2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
45 #include <net/strparser.h>
47 #include <trace/events/sock.h>
51 struct tls_decrypt_arg {
61 struct tls_decrypt_ctx {
64 u8 aad[TLS_MAX_AAD_SIZE];
66 struct scatterlist sg[];
69 noinline void tls_err_abort(struct sock *sk, int err)
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
87 if (unlikely(recursion_level >= 24))
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 WARN_ON(start > offset + len);
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
123 WARN_ON(start > offset + len);
125 end = start + frag_iter->len;
126 chunk = end - offset;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
152 return __skb_nsg(skb, offset, len, 0);
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
171 err = skb_copy_bits(skb, rxm->offset + offset,
180 tlm->control = content_type;
185 static void tls_decrypt_done(void *data, int err)
187 struct aead_request *aead_req = data;
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct scatterlist *sgin = aead_req->src;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
204 tls_ctx = tls_get_ctx(sk);
205 ctx = tls_sw_ctx_rx(tls_ctx);
207 /* Propagate if there was an err */
210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 ctx->async_wait.err = err;
212 tls_err_abort(sk, err);
215 /* Free the destination pages if skb was not decrypted inplace */
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
221 put_page(sg_page(sg));
227 spin_lock_bh(&ctx->decrypt_compl_lock);
228 if (!atomic_dec_return(&ctx->decrypt_pending))
229 complete(&ctx->async_wait.completion);
230 spin_unlock_bh(&ctx->decrypt_compl_lock);
233 static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
238 struct aead_request *aead_req,
239 struct tls_decrypt_arg *darg)
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
242 struct tls_prot_info *prot = &tls_ctx->prot_info;
243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
246 aead_request_set_tfm(aead_req, ctx->aead_recv);
247 aead_request_set_ad(aead_req, prot->aad_size);
248 aead_request_set_crypt(aead_req, sgin, sgout,
249 data_len + prot->tag_size,
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, aead_req);
256 atomic_inc(&ctx->decrypt_pending);
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
268 ret = crypto_wait_req(ret, &ctx->async_wait);
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
295 return sk_msg_alloc(sk, msg_en, len, 0);
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
312 len = required - msg_pl->sg.size;
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
317 skip = prot->prepend_size + msg_pl->sg.size;
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
322 static struct tls_rec *tls_get_rec(struct sock *sk)
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
333 rec = kzalloc(mem_size, sk->sk_allocation);
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
363 static void tls_free_open_rec(struct sock *sk)
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
375 int tls_tx_records(struct sock *sk, int flags)
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
380 struct sk_msg *msg_en;
381 int tx_flags, rc = 0;
383 if (tls_is_partially_sent_record(tls_ctx)) {
384 rec = list_first_entry(&ctx->tx_list,
385 struct tls_rec, list);
388 tx_flags = rec->tx_flags;
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
396 /* Full record has been transmitted.
397 * Remove the head of tx_list
399 list_del(&rec->list);
400 sk_msg_free(sk, &rec->msg_plaintext);
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
408 tx_flags = rec->tx_flags;
412 msg_en = &rec->msg_encrypted;
413 rc = tls_push_sg(sk, tls_ctx,
414 &msg_en->sg.data[msg_en->sg.curr],
419 list_del(&rec->list);
420 sk_msg_free(sk, &rec->msg_plaintext);
428 if (rc < 0 && rc != -EAGAIN)
429 tls_err_abort(sk, -EBADMSG);
434 static void tls_encrypt_done(void *data, int err)
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
439 struct tls_rec *rec = data;
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
446 msg_en = &rec->msg_encrypted;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
457 /* Check if error is previously set on socket */
458 if (err || sk->sk_err) {
461 /* If err is already set on socket, return the same code */
463 ctx->async_wait.err = -sk->sk_err;
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
471 struct tls_rec *first_rec;
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
483 spin_lock_bh(&ctx->encrypt_compl_lock);
484 pending = atomic_dec_return(&ctx->encrypt_pending);
486 if (!pending && ctx->async_notify)
487 complete(&ctx->async_wait.completion);
488 spin_unlock_bh(&ctx->encrypt_compl_lock);
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 schedule_delayed_work(&ctx->tx_work.work, 1);
498 static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
502 size_t data_len, u32 start)
504 struct tls_prot_info *prot = &tls_ctx->prot_info;
505 struct tls_rec *rec = ctx->open_rec;
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 int rc, iv_offset = 0;
510 /* For CCM based ciphers, first byte of IV is a constant */
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
531 msg_en->sg.curr = start;
533 aead_request_set_tfm(aead_req, ctx->aead_send);
534 aead_request_set_ad(aead_req, prot->aad_size);
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
537 data_len, rec->iv_data);
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 tls_encrypt_done, rec);
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 atomic_inc(&ctx->encrypt_pending);
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
579 new = tls_get_rec(sk);
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
585 tls_free_rec(sk, new);
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
603 apply -= sge->length;
604 bytes += sge->length;
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
