepend_size,
1502                            rxm->full_len - prot->prepend_size);
1503         if (err < 0) {
1504                 kfree(mem);
1505                 return err;
1506         }
1507
1508         if (n_sgout) {
1509                 if (out_iov) {
1510                         sg_init_table(sgout, n_sgout);
1511                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1512
1513                         *chunk = 0;
1514                         err = tls_setup_from_iter(sk, out_iov, data_len,
1515                                                   &pages, chunk, &sgout[1],
1516                                                   (n_sgout - 1));
1517                         if (err < 0)
1518                                 goto fallback_to_reg_recv;
1519                 } else if (out_sg) {
1520                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1521                 } else {
1522                         goto fallback_to_reg_recv;
1523                 }
1524         } else {
1525 fallback_to_reg_recv:
1526                 sgout = sgin;
1527                 pages = 0;
1528                 *chunk = data_len;
1529                 *zc = false;
1530         }
1531
1532         /* Prepare and submit AEAD request */
1533         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1534                                 data_len, aead_req, async);
1535         if (err == -EINPROGRESS)
1536                 return err;
1537
1538         /* Release the pages in case iov was mapped to pages */
1539         for (; pages > 0; pages--)
1540                 put_page(sg_page(&sgout[pages]));
1541
1542         kfree(mem);
1543         return err;
1544 }
1545
1546 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1547                               struct iov_iter *dest, int *chunk, bool *zc,
1548                               bool async)
1549 {
1550         struct tls_context *tls_ctx = tls_get_ctx(sk);
1551         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1552         struct tls_prot_info *prot = &tls_ctx->prot_info;
1553         struct strp_msg *rxm = strp_msg(skb);
1554         int pad, err = 0;
1555
1556         if (!ctx->decrypted) {
1557                 if (tls_ctx->rx_conf == TLS_HW) {
1558                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1559                         if (err < 0)
1560                                 return err;
1561                 }
1562
1563                 /* Still not decrypted after tls_device */
1564                 if (!ctx->decrypted) {
1565                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1566                                                async);
1567                         if (err < 0) {
1568                                 if (err == -EINPROGRESS)
1569                                         tls_advance_record_sn(sk, prot,
1570                                                               &tls_ctx->rx);
1571                                 else if (err == -EBADMSG)
1572                                         TLS_INC_STATS(sock_net(sk),
1573                                                       LINUX_MIB_TLSDECRYPTERROR);
1574                                 return err;
1575                         }
1576                 } else {
1577                         *zc = false;
1578                 }
1579
1580                 pad = padding_length(ctx, prot, skb);
1581                 if (pad < 0)
1582                         return pad;
1583
1584                 rxm->full_len -= pad;
1585                 rxm->offset += prot->prepend_size;
1586                 rxm->full_len -= prot->overhead_size;
1587                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1588                 ctx->decrypted = 1;
1589                 ctx->saved_data_ready(sk);
1590         } else {
1591                 *zc = false;
1592         }
1593
1594         return err;
1595 }
1596
1597 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1598                 struct scatterlist *sgout)
1599 {
1600         bool zc = true;
1601         int chunk;
1602
1603         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1604 }
1605
1606 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1607                                unsigned int len)
1608 {
1609         struct tls_context *tls_ctx = tls_get_ctx(sk);
1610         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1611
1612         if (skb) {
1613                 struct strp_msg *rxm = strp_msg(skb);
1614
1615                 if (len < rxm->full_len) {
1616                         rxm->offset += len;
1617                         rxm->full_len -= len;
1618                         return false;
1619                 }
1620                 consume_skb(skb);
1621         }
1622
1623         /* Finished with message */
1624         ctx->recv_pkt = NULL;
1625         __strp_unpause(&ctx->strp);
1626
1627         return true;
1628 }
1629
1630 /* This function traverses the rx_list in tls receive context to copies the
1631  * decrypted records into the buffer provided by caller zero copy is not
1632  * true. Further, the records are removed from the rx_list if it is not a peek
1633  * case and the record has been consumed completely.
1634  */
1635 static int process_rx_list(struct tls_sw_context_rx *ctx,
1636                            struct msghdr *msg,
1637                            u8 *control,
1638                            bool *cmsg,
1639                            size_t skip,
1640                            size_t len,
1641                            bool zc,
1642                            bool is_peek)
1643 {
1644         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1645         u8 ctrl = *control;
1646         u8 msgc = *cmsg;
1647         struct tls_msg *tlm;
1648         ssize_t copied = 0;
1649
1650         /* Set the record type in 'control' if caller didn't pass it */
1651         if (!ctrl && skb) {
1652                 tlm = tls_msg(skb);
1653                 ctrl = tlm->control;
1654         }
1655
1656         while (skip && skb) {
1657                 struct strp_msg *rxm = strp_msg(skb);
1658                 tlm = tls_msg(skb);
1659
1660                 /* Cannot process a record of different type */
1661                 if (ctrl != tlm->control)
1662                         return 0;
1663
1664                 if (skip < rxm->full_len)
1665                         break;
1666
1667                 skip = skip - rxm->full_len;
1668                 skb = skb_peek_next(skb, &ctx->rx_list);
1669         }
1670
1671         while (len && skb) {
1672                 struct sk_buff *next_skb;
1673                 struct strp_msg *rxm = strp_msg(skb);
1674                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1675
1676                 tlm = tls_msg(skb);
1677
1678                 /* Cannot process a record of different type */
1679                 if (ctrl != tlm->control)
1680                         return 0;
1681
1682                 /* Set record type if not already done. For a non-data record,
1683                  * do not proceed if record type could not be copied.
1684                  */
1685                 if (!msgc) {
1686                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1687                                             sizeof(ctrl), &ctrl);
1688                         msgc = true;
1689                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1690                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1691                                         return -EIO;
1692
1693                                 *cmsg = msgc;
1694                         }
1695                 }
1696
1697                 if (!zc || (rxm->full_len - skip) > len) {
1698                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1699                                                     msg, chunk);
1700                         if (err < 0)
1701                                 return err;
1702                 }
1703
1704                 len = len - chunk;
1705                 copied = copied + chunk;
1706
1707                 /* Consume the data from record if it is non-peek case*/
1708                 if (!is_peek) {
1709                         rxm->offset = rxm->offset + chunk;
1710                         rxm->full_len = rxm->full_len - chunk;
1711
1712                         /* Return if there is unconsumed data in the record */
1713                         if (rxm->full_len - skip)
1714                                 break;
1715                 }
1716
1717                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1718                  * So from the 2nd record, 'skip' should be 0.