610 sge = sk_msg_elem(msg_opl, i);
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
684 static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
688 struct tls_prot_info *prot = &tls_ctx->prot_info;
689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 u32 i, split_point, orig_end;
692 struct sk_msg *msg_pl, *msg_en;
693 struct aead_request *req;
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
705 if (unlikely((!split &&
707 prot->overhead_size > msg_en->sg.size) ||
710 prot->overhead_size > msg_en->sg.size))) {
712 split_point = msg_en->sg.size;
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 split_point, prot->overhead_size,
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 prot->overhead_size);
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
739 sk_msg_iter_var_prev(i);
741 rec->content_type = record_type;
742 if (prot->version == TLS_1_3_VERSION) {
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
749 sg_mark_end(sk_msg_elem(msg_pl, i));
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
758 i = msg_pl->sg.start;
759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 tls_ctx->tx.rec_seq, record_type, prot);
771 tls_fill_prepend(tls_ctx,
772 page_address(sg_page(&msg_en->sg.data[i])) +
773 msg_en->sg.data[i].offset,
774 msg_pl->sg.size + prot->tail_size,
777 tls_ctx->pending_open_record_frags = false;
779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 msg_pl->sg.size + prot->tail_size, i);
782 if (rc != -EINPROGRESS) {
783 tls_err_abort(sk, -EBADMSG);
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
789 ctx->async_capable = 1;
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 tls_ctx->pending_open_record_frags = true;
799 return tls_tx_records(sk, flags);
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
804 ssize_t *copied, int flags)
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
812 bool enospc, policy, redir_ingress;
816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 psock = sk_psock_get(sk);
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
820 if (err && sk->sk_err == EBADMSG) {
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
826 sk_psock_put(sk, psock);
830 enospc = sk_msg_full(msg);
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 delta -= msg->sg.size;
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
846 switch (psock->eval) {
848 err = tls_push_record(sk, flags, record_type);
849 if (err && sk->sk_err == EBADMSG) {
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
857 redir_ingress = psock->redir_ingress;
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 *copied -= (send + delta);
891 bool reset_eval = !ctx->open_rec;
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
910 sk_psock_put(sk, psock);
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
925 msg_pl = &rec->msg_plaintext;
926 copied = msg_pl->sg.size;
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
934 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
936 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
937 struct tls_context *tls_ctx = tls_get_ctx(sk);
938 struct tls_prot_info *prot = &tls_ctx->prot_info;
939 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
940 bool async_capable = ctx->async_capable;
941 unsigned char record_type = TLS_RECORD_TYPE_DATA;
942 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
943 bool eor = !(msg->msg_flags & MSG_MORE);
946 struct sk_msg *msg_pl, *msg_en;
957 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
961 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
966 if (unlikely(msg->msg_controllen)) {
967 ret = tls_process_cmsg(sk, msg, &record_type);
969 if (ret == -EINPROGRESS)
971 else if (ret != -EAGAIN)
976 while (msg_data_left(msg)) {
985 rec = ctx->open_rec = tls_get_rec(sk);
991 msg_pl = &rec->msg_plaintext;
992 msg_en = &rec->msg_encrypted;
994 orig_size = msg_pl->sg.size;
996 try_to_copy = msg_data_left(msg);
997 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
998 if (try_to_copy >= record_room) {
999 try_to_copy = record_room;
1003 required_size = msg_pl->sg.size + try_to_copy +
1004 prot->overhead_size;
1006 if (!sk_stream_memory_free(sk))
1007 goto wait_for_sndbuf;
1010 ret = tls_alloc_encrypted_msg(sk, required_size);
1013 goto wait_for_memory;
1015 /* Adjust try_to_copy according to the amount that was
1016 * actually allocated. The difference is due
1017 * to max sg elements limit
1019 try_to_copy -= required_size - msg_en->sg.size;
1023 if (!is_kvec && (full_record || eor) && !async_capable) {
1024 u32 first = msg_pl->sg.end;
1026 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1027 msg_pl, try_to_copy);
1029 goto fallback_to_reg_send;
1032 copied += try_to_copy;
1034 sk_msg_sg_copy_set(msg_pl, first);
1035 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1036 record_type, &copied,
1039 if (ret == -EINPROGRESS)
1041 else if (ret == -ENOMEM)
1042 goto wait_for_memory;
1043 else if (ctx->open_rec && ret == -ENOSPC)
1045 else if (ret != -EAGAIN)
1050 copied -= try_to_copy;
1051 sk_msg_sg_copy_clear(msg_pl, first);
1052 iov_iter_revert(&msg->msg_iter,
1053 msg_pl->sg.size - orig_size);
1054 fallback_to_reg_send:
1055 sk_msg_trim(sk, msg_pl, orig_size);
1058 required_size = msg_pl->sg.size + try_to_copy;
1060 ret = tls_clone_plaintext_msg(sk, required_size);
1065 /* Adjust try_to_copy according to the amount that was
1066 * actually allocated. The difference is due
1067 * to max sg elements limit
1069 try_to_copy -= required_size - msg_pl->sg.size;
1071 sk_msg_trim(sk, msg_en,
1072 msg_pl->sg.size + prot->overhead_size);
1076 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1077 msg_pl, try_to_copy);
1082 /* Open records defined only if successfully copied, otherwise
1083 * we would trim the sg but not reset the open record frags.