1719                  */
1720                 skip = 0;
1721
1722                 if (msg)
1723                         msg->msg_flags |= MSG_EOR;
1724
1725                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1726
1727                 if (!is_peek) {
1728                         skb_unlink(skb, &ctx->rx_list);
1729                         consume_skb(skb);
1730                 }
1731
1732                 skb = next_skb;
1733         }
1734
1735         *control = ctrl;
1736         return copied;
1737 }
1738
1739 int tls_sw_recvmsg(struct sock *sk,
1740                    struct msghdr *msg,
1741                    size_t len,
1742                    int nonblock,
1743                    int flags,
1744                    int *addr_len)
1745 {
1746         struct tls_context *tls_ctx = tls_get_ctx(sk);
1747         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1748         struct tls_prot_info *prot = &tls_ctx->prot_info;
1749         struct sk_psock *psock;
1750         unsigned char control = 0;
1751         ssize_t decrypted = 0;
1752         struct strp_msg *rxm;
1753         struct tls_msg *tlm;
1754         struct sk_buff *skb;
1755         ssize_t copied = 0;
1756         bool cmsg = false;
1757         int target, err = 0;
1758         long timeo;
1759         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1760         bool is_peek = flags & MSG_PEEK;
1761         bool bpf_strp_enabled;
1762         int num_async = 0;
1763         int pending;
1764
1765         flags |= nonblock;
1766
1767         if (unlikely(flags & MSG_ERRQUEUE))
1768                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1769
1770         psock = sk_psock_get(sk);
1771         lock_sock(sk);
1772         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1773
1774         /* Process pending decrypted records. It must be non-zero-copy */
1775         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1776                               is_peek);
1777         if (err < 0) {
1778                 tls_err_abort(sk, err);
1779                 goto end;
1780         } else {
1781                 copied = err;
1782         }
1783
1784         if (len <= copied)
1785                 goto recv_end;
1786
1787         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1788         len = len - copied;
1789         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1790
1791         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1792                 bool retain_skb = false;
1793                 bool zc = false;
1794                 int to_decrypt;
1795                 int chunk = 0;
1796                 bool async_capable;
1797                 bool async = false;
1798
1799                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1800                 if (!skb) {
1801                         if (psock) {
1802                                 int ret = sk_msg_recvmsg(sk, psock, msg, len,
1803                                                          flags);
1804
1805                                 if (ret > 0) {
1806                                         decrypted += ret;
1807                                         len -= ret;
1808                                         continue;
1809                                 }
1810                         }
1811                         goto recv_end;
1812                 } else {
1813                         tlm = tls_msg(skb);
1814                         if (prot->version == TLS_1_3_VERSION)
1815                                 tlm->control = 0;
1816                         else
1817                                 tlm->control = ctx->control;
1818                 }
1819
1820                 rxm = strp_msg(skb);
1821
1822                 to_decrypt = rxm->full_len - prot->overhead_size;
1823
1824                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1825                     ctx->control == TLS_RECORD_TYPE_DATA &&
1826                     prot->version != TLS_1_3_VERSION &&
1827                     !bpf_strp_enabled)
1828                         zc = true;
1829
1830                 /* Do not use async mode if record is non-data */
1831                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1832                         async_capable = ctx->async_capable;
1833                 else
1834                         async_capable = false;
1835
1836                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1837                                          &chunk, &zc, async_capable);
1838                 if (err < 0 && err != -EINPROGRESS) {
1839                         tls_err_abort(sk, -EBADMSG);
1840                         goto recv_end;
1841                 }
1842
1843                 if (err == -EINPROGRESS) {
1844                         async = true;
1845                         num_async++;
1846                 } else if (prot->version == TLS_1_3_VERSION) {
1847                         tlm->control = ctx->control;
1848                 }
1849
1850                 /* If the type of records being processed is not known yet,
1851                  * set it to record type just dequeued. If it is already known,
1852                  * but does not match the record type just dequeued, go to end.
1853                  * We always get record type here since for tls1.2, record type
1854                  * is known just after record is dequeued from stream parser.
1855                  * For tls1.3, we disable async.
1856                  */
1857
1858                 if (!control)
1859                         control = tlm->control;
1860                 else if (control != tlm->control)
1861                         goto recv_end;
1862
1863                 if (!cmsg) {
1864                         int cerr;
1865
1866                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1867                                         sizeof(control), &control);
1868                         cmsg = true;
1869                         if (control != TLS_RECORD_TYPE_DATA) {
1870                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1871                                         err = -EIO;
1872                                         goto recv_end;
1873                                 }
1874                         }
1875                 }
1876
1877                 if (async)
1878                         goto pick_next_record;
1879
1880                 if (!zc) {
1881                         if (bpf_strp_enabled) {
1882                                 err = sk_psock_tls_strp_read(psock, skb);
1883                                 if (err != __SK_PASS) {
1884                                         rxm->offset = rxm->offset + rxm->full_len;
1885                                         rxm->full_len = 0;
1886                                         if (err == __SK_DROP)
1887                                                 consume_skb(skb);
1888                                         ctx->recv_pkt = NULL;
1889                                         __strp_unpause(&ctx->strp);
1890                                         continue;
1891                                 }
1892                         }
1893
1894                         if (rxm->full_len > len) {
1895                                 retain_skb = true;
1896                                 chunk = len;
1897                         } else {
1898                                 chunk = rxm->full_len;
1899                         }
1900
1901                         err = skb_copy_datagram_msg(skb, rxm->offset,
1902                                                     msg, chunk);
1903                         if (err < 0)
1904                                 goto recv_end;
1905
1906                         if (!is_peek) {
1907                                 rxm->offset = rxm->offset + chunk;
1908                                 rxm->full_len = rxm->full_len - chunk;
1909                         }
1910                 }
1911
1912 pick_next_record:
1913                 if (chunk > len)
1914                         chunk = len;
1915
1916                 decrypted += chunk;
1917                 len -= chunk;
1918
1919                 /* For async or peek case, queue the current skb */
1920                 if (async || is_peek || retain_skb) {
1921                         skb_queue_tail(&ctx->rx_list, skb);
1922                         skb = NULL;
1923                 }
1924
1925                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1926                         /* Return full control message to
1927                          * userspace before trying to parse
1928                          * another message type
1929                          */
1930                         msg->msg_flags |= MSG_EOR;
1931                         if (control != TLS_RECORD_TYPE_DATA)
1932                                 goto recv_end;
1933                 } else {
1934                         break;
1935                 }
1936         }
1937
1938 recv_end:
1939         if (num_async) {
1940                 /* Wait for all previously submitted records to be decrypted */
1941                 spin_lock_bh(&ctx->decrypt_compl_lock);
1942                 ctx->async_notify = true;
1943                 pending = atomic_read(&ctx->decrypt_pending);
1944                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1945                 if (pending) {
1946                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1947                         if (err) {
1948                                 /* one of async decrypt failed */
1949                                 tls_err_abort(sk, err);
1950                                 copied = 0;
1951                                 decrypted = 0;
1952                                 goto end;
1953                         }
1954                 } else {
1955                         reinit_completion(&ctx->async_wait.completion);
1956                 }
1957
1958                 /* There can be no concurrent accesses, since we have no
1959                  * pending decrypt operations
1960                  */
1961                 WRITE_ONCE(ctx->async_notify, false);
1962
1963                 /* Drain records from the rx_list & copy if required */
1964                 if (is_peek || is_kvec)
1965                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1966                                               decrypted, false, is_peek);
1967                 else
1968                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1969                                               decrypted, true, is_peek);
1970                 if (err < 0) {
1971                         tls_err_abort(sk, err);
1972                         copied = 0;
1973                         goto end;
1974                 }
1975         }
1976
1977         copied += decrypted;
1978
1979 end:
1980         release_sock(sk);
1981         if (psock)
1982                 sk_psock_put(sk, psock);
1983         return copied ? : err;
1984 }
1985
1986 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1987                            struct pipe_inode_info *pipe,
1988                            size_t len, unsigned int flags)
1989 {
1990         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1991         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992         struct strp_msg *rxm = NULL;
1993         struct sock *sk = sock->sk;
1994         struct sk_buff *skb;
1995         ssize_t copied = 0;
1996         int err = 0;
1997         long timeo;
1998         int chunk;
1999         bool zc = false;
2000
2001         lock_sock(sk);