1085 tls_ctx->pending_open_record_frags = true;
1086 copied += try_to_copy;
1087 if (full_record || eor) {
1088 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1089 record_type, &copied,
1092 if (ret == -EINPROGRESS)
1094 else if (ret == -ENOMEM)
1095 goto wait_for_memory;
1096 else if (ret != -EAGAIN) {
1107 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1109 ret = sk_stream_wait_memory(sk, &timeo);
1113 tls_trim_both_msgs(sk, orig_size);
1117 if (ctx->open_rec && msg_en->sg.size < required_size)
1118 goto alloc_encrypted;
1123 } else if (num_zc) {
1124 /* Wait for pending encryptions to get completed */
1125 spin_lock_bh(&ctx->encrypt_compl_lock);
1126 ctx->async_notify = true;
1128 pending = atomic_read(&ctx->encrypt_pending);
1129 spin_unlock_bh(&ctx->encrypt_compl_lock);
1131 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1133 reinit_completion(&ctx->async_wait.completion);
1135 /* There can be no concurrent accesses, since we have no
1136 * pending encrypt operations
1138 WRITE_ONCE(ctx->async_notify, false);
1140 if (ctx->async_wait.err) {
1141 ret = ctx->async_wait.err;
1146 /* Transmit if any encryptions have completed */
1147 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1148 cancel_delayed_work(&ctx->tx_work.work);
1149 tls_tx_records(sk, msg->msg_flags);
1153 ret = sk_stream_error(sk, msg->msg_flags, ret);
1156 mutex_unlock(&tls_ctx->tx_lock);
1157 return copied > 0 ? copied : ret;
1160 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1161 int offset, size_t size, int flags)
1163 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1164 struct tls_context *tls_ctx = tls_get_ctx(sk);
1165 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1166 struct tls_prot_info *prot = &tls_ctx->prot_info;
1167 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1168 struct sk_msg *msg_pl;
1169 struct tls_rec *rec;
1177 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1178 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1180 /* Call the sk_stream functions to manage the sndbuf mem. */
1182 size_t copy, required_size;
1190 rec = ctx->open_rec;
1192 rec = ctx->open_rec = tls_get_rec(sk);
1198 msg_pl = &rec->msg_plaintext;
1200 full_record = false;
1201 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1203 if (copy >= record_room) {
1208 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1210 if (!sk_stream_memory_free(sk))
1211 goto wait_for_sndbuf;
1213 ret = tls_alloc_encrypted_msg(sk, required_size);
1216 goto wait_for_memory;
1218 /* Adjust copy according to the amount that was
1219 * actually allocated. The difference is due
1220 * to max sg elements limit
1222 copy -= required_size - msg_pl->sg.size;
1226 sk_msg_page_add(msg_pl, page, copy, offset);
1227 sk_mem_charge(sk, copy);
1233 tls_ctx->pending_open_record_frags = true;
1234 if (full_record || eor || sk_msg_full(msg_pl)) {
1235 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1236 record_type, &copied, flags);
1238 if (ret == -EINPROGRESS)
1240 else if (ret == -ENOMEM)
1241 goto wait_for_memory;
1242 else if (ret != -EAGAIN) {
1251 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1253 ret = sk_stream_wait_memory(sk, &timeo);
1256 tls_trim_both_msgs(sk, msg_pl->sg.size);
1265 /* Transmit if any encryptions have completed */
1266 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1267 cancel_delayed_work(&ctx->tx_work.work);
1268 tls_tx_records(sk, flags);
1272 ret = sk_stream_error(sk, flags, ret);
1273 return copied > 0 ? copied : ret;
1276 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1277 int offset, size_t size, int flags)
1279 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1280 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1281 MSG_NO_SHARED_FRAGS))
1284 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1287 int tls_sw_sendpage(struct sock *sk, struct page *page,
1288 int offset, size_t size, int flags)
1290 struct tls_context *tls_ctx = tls_get_ctx(sk);
1293 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1294 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1297 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1301 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1303 mutex_unlock(&tls_ctx->tx_lock);
1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1311 struct tls_context *tls_ctx = tls_get_ctx(sk);
1312 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1316 timeo = sock_rcvtimeo(sk, nonblock);
1318 while (!tls_strp_msg_ready(ctx)) {
1319 if (!sk_psock_queue_empty(psock))
1323 return sock_error(sk);
1325 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1326 tls_strp_check_rcv(&ctx->strp);
1327 if (tls_strp_msg_ready(ctx))
1331 if (sk->sk_shutdown & RCV_SHUTDOWN)
1334 if (sock_flag(sk, SOCK_DONE))
1341 add_wait_queue(sk_sleep(sk), &wait);
1342 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1343 sk_wait_event(sk, &timeo,
1344 tls_strp_msg_ready(ctx) ||
1345 !sk_psock_queue_empty(psock),
1347 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1348 remove_wait_queue(sk_sleep(sk), &wait);
1350 /* Handle signals */
1351 if (signal_pending(current))
1352 return sock_intr_errno(timeo);
1355 tls_strp_msg_load(&ctx->strp, released);
1360 static int tls_setup_from_iter(struct iov_iter *from,
1361 int length, int *pages_used,
1362 struct scatterlist *to,
1365 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1366 struct page *pages[MAX_SKB_FRAGS];
1367 unsigned int size = 0;
1368 ssize_t copied, use;
1371 while (length > 0) {
1373 maxpages = to_max_pages - num_elem;
1374 if (maxpages == 0) {
1378 copied = iov_iter_get_pages2(from, pages,
1389 use = min_t(int, copied, PAGE_SIZE - offset);
1391 sg_set_page(&to[num_elem],
1392 pages[i], use, offset);
1393 sg_unmark_end(&to[num_elem]);
1394 /* We do not uncharge memory from this API */
1403 /* Mark the end in the last sg entry if newly added */
1404 if (num_elem > *pages_used)
1405 sg_mark_end(&to[num_elem - 1]);
1408 iov_iter_revert(from, size);
1409 *pages_used = num_elem;
1414 static struct sk_buff *
1415 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1416 unsigned int full_len)
1418 struct strp_msg *clr_rxm;
1419 struct sk_buff *clr_skb;
1422 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1423 &err, sk->sk_allocation);
1427 skb_copy_header(clr_skb, skb);
1428 clr_skb->len = full_len;
1429 clr_skb->data_len = full_len;
1431 clr_rxm = strp_msg(clr_skb);
1432 clr_rxm->offset = 0;
1439 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1440 * They must transform the darg in/out argument are as follows:
1442 * -------------------------------------------------------------------
1443 * zc | Zero-copy decrypt allowed | Zero-copy performed
1444 * async | Async decrypt allowed | Async crypto used / in progress
1445 * skb | * | Output skb
1447 * If ZC decryption was performed darg.skb will point to the input skb.