2002
2003         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2004
2005         skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2006         if (!skb)
2007                 goto splice_read_end;
2008
2009         if (!ctx->decrypted) {
2010                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2011
2012                 /* splice does not support reading control messages */
2013                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2014                         err = -EINVAL;
2015                         goto splice_read_end;
2016                 }
2017
2018                 if (err < 0) {
2019                         tls_err_abort(sk, -EBADMSG);
2020                         goto splice_read_end;
2021                 }
2022                 ctx->decrypted = 1;
2023         }
2024         rxm = strp_msg(skb);
2025
2026         chunk = min_t(unsigned int, rxm->full_len, len);
2027         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2028         if (copied < 0)
2029                 goto splice_read_end;
2030
2031         tls_sw_advance_skb(sk, skb, copied);
2032
2033 splice_read_end:
2034         release_sock(sk);
2035         return copied ? : err;
2036 }
2037
2038 bool tls_sw_sock_is_readable(struct sock *sk)
2039 {
2040         struct tls_context *tls_ctx = tls_get_ctx(sk);
2041         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2042         bool ingress_empty = true;
2043         struct sk_psock *psock;
2044
2045         rcu_read_lock();
2046         psock = sk_psock(sk);
2047         if (psock)
2048                 ingress_empty = list_empty(&psock->ingress_msg);
2049         rcu_read_unlock();
2050
2051         return !ingress_empty || ctx->recv_pkt ||
2052                 !skb_queue_empty(&ctx->rx_list);
2053 }
2054
2055 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2056 {
2057         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2058         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2059         struct tls_prot_info *prot = &tls_ctx->prot_info;
2060         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2061         struct strp_msg *rxm = strp_msg(skb);
2062         size_t cipher_overhead;
2063         size_t data_len = 0;
2064         int ret;
2065
2066         /* Verify that we have a full TLS header, or wait for more data */
2067         if (rxm->offset + prot->prepend_size > skb->len)
2068                 return 0;
2069
2070         /* Sanity-check size of on-stack buffer. */
2071         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2072                 ret = -EINVAL;
2073                 goto read_failure;
2074         }
2075
2076         /* Linearize header to local buffer */
2077         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2078
2079         if (ret < 0)
2080                 goto read_failure;
2081
2082         ctx->control = header[0];
2083
2084         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2085
2086         cipher_overhead = prot->tag_size;
2087         if (prot->version != TLS_1_3_VERSION &&
2088             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2089                 cipher_overhead += prot->iv_size;
2090
2091         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2092             prot->tail_size) {
2093                 ret = -EMSGSIZE;
2094                 goto read_failure;
2095         }
2096         if (data_len < cipher_overhead) {
2097                 ret = -EBADMSG;
2098                 goto read_failure;
2099         }
2100
2101         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2102         if (header[1] != TLS_1_2_VERSION_MINOR ||
2103             header[2] != TLS_1_2_VERSION_MAJOR) {
2104                 ret = -EINVAL;
2105                 goto read_failure;
2106         }
2107
2108         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2109                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2110         return data_len + TLS_HEADER_SIZE;
2111
2112 read_failure:
2113         tls_err_abort(strp->sk, ret);
2114
2115         return ret;
2116 }
2117
2118 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2119 {
2120         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2121         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2122
2123         ctx->decrypted = 0;
2124
2125         ctx->recv_pkt = skb;
2126         strp_pause(strp);
2127
2128         ctx->saved_data_ready(strp->sk);
2129 }
2130
2131 static void tls_data_ready(struct sock *sk)
2132 {
2133         struct tls_context *tls_ctx = tls_get_ctx(sk);
2134         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2135         struct sk_psock *psock;
2136
2137         strp_data_ready(&ctx->strp);
2138
2139         psock = sk_psock_get(sk);
2140         if (psock) {
2141                 if (!list_empty(&psock->ingress_msg))
2142                         ctx->saved_data_ready(sk);
2143                 sk_psock_put(sk, psock);
2144         }
2145 }
2146
2147 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2148 {
2149         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2150
2151         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2152         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2153         cancel_delayed_work_sync(&ctx->tx_work.work);
2154 }
2155
2156 void tls_sw_release_resources_tx(struct sock *sk)
2157 {
2158         struct tls_context *tls_ctx = tls_get_ctx(sk);
2159         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2160         struct tls_rec *rec, *tmp;
2161         int pending;
2162
2163         /* Wait for any pending async encryptions to complete */
2164         spin_lock_bh(&ctx->encrypt_compl_lock);
2165         ctx->async_notify = true;
2166         pending = atomic_read(&ctx->encrypt_pending);
2167         spin_unlock_bh(&ctx->encrypt_compl_lock);
2168
2169         if (pending)
2170                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2171
2172         tls_tx_records(sk, -1);
2173
2174         /* Free up un-sent records in tx_list. First, free
2175          * the partially sent record if any at head of tx_list.
2176          */
2177         if (tls_ctx->partially_sent_record) {
2178                 tls_free_partial_record(sk, tls_ctx);
2179                 rec = list_first_entry(&ctx->tx_list,
2180                                        struct tls_rec, list);
2181                 list_del(&rec->list);
2182                 sk_msg_free(sk, &rec->msg_plaintext);
2183                 kfree(rec);
2184         }
2185
2186         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2187                 list_del(&rec->list);
2188                 sk_msg_free(sk, &rec->msg_encrypted);
2189                 sk_msg_free(sk, &rec->msg_plaintext);
2190                 kfree(rec);
2191         }
2192
2193         crypto_free_aead(ctx->aead_send);
2194         tls_free_open_rec(sk);
2195 }
2196
2197 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2198 {
2199         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2200
2201         kfree(ctx);
2202 }
2203
2204 void tls_sw_release_resources_rx(struct sock *sk)
2205 {
2206         struct tls_context *tls_ctx = tls_get_ctx(sk);
2207         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2208
2209         kfree(tls_ctx->rx.rec_seq);
2210         kfree(tls_ctx->rx.iv);
2211
2212         if (ctx->aead_recv) {
2213                 kfree_skb(ctx->recv_pkt);
2214                 ctx->recv_pkt = NULL;
2215                 skb_queue_purge(&ctx->rx_list);
2216                 crypto_free_aead(ctx->aead_recv);
2217                 strp_stop(&ctx->strp);
2218                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2219                  * we still want to strp_stop(), but sk->sk_data_ready was
2220                  * never swapped.
2221                  */
2222                 if (ctx->saved_data_ready) {
2223                         write_lock_bh(&sk->sk_callback_lock);
2224                         sk->sk_data_ready = ctx->saved_data_ready;
2225                         write_unlock_bh(&sk->sk_callback_lock);
2226                 }
2227         }
2228 }
2229
2230 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2231 {
2232         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2233
2234         strp_done(&ctx->strp);
2235 }
2236
2237 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2238 {
2239         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2240
2241         kfree(ctx);
2242 }
2243
2244 void tls_sw_free_resources_rx(struct sock *sk)
2245 {
2246         struct tls_context *tls_ctx = tls_get_ctx(sk);
2247
2248         tls_sw_release_resources_rx(sk);
2249         tls_sw_free_ctx_rx(tls_ctx);
2250 }
2251
2252 /* The work handler to transmitt the encrypted records in tx_list */
2253 static void tx_work_handler(struct work_struct *work)
2254 {
2255         struct delayed_work *delayed_work = to_delayed_work(work);
2256         struct tx_work *tx_work = container_of(delayed_work,
2257                                                struct tx_work, work);
2258         struct sock *sk = tx_work->sk;
2259         struct tls_context *tls_ctx = tls_get_ctx(sk);
2260         struct tls_sw_context_tx *ctx;
2261
2262         if (unlikely(!tls_ctx))
2263                 return;
2264
2265         ctx = tls_sw_ctx_tx(tls_ctx);
2266         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2267                 return;
2268
2269         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2270                 return;
2271         mutex_lock(&tls_ctx->tx_lock);
2272         lock_sock(sk);
2273         tls_tx_records(sk, -1);
2274         release_sock(sk);
2275         mutex_unlock(&tls_ctx->tx_lock);
2276 }
2277
2278 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2279 {
2280         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2281
2282         /* Schedule the transmission if tx list is ready */
2283         if (is_tx_ready(tx_ctx) &&
2284             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2285                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2286 }
2287
2288 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2289 {
2290         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2291
2292         write_lock_bh(&sk->sk_callback_lock);
2293         rx_ctx->saved_data_ready = sk->sk_data_ready;
2294         sk->sk_data_ready = tls_data_ready;
2295         write_unlock_bh(&sk->sk_callback_lock);
2296
2297         strp_check_rcv(&rx_ctx->strp);
2298 }
2299
2300 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2301 {
2302         struct tls_context *tls_ctx = tls_get_ctx(sk);
2303         struct tls_prot_info *prot = &tls_ctx->prot_info;
2304         struct tls_crypto_info *crypto_info;
2305         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2306         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2307         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2308         struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2309         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311         struct cipher_context *cctx;