1450 /* This function decrypts the input skb into either out_iov or in out_sg
1451 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1452 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1453 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1454 * NULL, then the decryption happens inside skb buffers itself, i.e.
1455 * zero-copy gets disabled and 'darg->zc' is updated.
1457 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1458 struct scatterlist *out_sg,
1459 struct tls_decrypt_arg *darg)
1461 struct tls_context *tls_ctx = tls_get_ctx(sk);
1462 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1463 struct tls_prot_info *prot = &tls_ctx->prot_info;
1464 int n_sgin, n_sgout, aead_size, err, pages = 0;
1465 struct sk_buff *skb = tls_strp_msg(ctx);
1466 const struct strp_msg *rxm = strp_msg(skb);
1467 const struct tls_msg *tlm = tls_msg(skb);
1468 struct aead_request *aead_req;
1469 struct scatterlist *sgin = NULL;
1470 struct scatterlist *sgout = NULL;
1471 const int data_len = rxm->full_len - prot->overhead_size;
1472 int tail_pages = !!prot->tail_size;
1473 struct tls_decrypt_ctx *dctx;
1474 struct sk_buff *clear_skb;
1478 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1479 rxm->full_len - prot->prepend_size);
1481 return n_sgin ?: -EBADMSG;
1483 if (darg->zc && (out_iov || out_sg)) {
1487 n_sgout = 1 + tail_pages +
1488 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1490 n_sgout = sg_nents(out_sg);
1494 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1498 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1501 /* Increment to accommodate AAD */
1502 n_sgin = n_sgin + 1;
1504 /* Allocate a single block of memory which contains
1505 * aead_req || tls_decrypt_ctx.
1506 * Both structs are variable length.
1508 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1509 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1510 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1517 /* Segment the allocated memory */
1518 aead_req = (struct aead_request *)mem;
1519 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1521 sgin = &dctx->sg[0];
1522 sgout = &dctx->sg[n_sgin];
1524 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1525 switch (prot->cipher_type) {
1526 case TLS_CIPHER_AES_CCM_128:
1527 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1530 case TLS_CIPHER_SM4_CCM:
1531 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1537 if (prot->version == TLS_1_3_VERSION ||
1538 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1539 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1540 prot->iv_size + prot->salt_size);
1542 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1543 &dctx->iv[iv_offset] + prot->salt_size,
1547 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1549 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1552 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1554 tls_ctx->rx.rec_seq, tlm->control, prot);
1557 sg_init_table(sgin, n_sgin);
1558 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1559 err = skb_to_sgvec(skb, &sgin[1],
1560 rxm->offset + prot->prepend_size,
1561 rxm->full_len - prot->prepend_size);
1566 sg_init_table(sgout, n_sgout);
1567 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1569 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1570 data_len + prot->tail_size);
1573 } else if (out_iov) {
1574 sg_init_table(sgout, n_sgout);
1575 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1577 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1578 (n_sgout - 1 - tail_pages));
1580 goto exit_free_pages;
1582 if (prot->tail_size) {
1583 sg_unmark_end(&sgout[pages]);
1584 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1586 sg_mark_end(&sgout[pages + 1]);
1588 } else if (out_sg) {
1589 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1592 /* Prepare and submit AEAD request */
1593 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1594 data_len + prot->tail_size, aead_req, darg);
1596 goto exit_free_pages;
1598 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1601 if (unlikely(darg->async)) {
1602 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1604 __skb_queue_tail(&ctx->async_hold, darg->skb);
1608 if (prot->tail_size)
1609 darg->tail = dctx->tail;
1612 /* Release the pages in case iov was mapped to pages */
1613 for (; pages > 0; pages--)
1614 put_page(sg_page(&sgout[pages]));
1618 consume_skb(clear_skb);
1623 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1624 struct msghdr *msg, struct tls_decrypt_arg *darg)
1626 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1627 struct tls_prot_info *prot = &tls_ctx->prot_info;
1628 struct strp_msg *rxm;
1631 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1633 if (err == -EBADMSG)
1634 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1637 /* keep going even for ->async, the code below is TLS 1.3 */
1639 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1640 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1641 darg->tail != TLS_RECORD_TYPE_DATA)) {
1644 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1645 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1646 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1649 pad = tls_padding_length(prot, darg->skb, darg);
1651 if (darg->skb != tls_strp_msg(ctx))
1652 consume_skb(darg->skb);
1656 rxm = strp_msg(darg->skb);
1657 rxm->full_len -= pad;
1663 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1664 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1666 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1667 struct tls_prot_info *prot = &tls_ctx->prot_info;
1668 struct strp_msg *rxm;
1671 if (tls_ctx->rx_conf != TLS_HW)
1674 err = tls_device_decrypted(sk, tls_ctx);
1678 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1682 darg->async = false;
1683 darg->skb = tls_strp_msg(ctx);
1684 /* ->zc downgrade check, in case TLS 1.3 gets here */
1685 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1686 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1688 rxm = strp_msg(darg->skb);
1689 rxm->full_len -= pad;
1692 /* Non-ZC case needs a real skb */
1693 darg->skb = tls_strp_msg_detach(ctx);
1697 unsigned int off, len;
1699 /* In ZC case nobody cares about the output skb.
1700 * Just copy the data here. Note the skb is not fully trimmed.