2312         struct crypto_aead **aead;
2313         struct strp_callbacks cb;
2314         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315         struct crypto_tfm *tfm;
2316         char *iv, *rec_seq, *key, *salt, *cipher_name;
2317         size_t keysize;
2318         int rc = 0;
2319
2320         if (!ctx) {
2321                 rc = -EINVAL;
2322                 goto out;
2323         }
2324
2325         if (tx) {
2326                 if (!ctx->priv_ctx_tx) {
2327                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328                         if (!sw_ctx_tx) {
2329                                 rc = -ENOMEM;
2330                                 goto out;
2331                         }
2332                         ctx->priv_ctx_tx = sw_ctx_tx;
2333                 } else {
2334                         sw_ctx_tx =
2335                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336                 }
2337         } else {
2338                 if (!ctx->priv_ctx_rx) {
2339                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340                         if (!sw_ctx_rx) {
2341                                 rc = -ENOMEM;
2342                                 goto out;
2343                         }
2344                         ctx->priv_ctx_rx = sw_ctx_rx;
2345                 } else {
2346                         sw_ctx_rx =
2347                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348                 }
2349         }
2350
2351         if (tx) {
2352                 crypto_init_wait(&sw_ctx_tx->async_wait);
2353                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354                 crypto_info = &ctx->crypto_send.info;
2355                 cctx = &ctx->tx;
2356                 aead = &sw_ctx_tx->aead_send;
2357                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359                 sw_ctx_tx->tx_work.sk = sk;
2360         } else {
2361                 crypto_init_wait(&sw_ctx_rx->async_wait);
2362                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363                 crypto_info = &ctx->crypto_recv.info;
2364                 cctx = &ctx->rx;
2365                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2366                 aead = &sw_ctx_rx->aead_recv;
2367         }
2368
2369         switch (crypto_info->cipher_type) {
2370         case TLS_CIPHER_AES_GCM_128: {
2371                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2372                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2373                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2374                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2375                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2376                 rec_seq =
2377                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2378                 gcm_128_info =
2379                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2380                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381                 key = gcm_128_info->key;
2382                 salt = gcm_128_info->salt;
2383                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384                 cipher_name = "gcm(aes)";
2385                 break;
2386         }
2387         case TLS_CIPHER_AES_GCM_256: {
2388                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2389                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2390                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2391                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2392                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2393                 rec_seq =
2394                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2395                 gcm_256_info =
2396                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2397                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398                 key = gcm_256_info->key;
2399                 salt = gcm_256_info->salt;
2400                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401                 cipher_name = "gcm(aes)";
2402                 break;
2403         }
2404         case TLS_CIPHER_AES_CCM_128: {
2405                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2406                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2407                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2408                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2409                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2410                 rec_seq =
2411                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2412                 ccm_128_info =
2413                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2414                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415                 key = ccm_128_info->key;
2416                 salt = ccm_128_info->salt;
2417                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418                 cipher_name = "ccm(aes)";
2419                 break;
2420         }
2421         case TLS_CIPHER_CHACHA20_POLY1305: {
2422                 chacha20_poly1305_info = (void *)crypto_info;
2423                 nonce_size = 0;
2424                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2425                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2426                 iv = chacha20_poly1305_info->iv;
2427                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2428                 rec_seq = chacha20_poly1305_info->rec_seq;
2429                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2430                 key = chacha20_poly1305_info->key;
2431                 salt = chacha20_poly1305_info->salt;
2432                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2433                 cipher_name = "rfc7539(chacha20,poly1305)";
2434                 break;
2435         }
2436         default:
2437                 rc = -EINVAL;
2438                 goto free_priv;
2439         }
2440
2441         /* Sanity-check the sizes for stack allocations. */
2442         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2443             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2444                 rc = -EINVAL;
2445                 goto free_priv;
2446         }
2447
2448         if (crypto_info->version == TLS_1_3_VERSION) {
2449                 nonce_size = 0;
2450                 prot->aad_size = TLS_HEADER_SIZE;
2451                 prot->tail_size = 1;
2452         } else {
2453                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2454                 prot->tail_size = 0;
2455         }
2456
2457         prot->version = crypto_info->version;
2458         prot->cipher_type = crypto_info->cipher_type;
2459         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2460         prot->tag_size = tag_size;
2461         prot->overhead_size = prot->prepend_size +
2462                               prot->tag_size + prot->tail_size;
2463         prot->iv_size = iv_size;
2464         prot->salt_size = salt_size;
2465         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2466         if (!cctx->iv) {
2467                 rc = -ENOMEM;
2468                 goto free_priv;
2469         }
2470         /* Note: 128 & 256 bit salt are the same size */
2471         prot->rec_seq_size = rec_seq_size;
2472         memcpy(cctx->iv, salt, salt_size);
2473         memcpy(cctx->iv + salt_size, iv, iv_size);
2474         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2475         if (!cctx->rec_seq) {
2476                 rc = -ENOMEM;
2477                 goto free_iv;
2478         }
2479
2480         if (!*aead) {
2481                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2482                 if (IS_ERR(*aead)) {
2483                         rc = PTR_ERR(*aead);
2484                         *aead = NULL;
2485                         goto free_rec_seq;
2486                 }
2487         }
2488
2489         ctx->push_pending_record = tls_sw_push_pending_record;
2490
2491         rc = crypto_aead_setkey(*aead, key, keysize);
2492
2493         if (rc)
2494                 goto free_aead;
2495
2496         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2497         if (rc)
2498                 goto free_aead;
2499
2500         if (sw_ctx_rx) {
2501                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2502
2503                 if (crypto_info->version == TLS_1_3_VERSION)
2504                         sw_ctx_rx->async_capable = 0;
2505                 else
2506                         sw_ctx_rx->async_capable =
2507                                 !!(tfm->__crt_alg->cra_flags &
2508                                    CRYPTO_ALG_ASYNC);
2509
2510                 /* Set up strparser */
2511                 memset(&cb, 0, sizeof(cb));
2512                 cb.rcv_msg = tls_queue;
2513                 cb.parse_msg = tls_read_size;
2514
2515                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2516         }
2517
2518         goto out;
2519
2520 free_aead:
2521         crypto_free_aead(*aead);
2522         *aead = NULL;
2523 free_rec_seq:
2524         kfree(cctx->rec_seq);
2525         cctx->rec_seq = NULL;
2526 free_iv:
2527         kfree(cctx->iv);
2528         cctx->iv = NULL;
2529 free_priv:
2530         if (tx) {
2531                 kfree(ctx->priv_ctx_tx);
2532                 ctx->priv_ctx_tx = NULL;
2533         } else {
2534                 kfree(ctx->priv_ctx_rx);
2535                 ctx->priv_ctx_rx = NULL;
2536         }
2537 out:
2538         return rc;
2539 }