1702 off = rxm->offset + prot->prepend_size;
1703 len = rxm->full_len - prot->overhead_size;
1705 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1712 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1713 struct tls_decrypt_arg *darg)
1715 struct tls_context *tls_ctx = tls_get_ctx(sk);
1716 struct tls_prot_info *prot = &tls_ctx->prot_info;
1717 struct strp_msg *rxm;
1720 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1722 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1726 rxm = strp_msg(darg->skb);
1727 rxm->offset += prot->prepend_size;
1728 rxm->full_len -= prot->overhead_size;
1729 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1734 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1736 struct tls_decrypt_arg darg = { .zc = true, };
1738 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1741 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1747 *control = tlm->control;
1751 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1752 sizeof(*control), control);
1753 if (*control != TLS_RECORD_TYPE_DATA) {
1754 if (err || msg->msg_flags & MSG_CTRUNC)
1757 } else if (*control != tlm->control) {
1764 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1766 tls_strp_msg_done(&ctx->strp);
1769 /* This function traverses the rx_list in tls receive context to copies the
1770 * decrypted records into the buffer provided by caller zero copy is not
1771 * true. Further, the records are removed from the rx_list if it is not a peek
1772 * case and the record has been consumed completely.
1774 static int process_rx_list(struct tls_sw_context_rx *ctx,
1781 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1782 struct tls_msg *tlm;
1786 while (skip && skb) {
1787 struct strp_msg *rxm = strp_msg(skb);
1790 err = tls_record_content_type(msg, tlm, control);
1794 if (skip < rxm->full_len)
1797 skip = skip - rxm->full_len;
1798 skb = skb_peek_next(skb, &ctx->rx_list);
1801 while (len && skb) {
1802 struct sk_buff *next_skb;
1803 struct strp_msg *rxm = strp_msg(skb);
1804 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1808 err = tls_record_content_type(msg, tlm, control);
1812 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1818 copied = copied + chunk;
1820 /* Consume the data from record if it is non-peek case*/
1822 rxm->offset = rxm->offset + chunk;
1823 rxm->full_len = rxm->full_len - chunk;
1825 /* Return if there is unconsumed data in the record */
1826 if (rxm->full_len - skip)
1830 /* The remaining skip-bytes must lie in 1st record in rx_list.
1831 * So from the 2nd record, 'skip' should be 0.
1836 msg->msg_flags |= MSG_EOR;
1838 next_skb = skb_peek_next(skb, &ctx->rx_list);
1841 __skb_unlink(skb, &ctx->rx_list);
1850 return copied ? : err;
1854 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1855 size_t len_left, size_t decrypted, ssize_t done,
1860 if (len_left <= decrypted)
1863 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1864 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1868 return sk_flush_backlog(sk);
1871 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1879 timeo = sock_rcvtimeo(sk, nonblock);
1881 while (unlikely(ctx->reader_present)) {
1882 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1884 ctx->reader_contended = 1;
1886 add_wait_queue(&ctx->wq, &wait);
1887 sk_wait_event(sk, &timeo,
1888 !READ_ONCE(ctx->reader_present), &wait);
1889 remove_wait_queue(&ctx->wq, &wait);
1895 if (signal_pending(current)) {
1896 err = sock_intr_errno(timeo);
1901 WRITE_ONCE(ctx->reader_present, 1);
1910 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1912 if (unlikely(ctx->reader_contended)) {
1913 if (wq_has_sleeper(&ctx->wq))
1916 ctx->reader_contended = 0;
1918 WARN_ON_ONCE(!ctx->reader_present);
1921 WRITE_ONCE(ctx->reader_present, 0);
1925 int tls_sw_recvmsg(struct sock *sk,
1931 struct tls_context *tls_ctx = tls_get_ctx(sk);
1932 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1933 struct tls_prot_info *prot = &tls_ctx->prot_info;
1934 ssize_t decrypted = 0, async_copy_bytes = 0;
1935 struct sk_psock *psock;
1936 unsigned char control = 0;
1937 size_t flushed_at = 0;
1938 struct strp_msg *rxm;
1939 struct tls_msg *tlm;
1943 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1944 bool is_peek = flags & MSG_PEEK;
1945 bool released = true;
1946 bool bpf_strp_enabled;
1949 if (unlikely(flags & MSG_ERRQUEUE))
1950 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1952 psock = sk_psock_get(sk);
1953 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1956 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1958 /* If crypto failed the connection is broken */
1959 err = ctx->async_wait.err;
1963 /* Process pending decrypted records. It must be non-zero-copy */
1964 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1972 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1975 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1978 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1979 struct tls_decrypt_arg darg;
1980 int to_decrypt, chunk;
1982 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1986 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1997 memset(&darg.inargs, 0, sizeof(darg.inargs));
1999 rxm = strp_msg(tls_strp_msg(ctx));
2000 tlm = tls_msg(tls_strp_msg(ctx));
2002 to_decrypt = rxm->full_len - prot->overhead_size;
2004 if (zc_capable && to_decrypt <= len &&
2005 tlm->control == TLS_RECORD_TYPE_DATA)
2008 /* Do not use async mode if record is non-data */
2009 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2010 darg.async = ctx->async_capable;
2014 err = tls_rx_one_record(sk, msg, &darg);
2016 tls_err_abort(sk, -EBADMSG);
2020 async |= darg.async;
2022 /* If the type of records being processed is not known yet,
2023 * set it to record type just dequeued. If it is already known,
2024 * but does not match the record type just dequeued, go to end.
2025 * We always get record type here since for tls1.2, record type
2026 * is known just after record is dequeued from stream parser.
2027 * For tls1.3, we disable async.
2029 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2031 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2032 tls_rx_rec_done(ctx);
2034 __skb_queue_tail(&ctx->rx_list, darg.skb);
2038 /* periodically flush backlog, and feed strparser */
2039 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2043 /* TLS 1.3 may have updated the length by more than overhead */
2044 rxm = strp_msg(darg.skb);
2045 chunk = rxm->full_len;
2046 tls_rx_rec_done(ctx);
2049 bool partially_consumed = chunk > len;
2050 struct sk_buff *skb = darg.skb;
2052 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2055 /* TLS 1.2-only, to_decrypt must be text len */
2056 chunk = min_t(int, to_decrypt, len);
2057 async_copy_bytes += chunk;
2061 __skb_queue_tail(&ctx->rx_list, skb);
2065 if (bpf_strp_enabled) {
2067 err = sk_psock_tls_strp_read(psock, skb);
2068 if (err != __SK_PASS) {
2069 rxm->offset = rxm->offset + rxm->full_len;
2071 if (err == __SK_DROP)
2077 if (partially_consumed)
2080 err = skb_copy_datagram_msg(skb, rxm->offset,
2083 goto put_on_rx_list_err;
2086 goto put_on_rx_list;
2088 if (partially_consumed) {
2089 rxm->offset += chunk;
2090 rxm->full_len -= chunk;
2091 goto put_on_rx_list;
2100 /* Return full control message to userspace before trying
2101 * to parse another message type
2103 msg->msg_flags |= MSG_EOR;
2104 if (control != TLS_RECORD_TYPE_DATA)
2112 /* Wait for all previously submitted records to be decrypted */
2113 spin_lock_bh(&ctx->decrypt_compl_lock);
2114 reinit_completion(&ctx->async_wait.completion);
2115 pending = atomic_read(&ctx->decrypt_pending);
2116 spin_unlock_bh(&ctx->decrypt_compl_lock);
2119 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2120 __skb_queue_purge(&ctx->async_hold);
2123 if (err >= 0 || err == -EINPROGRESS)
2129 /* Drain records from the rx_list & copy if required */
2130 if (is_peek || is_kvec)
2131 err = process_rx_list(ctx, msg, &control, copied,
2132 decrypted, is_peek);
2134 err = process_rx_list(ctx, msg, &control, 0,
2135 async_copy_bytes, is_peek);
2136 decrypted += max(err, 0);
2139 copied += decrypted;
2142 tls_rx_reader_unlock(sk, ctx);
2144 sk_psock_put(sk, psock);
2145 return copied ? : err;
2148 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2149 struct pipe_inode_info *pipe,
2150 size_t len, unsigned int flags)
2152 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2153 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2154 struct strp_msg *rxm = NULL;
2155 struct sock *sk = sock->sk;
2156 struct tls_msg *tlm;
2157 struct sk_buff *skb;
2162 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2166 if (!skb_queue_empty(&ctx->rx_list)) {
2167 skb = __skb_dequeue(&ctx->rx_list);
2169 struct tls_decrypt_arg darg;
2171 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2174 goto splice_read_end;
2176 memset(&darg.inargs, 0, sizeof(darg.inargs));
2178 err = tls_rx_one_record(sk, NULL, &darg);
2180 tls_err_abort(sk, -EBADMSG);
2181 goto splice_read_end;
2184 tls_rx_rec_done(ctx);
2188 rxm = strp_msg(skb);
2191 /* splice does not support reading control messages */
2192 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2194 goto splice_requeue;
2197 chunk = min_t(unsigned int, rxm->full_len, len);
2198 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2200 goto splice_requeue;
2202 if (chunk < rxm->full_len) {
2204 rxm->full_len -= len;
2205 goto splice_requeue;
2211 tls_rx_reader_unlock(sk, ctx);
2212 return copied ? : err;
2215 __skb_queue_head(&ctx->rx_list, skb);
2216 goto splice_read_end;
2219 bool tls_sw_sock_is_readable(struct sock *sk)
2221 struct tls_context *tls_ctx = tls_get_ctx(sk);
2222 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2223 bool ingress_empty = true;
2224 struct sk_psock *psock;
2227 psock = sk_psock(sk);
2229 ingress_empty = list_empty(&psock->ingress_msg);
2232 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2233 !skb_queue_empty(&ctx->rx_list);
2236 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2238 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2239 struct tls_prot_info *prot = &tls_ctx->prot_info;
2240 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2241 size_t cipher_overhead;
2242 size_t data_len = 0;
2245 /* Verify that we have a full TLS header, or wait for more data */
2246 if (strp->stm.offset + prot->prepend_size > skb->len)
2249 /* Sanity-check size of on-stack buffer. */
2250 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2255 /* Linearize header to local buffer */
2256 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2260 strp->mark = header[0];
2262 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2264 cipher_overhead = prot->tag_size;
2265 if (prot->version != TLS_1_3_VERSION &&
2266 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2267 cipher_overhead += prot->iv_size;
2269 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2274 if (data_len < cipher_overhead) {
2279 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2280 if (header[1] != TLS_1_2_VERSION_MINOR ||
2281 header[2] != TLS_1_2_VERSION_MAJOR) {
2286 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2287 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2288 return data_len + TLS_HEADER_SIZE;
2291 tls_err_abort(strp->sk, ret);
2296 void tls_rx_msg_ready(struct tls_strparser *strp)
2298 struct tls_sw_context_rx *ctx;
2300 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2301 ctx->saved_data_ready(strp->sk);
2304 static void tls_data_ready(struct sock *sk)
2306 struct tls_context *tls_ctx = tls_get_ctx(sk);
2307 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2308 struct sk_psock *psock;
2311 trace_sk_data_ready(sk);
2313 alloc_save = sk->sk_allocation;
2314 sk->sk_allocation = GFP_ATOMIC;
2315 tls_strp_data_ready(&ctx->strp);
2316 sk->sk_allocation = alloc_save;
2318 psock = sk_psock_get(sk);
2320 if (!list_empty(&psock->ingress_msg))
2321 ctx->saved_data_ready(sk);
2322 sk_psock_put(sk, psock);
2326 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2328 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2330 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2331 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2332 cancel_delayed_work_sync(&ctx->tx_work.work);
2335 void tls_sw_release_resources_tx(struct sock *sk)
2337 struct tls_context *tls_ctx = tls_get_ctx(sk);
2338 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2339 struct tls_rec *rec, *tmp;
2342 /* Wait for any pending async encryptions to complete */
2343 spin_lock_bh(&ctx->encrypt_compl_lock);
2344 ctx->async_notify = true;
2345 pending = atomic_read(&ctx->encrypt_pending);
2346 spin_unlock_bh(&ctx->encrypt_compl_lock);
2349 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2351 tls_tx_records(sk, -1);
2353 /* Free up un-sent records in tx_list. First, free
2354 * the partially sent record if any at head of tx_list.
2356 if (tls_ctx->partially_sent_record) {
2357 tls_free_partial_record(sk, tls_ctx);
2358 rec = list_first_entry(&ctx->tx_list,
2359 struct tls_rec, list);
2360 list_del(&rec->list);
2361 sk_msg_free(sk, &rec->msg_plaintext);
2365 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2366 list_del(&rec->list);
2367 sk_msg_free(sk, &rec->msg_encrypted);
2368 sk_msg_free(sk, &rec->msg_plaintext);
2372 crypto_free_aead(ctx->aead_send);
2373 tls_free_open_rec(sk);
2376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2383 void tls_sw_release_resources_rx(struct sock *sk)
2385 struct tls_context *tls_ctx = tls_get_ctx(sk);
2386 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2388 kfree(tls_ctx->rx.rec_seq);
2389 kfree(tls_ctx->rx.iv);
2391 if (ctx->aead_recv) {
2392 __skb_queue_purge(&ctx->rx_list);
2393 crypto_free_aead(ctx->aead_recv);
2394 tls_strp_stop(&ctx->strp);
2395 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2396 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2399 if (ctx->saved_data_ready) {
2400 write_lock_bh(&sk->sk_callback_lock);
2401 sk->sk_data_ready = ctx->saved_data_ready;
2402 write_unlock_bh(&sk->sk_callback_lock);
2407 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2409 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2411 tls_strp_done(&ctx->strp);
2414 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2416 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2421 void tls_sw_free_resources_rx(struct sock *sk)
2423 struct tls_context *tls_ctx = tls_get_ctx(sk);
2425 tls_sw_release_resources_rx(sk);
2426 tls_sw_free_ctx_rx(tls_ctx);
2429 /* The work handler to transmitt the encrypted records in tx_list */
2430 static void tx_work_handler(struct work_struct *work)
2432 struct delayed_work *delayed_work = to_delayed_work(work);
2433 struct tx_work *tx_work = container_of(delayed_work,
2434 struct tx_work, work);
2435 struct sock *sk = tx_work->sk;
2436 struct tls_context *tls_ctx = tls_get_ctx(sk);
2437 struct tls_sw_context_tx *ctx;
2439 if (unlikely(!tls_ctx))
2442 ctx = tls_sw_ctx_tx(tls_ctx);
2443 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2446 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2449 if (mutex_trylock(&tls_ctx->tx_lock)) {
2451 tls_tx_records(sk, -1);
2453 mutex_unlock(&tls_ctx->tx_lock);
2454 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2455 /* Someone is holding the tx_lock, they will likely run Tx
2456 * and cancel the work on their way out of the lock section.
2457 * Schedule a long delay just in case.
2459 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2463 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2465 struct tls_rec *rec;
2467 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2471 return READ_ONCE(rec->tx_ready);
2474 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2476 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2478 /* Schedule the transmission if tx list is ready */
2479 if (tls_is_tx_ready(tx_ctx) &&
2480 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2481 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2484 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2486 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2488 write_lock_bh(&sk->sk_callback_lock);
2489 rx_ctx->saved_data_ready = sk->sk_data_ready;
2490 sk->sk_data_ready = tls_data_ready;
2491 write_unlock_bh(&sk->sk_callback_lock);
2494 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2496 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2498 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2499 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2502 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2504 struct tls_context *tls_ctx = tls_get_ctx(sk);
2505 struct tls_prot_info *prot = &tls_ctx->prot_info;
2506 struct tls_crypto_info *crypto_info;
2507 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2508 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2509 struct cipher_context *cctx;
2510 struct crypto_aead **aead;
2511 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2512 struct crypto_tfm *tfm;
2513 char *iv, *rec_seq, *key, *salt, *cipher_name;
2523 if (!ctx->priv_ctx_tx) {
2524 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2529 ctx->priv_ctx_tx = sw_ctx_tx;
2532 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2535 if (!ctx->priv_ctx_rx) {
2536 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2541 ctx->priv_ctx_rx = sw_ctx_rx;
2544 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2549 crypto_init_wait(&sw_ctx_tx->async_wait);
2550 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2551 crypto_info = &ctx->crypto_send.info;
2553 aead = &sw_ctx_tx->aead_send;
2554 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2555 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2556 sw_ctx_tx->tx_work.sk = sk;
2558 crypto_init_wait(&sw_ctx_rx->async_wait);
2559 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2560 init_waitqueue_head(&sw_ctx_rx->wq);
2561 crypto_info = &ctx->crypto_recv.info;
2563 skb_queue_head_init(&sw_ctx_rx->rx_list);
2564 skb_queue_head_init(&sw_ctx_rx->async_hold);
2565 aead = &sw_ctx_rx->aead_recv;
2568 switch (crypto_info->cipher_type) {
2569 case TLS_CIPHER_AES_GCM_128: {
2570 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2572 gcm_128_info = (void *)crypto_info;
2573 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2574 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2575 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2576 iv = gcm_128_info->iv;
2577 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2578 rec_seq = gcm_128_info->rec_seq;
2579 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2580 key = gcm_128_info->key;
2581 salt = gcm_128_info->salt;
2582 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2583 cipher_name = "gcm(aes)";
2586 case TLS_CIPHER_AES_GCM_256: {
2587 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2589 gcm_256_info = (void *)crypto_info;
2590 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2591 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2592 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2593 iv = gcm_256_info->iv;
2594 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2595 rec_seq = gcm_256_info->rec_seq;
2596 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2597 key = gcm_256_info->key;
2598 salt = gcm_256_info->salt;
2599 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2600 cipher_name = "gcm(aes)";
2603 case TLS_CIPHER_AES_CCM_128: {
2604 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2606 ccm_128_info = (void *)crypto_info;
2607 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2608 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2609 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2610 iv = ccm_128_info->iv;
2611 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2612 rec_seq = ccm_128_info->rec_seq;
2613 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2614 key = ccm_128_info->key;
2615 salt = ccm_128_info->salt;
2616 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2617 cipher_name = "ccm(aes)";
2620 case TLS_CIPHER_CHACHA20_POLY1305: {
2621 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2623 chacha20_poly1305_info = (void *)crypto_info;
2625 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2626 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2627 iv = chacha20_poly1305_info->iv;
2628 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2629 rec_seq = chacha20_poly1305_info->rec_seq;
2630 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2631 key = chacha20_poly1305_info->key;
2632 salt = chacha20_poly1305_info->salt;
2633 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2634 cipher_name = "rfc7539(chacha20,poly1305)";
2637 case TLS_CIPHER_SM4_GCM: {
2638 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2640 sm4_gcm_info = (void *)crypto_info;
2641 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2642 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2643 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2644 iv = sm4_gcm_info->iv;
2645 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2646 rec_seq = sm4_gcm_info->rec_seq;
2647 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2648 key = sm4_gcm_info->key;
2649 salt = sm4_gcm_info->salt;
2650 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2651 cipher_name = "gcm(sm4)";
2654 case TLS_CIPHER_SM4_CCM: {
2655 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2657 sm4_ccm_info = (void *)crypto_info;
2658 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2659 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2660 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2661 iv = sm4_ccm_info->iv;
2662 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2663 rec_seq = sm4_ccm_info->rec_seq;
2664 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2665 key = sm4_ccm_info->key;
2666 salt = sm4_ccm_info->salt;
2667 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2668 cipher_name = "ccm(sm4)";
2671 case TLS_CIPHER_ARIA_GCM_128: {
2672 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2674 aria_gcm_128_info = (void *)crypto_info;
2675 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2676 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2677 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2678 iv = aria_gcm_128_info->iv;
2679 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2680 rec_seq = aria_gcm_128_info->rec_seq;
2681 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2682 key = aria_gcm_128_info->key;
2683 salt = aria_gcm_128_info->salt;
2684 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2685 cipher_name = "gcm(aria)";
2688 case TLS_CIPHER_ARIA_GCM_256: {
2689 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2691 gcm_256_info = (void *)crypto_info;
2692 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2693 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2694 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2695 iv = gcm_256_info->iv;
2696 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2697 rec_seq = gcm_256_info->rec_seq;
2698 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2699 key = gcm_256_info->key;
2700 salt = gcm_256_info->salt;
2701 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2702 cipher_name = "gcm(aria)";
2710 if (crypto_info->version == TLS_1_3_VERSION) {
2712 prot->aad_size = TLS_HEADER_SIZE;
2713 prot->tail_size = 1;
2715 prot->aad_size = TLS_AAD_SPACE_SIZE;
2716 prot->tail_size = 0;
2719 /* Sanity-check the sizes for stack allocations. */
2720 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2721 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2722 prot->aad_size > TLS_MAX_AAD_SIZE) {
2727 prot->version = crypto_info->version;
2728 prot->cipher_type = crypto_info->cipher_type;
2729 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2730 prot->tag_size = tag_size;
2731 prot->overhead_size = prot->prepend_size +
2732 prot->tag_size + prot->tail_size;
2733 prot->iv_size = iv_size;
2734 prot->salt_size = salt_size;
2735 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2740 /* Note: 128 & 256 bit salt are the same size */
2741 prot->rec_seq_size = rec_seq_size;
2742 memcpy(cctx->iv, salt, salt_size);
2743 memcpy(cctx->iv + salt_size, iv, iv_size);
2744 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2745 if (!cctx->rec_seq) {
2751 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2752 if (IS_ERR(*aead)) {
2753 rc = PTR_ERR(*aead);
2759 ctx->push_pending_record = tls_sw_push_pending_record;
2761 rc = crypto_aead_setkey(*aead, key, keysize);
2766 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2771 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2773 tls_update_rx_zc_capable(ctx);
2774 sw_ctx_rx->async_capable =
2775 crypto_info->version != TLS_1_3_VERSION &&
2776 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2778 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2786 crypto_free_aead(*aead);
2789 kfree(cctx->rec_seq);
2790 cctx->rec_seq = NULL;
2796 kfree(ctx->priv_ctx_tx);
2797 ctx->priv_ctx_tx = NULL;
2799 kfree(ctx->priv_ctx_rx);
2800 ctx->priv_ctx_rx = NULL;